
CCMPerf: A Benchmarking Tool for CORBA Component Model
Implementations

Arvind S. Krishna, Balachandran Natarajan, Aniruddha Gokhale and Douglas C. Schmidt
Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, USA�

arvindk, bala, gokhale, schmidt � @dre.vanderbilt.edu
Nanbor Wang Gautam Thaker

Computer Science Department Lockheed Martin Advanced Technology Labs
Washington University, St. Louis, MO, USA Cherry Hill, NJ, USA

nanbor@cs.wustl.edu gthaker@atl.lmco.com

Abstract

Commercial off-the-shelf (COTS) middleware is now
widely used to develop distributed real-time and em-
bedded (DRE) systems. DRE systems are themselves in-
creasingly combined to form “systems of systems” that
have diverse quality of service (QoS) requirements. Ear-
lier generations of COTS middleware, such as Object Re-
quest Brokers (ORBs) based on the CORBA 2.x standard,
do not facilitate the separation of QoS policies from ap-
plication functionality, which makes it hard to configure
and validate complex DRE applications. The new gen-
eration of component middleware, such as the CORBA
Component Model (CCM) based on the CORBA 3.0 stan-
dard, addresses the limitations of earlier generation mid-
dleware by establishing standards for implementing,
packaging, assembling, and deploying component imple-
mentations.

There has been little systematic empirical study of the
performance characteristics of component middleware im-
plementations in the context of DRE systems. This pa-
per therefore provides three contributions to the study
of CCM for DRE systems. First, we describe the chal-
lenges involved in benchmarking different CORBA Compo-
nent Model (CCM) implementations. Second, we describe
key criteria for comparing different CCM implementa-
tions using key black-box and white-box metrics. Third,
we describe the design of our CCMPerf benchmark-
ing suite to illustrate test categories that evaluate aspects
of CCM implementation to determine their suitabil-
ity for the DRE domain. We demonstrate CCMPerf by
using it to collect metrics from a CCM implementation de-
signed for DRE applications.

Keywords: CCM, Benchmarking, CCMPerf, white-box

metrics, black-box metrics.

1. Introduction

Emerging Trends. Distributed real-time and embed-
ded (DRE) systems are becoming more widespread and
important. Common DRE systems include telecommunica-
tion networks (e.g., wireless phone services), tele-medicine
(e.g., robotic surgery), and defense applications (e.g., to-
tal ship computing environments). These DRE systems are
increasingly used for a range of applications where multi-
ple systems are interconnected to form system of systems
that possess stringent quality of service (QoS) con-
straints, such as bandwidth, latency, jitter and dependability
requirements. A challenging requirement for these sys-
tems involves supporting a diverse set of QoS properties,
such as predictable latency/jitter, throughput guarantees,
scalability, and 24x7 availability, dependability, and se-
curity, that must be satisfied simultaneously in real-time.
Conventional distributed object computing (DOC) middle-
ware frameworks, such as DCOM, Java RMI, and earlier
versions of the CORBA 2.x standard, do not provide ca-
pabilities for developers and end-users to specify and
enforce these QoS requirements simultaneously in com-
plex DRE systems.

Component middleware [19] is a class of middleware
that enables reusable services to be composed, configured,
and installed to create applications rapidly and robustly. The
CORBA Component Model (CCM) [10] is a standard com-
ponent middleware technology that addresses limitations
with earlier versions of CORBA 2.x middleware based on
the DOC model. The CCM standard defined by the CORBA
3.x specification extends the CORBA 2.x object model to
support the concept of components and establishes stan-
dards for specifying, implementing, packaging, assembling,



and deploying components.

Empirically evaluating CCM implementations. Compo-
nent middleware in general – and CCM in particular – are a
maturing technology base that represents a paradigm shift in
the way complex DRE systems have been developed tradi-
tionally. In particular, they provide higher-level capabilities
for developers and end-users of DRE systems to specify and
enforce QoS requirements in complex DRE systems. Sev-
eral implementations of CCM are now available, including
the Component Integrated ACE ORB (CIAO) [21], Mico-
CCM [7], Qedo [12], and StarCCM [17]. As CCM plat-
forms mature and become suitable for DRE systems it is
desirable to devise a standard set of metrics to compare and
contrast different CCM implementations in terms of their:� Suitability, e.g., how suitable is the CCM implementa-

tion for DRE applications in a particular domain, such
as avionics, total ship computing, or telecom systems?

