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Abstract

Although existing CORBA specifications, such as Real-time
CORBA and CORBA Messaging, address many end-to-end
quality-of-service (QoS) properties, they do not define strate-
gies for configuring these properties into applications flexi-
bly, transparently, and adaptively. Therefore, application de-
velopers must make these configuration decisions manually
and explicitly, which is tedious, error-prone, and often sub-
optimal. Although the recently adopted CORBA Component
Model (CCM) does define a standard configuration frame-
work for packaging and deploying software components, con-
ventional CCM implementations focus on functionality rather
than adaptive quality-of-service, which makes them unsuitable
for next-generation applications with demanding QoS require-
ments.

This paper presents three contributions to the study of mid-
dleware for QoS-enabled component-based applications. It
outlines reflective middleware techniques designed to adap-
tively (1) select optimal communication mechanisms, (2) man-
age QoS properties of CORBA components in their contain-
ers, and (3) (re)configure selected component executors dy-
namically. Based on our ongoing research on CORBA and
the CCM, we believe the application of reflective techniques
to component middleware will provide a dynamically adap-
tive and (re)configurable framework for COTS software that is
well-suited for the QoS demands of next-generation applica-
tions.

1 Introduction

Emerging trends and challenges: Distributed applications
are increasingly being developed via the standard interfaces,

protocols, and services defined by distributed object comput-
ing (DOC) middleware, such as CORBA [1] or Java RMI [2].
DOC middleware that allows clients to invoke operations
on remote objects without concern for where the object re-
sides [3]. In addition, DOC middleware shields applications
from non-portable details related to the OS/hardware platform
they run on and the communication protocols and networks
used to interconnect distributed objects.

Next-generation applications require DOC middleware that
is adaptive and configurable, as well as efficient, predictable,
and scalable. For instance, the demand for embedded multi-
media applications is growing rapidly and hand-held devices,
such as PIMs, Web-phones, Web-TVs, and Palm comput-
ers, running multimedia applications, such as MIME-enabled
email and Web browsing, are becoming ubiquitous [4]. Ide-
ally, these embedded multimedia applications should becon-
figured automaticallyusing standard DOC middleware com-
ponents, rather thanprogrammed manuallyfrom scratch.
Meeting the QoS demands of next-generation applications re-
quires the resolution of many research challenges, however,
such as adapting to frequent bandwidth changes and disrup-
tions in the established connections, maintaining cache consis-
tency, and addressing various restrictions on memory footprint
size and power consumption [5].

DOC middleware based on CORBA should be well-suited
to provide the core communication middleware for the next-
generation distributed applications outlined above. For in-
stance, recent additions to the CORBA specification, such as
Real-time CORBA [6] and CORBA Messaging [7], address
many end-to-end quality-of-service (QoS) properties. These
specifications standardize interfaces and policies for defining
and controlling various types of application QoS properties.

Historically, however, the standard CORBA specification
has not addressed component implementation or configuration
issues effectively. For example, the CORBA 2.x [1] specifi-
cation did not standardize interfaces to (1) initialize and de-
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ploy services dynamically or (2) enable different service im-
plementations to interact portably with each other via stan-
dard interfaces. Moreover, many “cross-cutting” [8] service
implementation properties, such as memory and bandwidth
management, concurrency, dependability, security, and power
management, are tightly coupled into the application struc-
ture and behavior of CORBA servants. As a result, pro-
gramming applications directly using standard CORBA 2.x
APIs has often yielded (1) brittle servant implementations that
are hard to optimize, maintain, and enhance and (2) overly
static or non-standardized mechanisms for bootstrapping and
(re)configuring ORB components and services [9].

To address these problems, therefore, the OMG adopted the
CORBA Component Model (CCM) specification [10]. The
CCM defines a framework for generating distributed servers
into which developer can configure custom component logic.
In theory, the adoption of the CCM should reduce the effort
required to integrate portable components that implement ser-
vices and applications. Moreover, the CCM should simplify
the reconfiguration and replacement of existing application
services by standardizing interconnections among components
and interfaces.

In practice, however, the CCM standard and implementa-
tions are as immature today as the underlying CORBA stan-
dard and ORBs were three to four years ago. For instance,
CCM implementations are not yet particularly efficient, pre-
dictable, or scalable. Moreover, commercial CCM vendors are
largely targeting the requirements of e-commerce, workflow,
report generation, and other general-purpose business appli-
cations. The middleware requirements of these applications
focus on functionality and interoperability, however, with lit-
tle emphasis on assurance of, or control over, mission-critical
QoS properties, such as timeliness, precision, dependability,
minimal footprint, and power consumption [11]. As a result,
it is not feasible to use contemporary off-the-shelf CCM im-
plementations for applications with demanding QoS require-
ments.

