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Abstract

The growing complexity of building and validating software is
a challenge for developers of distributed real-time and embed-
ded (DRE) systems. While building blocks of DRE systems are
increasingly based on commercial off-the-shelf (COTS) com-
ponents, substantial time and effort are spent integrating com-
ponents into systems due to the lack of higher level abstrac-
tions for composing complex systems. As a result, consider-
able system-specific “glue code” must be written, only to be
rewritten from scratch when building subsequent systems.

This paper provides four contributions to the study of com-
posing reusable middleware from standard components in
DRE systems: (1) it analyzes the problems with current ap-
proaches in middleware composition, (2) it quantifies the min-
imum set of requirements required of reusable middleware
components, (3) it presents recurring patterns in the domain
of software composition and provides empirical evaluation of
these patterns as applied to TAO, our open-source second-
generation Real-Time CORBA Object Request Broker (ORB),
and (4) it compares our approach to other research done in
the area of software composition. Our results show that ...

1 Introduction

Emerging trends. Software components are units of inde-
pendent production, acquisition, and deployment that interact
to form a functioning system [1]. Software component mod-
els, such as COM+ and Javabeans, have long formed the basis
for graphical user interfaces and other stand-alone system de-
velopments. A component model is responsible for:

� Describing the properties and semantics of component
building blocks and

� Keeping the context sensitive dependencies to a mini-
mum and defining these explicitly when necessary.

With the proliferation of enterprise component technolo-
gies, such as the CORBA Component Model (CCM), .NET,
and Enterprise Java Beans (EJB), large-scale distributed ap-
plications are increasingly being developed and deployed in
a modular fashion. Modularity elevates the level of abstrac-
tion used to program complex systems, encourages systematic

reuse, and enhances software maintainability over the system
lifecycle. Projects are also increasingly relying upon commer-
cial off-the-shelf (COTS) components and frameworks as the
basis for their distributed software infrastructure.

Although reuse of individual components is useful, it is
even more useful to compose the individual components into
higher-level reusable components and even complete applica-
tions. Composition of software components is not as mature
as assembly of hardware components (such as motherboards
composed from integrated circuits) or mechanical components
(such as automobiles or aircrafts components from standard
parts). Nevertheless, in the long-term, it should be possible to
develop complex software applications built largely by com-
posing and customizing pre-existing components.
Key challenges. Although component-based software de-
velopment techniques are maturing for business and desktop
systems, they are less mature for mission-critical domains,
such as distributed real-time and embedded (DRE) systems. In
DRE systems, composition of component functionality alone
is not sufficient since these types of systems must ensure end-
to-end quality of service (QoS), of which components are sim-
ply the basic building blocks. Mixing QoS specifications and
enforcement mechanisms with the application functionality re-
sults in complications that tend to grow rapidly as the number
of components – and hence the complexity – of the software
increases.

This paper focuses on the following challenges involved
in QoS-enabled software composition in the context of the
emerging component models:
� The need to minimize overly tight coupling of compo-

nent meta-data with component functionality. To reuse a
component in more contexts than it was designed originally,
the component’s functionality and its feature set need to be
described in a manner that can be understood by component
users. Component meta-data includes (but is not limited to)
information such as the list of files used to implement a com-
ponent, version number information, a checksum to ensure
component integrity, and information about the required priv-
ileges for this component to function. Various composition
problems occur when component meta-data is described at the
same level of abstraction as the component functionality. In
particular, this tight coupling can require applications to be
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written in the same language as the lower-level components,
which may not be feasible if these entities have been devel-
oped independently and at different points in time.

� The need to specify component QoS requirements in
a context-insensitive manner. Composition problems arise
when QoS requirements of components are specified with im-
plicit assumptions on properties of external entities (such as
threading models required by a component or support for con-
currency needed to run the component) outside a particular
component of a software system. Unstated or underspecified
assumptions related to QoS properties of components make it
hard to use the requirements effectively. The context in which
these assumptions hold true are provided by the environment
in ideal conditions. A component can malfunction due to
failures of assumptions stemming from the lack of context-
dependent information.

