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Abstract

Design patterns help to improve communication software
quality since they address a fundamental challenge in large-
scale software development: communication of architectural
knowledge among developers. This paper makes several
contributions to the study and practice of design patterns.
It presents a case study that illustrates how design pat-
terns helped to reduce development effort and project risk
when evolving an object-oriented telecommunication soft-
ware framework across UNIX and Windows NT OS platforms.
Second, the paper discusses the techniques, benefits, and lim-
itations of applying a design pattern-based reuse strategy to
commercial telecommunication software systems.

1 Introduction

Developing communication software that is reusable across
OS platforms is hard. Constraints imposed by the under-
lying OS platforms may make it impractical to reuse exist-
ing algorithms, detailed designs, interfaces, or implemen-
tations directly. This paper describes how we evolved an
object-oriented framework from several UNIX platforms to
the Windows NT Win32 platform. Fundamental differences
in the I/O mechanisms available on Windows NT and UNIX
platforms precluded the direct black-box reuse of framework
components. We were, however, able to achieve significant
reuse of the design patterns underlying the framework.

Design patterns capture the static and dynamic structures of
solutions that occur repeatedly when developing applications
in a particular context [1, 2, 3]. Systematically incorporating
design patterns into the software development process helps
improve software quality since patterns address a fundamen-
tal challenge in large-scale software development: commu-
nication of architectural knowledge among developers. In
this paper, we describe our experience with a design pattern-
based reuse strategy. We have successfully used this strategy

at Ericsson to develop a family of object-oriented telecommu-
nication system software based on the ADAPTIVE Service
eXecutive (ASX) framework [4].

The ASX framework is an integrated collection of compo-
nents that collaborate to produce a reusable infrastructure for
developing communication software. The framework per-
forms common communication software activities (such as
event demultiplexing, event handler dispatching, connection
establishment, routing, configuration of application services,
and concurrency control). At Ericsson, we have used the
ASX framework to enhance the flexibility and reuse of net-
work management software, which monitors and manages
telecommunication switches across multiple hardware and
software platforms.

During the past year, we ported the ASX framework from
several UNIX platforms to the Windows NT platform. These
OS platforms possess different mechanisms for event demul-
tiplexingand I/O. To meet our performance and functionality
requirements, it was not possible to reuse several key compo-
nents in theASX framework directly across the OS platforms.
It was possible, however, to reuse the underlying design
patterns embodied by the ASX framework, which reduced
project risk significantly and simplified our re-development
effort.

The remainder of the paper is organized as follows: Sec-
tion 2 presents an overview of the design patterns that are the
focus of this paper; Section 3 examines the issues that arose
when we ported the components in theReactor framework
from several UNIX platforms to the Windows NT platform;
Section 4 summarizes the experience we gained, both pro and
con, while deploying a design pattern-based system devel-
opment methodology in a production software environment;
and Section 5 presents concluding remarks.

2 Overview of Design Patterns

A design pattern represents a recurring solution to a design
problem within a particular domain (such as business data
processing, telecommunications, graphical user interfaces,
databases, and distributed communication software) [1]. De-
sign patterns facilitate architectural level reuse by providing
“blueprints” that guide the definition, composition, and eval-
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uation of key components in a software system. In general,
a large amount of experience reuse is possible at the archi-
tectural level. However, reusing design patterns does not
necessarily result in direct reuse of algorithms, detailed de-
signs, interfaces, or implementations.

This paper focuses on two specific design patterns (the
Reactor [5] and Acceptor patterns) that are implemented by
the ASX framework. The ASX components, and the Reactor
and Acceptor design patterns embodied by these components,
are currently used in a number of production systems. These
systems include the Bellcore and Siemens Q.port ATM sig-
naling software product, the system control segment for the
Motorola Iridium global personal communications system
[6], a family of system/network management applications
for Ericsson telecommunication switches [7], and a Global
Limiting System developed by Credit Suisse that manages
credit risk and market risk.

The design patterns described in the following section pro-
vided a concise set of architectural blueprints that guided our
porting effort from UNIX to Windows NT. By using the pat-
terns, we did not have to rediscover the key collaborations
between architectural components. Instead, our develop-
ment task focused on determining a suitable mapping of the
components in these patterns onto the mechanisms provided
on the OS platforms. Finding an appropriate mapping was
non-trivial, as we describe in Section 3. Nevertheless, our
knowledge of the design patterns significantly reduced re-
development effort and minimized the level of risk in our
projects.

2.1 The Reactor Pattern

The Reactor is an object behavioral pattern that decouples
event demultiplexing and event handler dispatching from the
services performed in response to events. This separation
of concerns factors out the demultiplexing and dispatching
mechanisms (which may be independent of an application
and thus reusable) from the event handler processing policies
(which are specific to an application). The Reactor pattern
appears in many single-threaded event-driven frameworks
(such as the Motif, Interviews [8], System V STREAMS [9],
the ASX OO communication framework [4], and implemen-
tations of DCE [10] and CORBA [11]).

The Reactor pattern solves a key problem for single-
threaded communication software: how to efficiently demul-
tiplex multiple types of events from multiple sources of events
within a single thread of control. This strategy provides
coarse-grained concurrency control that serializes application
event handling within a process at the event demultiplexing
level. One consequence of using the Reactor pattern is that
the need for more complicated threading, synchronization, or
locking within an application may be eliminated.

Figure 1 illustrates the structure and participants in the
Reactor pattern. The Reactor defines an interface for
registering, removing, and dispatching Event Handler
objects. An implementation of this interface provides a
set of application-independent mechanisms. These mech-
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Figure 2: Object Interaction Diagram for the Reactor Pattern

anisms perform event demultiplexing and dispatching of
application-specific event handlers in response to events. The
Event Handler specifies an abstract interface used by
the Reactor to dispatch callback methods defined by ob-
jects that register to handle input, output, signal, and timeout
events of interest. The Concrete Event Handler se-
lectively implements callback method(s) to process events in
an application-specific manner.