Solution approach! Reflective middleware: Our prior
research on CORBA middleware has explored many aspects
of ORB endsystem efficiency, predictability, and scalabil-
ity, including static [12] and dynamic [13] scheduling, event
processing [14], I/O subsystem [15] and pluggable proto-
col [16] integration, synchronous [17] and asynchronous [18]
ORB Core architectures, systematic benchmarking of multiple
ORBs [19], and optimization principle patterns for ORB per-
formance [20]. This paper focuses on another key dimension
in the ORB endsystem design space:applying reflective mid-
dleware techniques to implement QoS-enabled versions of the
CCM.

Reflective middleware is a term that describes a loosely or-
ganized collection of technologies designed to manage and

control hardware/software system resources based on mount-
ing R&D experience with distributed applications and sys-
tems [21]. Reflective middleware techniques enable au-
tonomous changes in application behavior by adapting core
software and hardware mechanisms dynamically without the
need for explicit control by applications or end-users [22].
Figure 1 illustrates the key architectural focal points where we
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Figure 1: Focal Points of Reflective Techniques for CORBA
Middleware

are applying reflective middleware techniques to improve the
configurability and adaptiveness of QoS-enabled CCM imple-
mentations. In this paper, we illustrate how reflective middle-
ware techniques are being applied to improve the adaptivity of
the following CORBA and CCM mechanisms.

� Selecting optimal communication mechanisms: To
present a homogeneous programming model for application
developers, CORBA hides the location of objects from client
applications. By examining an object’s location reflectively,
however, a CORBA ORB can select an optimal communica-
tion mechanism automatically when itbindsan object refer-
ence [23]. To avoid violating the CORBA object model, how-
ever, this selection must occur without direct application inter-
vention so that middleware performance and predictability can
be optimized transparently. Robust and automated ORB col-
location support [20] is necessary since the CCM encourages
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complex, dynamically changing object composition relation-
ships [24].

� Managing QoS properties of components in their con-
tainers: In the CCM, acontainermanages the implemen-
tation of a component by encapsulating it within a run-time
environment that provides certain services, such as security,
event notification, and transactions. In addition, CCM con-
tainers should be extended to manage certain QoS proper-
ties of component implementations, including memory and
bandwidth management, concurrency, dependability, security,
and power management. Such extensions would allow ORB
endsystems to support dynamic QoS configuration since they
could inspect and adjust a component’s QoS properties via its
container. By factoring QoS adaptation policies and mecha-
nisms into containers, components developers can defer the
selection of a component’s QoS requirements until run-time,
thereby enhancing component flexibility and adaptability.

� Dynamically (re)configuring selected parts of compo-
nent implementations: Next-generation applications will
increasingly run in wireless and mobile network configura-
tions where there may be noa priori knowledge of (1) the
appropriate implementation of service components and (2)
the optimal partitioning of service components onto network
nodes. Activation of components must occur in real-time,
which means that component initialization must not become
a bottleneck. Thus, on-demand linking/unlinking mecha-
nisms are necessary to (re)configure component implementa-
tions dynamically. The lifecycle for linking/unlinking of these
components must be optimized using reflective middleware
techniques to minimize footprint, prolong battery life, maxi-
mize extensibility, and meet key application QoS requirements
more adaptively.

We are applying these reflective middleware techniques at
various levels, ranging from the ORB Core up to CORBA
Component Model services. The vehicle for this research is
TAO [12], which is an open-source, CORBA-compliant ORB
designed to support applications with demanding QoS require-
ments.1 Figure 1 illustrates how CORBA components, capa-
bilities, and services are being integrated into the TAO ORB
endsystem.

Paper organization: The remainder of this paper is orga-
nized as follows: Section 2 (1) motivates key challenges
faced when designing CCM implementations to support QoS-
enabled applications and (2) outlines the reflective middleware
techniques we are applying to address these challenges; Sec-
tion 3 describes empirical results from some of our efforts to
date; and Section 4 presents concluding remarks.

1The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .

2 Applying Reflective Middleware
Techniques to Resolve Key Design
Challenges for QoS-enabled CCM
Implementations

This section describes the key research challenges that
CCM developers must address to support QoS-enabled appli-
cations and outlines the reflective middleware techniques we
are applying to address these challenges.