� The need to validate component properties. A com-
ponent implementation’s properties (such as the implementa-
tion language, version of the component, level of privileges re-
quired, and dependencies on other components) must be val-
idated against its specification to avoid problems such as (1)
errors caused by misconfiguration, (2) attacks by malicious
components that request resources from the underlying ORB
improperly, and (3) lack of confidence that the QoS assurances
provided by the middleware are sufficient from an applica-
tion’s perspective. Validation is required at the granularity of
an individual component, as well as at the system level.

� The need to ensure that a complex software system can
be deployed seamlessly. It is hard to track the dependencies
of components upon other components and ensure that inter-
dependent components are initialized in a particular order. To
ease this task, components need to be packaged as entities that
provide a variety of information about the resident components
and capture the dependencies present in initialization. This
packaging is necessary so that the deployment process can be
automated completely or at least controlled by an administra-
tor.

Solution approach. Early ORBs did not provide features
or optimizations to support the challenges of component-
based distributed systems described above – particularly not
for DRE systems with stringent QoS requirements. To bet-
ter meet these requirements, we have developed a third-
generation ORB called the Component-Integrated ACE ORB
(CIAO) [2], which is based on the CORBA Component Model
(CCM) [?] specification that standardizes the development of
platform- and language-independent component-based appli-
cations. CIAO extends our previous work on The ACE ORB
(TAO) [3] by providing more powerful component-based ab-
stractions using the specification, validation, packaging, and
deployment techniques discussed above.

Prior work on TAO has explored many dimensions of
high-performance and real-time ORB design and perfor-
mance, including scalable event processing [4], request de-
multiplexing [5], I/O subsystem [6] and protocol [7] integra-
tion, connection architectures [8], asynchronous [9] and syn-
chronous [10] concurrent request processing, adaptive load
balancing [11], meta-programming mechanisms [12], and IDL
stub/skeleton optimizations [13]. This paper describes how we
have extended CIAO to avoid the various challenges that arise
when developing flexible and high-performanceDRE systems.
Specifically, the CIAO project addresses the challenges out-
lined earlier as follows:

� Reduced coupling by separating meta-data from func-
tionality. We provide a framework based oneXtensible
Markup Language(XML)-based [14] mechanisms to define
the grammar for describing component features. The XML-
based approach makes components amenable to composition
by (1) independent portions of a larger system and (2) future
applications that can parse XML. This results in a decoupling
of the functional aspects of a component-based system (that
can be written using a variety of COTS programming lan-
guages) from the underlying QoS aspects and configuration
details. This decoupling increases composition flexibility and
systematic reuse. In the CIAO project, we specify meta-data
of a component via XML, using its content-agnostic metalan-
guage properties to express QoS configuration templates and
conforming configuration files.

� Context-insensitive specification of QoS requirements.
We identify critical QoS parameters of component-based DRE
software systems and specify them using extensions to the
XML Document Type Definitions (DTD) for specifying prop-
erties of components defined by CCM. There is considerable
flexibility in the extension so that the requirements make sense
from the perspective of a component, as well as from the end-
to-end perspective needed for the system as a whole. All of a
component’s assumptions are explicitly specified using meta-
data and are present within each component,i.e., the compo-
nent is context-insensitive, and the amount of implicit contex-
tual information is minimal.

� Component Validation. After a component is specified
and packaged, it must be validated at deployment time. In the
CIAO project, default attributes are generated by a component-
enabled OMG Interface Definition Language (IDL) compiler
as part of the meta-data for every component. These attributes
can be modified or extended by the user. XML Document
Type Definition (DTDs) can be used to (re)validate meta-data
attributesbeforecomponents are deployed, thereby avoiding
exceptions during run-time. We provide methods to validate
(1) configurations of components, (2) privileges of compo-
nents, and (3) QoS properties of the system both during and af-
ter an application is composed from a set of component build-
ing blocks.
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� Component packaging and deployment. After speci-
fication and validation, component implementations must be
packaged and deployed. As shown in Figure 1, packaging in-
volves grouping the implementation of component functional-
ity, which is typically stored in a dynamic link library (DLL),
with other meta-data that describes properties of this partic-
ular implementation. Packaged components are in “passive
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Figure 1: Component Packaging and Deployment

mode,”i.e., all their functionality is present, but they are inert
object code. To function at run-time, components must tran-
sition to “active mode,” where the inter-connection between
components is established. Deployment mechanisms are re-
sponsible for transitioning components from passive to active
mode.
Paper organization. This paper is organized as follows:
Section 2 first gives a general overview of component models;
Section 3 then focuses motivating and describing the capabili-
ties of the CORBA Component Model (CCM) and CIAO; Sec-
tion 4 examines in detail the techniques used in CIAO to solve
key challenges with component models and CCM; Section 5

compares and contrasts our work on software composition in
CCM and CIAO with other approaches; and Section 6 presents
concluding remarks.