� Quality of service, e.g., does a CCM implementation
for the DRE domain provide predictable performance
and consume minimal time/space resources?

� Conformance, e.g., does a CCM implementation con-
form to OMG standards by meeting the portability
and interoperability requirements defined by the CCM
specification?

Earlier efforts, such as the Open CORBA Benchmark-
ing [20] and Middleware Comparator [6] projects, have fo-
cused on metrics to compare middleware based on the DOC
middleware standard defined by the CORBA 2.x specifi-
cations. Our work enhances these efforts by focusing on
a previously unexplored topic: designing a benchmark-
ing framework to compare CCM implementation qual-
ity by developing metrics that evaluate the suitability of
those implementations for representative DRE applica-
tions. To quantify these comparisons systematically we
developed CCMPerf, which is an an open-source1 bench-
marking suite that focuses on black-box and white-box
metrics, using criteria such as latency, throughput, and foot-
print measures. These metrics can be partitioned into the
follow categories:

� Distribution middleware tests that quantify the over-
head of CCM-based applications relative to applica-
tions based on earlier versions of the CORBA 2.x stan-
dard that do not support component run-time, configu-
ration, and deployment capabilities.

� Common middleware services tests that quan-
tify the suitability of using different implementa-
tions of CORBA services, such as Real-time Event [9]
and Notification Services [8].

1 CCMPerf is available for download from deuce.doc.wustl.
edu/Download.html.

� Domain-specific middleware tests that quantify the
suitability of CCM implementations to meet the QoS
requirements of a particular DRE application do-
main, such as static linking and deployment of
components in an avionics mission computing archi-
tecture [15].

This paper provides the following contributions to the
study of component middleware implemented in accor-
dance with the OMG CCM standard by describing: (1) the
challenges involved in benchmarking different CCM imple-
mentations, (2) criteria for comparing different CCM imple-
mentations using key black-box and white-box metrics, (3)
the design of our CCMPerf benchmarking suite that eval-
uates aspects of CCM implementations to determine their
suitability for the DRE domain. The vehicle used to test, ob-
tain and analyze our results from CCMPerf is the Compo-
nent Integrated ACE ORB (CIAO) [21], which is an open-
source2 implementation of CCM built upon the Real-time
CORBA infrastructure of The ACE ORB (TAO) [14]. This
paper shows how CCMPerf can be used to collect metrics
and evaluate CCM implementations in the DRE domain.
Our results show that CIAO and its CORBA 3.x CCM ca-
pabilities does not add appreciable overhead relative to its
TAO CORBA 2.x foundation.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 provides an overview of the ele-
ments in CCM; Section 3 discusses the design of CCMPerf,
focusing on the performance experiments it supports; Sec-
tion 4 analyzes some sample quantitative results obtained by
benchmarking CIAO using CCMPerf; Section 5 compares
our work with other middleware benchmarking efforts; and
Section 6 presents concluding remarks.

2. Overview of CCM

The CORBA Component Model (CCM) forms a key part
of the CORBA 3.0 standard. CCM is designed to address
the limitations with earlier versions of CORBA 2.x middle-
ware that supported a distributed object computing (DOC)
model [3]. Figure 1 depicts the key elements in the architec-
ture of CCM. The remainder of this section describes each
of these CCM elements.

Components. Components in CCM are implementation
entities that collaborate with each other via ports. CCM sup-
ports several types of ports, including (1) facets, which de-
fine an interface that accepts point-to-point method invoca-
tions from other components, (2) receptacles, which indi-
cate a dependency on point-to-point method interface pro-
vided by another component, and (3) event sources/sinks,

2 CIAO is available for download from deuce.doc.wustl.edu/
Download.html.



HOST
INFRASTRUCTURE

MIDDLEWARE LAYER

Container

… …

Container

… …

Object Adapter

ORB CORE

OS/KERNEL

DISTRIBUTION
MIDDLEWARE

LAYER

COMPONENT
MIDDLEWARE

LAYER

Client
OBJ
REF

DII IDL
STUBS ORB

INTERFACE

in args
operation()
out args +

return
IDL

SKEL

Component
(Servant)

NETWORK
PROTOCOLS

NETWORK
INTERFACE

OS/KERNEL
NETWORK

PROTOCOLS

NETWORK
INTERFACE

NETWORK

S
ervices

Figure 1. Elements in the CCM Architecture

which indicate a willingness to exchange typed messages
with one or more components.