Figure 2 illustrates the collaborations between participants
in the Reactor pattern. These collaborations are divided into
two modes:

1. Initialization mode – where Concrete Event
Handler objects are registered with the Reactor;

2. Event handling mode – where methods on the objects
are called back to handle particular types of events.

An alternative way to implement event demultiplexingand
dispatching is to use multi-tasking. In this approach, an ap-
plicationspawns a separate thread or process that monitors an
event source. Every thread or process blocks until it receives
an event notification. At this point, the appropriate event
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Figure 3: Structure and Participants in the Acceptor Pattern

handler code is executed. Certain types of applications (such
as file transfer, remote login, or teleconferencing) benefit
from multi-tasking. For these applications, multi-threading
or multi-processing helps to reduce development effort, im-
proves application robustness, and transparently leverages
off of available multi-processor capabilities.

Using multi-threading to implement event demultiplexing
has several drawbacks, however. It may require the use of
complex concurrency control schemes; it may lead to poor
performance on uni-processors [4]; and it is not available on
many OS platforms. In these cases, the Reactor pattern may
be used in lieu of, or in conjunction with, OS multi-threading
or multi-processing mechanisms.

2.2 The Acceptor Pattern

The Acceptor is an object creational pattern that decouples
passive connection establishment from the service performed
once the connection is established. This separation of con-
cerns enables the application-specific portion of a service to
vary independently of the mechanism used to establish the
connection. The Acceptor pattern appears in network “su-
perservers” (such as inetd [12] and listen [13]). These
superservers utilize a master Acceptor process that listens
for connections on a set of communication ports. Each port
is associated with a communication-related service (such as
the standard Internet services ftp, telnet, daytime, and
echo). When a service request arrives on a monitored port,
the Acceptor process accepts the request and dispatches an
appropriate pre-registered handler to perform the service.

The Acceptor pattern solves several problems encountered
when writing communication software (particularly servers)
using network programming interfaces like sockets [12] and
TLI [13]:

1. How to avoid writing the same connection establishment
code repeatedly for each server;

2. How to make the connection establishment code
portable across platforms that may contain different net-
work programming interfaces (such as sockets but not
TLI, or vice versa);

3. How to ensure that a passive-mode I/O handle is not
accidentally used to read or write data.

Figure 3 illustrates the structure and participants in the
Acceptor pattern. This pattern leverages off the Reactor pat-
tern’s Reactor to passively establish multiple connections
within a single thread of control. The Acceptor imple-
ments the strategy for establishing connections with peers.
It is parameterized by concrete types that conform to the in-
terfaces of the formal template arguments SVC HANDLER
(which performs a service in conjunction with a connected
peer) and PEER ACCEPTOR (which is the underlying IPC
mechanism used to passively establish the connection). The
Svc Handler shown in Figure 3 is a concrete type that
defines the interface for an application-specific service. It in-
herits from Event Handler (shown in Figure ??), which
allows it to be dispatched by the Reactorwhen connection
events occur. In addition, Svc Handler is parameterized
by a PEER STREAM endpoint. The Acceptor associates
this endpoint with its peer when a connection is established
successfully.

Parameterized types are used to enhance portability since
the Acceptor pattern’s connection establishment strategy is
independent of the type of service and the type of IPC mech-
anism. Programmers supply concrete arguments for these
types to produce an Instantiated Acceptor. Note
that a similar degree of decoupling could be achieved via in-
heritance and dynamic binding by using the Abstract Factory
or Factory Method patterns described in [1]. Parameterized
types were used to implement this pattern since they improve
run-time efficiency at the expense of additional compile-time
and link-time time and space overhead.

Figure 4 illustrates the collaboration among participants in
the Acceptor pattern. These collaborations are divided into
three phases:

1. Endpoint initialization phase – which creates a passive-
mode endpoint and registers this endpoint with the
Reactor, which then listens for connections from
clients;

2. Connection acceptance phase – which creates a new
Svc Handler object, accepts the connection into it,
and then activates the Svc Handler

3. Event handling phase – which may employ the Reac-
tor pattern discuss in Section 2.1 to process incoming
events.
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Figure 4: Object Interaction Diagram for the Acceptor Pat-
tern

3 Evolving Design Patterns Across OS
Platforms

3.1 Motivation

Our experience at Ericsson indicated that explicitly incorpo-
rating design patterns into the software development process
is beneficial. Design patterns focus attention on the sta-
ble aspects of a system’s software architecture. In addition,
patterns emphasize the strategic collaborations between key
participants in a software architecture without overwhelming
developers with excessive details. Abstracting away from
low-level implementation details is essential for communi-
cation software since OS platform constraints often preclude
direct reuse of system components.

We observed that without concrete exemplars, however,
developers at Ericsson found it hard to understand and apply
patterns to components they were building. To address this
concern, this section provides a technically rich, motivating,
and detailed roadmap that we used at Ericsson to successfully
shepard other developers into the realm of patterns. In this
section, we discuss how the Reactor and Acceptor design
patterns were implemented and evolved on BSD and System
V UNIX platforms, as well as on Windows NT.

The discussion below outlines the relevant functional
forces between the various OS platforms and describes how
these differences affected the implementation of the design
patterns. To focus the discussion, C++ is used as the imple-
mentation language. However, the principles and concepts
underlying the Reactor and Acceptor patterns are indepen-
dent of the programming language, the OS platform, and any
particular implementation. Readers who are not interested in
the lower-level details of implementing design patterns may
skip ahead to Section 4. In this section we summarize the
lessons we learned from using design patterns at Ericsson.

3.2 The Impact of Platform Demultiplexing
and I/O Semantics

The implementation of the Reactor pattern was affected sig-
nificantly by the semantics of the event demultiplexing and
I/O mechanisms in the underlying OS. There are two types
of demultiplexing and I/O semantics: reactive and proac-
tive. Reactive semantics allow an application to inform the
OS which I/O handles to notify it about when an I/O-related
operation (such as a read/write or connection request/accept)
may be performed without blocking. Subsequently, when
the OS detects that the desired operation may be performed
without blocking on any of the indicated handles, it informs
the application that the handle(s) are ready. The application
then “reacts” by processing the handle(s) accordingly (such
as reading or writing data, initiating/accepting connections,
etc.). Reactive demultiplexing and I/O semantics are pro-
vided on standard BSD and System V UNIX systems [12].

In contrast, proactive semantics allow an application to
actively initiate I/O-related operations (such as a read, write,
or connection request/accept) or general-purpose event-
signaling operations (such as a semaphore lock being ac-
quired or a thread terminating). The invoked operation pro-
ceeds asynchronously and does not block the caller. When an
operation completes, it signals the application. At this point,
the application runs a completion routine that determines the
exit status of the operation. If there is more data to trans-
fer, the program starts up another asynchronous operation.
Proactive demultiplexing and I/O semantics are provided on
Windows NT [14] and VMS.