2 Overview of Components and Com-
ponent Models

In the early days of computing, software was developed from
scratch to achieve a particular goal on a specific hardware plat-
from. Since computers were much more expensive than the
people who programmed them, relatively little attention was
paid to systematic software reuse and composition of appli-
cations from existing software artifacts. Over the past four
decades, the following two general trends have spurred the
transition from hardware-centric to software-centric develop-
ment paradigms:

� Economic factors– Due to advances in VLSI and the
commoditization of hardware, most computers are now
muchless expensive than the people who program them.

� Technological advances– With the advent of object-
oriented programming languages and distributed object
computing technologies, software can now be developed
in a much more modular fashion.

This section provides an introduction to components and
component models. We begin with an overview of the soft-
ware paradigms that culminated in component-based soft-
ware technologies and outline a promising new enhancement
to component models. We also describe the functionalities
shared by all component models and show how component
models differ from the popular object models.

2.1 A Brief History of Software Programming
Paradigms

Below, we present a brief history of software program-
ming paradigms. A common theme underlying all of these
paradigms is the desire to compose and customize systems
largely from pre-existing software building blocks. What
differs is the types of building blocks envisioned for each
paradigm.
Information hiding and data abstraction. Composing
software from reusable artifacts has been a goal of software
researchers for over three decades. For example, Doug McIl-
roy [15] motivated the need for software “integrated circuits”
(ICs) and mass-produced software ICs, as well as examines
the types of variability needed in software ICs and the types
of ICs that can be standardized usefully. McIlroy envisioned
an IC to be a standard catalogue of routines, classified by pre-
cision, robustness, time-space performance, size limits, and
binding time of parameters.
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Early efforts [16, 17, 18] to realize the vision of software
ICs resulted in information hiding and data abstraction tech-
niques that placed more emphasis on organization of data than
the design of procedures. Data abstraction resulted in formal-
izing the concept ofmodulesas a set of related procedures and
the data that they manipulate, resulting in partitioning of pro-
grams so that data is hidden inside them.

These techniques were embodied in programming lan-
guages, such as Clu, Modula 2, and Ada. They provided mod-
ules as a fundamental language construct apart from explicit
control of the scopes of names (import/export), a module ini-
tialization mechanism, and a set of generally known and ac-
cepted styles of usage of the above mentioned features. Al-
though these languages allowed programmers to create and ap-
ply user-defined types, it was hard to extend these types to new
usages scenarios without modifying their interface definitions
and implementations.
Object-oriented techniques. The next major advance in
programming paradigms came from object-oriented design
techniques, such as the OMT and Booch notations/methods,
and object-oriented programming languages, such as C++ and
Java. Object-oriented techniques focus on decomposing soft-
ware systems into classes and objects that have crisply-defined
interfaces and are related via inheritance and aggregation. A
key advantage of object-oriented techniques is their direct sup-
port for the distinction between an class’s general properties
and its specific properties. Expressing this distinction and tak-
ing advantage of it programmatically was simplified by object-
oriented language support for inheritance, which allows the
commonality in class behavior to be explicit, as well as allow-
ing customization of this behavior by allowing redefinition of
methods in subclasses.
Component-based techniques. Although object-
orientation represented an advance over previous program-
ming paradigms approaches, it also had certain deficiencies.
For example, object-oriented techniques are based on as-
sumptions that different entities in a software system have
interfaces that are (1) amenable to inheritance and aggregation
and (2) are written in the same programming langauge.
Many applications must run in multi-lingual and even multi-
paradigm [19] environments, however, which necessitates a
higher level of abstraction than can be provided by a single
programming language or programming paradigm.

