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Abstract

This paper demonstrates why the performance of flexible
Distributed Object Computing (DOC) frameworks, such as
the Common Object Request Broker Architecture (CORBA),
must be improved to satisfy the requirements of next-
generation bandwidth-intensive and delay-sensitive applica-
tions. In addition, the paper outlines a software toolkit we
are building to integrate various compiler optimization tech-
niques to improve the performance of implementations of
DOC frameworks .

To illustrate the overhead imposed by conventional DOC
implementations, we present performance results from us-
ing CORBA to transfer richly-typed data between hosts on
a high-speed ATM network. We compare these results with
those obtained using lower-level socket-based C interfaces
and C++ wrappers for sockets. Our results indicate that
both the C and C++ wrapper implementations outperform
the CORBA implementation significantly. We analyze the
CORBA performance and pinpoint specific areas in which
compiler optimizations are desired. We describe how we are
solving performance problems of CORBA using compiler
techniques to automate adaptive object request demultiplex-
ing, Integrated Layer Processing to reduce data copying and
Flow Analysis and Shapes Choice techniques to produce ef-
ficient marshalling/demarshalling code.

Keywords: Distributed Object Computing, Common Ob-
ject Request Broker Architecture, Compiler Optimizations,
Frameworks, High-speed networks.

1 Introduction and Motivation

Despite dramatic increases in the performance of networks
and computers, designing and implementing flexible and ef-
ficient communication software remains hard. Substantial
time and effort has traditionallybeen required to develop this
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type of software. Moreover, all too frequently communica-
tion software fails to achieve its performance and function-
ality requirements.

Distributed Object Computing (DOC) frameworks such
as the Common Object Request Broker Architecture
(CORBA) [12] are a promising approach for improving the
flexibility of communication software. CORBA is designed
to enhance application extensibility and portability by au-
tomating common networking tasks such as parameter mar-
shalling, object location and object activation. However,
empirical studies [23, 22] show that current CORBA im-
plementations incur significant overhead when used to im-
plement performance-sensitive applications over high-speed
networks.

As high-speed networks are increasingly deployed, the
performance overhead of higher-level tools like CORBA
may encourage developers to continue to use lower-level
tools (like sockets). Using low-level tools in performance-
sensitive, mission/life-critical applications (such as elec-
tronic medical imaging) increases the development efforts
and reduces system reliability and flexibility. Therefore, it
is imperative that performance of high-level, but inefficient,
DOC frameworks be improved to match that of low-level,
but efficient, tools.

Earlier studies [23, 22], and our results shown below,
demonstrate that the factors responsible for the poor per-
formance of CORBA implementations over ATM include
excessive data copying, inefficient presentation layer con-
versions, and inefficient demultiplexing of object requests.
Compiler technology has matured to the point where tools
can be built to incorporate sophisticated optimizations au-
tomatically in order to improve the performance of DOC
frameworks without requiring tedious and error-prone man-
ual tuning. For example, advanced code flow analysis tech-
niques can be used to achieve Integrated Layer Processing [5]
to reduce the number of operations that manipulate data.

Existing implementations of network protocols are opti-
mized for high performance. But these optimizations have
been manually hand-crafted into the code. Such code is hard
to comprehend, debug, maintain, and extend. In contrast,
efficient and verifiable compiler optimization algorithms ex-
ist that can produce optimized code that is reliable and often
better than or competitive with the hand-crafted code. For
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example, it is quite possible that hand-crafted optimizations
overlook subtle target machine details such as register al-
location or filling delay or branch slots. These low-level
details are best left to the compilers, which is precisely why
we are employing advanced compiler techniques to improve
performance of DOC frameworks.

In this paper Section 2 demonstrates the key sources of
overhead in conventional CORBA implementations over
ATM; Section 3 describe how our current research is apply-
ing compiler optimizations to alleviate CORBA overhead on
ATM network; Section 4 describes related work; and Section
5 presents concluding remarks.