For performance reasons, we were not able to completely
encapsulate the variation in behavior between the UNIX and
Windows NT demultiplexing and I/O semantics. Thus, we
could not directly reuse existing C++ code, algorithms, or
detailed designs. However, it was possible to capture and
reuse the core concepts underlying the Reactor and Acceptor
design patterns.

3.3 UNIX Evolution of the Patterns

3.3.1 Implementing the Reactor Pattern on UNIX

The standard demultiplexing mechanisms on UNIX oper-
ating systems provide reactive I/O semantics. The UNIX
select andpoll event demultiplexing system calls inform
an application which subset of handles within a set of I/O
handles may send/receive messages or request/accept con-
nections without blocking. Implementing the Reactor pattern
using UNIX reactive I/O is straightforward. After select
or poll indicate which I/O handles have become ready,
the Reactor object reacts by invoking the appropriate
Event Handler callback methods (i.e., handle event
or handle close).

One advantage of the UNIX reactive I/O scheme is that it
decouples (1) event detection and notification from (2) the
operation performed in response to the triggered event. This
allows an application to optimize its response to an event by
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using context information available when the event occurs.
For example, whenselect indicates a “read” event is pend-
ing, a network server may check to see how many bytes are
in a socket receive queue. It might use this information to
optimize the buffer size it allocates before making a recv
system call. A disadvantage of UNIX reactive I/O is that
operations may not be invoked asynchronously with respect
to other operations. Therefore, computation and communi-
cation may not occur in parallel unless separate threads or
processes are used.

The original implementation of the Reactor pattern
provided by the ASX framework was derived from the
Dispatcher class category available in the InterViews
object-oriented GUI framework [8]. TheDispatcher is an
object-oriented interface to the UNIX select system call.
InterViews uses the Dispatcher to define an application’s
main event loop and to manage connections to one or more
physical window displays. The Reactor framework’s first
modification to the Dispatcher framework added sup-
port for signal-based event dispatching. The Reactor’s
signal-based dispatching mechanism was modeled closely
on the Dispatcher’s existing timer-based and I/O handle-
based event demultiplexing and event handler dispatching
mechanisms.1

The next modification to the Reactor occurred when
porting it from SunOS 4.x, which is based primarily on BSD
4.3 UNIX, to SunOS 5.x, which is based primarily on System
V release 4 (SVR4) UNIX. SVR4 provides another event
demultiplexing system call named poll. Poll is similar
to select, though it uses a different interface and provides
a broader, more flexible model for event demultiplexing that
supports SVR4 features such as STREAM pipe band-data
[12].

The SunOS 5.x port of the Reactor was enhanced to
support either select or poll as the underlying event de-
multiplexer. Although portions of the Reactor’s internal
implementation changed, its external interface remained the
same for both the select-based and the poll-based ver-
sions. This common interface improves the portability of
networking applications across BSD and SVR4 UNIX plat-
forms.

A portion of the public interface for the BSD and SVR4
UNIX implementation of the Reactor pattern is shown below:

// Bit-wise "or" to check for multiple
// activities per-handle.
enum Reactor_Mask { READ_MASK = 01,
WRITE_MASK = 02, EXCEPT_MASK = 04 };

class Reactor
{
public:
// Register Event_Handler according to the
// Reactor_Mask(s) (i.e., "reading," "writing,"
// and/or "exceptions").
virtual int register_handler (Event_Handler *,

Reactor_Mask);

// Remove handler associated with
// the Reactor_Mask(s).

1The Reactor’s interfaces for signals and timer-based event handling
are not shown in this paper due to space limitations.

virtual int remove_handler (Event_Handler *,
Reactor_Mask);

// Block process until I/O events occur or a
// timer expires, then dispatch Event_Handler(s).
virtual int dispatch (void);

// ...
};

Likewise, the Event Handler interface for UNIX is de-
fined as follows:

typedef int HANDLE; // I/O handle.

class Event_Handler
{
protected:
// Returns the I/O handle associated with
// the derived object (must be supplied
// by a subclass).
virtual HANDLE get_handle (void) const;

// Called when an event occurs on the HANDLE.
virtual int handle_event (HANDLE, Reactor_Mask);

// Called when object is removed from the Reactor.
virtual int handle_close (HANDLE, Reactor_Mask);

// ...
};

The next major modification to the Reactor extended
it for use with multi-threaded applications on SunOS 5.x
using Solaris threads [15]. Adding multi-threading support
required changes to the internals of both the select-based
and poll-based versions of the Reactor. These changes
involved a SunOS 5.x mutual exclusion mechanism known
as a “mutex.” A mutex serializes the execution of multiple
threads by defining a critical section where only one thread
executes the code at a time [15]. Critical sections of the
Reactor’s code that concurrently access shared resources
(such as the Reactor’s internal dispatch table containing
Event Handler objects) are protected by a mutex.

The standard SunOS 5.x synchronization type (mutex t)
provides support for non-recursive mutexes. The SunOS 5.x
non-recursive mutex provides a simple and efficient form
of mutual exclusion based on adaptive spin-locks. How-
ever, non-recursive mutexes possess the restriction that the
thread currently owning a mutex may not reacquire the mu-
tex without releasing it first. Otherwise, deadlock will occur
immediately.

While developing the multi-threaded Reactor, it be-
came clear that SunOS 5.x mutex variables were inadequate
to support the synchronization semantics required by the
Reactor. In particular, the Reactor’s dispatch interface
performs callbacks to methods of pre-registered, application-
specific event handler objects as follows:

void Reactor::dispatch (void)
{
for (;;) {

// Block until events occur.
this->wait_for_events (this->handler_set_);
// Obtain the mutex.
this->lock_->acquire ();

// Dispatch all the callback methods
// on handlers who contain active events.
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foreach handler : h in this->handler_set_
if (h->handle_event (handler, mask) == FAIL)
// Cleanup on failure.
h->handle_close (handler);

// Release the mutex.
this->lock_->release ();

}
}

Callback methods (such as handle event and
handle close) defined by Event Handler subclass
objects may subsequently re-enter the Reactor object by
calling its register handler and remove handler
methods as follows:

// Global per-process instance of the Reactor.
extern Reactor reactor;

// Application-specific method called
// back by the Reactor.

int Acceptor::handle_event (HANDLE handle,
Reactor_Mask)

{
Concrete_Event_Handler *new_handler =
new Concrete_Event_Handler;

*new_handler = this->accept (handle);

// Re-enter the Reactor object.
reactor.register_handler (new_handler,

READ_MASK);
// ...