These conditions outlined above motivated the need for
component-based software techniques [1]. A component is
an encapsulated part of a software system that implements a
specific service or set of services. A component model defines
(1) the properties of components, such as the version of the
component, its dependencies, language of implementation, (2)
the set of interfaces that components use to interact amongst
themselves and with other participants, and (3) the infrastruc-
ture needed to support the composition, run-time behavior, and

set of external interfaces. Components and component models
differ from objects and object models in the following ways:

� Component models define a higher level abstraction of
the run-time execution environment than the operating
systems level, which is often the case with object mod-
els. This helps in imposing policies on components and
verifying them at run-time using the execution environ-
ment.

� Components are a higher-level abstraction than objects.
This abstraction leads to differences in the following top-
ics:

– External view – Object models treat objects at the
level of programming language abstractions of the
same name and associated interfaces are defined are
also defined on each such object. In contrast, com-
ponent models only associate semantics of func-
tionality with each component and allow flexibility
in the packaging and implementation of component
functionality.

– Encapsulation – Component models provide
“tighter encapsulation” of component functionality
and hence limit the dependency on implementation
level artifacts in component usage.

� Component programming is based on the Extension In-
terface design pattern [20], which defines a standard pro-
tocol for creating, composing, and evolving groups of
interacting components. Unlike object-oriented designs
(which reply on inheritance), component-based designs
generally rely on aggregation for composition, which is
more powerful since:

– A component might not share any commonality
with other components

– A component might need to be integrated with ex-
isting components written in languages that do not
support inheritance.

� Components are “context-insensitive”, which allows
clients to (1) interrogate a component to find out what
interfaces it supports and (2) nagivate amongst these in-
terfaces at run-time. This capability can be achieved
through the separation of the functional properties from
the behavioral properties and compositional aspects of
components.

Aspect-oriented techniques. More recently, another pro-
gramming paradigm has emerged that focuses on advanced
techniques to separate common concerns in software sys-
tems. Known asaspect-oriented programming(AOP) [21],
this paradigm provides a systematic, language-based approach
for programming separate facets, such as memory manage-
ment, logging, and synchronization, that cross-cut program
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functionality. Research on AOP has also concentrated on en-
abling development of component software through special-
ized programming languages, such as Component Pascal [1],
through introduction of higher-level constructs, such as Plug-
gable Composite Adapter [22], and language extensions, such
as AspectJ [23] that extends Java to support the composition
of separately developed software aspects.

2.2 Common Capabilities in Component Mod-
els

The most commonly used component models today include:

Microsoft’s .NET , which allows developers to write applica-
tion logic in different languages and generate components and
assemblies targetted to a Common Language Runtime (CLR).
CLR forms the foundation for the .NET Web services, which
combine aspects of component-based development and Web
technologies. Like earlier Microsoft component models (such
as COM+ and ActiveX), .NET provides black-box functional-
ity that can be described and reused without concern for how
a service is implemented. In practice, however, .NET is only
available on Windows platforms. Moreover, since .NET is tar-
geted at desktop and enterprise applications, it is not suitable
for DRE systems with stringent QoS requirements.

Sun’s Enterprise Java Beans (EJB) technology allows de-
velopers to create n-tier distributed systems by linking a num-
ber of pre-built software services-called “beans” without hav-
ing to write much code from scratch. Since EJB is built on top
of Java technology, EJB service components can only be im-
plemented using the Java language, which can be limiting for
applications that are written in other languages. Another dis-
advantage of EJB stems from Java’s inability to provide strin-
gent real-time QoS guarantees, which makes it impractical for
use in DRE systems.

OMG’s CORBA Component Model (CCM) , which de-
fines a superset of EJB capabilities that can be implemented
using all the programming languages supported by CORBA.
Since CORBA and CCM are also platform-independent, they
can run atop most operating systems. It is possible to inte-
grate CCM and EJB components seamlessly since they both
use the Internet Inter-ORB Protocol (IIOP) as their under-
lying communication protocol. Since CORBA and its sup-
port for capabilities (such as asynchronous messaging, pub-
lisher/subscriber communication, fault tolerance, and real-
time control of processor and networking resources) provides
the middleware technology that is most well-suited for QoS-
enabled DRE systems, our work (and Section 3 in this paper)
focuses on CCM.