Container. A container in CCM provides the run-time en-
vironment for one or more components that manages var-
ious pre-defined hooks and strategies, such as persistence,
event notification, transaction, and security, used by the
component(s). Each container is responsible for (1) initial-
izing instances of the component types it manages and (2)
connecting them to other components and common middle-
ware services. Developer specified metadata expressed in
XML can be used to instruct CCM deployment mechanisms
how to control the lifetime of these containers and the com-
ponents they manage. The meta-data is present in XML files
called descriptors. Sidebar 1.

Component Assembly. In a distributed system, a compo-
nent may need to be configured differently depending on
the context in which it is used. As the number of compo-
nent configuration parameters and options increase, it can
become tedious and error-prone to configure applications
consisting of many individual components. To address this
problem, the CCM defines an assembly entity to group com-
ponents and characterize the meta-data that describes these
components in an assembly. Each component’s meta-data
in turn describes the features available in it (e.g., its proper-
ties) or the features that it requires (e.g., its dependencies).

Component server. A component server is an abstraction
that is responsible for aggregating physical entities (i.e., im-
plementations of component instances) into logical entities
(i.e., distributed application services and subsystems).

Component packaging and deployment. In addi-
tion to the run-time building blocks outlined above, the
CCM also standardizes component implementation, pack-
aging, and deployment mechanisms. Packaging involves
grouping the implementation of component functional-
ity – typically stored in a dynamic link library (DLL) – to-
gether with other meta-data that describes properties of this
particular implementation. The CCM Component Imple-
mentation Framework (CIF) helps generate the component

Sidebar 1: Separating Configuration Con-
cerns in CCM

Configuration of components in CCM can be performed at
different levels of abstraction and involves different tradeoffs.
CCM uses XML-based descriptors to configure components.
Each descriptor exposes different aspects of a component-based
system. This sidebar describes the different types of descriptors
defined by the CCM Deployment and Configuration specifica-
tion [11] and explains how they help separate component con-
figuration concerns:� Component Interface Descriptor (.ccd), which de-

scribes the interface, ports, and properties of a single com-
ponent.� Implementation Artifact Descriptor (.iad), which de-
scribes the implementation artifacts (e.g., DLLs and OS
platform) associated with a single component.� Component Package Descriptor (.cpd), which describes
multiple alternative implementations of a single compo-
nent.� Component Implementation Descriptor (.cid), which
describes a specific implementation of a component inter-
face, i.e., if the implementation is monolithic or assembly-
based.� Component Domain Descriptor (.cdd), which describes
the composition of domains, e.g., a related set of nodes,
inter-connects. and bridges.� Component Deployment Plan (.cdp), which describes
the artifacts (e.g., component implementation and target
domain information) for deployment and provides infor-
mation on how to create component instances from these
artifacts.

implementation skeletons and persistent state manage-
ment automatically using the Component Implementation
Definition Language (CIDL).

Summary. Figure 2 depicts the interaction between the
various CCM elements discussed in this section. As shown
in this figure, a deployment application creates an Assembly
manager in charge of creating component assemblies from
configuration files. Each of these assemblies are hosted in
a component server that plays the role of a factory to cre-
ate containers, which provide the execution environment for
the components. A component home is a factory that man-
ages the lifecycle of one type of component.

Figure 1 illustrates how CCM is a layer residing atop
an ORB that leverages ORB functionality (such as connec-
tion management, data transfer, (de) marshaling of mes-
sages, and management and data transfer) event/message
demultiplexing) and higher-level CORBA services (such as
and higher-level CORBA services (such as Load Balanc-
ing, Transaction, Security, and Persistence). CCM applica-
tions may therefore incur additional overhead compared to
their CORBA 2.x counterparts in the form of additional pro-
cessing in the code-path (i.e., additional function calls) and



Figure 2. Interaction between CCM entities

data-path (i.e., parameter passing between the underlying
ORB and the CCM layers). Since this processing can occur
in the critical path of every request/response the overhead
may be non-trivial. The remainder of this paper presents key
criteria to compare CCM implementations.