}

In the code fragment shown above, non-recursive mu-
texes will result in deadlock since (1) the mutex within
the Reactor’s dispatch method is locked throughout
the callback and (2) the Reactor’s register handler
method acquires the same mutex.

One solution to this problem involved recoding the
Reactor to release its mutex lock before invoking call-
backs to application-specific Event Handler methods.
However, this solution was tedious and error-prone. It also
increased synchronization overhead by repeatedly releasing
and reacquiring mutex locks. A more elegant and effi-
cient solution used recursive mutexes to prevent deadlock
and to avoid modifying the Reactor’s concurrency control
scheme. A recursive mutex allows calls to its acquire
method to be nested as long as the thread that owns the lock
is the one attempting to re-acquire it.

The current implementation of the UNIX-based Reactor
pattern is about 2,400 lines of C++ code (not including com-
ments or extraneous whitespace). This implementation is
portable between both BSD and System V UNIX platforms.

3.3.2 Implementing the Acceptor Pattern on UNIX

To illustrate the Reactor and Acceptor patterns, consider the
event-driven server logging daemon for a distributed logging
service shown in Figure 5. Client applications use this service
to log information (such as error notifications, debugging
traces, and status updates) in a distributed environment. In
this service, logging records are sent to a central logging
server. The logging server outputs the logging records to a

NETWORKCLIENT
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: Logging

Handler : Logging

Handler

SERVER

LOGGING  DAEMON

LOGGING

RECORDS

LOGGING

RECORDS
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CLIENT
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Figure 5: The Distributed Logging Service

console, a printer, a file, or a network management database,
etc.

In the architecture of the distributed logging service, the
logging server shown in Figure 5 handles logging records
and connection requests sent by clients. These records and
requests may arrive concurrently on multiple I/O handles.
An I/O handle identifies a resource control block managed
by the operating system.2

The logging server listens on one I/O handle for new con-
nection requests to arrive from clients. In addition, a separate
I/O handle is associated with each connected client. Input
from multiple clients may arrive concurrently. Therefore,
a single-threaded server must not block indefinitely reading
from any individual I/O handle. A blocking read on one
handle will delay the response time for clients connected on
other handles.

A highly modular and extensible way to design the server
logging daemon is to combine the Reactor and Accep-
tor patterns. Together, these patterns decouple (1) the
application-independent mechanisms that demultiplex and
dispatch pre-registered Event Handler objects from (2)
the application-specific connection establishment and log-
ging record transfer functionality performed by methods in
these objects.

Within the server logging daemon, two subclasses of the
Event Handler base class (Logging Handler and
Logging Acceptor) perform the actions required to pro-
cess the different types of events arriving on different I/O
handles. The Logging Handler is responsible for re-
ceiving and processing logging records transmitted from a
client. Likewise, the Logging Acceptor event handler
is a factory that is responsible for accepting a new connec-

2Different operating systems use different terms for I/O handles. For
example, UNIX programmers typically refer to these as file descriptors,
whereas Windows programmers typically refer to them as I/O HANDLEs.
In both cases, the underlying concepts are the same: the descriptor/handle
is an opaque reference to a resource controlled by the OS.
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tion request from a client, dynamically allocating a new
Logging Handler to handle logging records from this
client, and registering the new handler with an instance of
the Reactor.

The following code illustrates an implementation the
server logging daemon based upon the Reactor and Accep-
tor patterns. An instance of the Logging Handler tem-
plate class performs I/O between the server logging daemon
and a client. As shown in the code below, the Logging
Handler class inherits from Event Handler. In-
heriting from Event Handler enables a Logging
Handler object to be registered with the Reactor. This
inheritance also allows a Logging Handler object’s
handle event method to be dispatched automatically by
a Reactor object to process logging records when they
arrive from clients. The Logging Handler class con-
tains an instance of the template parameter PEER STREAM.
The PEER STREAM class provides reliable TCP capabili-
ties that transfer logging records between an application and
the server. The use of templates avoids dependencies on a
particular IPC interface (such as BSD sockets or System V
TLI).

template <class PEER_STREAM>
class Logging_Handler : public Event_Handler
{
public:
// Callback method that handles the reception
// of logging transmissions from remote clients.
// Two recv()’s are used to maintain framing
// across a TCP bytestream.

virtual int handle_event (HANDLE,
Reactor_Mask) {

long len;
// Determine logging record length.
long n =
this->peer_stream_.recv (&len, sizeof len);

if (n <= 0) return n;
else {
Log_Record log_record;

// Convert from network to host byte-order.
len = ntohl (len);
// Read remaining data in record.
this->peer_stream_.recv (&log_record, len);

// Format and print the logging record.
log_record.decode_and_print ();
return 0;

}
}

// Retrieve the I/O handle (called by Reactor
// when Logging_Handler object is registered).

virtual HANDLE get_handle (void) const {
return this->peer_stream_.get_handle ();

}

// Close down the I/O handle and delete the
// object when a client closes the connection.

virtual int handle_close (HANDLE,
Reactor_Mask) {

delete this;
return 0;

}

private:
// Private ensures dynamic allocation.

˜Logging_Handler (void) {
this->peer_stream_.close ();

}

// C++ wrapper for data transfer.
PEER_STREAM peer_stream_;

};

The Logging Acceptor template class is shown in
the C++ code below. It is a factory that performs the
steps necessary to (1) accept connection requests from client
logging daemons and (2) create SVC HANDLER objects
that perform an application-specific service on behalf of
clients. In this particular implementation of the Acceptor
pattern theLogging Acceptor object and theLogging
Handler objects it creates run within the same thread of
control. Logging record processing is driven reactively by
method callbacks triggered by the Reactor.