Although each of these component models differ from each
other, there are key similarities, particularly in terms of their

patterns [24, 25]. Below, we describe the most common capa-
bilities that are shared among these component models.
Multiple views per component. Each component model
specifies a collection of interfaces that a component can export
to its clients. These interfaces vary in the capabilities that they
offer to clients. For example, [1] refers to so-calledblack in-
terfaces, gray interfaces, andwhite interfaces, with each type
of interface providing introspection capabilities with increas-
ingly powerful semantics, respectively.
Execution environment. Each component model defines an
environment, known as acontainer, within which components
can be instantiated and run. Containers shield components
from low-level details of the underlying middleware. They
are also responsible for locating and/or creating component
instances, interconnecting components together, and enforc-
ing component policies (such as their life-cycle, security, and
persistence state).
Component identity. Each component model has a means
to identify its components uniquely. For example, .NET uses
public key cryptography tokens to tag each component’s inter-
face to identify it uniquely across different software domains.
EJB uses the Java Naming and Directory Service (JNDI),
which encapsulates low-level naming services, such as LDAP,
NIS, and DNS. EJB components are written using a hierarchi-
cal directory naming scheme typically associated with an orga-
nization’s Internet domain. The CCM uses DCE “universally
unique ids” (UUIDs) to identify component implementations.
Section?? explains other capabilities that CCM provides to
identify components.
Based on an underlying object model. Each of today’s
popular component models are based on an underlying object
model, as outlined below:

� EJB uses the Java Virtual Machine (JVM) as its underly-
ing object model.

� .NET is based on the Common Language Runtime (CLR)
and executes byte-code in Microsoft Intermediate Lan-
guage (IL) [26].

� CCM is based on the CORBA object model.

The JVM and CLR are similar in that they provide a run-time
environment that manages running code and simplifies soft-
ware development via automatic memory management mech-
anisms, translating bytecode into an action or operating sys-
tem call, a common deployment model, and a security system.
The JVM has mostly been used for byte-code generation from
Java. Likewise, in practice CLR is a run-time that works only
under Windows.

The use of a virtual machine architecture is a source of non-
determinism in DRE systems. In contrast, since CCM uses
CORBA as its underlying object model, it need not use a vir-
tual machine and hence is a more suitable platform for DRE
systems with stringent QoS requirements.
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3 Overview of the CORBA Component
Model (CCM) and CIAO

The CORBA Component Model (CCM) is an OMG specifi-
cation that standardizes the development of component-based
applications. Since CCM uses CORBA as its underlying ob-
ject model, developers are not tied to any particular language
or platform for their component implementations. The CCM
helps alleviate the problems with software composition by
separating some concerns and thus reducing coupling. Side-
bar 1 explains why the CIAO project is based on CCM rather
than other popular component models, such as EJB or .NET.
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Component Component ComponentReceptacle
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Figure 2: Key Elements in the CORBA Component Model

Figure 2 illustrates the following key elements of the CCM
that we are implementing in CIAO:

� Component, the basic building block
� ComponentHome, the component type manager
� Container, the execution enivronment of a component
� ComponentServer, the container manager
� ORB Services, middleware services

The preceding discussion outlines the elements of the CCM
and CIAO, but does not motivate what these elements do or
more importantlywhy they are important. In the remainder
of this section, we explain why these elements are needed in
CCM by explaining the key software development challenges
they address, which include:

1. Identifying and reusing commonality in software systems
2. Reducing coupling between components and underlying

middleware
3. Specifying component interconnections

Sidebar 1: Motivation for Using the CCM

We base CIAO on the CCM since CORBA is the only COTS mid-
dleware that has made a substantial progress in satisfying the QoS
requirements of DRE systems. For instance, the OMG has adopted
the following DRE-related specifications in recent several years:

� Minimum CORBA , which removes non-essential features
from the full OMG CORBA specification to reduce footprint
so that CORBA can be used in memory-constrained embed-
ded systems.

� Real-time CORBA, which includes features that allow ap-
plications to reserve and manage network, CPU, and memory
resources predictably end-to-end.

� CORBA Messaging, which exports additional QoS policies,
such as asynchronous invocations, timeouts, request priori-
ties, and queueing disciplines, to DRE applications.