2.1 Challenge 1: Achieving QoS-enabled Loca-
tion Transparency Adaptively

Context: Location transparency is an important feature of
the CORBA programming model. It allows applications to
invoke operations via well-defined interfaces, without having
to be concerned with where the target components reside.

Problem: A straightforward strategy for implementing lo-
cation transparency is to treat all operations as remote invoca-
tions that are sent via IIOP over TCP/IP. This strategy imposes
unnecessary communication overhead, however, when an ob-
ject resides within the same host or the same address space as
the client. Thus, quality ORBs must determine the actual loca-
tion of a target object to optimize performance, while shielding
developers from these details to simplify programming.

As shown in [25], an ORB can improve performance sub-
stantially by determining the location of target objects and then
invoking operations using the most efficient communication
mechanism. For example, when invoking an operation on a
target component collocated on the same host, an ORB should
choose a communication mechanism, such as shared memory,
that is more efficient than “loopback” TCP/IP. This selection
process is called the “collocation optimization.”

It is important, however, that collocation optimizations be
implemented in a “QoS-enabled” manner. In another words,
applying collocation optimizations should not interfere with
QoS mechanisms provided by the underlying ORB endsys-
tem. For instance, two real-time ORB endsystem mecha-
nisms defined by the Real-time CORBA specification arepri-
oritized schedulingand QoS-enabled communication chan-
nels[26]. Prioritized scheduling ensures that applications re-
quiring QoS support receive enough resources to meet their
deadlines. QoS-enabled communication channels ensure the
ORB endsystem’s communication infrastructure allocates suf-
ficient bandwidth, CPU, and memory resources to satisfy ap-
plication QoS requirements end-to-end.

Solution! Reflective selection of optimal communication
mechanisms: To select an optimal communication mecha-
nism, an ORB must apply collocation optimizationsreflec-
tively at run-time. In general, these optimizations must be in-
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visible to ORB users to avoid violating CORBA’s object model
transparency. Moreover, although certain collocation opti-
mization mechanisms (such as direct function calls or shared
memory) may befaster than other communication mecha-
nisms (such as TCP loopback or message queuing), a QoS-
enabled ORB must select a communication mechanism based
on their client/object QoS requirements. For example, to avoid
incurring priority inversion, a reflective QoS-enabled collo-
cation optimization mechanism could establish multiple con-
nections to partition ORB communication between client and
server threads with different QoS requirements.

When object migration occurs, an ORB must re-select the
optimal communication mechanism. To support migration,
an operation invocation will receive aLOCATION FORWARD

message and a new object reference will be examined. As
with the original binding, the ORB should determine the ap-
propriate communication mechanism reflectively, taking into
account the QoS characteristics of the various clients and ob-
jects involved in the migration.

Applying reflective collocation mechanisms in TAO: Fig-
ure 2 illustrates how TAO is designed to support reflective col-
location mechanisms. TAO determines an object’s location
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Figure 2: Reflective Selection of Optimal Communication
Mechanisms in TAO

when it binds an object reference [23] or receives aLOCA-
TION FORWARD message. If the object is local to the process,
TAO also considers the QoS policies associated with the object
to guide its selection of an appropriate communication mech-
anism, which may not necessarily be the “fastest” mechanism.

For instance, connections and threads are often used to
differentiate QoS requirement levels and execution priori-
ties [26]. To minimize priority inversion, however, TAO avoids
multiplexing connections with traffic that possesses different
QoS requirements [17]. Thus, via reflection, TAO may de-
cide to use a less efficient, but more predictable, collocation
mechanism after examining the effective policies of an object
reference.

2.2 Challenge 2: Changing Component QoS
Properties Adaptively

Context: Next-generation applications require greater QoS
support from their middleware. In CORBA-based middleware,
this QoS support is provided by ORB endsystems [12]. For
instance, the OMG defines the Real-time CORBA [26] and
CORBA Messaging [7] specifications to standardize how ap-
plications interact with the QoS and real-time mechanisms that
OS’s provide.

Problem: Even with the adoption of Real-time CORBA and
CORBA Messaging, component developers still must program
applications manually to utilize the real-time or messaging ca-
pabilities of an ORB. Unfortunately, this manual process is te-
dious, error-prone, and often sub-optimal because application
developers must explicitly program end-to-end [27] QoS fac-
tors, such as service level (e.g., deterministic vs. best-effort)
and flow specifications [28].