The Logging Acceptor subclass inherits from the
Event Handler class. Inheriting from the Event
Handler class enables an Logging Acceptor object
to be registered with the Reactor. The Reactor sub-
sequently dispatches the Logging Acceptor object’s
handle event method. This method then invokes the
accept method of the SOCK Acceptor, which accepts
a new client connection. The Logging Acceptor class
also contains an instance of the template parameter PEER
ACCEPTOR. The PEER ACCEPTOR class is a factory that
listens for connection requests on a well-known communica-
tion port and accepts client connections when they arrive on
that port:

// Global per-process instance of the Reactor.
extern Reactor reactor;

// Handles connection requests
// from a remote client.

template <class SVC_HANDLER,
class PEER_ACCEPTOR,
class PEER_ADDR>

class Logging_Acceptor : public Event_Handler
{
public:

// Initialize the Logging_Acceptor endpoint.

Logging_Acceptor (PEER_ADDR &a)
: peer_acceptor_ (a) {}

// Callback method that accepts a new connection,
// creates a new SVC_HANDLER object to perform
// I/O with the client connection, and registers
// the object with the Reactor.

virtual int handle_event (HANDLE,
Reactor_Mask) {

SVC_HANDLER *handler = new SVC_HANDLER;

this->peer_acceptor_.accept (*handler);
reactor.register_handler (handler,

READ_MASK);
return 0;

}

// Retrieve the I/O handle (called by Reactor
// when a Logging_Acceptor registered).

virtual HANDLE get_handle (void) const {
return this->peer_acceptor_.get_handle ();

}
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Figure 6: Server Logging Daemon Interaction Diagram

// Close down the I/O handle when the
// Logging_Acceptor is shut down.

virtual int handle_close (HANDLE,
Reactor_Mask) {

return this->peer_acceptor_.close ();
}

private:
// Factory that accepts client connections.
PEER_ACCEPTOR peer_acceptor_;

};

The C++ code shown below illustrates the main entry
point into the server logging daemon. This code creates
a Reactor object and an Logging Acceptor object
and registers theLogging Acceptorwith theReactor.
Note that theLogging Acceptor template is instantiated
with theLOGGING HANDLER class, which performs the dis-
tributed logging service on behalf of clients. Next, the main
program calls dispatch and enters the Reactor’s event-
loop. The dispatchmethod continuously handles connec-
tion requests and logging records that arrive from clients.

The interaction diagram shown in Figure 6 illustrates the
collaboration between the various objects in the server log-
ging daemon at run-time. Note that once the Reactor ob-
ject is initialized, it becomes the primary focus of the control
flow within the server logging daemon. All subsequent ac-
tivity is triggered by callback methods on the event handlers
controlled by the Reactor.

// Global per-process instance of the Reactor.
Reactor reactor;

// Server port number.
const unsigned int PORT = 10000;

// Instantiate the Logging_Handler template.
typedef Logging_Handler <SOCK_Stream>

LOGGING_HANDLER;

// Instantiate the Logging_Acceptor template.
typedef Logging_Acceptor<LOGGING_HANDLER,

SOCK_Acceptor,
INET_Addr>

LOGGING_ACCEPTOR;

int
main (void)
{
// Logging server address and port number.
INET_Addr addr (PORT);

// Initialize logging server endpoint.
LOGGING_ACCEPTOR acceptor (addr);

reactor.register_handler (&acceptor,
READ_MASK);

// Main event loop that handles client
// logging records and connection requests.

reactor.dispatch ();

/* NOTREACHED */
return 0;

}

The C++ code example shown above uses templates to
decouple the reliance on the particular type of IPC inter-
face used for connection establishment and communication.
The SOCK Stream, SOCK Acceptor and INET Addr
classes used in the template instantiations are part of the
SOCK SAP C++ wrapper library [16]. SOCK SAP encap-
sulates theSOCK STREAM semantics of the socket transport
layer interface within a type-secure, object-oriented inter-
face. SOCK STREAM sockets support the reliable transfer
of bytestream data between two processes, which may run
on the same or on different host machines in a network [12].

By using templates, it is straightforward to instantiate a
different network programming interface (such as the TLI
SAPC++ wrappers that encapsulate the System V UNIX TLI
interface) [17]. Templates trade additional compile-time and
link-time overhead for improved run-time efficiency. Note
that a similar degree of decoupling also could be achieved
via inheritance and dynamic binding by using the Abstract
Factory or Factory Method patterns described in [1].

3.4 Evolving the Design Patterns to Windows
NT

This section describes the Windows NT implementation of
the Reactor and Acceptor design patterns performed at Eric-
sson in Cypress, California. Initially, we attempted to evolve
the Reactor implementation described in Section 3.3.1
from UNIX to Windows NT using the select function
in the Windows Sockets (WinSock) library.3 This approach
failed because the WinSock version of select does not
interoperate with standard Win324 I/O HANDLEs. Our ap-
plications required the use of Win32 I/O HANDLEs to sup-
port network protocols (such as Microsoft’s NetBIOS Ex-
tended User Interface (NetBEUI)) that are not supported
by WinSock version 1.1. Next, we tried to reimplement
the Reactor interface using the Win32 API system call
WaitForMultipleObjects. The goal was to maintain

3WinSock is a Windows-oriented transport layer programming interface
based on the BSD socket paradigm.

4Win32 is the 32-bit Windows subsystem of the Windows NT operating
system.
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the original UNIX interface, but transparently supply a dif-
ferent implementation.

Transparent reimplementation failed due to fundamental
differences in the proactive vs. reactive I/O semantics on
Windows NT and UNIX outlined in Section 3. We ini-
tially considered circumventing these differences by asyn-
chronously initiating a 0-sized ReadFile request on an
overlapped I/O HANDLE. Overlapped I/O is an Win32
mechanism that supports asynchronous input and output. An
overlapped event signals an application when data arrives,
allowingReadFile to receive the data synchronously. Un-
fortunately, this solution doubled the number of system calls
for every input operation, creating unacceptable performance
overhead. In addition, this approach did not adequately em-
ulate the reactive output semantics provided by the UNIX
event demultiplexing and I/O mechanisms.

It became clear that directly reusing class method inter-
faces, attributes, detailed designs, or algorithms was not fea-
sible. Instead, we needed to elevate the level of abstraction
for reuse to the level of design patterns. Regardless of the
underlying OS event demultiplexing I/O semantics, the Re-
actor and Acceptor patterns are applicable for event-driven
communication software that must provide different types
services that are triggered simultaneously by different types
of events. Therefore, although OS platform differences pre-
cluded direct reuse of implementations or interfaces, the de-
sign knowledge we had invested in learning and documenting
the Reactor and Acceptor patterns was reusable.