� Fault-tolerant CORBA , which uses entity redundancy of
objects to support replication, fault detection, and failure re-
covery.

These QoS specification and enforcement capabilities are essen-
tial to support DRE systems. Moreover, multiple interoperable and
robust implementations of these CORBA capabilities and services
are now available. Many of these CORBA implementations are
freely-available in open-source format, which is conducive to re-
search and whitebox evaluation. For these reasons, our work on
CIAO focuses on the CCM as the basis for QoS-enabled compo-
nent models to support DRE systems.

4. Using adaptive strategies for creating components
5. Configuring components
6. Resolving dependencies automatically
7. Maintaining component software

We also briefly outline how we have implemented these fea-
tures in CIAO and reference the material in Section 4 that de-
scribes these key CIAO capabilities in more detail.

3.1 Identifying and Reusing Commonality in
Software Systems

Context. A family of applications exhibiting commonality
that can be refactored into reusable functional blocks.

Problem. When applications are implemented in a mono-
lithic fashion, it is hard to identify and refactor common func-
tionality. Choosing the right modulde boundaries is hard with-
out appropriate abstractions for describing functionality. Lack
of functional abstractions leads to unnecessary duplication
across different modules and prevents effective reuse.

CCM Solution ! Component. Define a component ab-
straction that serves as both the building block for the structure
of software systems and as the candidate for demarcation of
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modularity and functionality. A component is an encapsulated
part of a software system that implements a specific service or
set of services. A component has one or more interfaces that
provide access to its services.

A CCM component is a meta-type that includes collec-
tion of entities, ranging from implementation(s) of application
functionality in a particular programming language, a set of
properties associated with each such implementation. A CCM
component is both an extension and a specialization of the
CORBA object meta-type that is defined by the original OMG
CORBA specification. The capabilities of a CCM component
are defined using extensions to the OMG Interface Definition
Language (IDL).

Applying the solution in CIAO.

3.2 Reducing Coupling Between Components
and Underlying Middleware

Context. Development of component software that relies on
services provided by the middleware.

Problem. In earlier generation middleware that was based
solely on object models, programmers had to explicitly handle
the complexity of connecting to and configuring the policies
of underlying middleware. For example, before the advent
of CCM, CORBA developers had to explicitly bind to, and
configure the policies of, middleware entities, such as event
channels, transaction services, and security services. These
manual programming activities resulted in the production of
considerable, repetitive “glue-code” (which in some cases was
larger than that required for the usage of the functionality).
Likewise, these activities were error-prone since they required
application developers to have expertise with many low-level
details of the underlying middleware.

CCM Solution ! Containers. Define a container abstrac-
tion that provides the context in which components run. A
container acts as a bridge between the low-level middleware
and a component by configuring the underlying middlware
based on the policies defined in the component. A container
also provides the execution environment for components,e.g.,
it defines interception points where various run-time policies
(such as security and transaction) can be imposed and vali-
dated. Although the capabilities provided via the containers
are used by the components, they shield component develop-
ers from detailed knowledge of the underlying middleware.

An important consequence of decoupling components from
containers is that the containers and the underlying middle-
ware can transparently perform optimizations, such as compo-
nent pooling, caching, and on-demand linking and load bal-
ancing of components. Likewise, the lifecycle of a component
can be managed by its container, which has the advantage of

having information from the perspective of not only a single
component, but of all components residing within that con-
tainer.
Applying the solution in CIAO.

3.3 Specifying Component Interconnections

Context. A complex system consisting of individual compo-
nents that must interoperate with each other at run-time.

Problem. A component can provide functionality at differ-
ent granularities. In software developed using object models, a
one-to-one association typically exists between an object and
the roles played by the objecti.e., a user of an object gets all
the functionality and the artifacts of that functionality or noth-
ing. In complex software systems, however, a one-to-one as-
sociation of component and component roles can result in an
unwieldy proliferation of interfaces that must be managed by
users explicitly.
CCM Solution ! Ports. Define a port abstraction that can
expose multiple views of a component to clients, based on con-
text and functionality. CCM ports define a set of connection
points between components to expose various roles supported
by a component interface. The CCM specifies the following
types of ports, which are a set of interfaces that are both exter-
nal (to the user) and internal (to the underlying middleware):

� Facets, which are distinct named interfaces provided by
the component. Facets enable a component to export a
set of functional roles to its clients.