2 Experimental Results of CORBA
over ATM

2.1 CORBA/ATM Testbed

This section describes our experimental testbed features and
provides results of an experiment. The testbed hardware uses
a Bay Networks LattisCell 10114 ATM switch connected to
two uni-processor SPARCstation 20 Model 50s. The Lat-
tisCell 10114 is a 16 Port, OC3 155Mbs/port switch. The
SPARCstations contain 100 MIP Super SPARC CPUs run-
ning SunOS 5.4. The SunOS 5.4 TCP/IP protocol stack is
implemented using the STREAMS communication frame-
work [21]. Each SPARCstation 20 has 64 Mbytes of RAM
and an ENI-155s-MF ATM adaptor card, which supports 155
Megabits per-sec (Mbps) SONET multimode fiber. The Max-
imum Transmission Unit (MTU) on the ENI ATM adaptor
is 9,180 bytes. Each ENI card has 512 Kbytes of on-board
memory. A maximum of 32 Kbytes is allotted per ATM vir-
tual circuit connection for receiving and transmitting frames
(for a total of 64K). This allows up to 8 connections per card.

2.2 Traffic Generators

[23] describes results of experiments performed using this
testbed. These experiments tested the performance of trans-
ferring 64MB of untyped bytestream data between hosts us-
ing a “flooding model.” This type of traffic is representa-
tive of performance-sensitive applications such as high-speed
electronic medical imaging [10]. The tests were conducted
using an enhanced version of the TTCP [27] protocol bench-
marking tool. Implementations of TTCP included a low-level
C socket version, a C++ wrappers version, and two imple-
mentations of CORBA: Orbix and ORBeline versions.

The results presented in this paper extend our earlier re-
sults. The new experiments further enhanced TTCP to sup-
port 64MB transfers of “richly typed” data between remote
hosts over a high-speed ATM network. This type of traffic
is representative of applications such as transferring the con-
tents of a large database of patient medical records to support
remote teleradiology in a large-scale distributed health care
delivery system [2]

Three implementations of TTCP were measured in our
latest tests: a low-level C socket version, a C++ wrapper ver-
sion, and an Orbix version of CORBA.2. The following data
types were tested in the sequences: the scalars (short,
long, float, double, char) and a struct com-
posed of all five scalars. The CORBA implementation trans-
ferred the data types using IDL sequences, which are es-
sentially dynamically-sized arrays. The tests illustrated the
overhead of marshalling and demarshalling all the types of
data supported by CORBA.

Two parameters were varied for each data type:

� Receiver socket queue sizes used were 8K and 64K
bytes.3

� Sender buffers were incremented by multiple of two,
starting at 1K bytes upto a maximum of 128K bytes.

2.3 Performance Results

Figures 4 and 5 depict the time spent by the senders and
receivers of the three versions of TTCP for a 128K sender
buffer, 64K receiver socket buffer and sequence of structs.

The figures indicated that for transferring CORBA
structs, the Orbix version spent a significant amount of
time marshalling and demarshalling in the presentation
layer. Note, for instance, the high level of overhead
for the encoding and decoding methods and the various
CORBA::Request::operator methods.

25

30

35

40

45

50

55

60

0 50 100 150 200

T
hr

ou
gh

pu
t i

n 
M

bp
s

Sender Buffer size in KBytes

C version performance

short(64K)
long(64K)
float(64K)
char(64K)

struct(64K)

Figure 1: C version Performance

Figures 1, 2 and 3 depict performance of the three versions
of TTCP for 64KB receiver socket queue size.

A comparison of the results for richly-typed data with those
obtained for the untyped data presented in [23] reveal that the

2The ORBeline CORBA implementation consistently performed worse
than Orbix and was therefore omitted from the test results presented in this
paper.

3Performance with the 8K socket queues was consistently one-half to
two-thirds slower than using the 64K queues. Therefore, we omitted the 8K
results from the figures below.
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Figure 3: Orbix version Performance

low-level C socket version and the C++ socket wrapper ver-
sion perform almost the same for a given socket queue size.
Likewise, the performance of Orbix for sequences of scalar
data types is almost the same as that reported for untyped
data sequences in [23]. However, the performance of trans-
ferring sequences of CORBA structs for 64K and 8K was
much worse than those for the scalars. As shown in the fig-
ures, this overhead is due to the significant amount spent by
Orbix in marshalling/demarshalling the structs.

In all the experiments, the CORBA implementation per-
formed consistently worse than the C and C++ wrapper ver-
sions. On average, the performance was around two-thirds
the level of the C and C++ versions. As shown in the fig-
ures, this difference is due to presentation layer conversion
overhead, data copying, and inefficient buffer management.