One reason that programming sophisticated QoS support
manually is hard is because it cuts across [8] many aspects
of functionality provided by components. For example, a
multimedia application running on an OS that provides zero-
copy buffer optimizations [29] may need to interact with many
OS mechanisms to acquire/release buffers, control flow rate,
pace the flow, and reserve bandwidth. Moreover, program-
ming these complex QoS properties manually tends to tightly
couple components to particular OS QoS mechanisms [22],
which yields sub-optimal performance when applications must
switch adaptively among different QoS mechanisms on differ-
ent OS platforms and networks.

Solution ! Reflective management of component QoS
properties by their containers: QoS-enabled CCM im-
plementations must be designed to extract QoS properties
from their components and integrate these properties together
through dynamic configuration and composition. For instance,
each CCM container uses a dedicated POA to manage the in-
terfaces supported by its managed component. Thus, contain-
ers, not application programmers, should be responsible for
configuring QoS properties of components reflectively, based
on criteria such as priorities, deadlines, or network conditions,
such as congestion.

A container is an ideal entity to manage a component’s QoS
policies because (1) POAs are the key policy designators in
both the Real-time CORBA and CORBA Messaging specifica-
tions and (2) the component model encourages composition of
unrelated objects [24]. Therefore, a container provides a cen-
tral repository that allows unrelated implementation objects to
collaborate without explicit prior knowledge of their existence
or QoS properties.

Applying container-based QoS adaptivity in TAO: Fig-
ure 3 illustrates the design of TAO’s CCM container model.
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To isolate the QoS properties of a component into its managing
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Figure 3: Managing Component QoS Properties via Contain-
ers

container, TAO’s CCM implementation supports the following
capabilities:

1. A component’s QoS properties can be configured re-
flectively by its container. For instance, QoS reflection mech-
anisms can allow a component to specify or monitor its QoS
requirements and provide feedback on the performance status
of the component to its managing container.

2. Deployment information in component descriptors can
be extended to deploy components using containers with dif-
ferent QoS properties. For example, assume a logging ser-
vice component must forward large amount of data to a cen-
tral logging repository in a timely manner. With a container
implementation that supports QoS adaptation, developers can
deploy the original component with this container and specify
the QoS requirements to enhance the timeliness of the compo-
nent.

By decoupling component implementations from the QoS
configuration mechanisms defined by containers, TAO allows
QoS-unaware components to be reused with various QoS
properties in different applications without modifying their
implementations. Moreover, it is easier to monitor and con-
trol the dynamic behavior of an implementation with different
QoS configurations.

2.3 Challenge 3: Changing Component Behav-
ior and Resource Usage Adaptively

Context: Component implementations in the CCM are call
executorsand are packaged into assembly files that can be
linked dynamically. The use of assembly files enables the in-
stallation of components on genericcomponent servers. We
will refer to assembly files as dynamic-linked libraries (DLLs)
in the remainder of this paper as they form the building block

of assembly files. A component server may serve a large num-
ber of components, some of which will be used frequently and
others less frequently.

In general, developers of next-generation component-based
applications may not knowa priori the most effective
strategies for (1) implementing components or (2) collocat-
ing/distributing multiple component executors into processes
and hosts. If developers commit prematurely to a particular
configuration of components, however, this can impede flex-
ibility, reduce overall system performance and functionality,
and unnecessarily increase resource utilization. Often, initial
component configuration decisions may prove to be subopti-
mal over time,e.g., as platform upgrades or increased work-
loads require the redistribution of certain components to other
processes and hosts.

In general, it desirable to make component configuration or
implementation decisions as late as possible in an application’s
development and deployment cycle. Moreover, for applica-
tions with high availability requirements, it may be necessary
to perform component updates online,i.e., withouthaving to
modify or shut down an application obtrusively.

Problem: Although the number of components configured
into a component server may be large, not all installed com-
ponents will be used simultaneously. Care must be taken
when a container chooses its DLL linking/unlinking strategy –
keeping unused DLLs linked into an application for extended
periods can consume limited system resources, particularly
memory. Conversely, linking and unlinking DLLs upon ev-
ery method invocation not only degrades system performance,
but can also consume other system resources, such as battery
power in mobile devices.

Solution ! Reflective linking/unlinking of component ex-
ecutors: To address the problems mentioned above, compo-
nent servers should reflectively manage the lifetimes of their
executor DLLs. The following two patterns – Component
Configurator [30] and Evictor [3] – can help to guide this pro-
cess:

� Component Configurator pattern: The Component
Configurator pattern decouples the implementation of services
from the time when they are configured. This pattern supports
various (re)configurationstrategies that component servers can
use to link/unlink the DLL containing component executors
implementations on-demand.