� Receptaclesare interfaces used to specify relationships
between components. This interface allows a component
to accept references to other components, and invoke op-
erations upon these references. Thus they enable a com-
ponent to use the functionality provided by other compo-
nents.

� Event sources and sinks, which define a standard in-
terface for the Publisher/Subscriber architectural pat-
tern [27]. Event sources/sinks are named connection
points that send/receive specified types of events to/from
one or more interested consumers/suppliers. These types
of ports also hide the details of establishing and con-
figuring event channels [4] needed to support The Pub-
lisher/Subscriber architecture.

� Attributes , which are named values exposed via acces-
sor and mutator operations. Attributes can be used to
expose the properties of a component that are exposed
to tools, such as application deployment wizards that in-
teract with the component to extract these properties and
guide decisions made during installation of these com-
ponents, based on the values of these properties. At-
tributes typically maintain state about the component and
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can be modified by these external agents to trigger an ac-
tion based on the value of the attributes.

Applying the solution in CIAO.

3.4 Using Adaptive Strategies for Creating
Components

Context. Distributed software systems that consist of com-
ponents with different lifetimes.

Problem. Locating and/or creating components are (poten-
tially) expensive operations. Different component types might
need creation strategies that differ from the other component
types depending on the lifetime of instances of each type. For
example, a component instance created as part of a database
transaction might have a different lifetime than one which is
controlling the trajectory of a missile.

Strategies used in the creation of both will involve a com-
pletely different set of tradeoffs. Requiring client applications
to know how to locate and/or create components is tedious
and introduces unnecessary dependencies between clients and
the components they use. It also limits the flexibility of com-
ponent creation strategies by tightly coupling component cre-
ation with component use.
CCM Solution ! Component homes. Define a compo-
nent home abstraction that is responsible for creating and
subsequently locating certain types of components in a soft-
ware system. Components reside in component homes, which
embody the Factory [28] design pattern. Component homes
shield clients from the details of creation strategies of compo-
nents and subsequent queries to locate a component instance.
This capability increases the flexibility of a system since any
changes in how a component is created does not affect clients
of the component.
Applying the solution in CIAO.

3.5 Configuring Components

Context. A distributed system where the same component
needs to be configured differently, depending the context in
which it is used.

Problem. As the number of component configuration pa-
rameters and options increase, it can become overwhemingly
complex to configure applications consisting of a number of
individual components. The problem stems not only from
the number of alternative combinations, but also from the dis-
parate interfaces for modifying these parameters. Object mod-
els have historically required application developers to manu-
ally write considerable application-specific “glue code” to in-
terconnect and configure components. This coding process is

tedious and error-prone since it exposes the component devel-
opers to low-level details of the underlying middleware.

CCM Solution ! Assembly. Define an assembly abstrac-
tion to characterize meta-data. This meta-data describes a list
of components present in the assembly. Each component’s
meta-data in turn describes the features available in it, or the
features that it requires,i.e., a dependency. After an assem-
bly is defined the actual task of modifying the parameters
need not involve manual writing of glue code. Instead, meta-
programming techniques [12] can be applied to configure the
component in a context dependent fashion since the properties
of components and the code needed to configure these proper-
ties into the components are separated.

CCM assemblies are based on XML DTDs, which pro-
vide an implementation-independent mechanism for describ-
ing component properties. With the help of these XML tem-
plates, it is possible to generate default configurations for
CCM components, which preserve the required QoS proper-
ties and establish the necessary configuration and interconnec-
tion among the components, as part of each assembly.

Applying the solution in CIAO.

3.6 Resolving Dependencies Automatically

Context. Run-time deployment of distributed systems built
using components as the basic software building blocks.

Problem. Any non-trivial software system consists of a col-
lection of components that have various dependencies, such as
reliance on a particular group of components, order of compo-
nent initialization, or domain-specific requirements (e.g., re-
quired sensor rate in the avionics domain []). Resolving these
dependencies manually does not scale as the number of com-
ponents in a system grows. Likewise, ignoring or underspec-
ifying these dependencies can result in an unstable system if
the system run-time assumes that components are independent
and chooses to instantiate these in any order. For example, it
is imperative that the wheels of an aircraft open up before the
aircraft tries to land.