The experimental results and their analysis have provided
sufficient insight into the specific areas causing performance
degradation for the CORBA implementations. Thus it is

Program %Time Method Name
C 98.10 write
sender 0.31 close

0.31 open
C++ 97.59 write
sender 0.80 lrw unlock

0.37 open
Orbix 84.54 write
sender 2.68 CHECK(unsigned long, cursor)

1.34 CORBA::Request::operator<<(const long&)
1.34 CORBA::Request::operator<<(const double&)
1.34 CORBA::Request::operator<<(const char&)
1.34 CORBA::Request::operator<<(const short&)
1.34 CORBA::Request::operator<<(const float&)
1.02 NullCoder::codeChar(char&)
0.95 NullCoder::codeDouble(double&)
0.91 IDL SEQUENCE PerfStruct::encodeOp

(CORBA::Request&) const
0.87 NullCoder::codeLong(long&)
0.87 NullCoder::codeFloat(float&)
0.87 NullCoder::codeShort(short&)

Figure 4: Sender side overheads

essential that these problem areas be eliminated.

3 Compiler Optimizations for Improv-
ing DOC Performance

The previous section and our earlier work [23, 22] measure
several key sources of overhead incurred by conventional
CORBA implementations. In general, lower-level mecha-
nisms like C and C++ versions of sockets perform signifi-
cantly better than CORBA. This performance gap presents a
serious problem for mission/life-critical applications (such as
medical imaging), where the use of low-level tools increases
development effort and reduces system reliability, flexibility,
and reuse.

Figure 6 identifies the primary sources of CORBA over-
head addressed by our current research. These include
integrated-GIOP (General Inter-ORB Protocol) transport
protocol performance [17], data copying and data inspec-
tion, presentation layer conversions, and demultiplexing of
CORBA remote operation requests. We are developing an
optimization framework that will reduce these key high-cost
sources of overhead for CORBA implementations over high-
speed ATM networks. At the core of our work is a CORBA
optimization compiler that employs the solutions proposed
below.

� CORBA GIOP Protocol Optimizations: The Gen-
eral Inter-ORB Protocol (GIOP) [17] provides the basic
functionalitynecessary for interoperabilitybetween different
ORB implementations. We are implementing a lightweight
transport protocol implementation of the CORBA GIOP for
ATM LANs. We will implement this lightweight GIOP
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Program %Time Method Name
C 64.65 read
receiver 35.08 getmsg
C++ 50.43 read
receiver 49.38 getmsg
Orbix 19.11 read
receiver 14.44 CHECK(unsigned long, cursor*)

7.22 CORBA::Request::operator>>(float&)
7.22 CORBA::Request::operator>>(double&)
7.22 CORBA::Request::operator>>(short&)
7.22 CORBA::Request::operator>>(char&)
7.22 CORBA::Request::operator>>(long&)
5.10 NullCoder::codeChar(char&)
4.88 IDL SEQUENCE PerfStruct::decodeOp

(CORBA::Request&)
4.88 NullCoder::codeDouble(double&)
4.46 NullCoder::codeLong(long&)
4.46 NullCoder::codeFloat(float&)
4.46 NullCoder::codeShort(short&)
0.19 write
0.15 free unlocked
0.14 ioctl
0.10 putmsg

Figure 5: Receiver side overheads

protocol implementation with flexible, application-tailored
transport functionality [24]. For cases where the applica-
tion traffic characteristics do not require complete reliability
(which is the case for teleconferencing for example), we will
omit transport layer retransmission and error handling alto-
gether to run directly atop ATM. Our GIOP transport layer
will be implemented into the Solaris 2.x OS as a kernel-level
STREAMS module that is tightlyintegrated to the underlying
ATM infrastructure via techniques Application Layer Fram-
ing/Integrated Layer Processing [5, 1, 4, 11, 20] techniques.
ILP requires ordering constraints and hence it is necessary to
perform control and data flow analysis of the code to extract
the dependencies. This information will be used to automat-
ically incorporate ILP into the implementation.

� Remote operation demultiplexing optimizations:
The remote object implementation is typically represented
by an object reference and the operation is typically repre-
sented as a string or as a binary value. The type of demul-
tiplexing scheme used by an ORB can significantly impact
performance. Some ORBs demultiplex incoming messages
by linearly searching through the list of object implementa-
tions and operations in the IDL interface. Linear search does
not perform well for interfaces that define a large number of
methods. Good hashing schemes can reduce the search time,
but these schemes are not well suited for smaller interfaces.
Thus we plan to develop a set of adaptive optimizations for
CORBA request demultiplexing. In this case, it is necessary
to analyze the CORBA IDL interface and decide which strat-
egy provides optimal performance. We are also incorporating
a strategy that orders the requests according to the frequency
of their usage. Thus, demultiplexing these requests can be

performed efficiently depending on informationcollected dy-
namically. We are using compiler techniques (such as header
prediction [6]) to automate this. Principles underlyingheader
prediction can be used by the receiver side to predict the in-
coming request and hence can efficiently demultiplex it. This
prediction can be based on factors such as frequency of use
and locality of reference.