3. Overview & Design of CCMPerf

The goals of CCMPerf are to create comprehensive
benchmarks that allow users and CCM developers to:

1. Evaluate the overhead CORBA 3.x CCM implemen-
tations impose above and beyond CORBA 2.x im-
plementations that are based on the earlier-generation
DOC model.

2. Devise and apply benchmarks that systematically iden-
tify performance bottlenecks in popular CCM imple-
mentations.

3. Compare different CCM implementations in terms of
key metrics, such as latency, throughput, and other per-
formance criteria.

4. Develop a framework that automates benchmark tests
and facilitates seamless integration of new bench-
marks.

This section describes the key challenges involved in devel-
oping a benchmarking suite for CCM to address the goals
outlined above and shows how these challenges were ad-
dressed by CCMPerf. We also illustrate the three experi-
mentation categories in CCMPerf and present a sample of
empirical results obtained from applying CCMPerfto CIAO
CCM middleware.

3.1. CCM Benchmarking Challenges and Their
Resolutions

During the design of CCMPerf we encountered a num-
ber of challenges, including (1) heterogeneity in CCM im-

plementations, (2) differences in quality of CCM imple-
mentations, (3) differences in application domains, and (4)
heterogeneity in hardware and software platforms. We de-
scribe each of these challenges below and discuss how they
are resolved in CCMPerf.

3.1.1. Heterogeneity in CCM Implementations
Context. CCM implementations use different tools and
mechanisms to develop and configure applications, e.g.:� CCM header files are not standardized by the OMG.

Moreover, the process of obtaining the generated files
(e.g., the compilation chain for the different descriptor
files explained in Section 2) used by CCM is specific
to each ORB and its CCM implementation.

� Conformance to CCM features, such as automation of
component assembly, is inconsistent across CCM im-
plementations.

Problem. A benchmarking framework should encapsulate
implementation heterogeneity to ensure its tests are (1) rep-
resentative, i.e., test equivalent configurations and (2) re-
peatable, i.e., be amenable to continuous benchmarking. Of
course, these challenges are a microcosm of the issues that
CCM application developers must address to ensure porta-
bility across heterogeneous CCM implementations.
Solution. To shield CCMPerf from CCM implementation
heterogeneity we developed a set of scripts to configure and
run its benchmarking tests. These scripts automatically gen-
erate CCM platform-specific code and project build files for
each implementation. The scripts are similar to the COR-
BAConf project [13] that provides autoconf support for
CORBA 2.x ORBs.

3.1.2. Difference in Quality of CCM Implementations
Context. CCM implementations differ in the data struc-
tures and algorithms they use internally, which affects the
QoS they can deliver to DRE applications.
Problem. Evaluating these differences requires instru-
menting the code within the ORB/CCM implementation,
which presents the following challenges:� A thorough understanding of CCM implementations

is needed to instrument CCM middleware with probes
that measure performance accurately. No systematic
body of knowledge yet exists, however, that identifies
the critical features within CCM where instrumenta-
tion points should be added.

� CCM implementations are layered architectures,
which makes it necessary to isolate each layer to mea-
sure its influence on overall end-to-end application
performance. Since ORB-specific configuration op-
tions influence the presence/absence of these lay-
ers it is hard to identify the set of steps within each
layer for every combination of configuration op-
tions.



Solution. As discussed in Section 3.2, CCMPerf provides
benchmarks that use a combination of white-box and black-
box metrics to evaluate CCM quality of implementation is-
sues.

3.1.3. Differences in CCM Configuration Options
Context. CCM implementations differ in the configurable
parameters they provide to tune performance, e.g., run-time
configuration options (such as the number of threads, log-
ging levels, and locks) that can be enabled to fine tune dif-
ferent CCM implementations.

Problem. The presence of implementation-specific CCM
configuration options yields the following challenges:� The same set of configuration options many not be sup-

ported by all CCM implementations e.g, CIAO allows
applications to configure the type of locks used within
the ORB, whereas Mico-CCM does not.

� An implementation can be optimized for a given set
of configurations, yet perform poorly for other con-
figurations, e.g., Mico-CCM is optimized for single-
threaded applications and performs poorly in multi-
threaded configurations.