For example, during the initial component configuration
phase, a component server can use the Component Configura-
tor pattern to (1) dynamically link its executors from DLLs that
contain these components and (2) set up the interconnections
specified by the components’ assembly descriptors. When an
updated implementation is available, the Component configu-
rator pattern can also be used to unlink, then re-link, compo-
nent executors dynamically.
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� Evictor pattern: The Evictor pattern describes a gen-
eral strategy for limiting memory consumption. This pattern
can be used by component servers to reflectively passivate
component executors that are used infrequently and unlink
their DLLs. For instance, a component that generates authen-
tication certificates may be used only at the beginning of a
session. Once a certificate is generated, therefore, it need not
be retained during the remaining secure session.

Both the Component Configurator and Evictor patterns
should be guided by policies and environmental conditions.
For example, the Component Configurator pattern can be used
to reconfigure component implementations based on informa-
tion available in CCM component descriptors, such as apply-
ing componentfeatures . Componentfeatures is an
XML entity in component descriptor that describes a compo-
nent’s capabilities and operation policies. Likewise, eviction
policies should reflect common usage patterns based on pe-
riodic ORB endsystem monitoring mechanisms or resource
management strategies.

Applying dynamic (re)configuration in TAO: TAO’s
CCM implementation supports the following capabilities that
enable dynamic (re)configuration of component executors.

� On-demand linking: On-demand linking of compo-
nent interface implementations is achieved in TAO via a com-
bination of the Component Configurator pattern [30], the
ACE Service Configurator framework [31] that implements
this pattern, and standard CORBAServantManager s [32].
The ACE Service Configurator framework dynamically links
and unlinks component executors stored in DLLs. Two
types of ServantManager are supported by a POA:
(1) ServantActivator s, which activate/deactivate ser-
vants in a POA’s active object map on-demand and (2)
ServantLocator s, which are designed to implement user-
defined object demultiplexing and servant lifetime managing
mechanisms on a per-invocation basis.

TAO’s CCM framework enhances containers to provide
their own ServantLocator s that link in the necessary
component executors from DLLs on-demand, as shown in Fig-
ure 4. The same mechanism in TAO’s CCM also detects the
availability of new component implementations and switches
to use these updated versions automatically. For instance,
TAO’s ServantLocator s can detect updated DLLs con-
taining component executors and delegate the actual work to
ACE Service Configurator to link these executors on-demand.
This feature helps minimize system resource usage by not
linking component executors until they are accessed. In ad-
dition, TAO’s CCM implementation enhances component de-
scriptors to provide meta-information that the ACE Service
Configurator uses to swap component executors dynamically.

CONTAINER

EVICTOR

SERVANT MANAGER

STRATEGY 1

STRATEGY 3

STRATEGY 2DLL

Servants
DLL

Servants

DLL

Servants

CHILD POA
(SERVANT MANAGEMENT POLICY)

ORB CORE

OBJECT ID

OBJECT ID

OBJECT ID

load

remove

Figure 4: Dynamic Linking/Unlinking of Component Parts via
ServantLocator

� Eviction: TAO’s CCM implementation defines a usage
query interface that returns certain usage information, such
as frequency of use and time of last use, of executors. In-
ternally, TAO’s CCM implementation uses anevictormecha-
nism, which queries components’ usage interfaces and applies
eviction policies to determine whether to passivate a compo-
nent executor and unlink its DLL.

Component descriptors can also be extended to include
eviction strategies or to predefine component usage patterns
that provide hints to TAO’s CCM evictor mechanism. The ac-
tivation of TAO’s evictor mechanism can be controlled by poli-
cies selected by component server developers. Eviction can
then be triggered either periodically or in response to events
generated by system resource monitors that track CPU load
and memory usage.

3 Current Progress and Empirical Re-
sults

In this section, we report the results of our ongoing efforts to
enhance TAO to support the reflective middleware techniques
described in Section 2.

Current Progress: We have added a QoS adaptation layer
that shields TAO from differences among the QoS interfaces
on different OS platforms. Key capabilities in this adapta-
tion layer include (1) support for prioritized scheduling by
partitioning requests for different QoS requirement into dif-
ferent threads and servicing these threads through different
endpoints, (2) support for initializing endpoint QoS properties,
such as bandwidth reservation and flow pacing, (3) support for
portable scheduling control so the ORB can schedule requests
adaptively based on the QoS requirements of objects.
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These mechanisms are then used to implement the QoS-
aware containers described in Section 2.1.