�Data copying optimizations: IDL skeletons generated
automatically by a CORBA IDL compiler do not know how
the user-supplied upcall will use the parameters passed to
it from the request message. Thus, they use conservative
memory management techniques that dynamically allocate
and release copies of messages before and after an upcall, re-
spectively. However, this strategy needlessly increases pro-
cessing overhead for streaming applications like ttcp that
consume their data immediately without modifying it. There-
fore, we are using Integrated Layer Processing (ILP) [5] to
reduce the data copy operations. Since ILP requires that or-
dering constraints be maintained, this requires other compiler
techniques (such as control and data flow analysis) to provide
insight into where to employ ILP.

� Presentation layer optimizations: Our framework
will automatically produce and configure multiple encod-
ing/decoding strategies for CORBA IDL definitions, each
amenable for different conditions (such as time/space trade-
offs between compiled vs. interpreted CORBA IDL stubs
and skeletons). Using dynamic linking strategies, it would
be possible to include an appropriate marshalling stub for a
given data type based on its run time usage by the application.
Marshalling involves accessing data and moving data. For
these reasons, it becomes necessary to employ efficient buffer
and memory management schemes that reduce the amount of
data movement.

To reduce marshalling overhead, our framework automat-
ically caches certain types of request information. Caching
is employed when certain types of application data units
(ADUs) are transferred sequentially in “request chains.” In
cases where ADUs contain a large number of subparts that
remain constant, only a few vary from one transmission to
the other. By having the framework cache the marshalled in-
formation for the largely constant subparts and only allowing
marshalling of the varying quantities, the marshalling over-
head can be reduced significantly. This optimization requires
flow analysis [3, 7] of the application code to determine which
information can be cached.

Another scenario results from the fact that in some cases,
it may not be necessary to convert some data structures into
the host format at all. In such cases, greater efficiency can
result if marshalling is not done for such data types. An
efficient technique called the Shapes Choice problem [14]
can be used to solve the marshalling overhead in situations
described above. In the Shapes Choice problem, a cost is as-
sociated with the cross product of each kind of field reference
and the two shapes (e.g., wire format and host machine for-
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mat). A cost is associated with converting in each direction.
Conversions of only those data types are done for which the
global cost is minimized.

4 Related Work

Our work on distributed object computing focuses on topics
related to the transport, presentation, and application layers
of the protocol stack. Much of the existing work has focussed
on enhancing the TCP/IP protocol suite. Less attention has
been paid to performance of DOC frameworks over high-
speed networks. We classify the related work as follows.

� Transport Protocol Performance over ATM networks:
[10, 15, 8] present results on performance of TCP/IP (and
UDP/IP [8]) on ATM networks by varying a number a pa-
rameters (such as TCP window size, socket queue size, and
user data size). This work indicates that in addition to the
host architecture and host network interface, parameters con-
figurable in software (like TCP window size, socket queue
size and user data size) significantly affect TCP throughput.
[8] also shows that UDP performs better than TCP over ATM
networks, which is attributed to redundant TCP processing
overhead on highly-reliable ATM links.

� Demultiplexing: Demultiplexing is a task that routes
messages between different levels of functionality in layered
communication protocol stacks. Most conventional commu-
nication models (such as the Internet model or the ISO/OSI
reference model) require some form of multiplexing to sup-
port interoperabilitywith existing operating systems and pro-
tocol stacks. Conventional CORBA implementations utilize
several additional levels of demultiplexing at the application
layer to associate incoming CORBA requests with the ap-
propriate object implementation and method. Layered multi-
plexing and demultiplexing is generally disparaged for high-
performance communication systems [26] due to the addi-
tional overhead incurred at each layer. Our framework uses

a delayered demultiplexing architecture to select optimal de-
multiplexing strategies based on compile-time and run-time
analysis of CORBA IDL interfaces.