Solution. To ensure equivalent configurations, CCMPerf
provides automated scripts to configure and run each test.
The scripts capture the right options to be used in different
implementations to get equivalent CCM configurations. To
ensure consistent hardware and OS configurations, CCM-
Perf tests are run using EMULab [22] and Lockheed Martin
Advanced Technology Lab’s (ATL) Middleware Compara-
tor framework [6]. These testbeds support systematic test-
ing conditions that enable equivalent comparisons of perfor-
mance differences between CCM implementations. ATL’s
Middleware Comparator framework also allows experiment
data to be accessed via a convenient web interface (www.
atl.external.lmco.com/projects/QoS/).

3.1.4. Differences in Application Domain
Context. Each CCM implementation can be tailored for a
particular application domain, e.g., the CIAO CCM imple-
mentation is tailored for the DRE domain, whereas Mico-
CCM is targeted for the general-purpose distributed com-
puting domain.

Problem. Different domains of applicability pose the fol-
lowing challenges:� Use cases may change across domains, e.g., some

DRE applications require that total startup time be per-
formed in under two seconds [16]. Component middle-
ware catering to the DRE domain often needs to be op-
timized to meet this requirement, whereas middleware
for general-purpose distributed computing may not.

� QoS requirements may change across domains. Cer-
tain metrics (such as predictable end-to-end latency

and static/dynamic memory footprint) are important in
the DRE domain, but are often less important in other
domains, such as enterprise and desktop computing.

Solution. To evaluate domain-specific suitability, we pro-
vide scenario-based tests and/or enactments of specific use
cases deemed important in a given domain, such as the DRE
domain. In this context, we are evaluating CCM imple-
mentations using the scenarios present in the Boeing Bold
Stroke Prism component model described in Section 3.2.

3.2. CCMPerf Benchmark Design

We now describe the design of CCMPerf, focusing on
its three experimentation categories and the metrics col-
lected in each of the categories. The benchmarking tests
in CCMPerf focus on black-box and white-box metrics, as
discussed below.

Black-box metrics. Black-box metrics are performance
evaluation techniques that do not require instrumenta-
tion of software internals to select and analyze benchmark
data. CCMPerf can be used to benchmark CCM imple-
mentations without knowledge of their internal structure
using standard operations published in the CCM inter-
faces and without modifying CCM ORB internals. The
black-box performance metrics supported by CCMPerf in-
clude:

� Round-trip latency, which measures the response time
for a twoway operation with a single type of parame-
ter, such as an array of CORBA::Long.

� Throughput, which compares the (1) number of events
per second processed at the component server and (2)
number of requests per second at the client.

� Jitter, which measures the variance in round-trip la-
tency for a series of requests.

� Collocation performance, which measures response
time and throughput when a client and server are in the
same process vs. across processes on the same and dif-
ferent machines.

� Data copying overhead, which compares the variation
in response time with an increase in request size to
determine whether a CCM implementation incurs ex-
cessive buffer copying relative to a CORBA 2.x-based
ORB.

� Footprint, which measures the static and dynamic foot-
print of a CCM implementation to determine whether
it is suitable for memory-constrained DRE systems.

CCMPerf can measure each of these metrics in (1) single-
threaded and (2) multi-threaded configurations on servers
and clients.



White-box metrics. White-box metrics are performance
evaluation techniques that employ explicit knowledge
of software internals to select and analyze benchmark
data. Unlike black-box metrics, white-box metrics evalu-
ate performance by instrumenting the software internals
with probes. The white-box performance metrics sup-
ported by CCMPerf include:� Functional path analysis, which identifies CCM layers

above the ORB and adds instrumentation points to de-
termine the time spent in these layers. CCMPerf can
analyze jitter by measuring the variation in the time
spent in each layer.

� Lookup-time analysis, which measures the variation
in lookup-time for certain operations, such as finding
component homes, obtaining facets, and obtaining a
component instance reference given its key.

� Context switch overhead, which measure the time re-
quired to interrupt the currently running thread and
switch to another thread in multi-threaded configura-
tions.

The benchmarking tests in CCMPerf can be categorized
into the general areas discussed below. Each area then uses a
range of black-box and white-box metrics to compare CCM
implementations.