CCM Solution ! Deployment application. Define a de-
ployment application that is responsible for managing the de-
pendencies among a collection of interdependent components.
By using meta-data which capture these dependency along
information about the interconnections expressed via CCM
ports, a deployment application can ensure that the compo-
nent interconnections are established correctly and in the right
order.

Applying the solution in CIAO.
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3.7 Maintaining Component Software

Context. Software systems that have been partitioned into
many individual components.

Problem. Although partitioning a system into a collection of
individual components avoids the many problems discussed in
Section 3.1, it can be a maintenance problem. For example, the
person-hours needed to maintain complex systems increases
considerably when the number of invidual components in a
system increases. This problem is aggravated by the fact that
it is hard to determine the relationship between a component
and its running context from just the presence of a component
in a live system.

CCM Solution ! Component servers. Define a Compo-
nent Server abstraction that is responsible for aggregating the
“physical” (i.e., implementation of component instances) en-
tities into “logical” (i.e., functional) entities of a system. A
component server is a singleton [28] that plays the role of a
factory to create containers. A component server is the equiv-
alent of a server process in the object models. Figure 3 shows
the steps involved in deploying component software through
Component Servers in a top-down fashion.

ServerProcess

ComponentServer

ComponentHome

Deployment
Application

Container

Component

ComponentHome

ComponentServer

Component

Component

Component

Component

ComponentHome

Component

ComponentHome

Component

Component

Component

Component

Component

Container

ComponentServer

Assembly Assembly

Assembly

Figure 3: Component Deployment

Typically, a component server is assigned one high-level
functionality within a complex system. During deployment, a
single component server per assembly is created on each host,
which reads the description of the meta-data from the assem-
bly and is responsible for initiating the creation of the system
hierarchy as well as teardown of the system hierarchy. Mul-
tiple containers can exist within a component server and the
component server is responsible for managing the lifecyle of
containers created within it.

Applying the solution in CIAO.

4

4.1 Reduction of Coupling Between Compo-
nents and Underlying Middleware

As discussed in Section 3, CCM decouples components from
their containers. This separation of concerns supports the fol-
lowing two different programming models:

� Imperative programming , which involves characteriz-
ing the state of a program entity and specifying a set of
operations that modify the state. In CCM, imperative pro-
gramming is commonly used for components, which are
the basic entities in CCM that implement the core appli-
cation functionality. Clients are exposed to and interact
with interfaces offered by the components. These compo-
nents are programmed imperatively,i.e., the component
developer must specify in detail the exact steps needed to
provide the functionality offered by the component.

� Declarative programming, which involves specifying
the result as either a function of the input or as a rela-
tion between the input and the input. There is no notion
of state or direction of evolution of computation i.e it is
bi-directional. In CCM, declarative programming can be
used for the containers and the application servers. For
example, the clients specify the set of actions needed
from the Container, but it is the job of the container to
compute and return the result.

CCM specifies the interaction of the above entities with
the other auxillary tools that perform activities like packag-
ing of components, visualization of components, deployment
of components, and the validation of components.

4.2 Context-insensitive Specification of Com-
ponent Properties

4.3 Validation of Component Configurations

4.4 Component Packaging and Deployment

5 Related Work

6 Concluding Remarks

CIAO addresses key challenges that arise when applying com-
ponent models to DRE systems by separating the various as-
pects of DRE software systems and enabling application de-
velopers, system engineers, and end-users to select compo-
nents that can then be composed to build complete systems.
Lessons learned. Java-based component models require us-
ing Java throughout the system, which might be infeasible ei-
ther because major portions of the existing system is written

9



in another language or the real-time guarantees provided by
Java based solutions are do not meet the requirements of DRE
systems. .NET-based solutions are suffer the same problems
because of their Windows-centric view of distributed objects,
which precludes the possibility of developing a cross-platform
solution, and requires software bridges between disparate sys-
tems, leading to increasing the complexity of building com-
posable DRE systems.

Future work. The long goal of the work described in this
paper is to enable reflective ORB behavior and expose these
ORB features so that they can be monitored and controlled
effectively by higher-level tools and management applications.
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