� Presentation layer and data copying: The presentation
layer is a major bottleneck in high-performance communica-
tion subsystems [5]. This layer transforms typed data objects
from higher-level representations to lower-level representa-
tions (marshalling) and vice versa (demarshalling). In both
RPC and DOC frameworks, this transformation process is
performed by client-side stubs and server-side skeletons that
are generated by interface definition language (IDL) com-
pilers. IDL compilers translate interfaces written in an IDL
(such as XDR [25], NDR [9], or CDR [12]) to other forms
such as a network wire format. A significant amount of
research has been devoted to developing efficient stub gen-
erators. We cite a few of these and classify them as below.

� Annotating high level programming languages – The
Universal Stub Compiler (USC) [18] annotates the C
programming language with layouts of various data
types. The USC stub compiler supports the automatic
generation of device and protocol header marshalling
code. The USC tool generates optimized C code that
automatically aligns data structures and performs net-
work/host byte order conversions.

� Generating code based on Control Flow Analysis of
interface specification –

[13] describes a technique of exploiting application-
specific knowledge contained in the type specifications
of an application to generate optimized marshalling
code. This work tries to achieve an optimal tradeoff
between interpreted code (which is slow but compact in
size) and compiled code (which is fast but larger in size).
A frequency-based ranking of application data types is
used to decide between interpreted and compiled code
for each data type. Our implementations of the stub
compiler will be designed to adapt according to the run-
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time access characteristics of various data types and
methods. Depending on the runtime usage of a given
data type or method, our framework will dynamically
link in either the compiled or the interpreted version.
Dynamic linking has been shown to be useful for mid-
stream adaptation of protocol implementations [20].

� Using high level programming languages for distributed
applications – [19] describes a stub compiler for the C++
language. This stub compiler does not need an auxiliary
interface definition language. Instead, it uses the op-
erator overloading feature of C++ to enable parameter
marshalling. This approach enables distributed applica-
tions to be constructed in a straightforward manner. A
drawback of using a programming language like C++
is that it allows programmers to use constructs (such as
references or pointers) that do not have any meaning on
the remote side. Instead, IDLs are more restrictive and
disallow such constructs. CORBA IDL has the added
advantage that it resembles C++ in many respects and
a well-defined mapping from the IDL to C++ has been
standardized.

� Application Level Framing and Integrated Layer Pro-
cessing on communication subsystems: Conventional
layered protocol stacks lack the flexibility and efficiency
required to meet the quality of service requirements of
diverse applications running over high speed networks.
A remedy for this problem is to use Application Level
Framing (ALF) [4, 11] and Integrated Layer Processing
(ILP) [5, 1, 20]. ALF ensures that lower layer protocols
deal with data in units specified by the application. ILP
provides the implementor with the option of performing all
data manipulations in one or two integrated processing loops,
rather than manipulating the data sequentially.

None of the systems described above are targeted for the
requirements and constraints of distributed object computing
frameworks. DOC frameworks are characterized by an in-
tegrated approach that supports platform heterogeneity, high
system reliability, efficient marshalling/demarshalling of pa-
rameters, flexible and efficient object location and selec-
tion, and higher level mechanisms for collaboration among
services [16]. To meet these requirements and to enhance
functionality provided by traditional procedural RPC toolk-
its (such as Sun RPC and OSF DCE), DOC frameworks
support object-oriented language features. Many sophis-
ticated components must be developed to support features
such as remote method invocation, transparent object loca-
tion and activation, and service selection. These compo-
nents include directory name servers, object request brokers
(ORBs), interface definition language compilers and object
locators/traders. We plan to enhance previously described
ideas and propose newer schemes for efficient object-to-
object communication in DOC environments.

5 Concluding Remarks

The main thesis of our work is that advances in commu-
nication software can be achieved only by simultaneously
integrating techniques and tools that simplify application de-
velopment, optimize application performance, and systemat-
ically measure application behavior in order to pinpoint and
alleviate performance bottlenecks. Our work is motivated by
an increasing demand for efficient and flexible communica-
tion software to support next-generation multimedia applica-
tions and to leverage emerging high-speed networking tech-
nology. This paper outlines how we are applying compiler
techniques to develop flexible CORBA implementations that
are optimized for performance-sensitive applications running
over high-speed ATM networks.

Thus far, our framework consists of two parts:

1. A testbed to perform experiments that precisely pinpoint
sources of overhead of CORBA over ATM networks.

2. A tool that can use sophisticated compiler optimization
techniques to incorporate different optimizations in the
CORBA implementations such as efficient marshalling,
reduced data copying, integrated layer processing and
effective demultiplexing of object requests.

Our long-term goal is to ease the development of flexible,
performance-sensitive communication software.
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