Distribution middleware benchmarks. These CCMPerf
benchmarks employ black-box and white-box metrics that
measure various aspects of distribution middleware perfor-
mance overhead, e.g., for a given ORB and its CCM imple-
mentation the round-trip metric measures the increase in re-
sponse time incurred by the CORBA 3.x CCM implementa-
tion beyond the CORBA 2.x DOC model support. Applica-
tion developers and end-users can apply CCMPerf’s distri-
bution middleware benchmarks to evaluate how well CCM
implementations meet their end-to-end QoS requirements.
These benchmarks can also benefit users who are consider-
ing moving from DOC middleware to component middle-
ware so they can quantify the pros and cons of such a tran-
sition.

Common middleware services benchmarks. These
CCMPerf benchmarks quantify the performance of var-
ious implementation choices associated with integrating
common middleware services within CCM contain-
ers. CCM leverages many standard services and features,
as described in Section 2. CCM implementations can ei-
ther use the standard CORBA service specifications or
they can use customized implementations of these ser-
vices. If CCM implementations use a publish/subscribe
model, they can use the standard CORBA Event Ser-
vice [9] or use a customized implementation (such as a
Real-time Event Service [4]).

To benchmark the scenario where a container uses an
event channel to publish events, CCMPerf measures the

overhead introduced by extra (de)marshaling and indirec-
tion costs incurred within the container for publishing the
events to the all the receivers. Black-box and white-box
metrics defined in the Section 3.2 are also used to empir-
ically compare and contrast the implementation choices for
a particular application domain.

Domain-specific middleware benchmarks. The charac-
teristics of an application domain often influence the se-
lection and suitability of a particular service and/or its im-
plementation. We therefore designed the CCMPerf bench-
marking test suites to use the black-box and white-box met-
rics defined in the Section 3.2 to empirically compare and
contrast the implementation choices for a particular appli-
cation domain. These CCMPerf benchmarks include black-
box and white-box tests tailored for key domain-specific
middleware use cases that occur in certain domains, such
as Boeing’s Bold Stroke Prism platform [16] that supports
avionics mission computing in the DRE domain.

The purpose of these tests is to identify whether a given
CCM implementation can meet the QoS requirements for a
particular domain, e.g., an organization might have a large
number of components that need to be deployed within a
certain amount of time. In the DRE domain, for instance,
Boeing’s Bold Stroke Prism architecture has several use
cases with stringent timing constraints.

This category of benchmarks also include tests that an-
alyze domain-specific CORBA implementations, such as
Real-time CORBA and real-time protocols such as the
Stream Control Transmission Protocol [2], standardized by
the OMG. Although the CCM specification itself does not
explicitly standardize real-time extensions, CCM imple-
mentations such as CIAO that target the DRE domain sup-
port the integration of Real-time CORBA and SCTP with
CCM.

4. Empirically Evaluating CIAO using CCM-
Perf

This section presents the results of distribution middle-
ware benchmarks that use black-box tests to quantify the
overhead of CIAO above and beyond the underlying TAO
ORB. The experiment was performed on an Intel Pentium
IV 2.0 Ghz processor with 512 MB of main memory us-
ing TAO version 1.3.5 and CIAO 0.3.5 compiled with the
Timesys g++ compiler version 3.2.2 and executed on the
Linux 2.4.21-timesys-4.1.147 kernel. The experiment was
run in the Timesys Linux real-time scheduling class and a
sample size of 250,000 data points was used for the result
analysis.

Although both CIAO and TAO support a variety of
configuration options, we made the following assumptions
for this analysis: (1) native exception handling was en-
abled, (2) logging was disabled, (3) the ORB was config-



ured to run in single-threaded mode, (4) normal CORBA
servants were used, i.e., they inherited from org.omg.
PortableServer.Servant, (5) we did not consider
DII and DSI, and (6) no proprietary policies were associ-
ated with the ORB. These assumptions are consistent with
ORB usage in DRE applications [15, 2].

Experiment description. The experiments consider the
following usage scenarios in which an end-user may
use CCM: (1) a CORBA 2.0 server interacting with a
CORBA 2.0 client, (2) a CORBA 2.0 server interact-
ing with a CCM component (playing the role of the client),
(3) a CCM component (playing role of server) interact-
ing with a CORBA client, and (4) a CCM component inter-
acting with another CCM component (playing both client
and server roles). These four use cases represent all com-
binations of mixing and matching a CCM component with
CORBA clients/servers and represent how DRE applica-
tions will most likely apply CCM implementations. For
each of the above interaction scenarios, we get the follow-
ing four combinations: (1) TAO-TAO – a TAO server inter-
acting with a TAO client, (2) CIAO-TAO – a CIAO com-
ponent interacting with a TAO client, (3) TAO-CIAO –
a TAO server interacting with a CIAO component and
(4) CIAO-CIAO – a CIAO component(server) interact-
ing with another CIAO component (client). The TAO-TAO
interaction servers as the baseline to compute the over-
head added by other combinations.