We have implemented a container prototype that supports
the on-demand linking and eviction of component executors
described in Section 2.3. We are currently strategizing the
eviction mechanism and will integrate it with TAO’s CCM
component usage reflection support.

TAO supports two co-process collocation mechanisms [25]
and several other co-host optimization mechanisms via its
pluggable protocols framework [16]. Currently, however, TAO
just allows reflective selection of co-process collocation opti-
mizations, though we are adding a more comprehensive col-
location selection mechanism, outlined in Section 2.1. The
remainder of this section presents empirical results of per-
formance comparisons of the collocation optimization mecha-
nisms supported by TAO.

Measurement techniques: The following four ORB com-
munication optimization mechanisms were measured in these
experiments:

1. Shared-memory transport for optimizing co-host commu-
nication;

2. UNIX domain socket, which is also a co-host optimiza-
tion mechanism;

3. Thru POAco-process collocation optimization [25]; and

4. Direct co-process collocation optimization.

Compared to invoking a method onlocal interface, which
is a new interface type in the CCM, invoking a method us-
ing theDirect collocation strategy incurs just one extra virtual
function call. Thus, it indicates the benefits of declaring an
interfacelocal .

We measured the performance of TAO’s collocation opti-
mization mechanisms by invoking operations that sent a se-
quence of 4 and 1,024 elements of typelong . Both server
and client ran on the same host, allowing us to compare the
performance gain of applying each optimization mechanism.
The performance of IIOP is measured as a baseline for non-
optimized communication.

Hardware/OS Benchmarking Platforms: The tests were
conducted using a Gateway PC with two 500 Mhz Pentium-
III CPUs running Microsoft Windows 2000 and an a Ultra-
SPARC with four 300Mhz UltraSparcs running SunOS 5.7.
We compiled the test on NT using Microsoft Visual Studio
with Service Pack 3 and on Solaris using egcs version 2.91.60,
but using full optimization.

Results: Figure 5 shows the performance of TAO’s colloca-
tion optimization mechanisms compared with the IIOP base-
line. Shared-memory transport is labeled as SHMIOP and
UNIX domain transport is labeled as UIOP in the figure.
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Figure 5: Buffered One-way Request Throughput for Various
TAO Protocols

The results in this figure illustrate the importance of config-
uring an ORB’s collocation selection mechanism reflectively
to take advantage of OS platform the ORB runs on. For exam-
ple, on Windows NT, the performance of SHMIOP is�50%
faster than that of IIOP. However, it it only marginally faster
(10%) than IIOP on UNIX, due to the higher overhead of
process-level semaphores on UNIX compared with Windows
NT. Thus, UIOP outperforms actually SHMIOP on Solaris.

Our current implementation of SHMIOP in TAO uses the
loopback localhost pseudo-device interface as a signaling
mechanism. Thus, we notify the ORB’s reactive [30] event
loop via a socket on each send operation. We expect the per-
formance of SHMIOP will be enhanced greatly after we im-
plement a multi-threaded version of SHMIOP. As a thread
only services requests from one connection in TAO, the mul-
tithreaded SHMIOP implementation can use a more efficient
signaling mechanism, such as semaphores. Moreover, since
we no longer need to emulate the socket stream buffer which
is required for reactive SHMIOP implementation, we can take
advantage of “zero-copy” shared memory buffers and further
improve performance. However, the current SHMIOP im-
plementation is required to support applications that are not
multi-threaded.

4 Concluding Remarks

Recent CORBA specifications define more comprehensive
support for QoS, configurability, and automated server de-
velopment. In particular, the CORBA Component Model
(CCM) [10] defines standard interfaces, policies, and services
for structuring, integrating, and deploying CORBA compo-
nents. Likewise, the Real-time CORBA [6] and CORBA Mes-
saging [7] specifications address many end-to-end quality-of-
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service (QoS) properties.
However, our experience using CORBA in a wide variety

of projects suggests that the new generation of CORBA spec-
ifications will be unsuitable for an important class of QoS-
enabled applications unless ORB implementations applyre-
flective middleware techniquesto automate the selection and
adaptation of key QoS properties. The reflective middleware
techniques we are focusing upon currently include (1) select-
ing optimal communication mechanisms, (2) managing QoS
properties of CORBA components in their containers, and (3)
(re)configuring selected parts of component executors dynam-
ically. We are applying these techniques to TAO, which is
our platform for implementing, optimizing, and experiment-
ing with QoS-enabled CCM.
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