The remainder of this section describes the modifications
we made to the implementations of the Reactor and Acceptor
design patterns in order to port them to Windows NT.

3.4.1 Implementing the Reactor Pattern on Windows
NT

Windows NT provides proactive I/O semantics that are typ-
ically used in the following manner. First, an application
creates a HANDLE that corresponds to an I/O channel for the
type of networking mechanism being used (such as named
pipes or sockets). The overlapped I/O attribute is specified
to the HANDLE creation system call (WinSock sockets are
created for overlapped I/O by default). Next, an application
creates a HANDLE to a Win32 event object and uses this
event object HANDLE to initialize an overlapped I/O struc-
ture. The HANDLE to the I/O channel and the overlapped I/O
structure are then passed to the WriteFile or ReadFile
system calls to initiate a send or receive operation, respec-
tively. The initiated operation proceeds asynchronously and
does not block the caller. When the operation completes, the
event object specified inside the overlapped I/O structure is
set to the “signaled” state. Subsequently, Win32 demulti-
plexing system calls (such as WaitForSingleObject or
WaitForMultipleObjects) may be used to detect the
signaled state of the Win32 event object. These calls indicate
when an outstanding asynchronous operation has completed.

The Win32 WaitForMultipleObjects system call
is functionally similar to the UNIX select and poll

system calls. It blocks on an array of HANDLEs wait-
ing for one or more of them to signal. Unlike the two
UNIX system calls (which wait only for I/O handles),
WaitForMultipleObjects is a general purpose rou-
tine that may be used to wait for any type of Win32 object
(such as a thread, process, synchronization object, I/O han-
dle, named pipe, socket, or timer). It may be programmed
to return to its caller either when any one of the HANDLEs
becomes signaled or when all of the HANDLEs become sig-
naled. WaitForMultipleObjects returns the index lo-
cation in the HANDLE array of the lowest signaled HANDLE.

Windows NT proactive I/O has both advantages and dis-
advantages. One advantage over UNIX is that Windows NT
WaitForMultipleObjects provides the flexibility to
synchronize on a wide range Win32 objects. Another ad-
vantage is that overlapped I/O may improve performance by
allowing I/O operations to execute asynchronously with re-
spect to other computation performed by applications or the
OS. In contrast, the reactive I/O semantics offered by UNIX
do not support asynchronous I/O directly (threads may be
used instead).

On the other hand, designing and implementing the Reac-
tor pattern using proactive I/O on Windows NT turned out
to be more difficult than using reactive I/O on UNIX. Sev-
eral characteristics of WaitForMultipleObjects sig-
nificantly complicated the implementation of the Windows
NT version of the Reactor pattern:

1. Applications that must synchronize simultaneous send
and receive operations on the same I/O channel are more
complicated to program on Windows NT. For example,
to distinguish the completion of a WriteFile opera-
tion from a ReadFile operation, separate overlapped
I/O structures and Win32 event objects must be allo-
cated for input and output. Furthermore, two elements
in the WaitForMultipleObjects HANDLE array
(which is currently limited to a rather small maximum of
64 HANDLEs) are consumed by the separate event ob-
ject HANDLEs dedicated to the sender and the receiver.

2. Each Win32 WaitForMultipleObjects call only
returns notification on a single HANDLE. Therefore,
to achieve the same behavior as the UNIX select
and poll system calls (which return a set of activated
I/O handles), multipleWaitForMultipleObjects
must be performed. In addition, the semantics of
WaitForMultipleObjects do not result in a fair
distribution of notifications. In particular, the lowest
signaled HANDLE in the array is always returned, re-
gardless of how long other HANDLEs further back in
the array may have been pending.

The implementation techniques required to deal with
these characteristics of Windows NT were rather com-
plicated. Therefore, we modified the NT Reactor by
creating a Handler Repository class that shields
the Reactor from this complexity. This class stores
Event Handler objects that registered with a Reactor.
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This container class implements standard operations for
inserting, deleting, suspending, and resuming Event
Handlers. Each Reactor object contains a Handler
Repository object in its private data portion. A
Handler Repositorymaintains the array of HANDLEs
passed to WaitForMultipleObjects and it also pro-
vides methods for inserting, retrieving, and “re-prioritizing”
the HANDLE array. Re-prioritization alleviates the in-
herent unfairness in the way that the Windows NT
WaitForMultipleObjects system call notifies appli-
cations when HANDLEs become signaled.

The Handler Repository’s re-prioritization method
is invoked by specifying the index of the HANDLE which
has signaled and been dispatched by the Reactor. The
method’s algorithm moves the signaled HANDLE toward the
end of the HANDLE array. This allows signaled HANDLEs
that are further back in the array to be returned by subse-
quent calls to WaitForMultipleObjects. Over time,
HANDLEs that signal frequently migrate to the end of the
HANDLE array. Likewise, HANDLEs that signal infrequently
migrate to the front of the HANDLE array. This algorithm en-
sures a reasonably fair distribution of HANDLE dispatching.

The implementation techniques described in the previ-
ous paragraph did not affect the external interface of the
Reactor. Unfortunately, certain aspects of Windows NT
proactive I/O semantics, coupled with the desire to fully
utilize the flexibility of WaitForMultipleObjects,
forced visible changes to the Reactor’s external interface.
In particular, Windows NT overlapped I/O operations must
be initiated immediately. Therefore, it was necessary for the
Windows NT Event Handler interface to distinguishbe-
tween I/O HANDLEs and synchronization object HANDLEs,
as well as to supply additional information (such as message
buffers and event HANDLEs) to the Reactor. In contrast,
the UNIX version of the Reactor does not require this
information immediately. Therefore, it may wait until it is
possible to perform an operation, at which point additional
information may be available to help optimize program be-
havior.

The following modifications to the Reactor were re-
quired to support Windows NT I/O semantics. The
Reactor Mask enumeration was modified to include a
new SYNC MASK value to allow the registration of an
Event Handler that is dispatched when a general Win32
synchronizationobject signals. Thesendmethod was added
to the Reactor class to proactively initiate output opera-
tions on behalf of an Event Handler.

// Bit-wise "or" to check for
// multiple activities per-handle.
enum Reactor_Mask { READ_MASK = 01,
WRITE_MASK = 02, SYNC_MASK = 04 };

class Reactor
{
public:
// Same as UNIX Reactor...