Round-trip analysis. This section analyzes the results of
benchmarks that measure the average latency. As shown in

[TAO-CIAO]101

[TAO-TAO]93.1

[CIAO-TAO]96.7 [CIAO-CIAO]96.4

ORB
0

25

50

75

100

125

L
at

en
cy

 (u
.s

)

TAO-CIAO
TAO-TAO
CIAO-TAO
CIAO-CIAO

Average

Figure 3. Round Trip latency Analysis

Figure 3, average latency for all the four case is nearly the
same with TAO-TAO scenario having the minimum aver-
age latency of � 93.07 � secs and CIAO-CIAO scenario hav-
ing maximum latency of � 100.54 � secs. The average case
overhead added by CCM over CORBA is thus � 8 � secs.

These results indicate that CIAO’s CORBA 3.x CCM capa-
bilities do not add significant overhead above and beyond
its underlying TAO CORBA 2.x implementation.

5. Related Work

This section summarizes other benchmarking efforts that
relate to our work on component middleware in general
and CCM in particular. We decompose middleware into lay-
ers and describe the representative benchmarking efforts in
each of the middleware layers.

Host infrastructural middleware. This layer encap-
sulates and enhances native OS mechanisms to create
reusable event demultiplexing and interprocess communi-
cation mechanisms. A benchmarking effort at this layer is
RTJPerf [1], which is an open-source benchmarking suite
that measures the quality of various Real-Time Specifica-
tion for Java (RTSJ) implementations. RTJPerf provides
benchmarks for most of the RTSJ features that are criti-
cal to real-time and embedded systems.

Distribution middleware. Distribution middleware en-
ables clients to program applications by invoking opera-
tions on target objects without hard-coding dependencies
on their location, programming language and OS platform.
A benchmarking effort at this layer is the Open CORBA
Benchmarking project [20], which is a generic benchmark-
ing suite for various ORB implementations. The goal for
this effort is to measure commonly used ORB function-
ality using metrics tailored for both ORB developers and
ORB users.

Common middleware services. This layer provides
higher-level domain-independent reusable services. A
benchmarking effort at this layer is the Lockheed Martin
Advanced Technology Lab’s (ATL) [6] Middleware Com-
parator, which evaluates a range of middleware layers,
including common middleware services via an easily acces-
sible Web interface. Their method has been to use identical
test conditions (application, hardware, etc.), which per-
mits comparisons that can reveal performance differences
between various systems.

6. Concluding Remarks

Component middleware in general and QoS-enabled
CORBA Component Model (CCM) implementations
in particular are important technologies. Several initia-
tives are underway to develop commercial and research im-
plementations of QoS-enabled CCM. There is not yet, how-
ever, a systematic body of knowledge that describes how
to develop metrics that can systematically evaluate the cor-
rectness, suitability, and quality of CCM implementa-
tions.



Empirically evaluating feature-rich component mid-
dleware implementations, such as CCM, poses several
challenges. This paper described how our CCMPerf bench-
marking framework (1) addresses the heterogeneity of
CCM implementations, such as differences in configura-
tion options, implementation quality, and domain of ap-
plication, (2) provides black-box and white-box metrics
to compare and contrast CCM implementations at mul-
tiple middleware layers (i.e., distribution middleware,
common middleware services, and domain-specific mid-
dleware), and (3) consolidates tests into categories that
clarify the structure of the benchmarks and facilitate the in-
tegration of new benchmark tests. Our empirical results
in Section 4 show how CCMPerf can be used to quan-
tify metrics, such as overhead (i.e., increases in the mean),
that the CIAO CORBA 3.x CCM implementation in-
curs above and beyond its underlying TAO CORBA 2.x
implementation.

Our future work on CCMPerf will focus on bench-
marking other open-source CCM implementations (such
as Mico-CCM, Qedo, and StarCCM), as well as complet-
ing the white-box and scenario-based benchmarks and en-
hancing CCMPerf’s testsuite. We are also integrating our
model-based synthesis of benchmarking experiments into
CoSMIC [5], which is an integrated toolsuite for model-
ing design and runtime aspects of QoS-enabled compo-
nent middleware. CoSMIC’s model-based [18] approach to
benchmark synthesis enables quality assurance engineers
and testers to configure components, model test configura-
tions, and generate benchmarking code automatically.

References

[1] A. Corsaro and D. C. Schmidt. Evaluating Real-Time Java
Features and Performance for Real-time Embedded
Systems. In Proceedings of the ���
	 IEEE Real-Time
Technology and Applications Symposium, San Jose, Sept.
2002. IEEE.

[2] Gautam Thaker et. al. Implementation Experience with
OMG’s SCIOP Mapping. In Proceedings of the 5 ��	
International Symposium on Distributed Objects and
Applications, Nov. 2003.

[3] A. Gokhale, D. C. Schmidt, B. Natarajan, and N. Wang.
Applying Model-Integrated Computing to Component
Middleware and Enterprise Applications. The
Communications of the ACM Special Issue on Enterprise
Components, Service and Business Rules, 45(10), Oct. 2002.

[4] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The
Design and Performance of a Real-time CORBA Event
Service. In Proceedings of OOPSLA ’97, pages 184–199,
Atlanta, GA, Oct. 1997. ACM.

[5] Institute for Software Integrated Systems. Component
Synthesis using Model Integrated Computing (CoSMIC).
www.dre.vanderbilt.edu/cosmic, Vanderbilt University.

[6] L. M. A. T. Labs. Atl qos home page‘.
www.atl.external.lmco.com/projects/QoS/,
2002.

[7] MICO. The MICO CORBA Component Project.
www.fpx.de/MicoCCM/, 2000.

[8] Object Management Group. Notification Service
Specification. Object Management Group, OMG Document
telecom/99-07-01 edition, July 1999.

[9] Object Management Group. Event Service Specification
Version 1.1, OMG Document formal/01-03-01 edition, Mar.
2001.

[10] Object Management Group. CORBA Components, OMG
Document formal/2002-06-65 edition, June 2002.

[11] Object Management Group. Deployment and Configuration
Adopted Submission, OMG Document ptc/03-07-08 edition,
July 2003.

[12] Qedo. QoS Enabled Distributed Objects.
qedo.berlios.de, 2002.

[13] Ruslan Shevchenko. CORBAConf: A Tool for Providing
Autoconf Support for CORBA. corbaconf.kiev.ua/, 2000.

[14] D. C. Schmidt and et al. TAO: A Pattern-Oriented Object
Request Broker for Distributed Real-time and Embedded
Systems. IEEE Distributed Systems Online, 3(2), Feb. 2002.

[15] D. C. Sharp. Reducing Avionics Software Cost Through
Component Based Product Line Development. In
Proceedings of the 10th Annual Software Technology
Conference, Apr. 1998.

[16] D. C. Sharp, E. Pla, and K. R. Lueck. Evaluating real-time
java for mission-critical large-scale embedded systems. In
G. Bollella, editor, Proceedings of the � ��	 IEEE Real-Time
Technology and Applications Symposium, pages 30–37,
Washington D.C, 2003.

[17] StarCCM. StarCCM. starccm.sourceforge.net, 2003.
[18] J. Sztipanovits and G. Karsai. Model-Integrated Computing.

IEEE Computer, 30(4):110–112, Apr. 1997.
[19] C. Szyperski. Component Software—Beyond

Object-Oriented Programming. Addison-Wesley, Santa Fe,
NM, 1998.

[20] P. Tuma and A. Buble. Open corba benchmarking. In
International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, 2001.

[21] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill,
B. Natarajan, C. Rodrigues, J. P. Loyall, and R. E. Schantz.
Total Quality of Service Provisioning in Middleware and
Applications. The Journal of Microprocessors and
Microsystems, 27(2):45–54, mar 2003.

[22] B. White and J. L. et al. An integrated experimental
environment for distributed systems and networks. In Proc.
of the Fifth Symposium on Operating Systems Design and
Implementation, pages 255–270, Boston, MA, Dec. 2002.
USENIX Association.