// Initiate an asynchronous send operation.
virtual int send (Event_Handler *,

const Message_Block *);

// ...
};

Likewise, the Event Handler interface for Windows NT
was also modified as follows:

class Event_Handler
{
protected:
// Returns the Win32 I/O HANDLE associated
// with the derived object (must be
// supplied by a subclass).
virtual HANDLE get_handle (void) const;

// Allocates a message for the Reactor.
virtual Message_Block *get_message (void);

// Called when event occurs.
virtual int handle_event (Message_Block *,

Reactor_Mask);

// Called when object is removed from Reactor.
virtual int handle_close (Message_Block *,

Reactor_Mask);

// Same as UNIX Event_Handler...
};

When a derived Event Handler is registered for input
with the Reactor an overlapped input operation is imme-
diately initiated on its behalf. This requires the Reactor
to request the derived Event Handler for an I/O mecha-
nism HANDLE, destination buffer, and a Win32 event object
HANDLE for synchronization. A derived Event Handler
returns the I/O mechanism HANDLE via its get handle
method and returns the destination buffer location and length
informationvia theMessage Block abstraction described
in [4].

The current implementation of the Windows NT-based
Reactor pattern is about 2,600 lines C++ code (not in-
cluding comments or extraneous whitespace). This code
is several hundred lines longer than the UNIX version.
The additional code primarily ensures the fairness of
WaitForMultipleObjects event demultiplexing, as
discussed above. Although Windows NT event demulti-
plexing is more complex than UNIX, the behavior of Win32
mutex objects eliminated the need for the separate Mutex
interface with recursive-mutex semantics discussed in Sec-
tion 3.3.1. Under Win32, a thread will not be blocked if it
attempts acquire a mutex specifying the HANDLE to a mutex
that it already owns. However, to release its ownership, the
thread must release a Win32 mutex once for each time that
the mutex was acquired.

3.4.2 Implementing the Acceptor Pattern on Windows
NT

The following example C++ code illustrates an implemen-
tation of the Acceptor pattern based on the Windows NT
version of the Reactor pattern.

template <class PEER_STREAM>
class Logging_Handler : public Event_Handler
{
public:
// Callback method that handles the reception
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// of logging transmissions from remote clients.
// The Message_Block object stores a message
// received from a client.

virtual int handle_event (Message_Block *msg,
Reactor_Mask) {

Log_Record *log_record
= (Log_Record *) msg->get_rd_ptr ();

// Format and print logging record.
log_record.format_and_print ();
delete msg;
return 0;

}

// Retrieve the I/O HANDLE (called by Reactor
// when a Logging_Handler object is registered).

virtual HANDLE get_handle (void) const {
return this->peer_stream_.get_handle ();

}

// Return a dynamically allocated buffer
// to store an incoming logging message.

virtual Message_Block *get_message (void) {
return
new Message_Block (sizeof (Log_Record));

}

// Close down I/O handle and delete object
// when a client closes connection.
virtual int handle_close (Message_Block *msg,

Reactor_Mask) {
delete msg;
delete this;
return 0;

}

private:
// Private ensures dynamic allocation.
˜Logging_Handler (void) {
this->peer_stream_.close ();

}

// C++ wrapper for data transfer.
PEER_STREAM peer_stream_;

}

The Logging Acceptor class is essentially the same
as the one illustrated earlier. Likewise, the interaction dia-
gram that describes the collaboration between objects in the
server logging daemon is similar to the one shown in Fig-
ure 6. In addition, the application is the same server logging
daemon presented above. As shown below, the primary dif-
ference is that Win32 Named Pipe C++ wrappers are used
in the main program instead of the SOCK SAP socket C++
wrappers:

// Global per-process instance of the Reactor.
Reactor reactor;

// Server endpoint.
const char ENDPOINT[] = "logger";

// Instantiate the Logging_Handler template.
typedef Logging_Handler <NPipe_IO>

LOGGING_HANDLER;

// Instantiate the Logging_Acceptor template.
typedef Logging_Acceptor<LOGGING_HANDLER,

NPipe_Acceptor,
Local_Pipe_Name>

LOGGING_ACCEPTOR;

int
main (void)
{

// Logging server address.
Local_Pipe_Name addr (ENDPOINT);

// Initialize logging server endpoint.
LOGGING_ACCEPTOR acceptor (addr);

reactor.register_handler (&acceptor,
SYNC_MASK);

// Arm the proactive I/O handler.
acceptor.initiate ();

// Main event loop that handles client
// logging records and connection requests.
reactor.dispatch ();
/* NOTREACHED */
return 0;

}

The Named Pipe Acceptor object (acceptor) is regis-
tered with the Reactor to handle asynchronous connection
establishment. Due to the semantics of Windows NT proac-
tive I/O, the acceptor object must explicitly initiate the
acceptance of a Named Pipe connection via an initiate
method. Each time a connection acceptance is completed,
the Reactor dispatches the handle event method of the
Named Pipe version of the Acceptor pattern to create a new
Svc Handler that will receive logging records from the
client. The Reactor will also initiate the next connection
acceptance sequence asynchronously.

4 Lessons Learned

Our group at Ericsson has been developing object-oriented
frameworks based on design patterns for the past two years
[7]. During this time, we have learned many lessons, both
positiveand negative, about using design patterns as the basis
for our system design, implementation, and documentation.
This section discusses the lessons we have learned and out-
lines workarounds for problems we encountered when using
design patterns in a production software environment.

4.1 Pros and Cons of Design Patterns

Many of our experiences with patterns at Ericsson are similar
to those observed on other projects using design patterns,
such as the Motorola Iridium project [6]. Recognizing these
common themes across different companies increased our
confidence that our experiences with patterns generalize to
other large-scale software projects. Note that many pros
and cons of using design patterns are duals of each other,
representing “two sides of the same coin.”

� Patterns are underspecified: since they generally do
not overconstrain implementations. This is beneficial since
patterns permit flexible solutions that are customizable to
account for application requirements and constraints imposed
by the OS platform and network infrastructure.

On the other hand, developers and managers must recog-
nize that learning a collection of patterns is no substitute for
design and implementation skills. In fact, patterns often lead
team members to think they know more about the solution to
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a problem than they actually do. For example, recognizing
the structure and participants in a pattern (such as the Reactor
or Acceptor patterns) is only the first step. As we describe
in Section 3, a major development effort may be required to
fully realize the patterns correctly, efficiently, and portably.

� Patterns enable widespread reuse of software architec-
ture: even if reuse of algorithms, implementations, inter-
faces, or detailed designs is not feasible. Recognizing the
benefit of architectural reuse (which is inherently indirect),
was crucial in the design evolutionwe presented in Section 3.
Our task became much simpler after we recognized how to
leverage off our prior development effort and reduce risk by
reusing the Reactor and Acceptor patterns across UNIX and
Windows NT.

It is important, however, to manage the expectations of de-
velopers and managers, who may have misconceptions about
the fundamental contribution of design patterns to a project.
In particular, at this point in time, software tools do not exist
to automatically transform patterns into code. Neither do
they guarantee flexible and efficient design and implemen-
tation. As always, there is no substitute for creativity and
diligence on the part of developers.

� Patterns capture knowledge that is implicitly under-
stood: we found that once developers are exposed to, and
properly motivated by, design patterns they are eager to adopt
the pattern nomenclature and concepts. This stems from the
fact that patterns codify knowledge that is already understood
intuitively. Therefore, once basic concepts, notations, and
pattern template formats are mastered, it is straightforward
to document and reason about many portions of a system’s
architecture and design using patterns.

A drawback to the intuitive nature of patterns is a phe-
nomenon we termed pattern overload. In this situation, so
many aspects of the project are expressed as patterns that
the concept becomes diluted. This situation occurs when
existing development practices are relabled as patterns with-
out significantly improving them. Likewise, developers may
spend their time recasting mundane concepts (such as binary
search or building a linked list) into pattern form. Although
this is intellectually satisfying, it becomes counter productive
if it does not lead to software quality improvements.

� Patterns help improve communication within and
across software development teams: since developers
share a common vocabulary and a common conceptual
gestalt. By learning the key recurring patterns in the commu-
nication software domain, developers at Ericsson elevated
the level of discourse they used to communicate with col-
leagues. For example, once our team understood the Reactor
and Acceptor patterns, they used them in other projects that
were suited to these architectures.

The focus on design patterns has also helped us to move
away from “programming language-centric” views of the
object paradigm. This has been beneficial at Ericsson since
it enabled experienced developers from different language
communities (such as Lisp, Smalltalk, C++, C, and Erlang)
to share design expertise of mutual interest.

As usual, however, restraint and a good sense of aesthet-
ics is required to resist the temptation of elevating complex
concepts and principles to the level of hyperbole. We no-
ticed a tendency for some developers to adopt a tunnel vision
where they would try to apply patterns that were inappro-
priate simply because they were familiar with the patterns.
For example, the Reactor pattern may be an inefficient event
demultiplexing model for a multi-processor platform since it
serializes application concurrency at a fairly coarse-grained
level.

� Patterns promote a structured means of documenting
software architectures: by capturing capturing the struc-
ture and collaboration of participants in a software archi-
tecture at a higher level than source code. This abstraction
process is beneficial since it captures the essential architec-
tural interactions while suppressing unnecessary details.

One of our concerns with conventional pattern catalogs
[1, 2], however, is that they are too abstract. We found that in
many cases that overly abstract pattern descriptions made it
difficult for developers to understand and apply a particular
pattern to systems they were building.

4.2 Solutions and Workarounds

Based on our experiences, we recommend the following so-
lutions and workarounds to the various traps and pitfalls with
patterns discussed above.

� Expectation management: many of the problems with
patterns we discussed above are related to managing the ex-
pectations of development team members. As usual, patterns
are no silver bullet that will magically absolve developers
from having to wrestle with tough design and implementa-
tion issues. At Ericsson, we have worked hard to motivate the
genuine benefits from patterns, without hyping them beyond
their actual contribution.

� Wide-spectrum pattern exemplars: based on our ex-
perience using design patterns as a documentation tool, we
believe that pattern catalogs should include more than just
object model diagrams and structured prose. Hyper-text
browsers, such as HTML and Windows Help Files, are partic-
ularly useful for creating compound documents that possess
multiple levels of abstraction. Moreover, in our experience,
it was particularly important to illustrate multiple implemen-
tations of a pattern. This helps to avoid tunnel vision and
over-constrained solutions based upon a limited pattern vo-
cabulary. The extended discussion in Section 3 is one exam-
ple of a wide-spectrum exemplar using this approach. This
example contains in-depth coverage of tradeoffs encountered
in actual use.

� Integrate patterns with object-oriented frameworks:
Ideally, examples in pattern catalogs [2, 1] should reference
(or better yet, contain hyper-text links to) source code that
comprises an actual object-oriented framework that illustrate
the patterns. We have begun building such an environment

12



at Ericsson, in order to disseminate our patterns and frame-
works to a wider audience. In addition to linking on-line
documentation and source code, we have had good success
with periodic design reviews where developers throughout
the organization present useful patterns they have been work-
ing on. This is another technique for avoiding tunnel vision
and enhancing the pattern vocabulary within and across de-
velopment teams.

5 Concluding Remarks

Design patterns facilitate the reuse of abstract architectures
that are decoupled from concrete realizations of these archi-
tectures. This decoupling is particularly useful when devel-
oping communication software components and frameworks
that are reusable across OS platforms. This paper describes
two design patterns, Reactor and Acceptor, that are com-
monly used to build communication software. Using the
design pattern techniques described in this paper, we suc-
cessfully reused major portions of our telecommunication
system software development effort and experience across
diverse UNIX and Windows NT OS platforms.

Our experiences with patterns reinforce the fact that the
transition from object-oriented analysis to object-oriented
design and implementation is challenging. Often, the con-
straints of the underlying OS and hardware platform influ-
ence design and implementation details significantly. This is
particularly problematic for communication software, which
is frequently targeted for OS platforms that contain non-
portable features. In such circumstances, reuse of design
patterns may be the only viable means to leverage previous
development expertise.

The UNIX version of the ASX framework compo-
nents described in this paper are freely available via
anonymous ftp from the Internet host ics.uci.edu
(128.195.1.1) in the files gnu/C++ wrappers.tar.Z
and gnu/C++ wrappers doc.tar.Z. This distribution
contains complete source code, documentation, and example
test drivers for the C++ components developed as part of the
ADAPTIVE project [4] at the Universityof California, Irvine
and Washington University.
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