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Abstract

Delivering end-to-end quality of service (QoS) for diverse
classes of distributed applications remains a significant R&D
challenge. While individual technologies based on prior re-
search have touched upon these QoS delivery problems for
specific domains or usage patterns, these isolated achieve-
ments have yielded only a fraction of the potential benefit for
the broad domain of QoS-enabled distributed applications. We
present our coordinated middleware-based strategy for broad-
ening delivery of, and simplifying from the user’s perspec-
tive, end-to-end QoS to a wider range of next-generation QoS-
enabled distributed applications.

This paper makes the following contributions to research
on end-to-end QoS. First, we describe an architecture for inte-
grating and coordinating QoS technologies (1) at all levels of
the system, (2) on all time scales of system development, de-
ployment, and operation, and (3) across all system resources.
Second, we describe results from several projects implement-
ing particular segments of this overall architecture. We an-
alyze these results and summarize how our work can be ap-
plied more broadly to future research on middleware for next-
generation QoS-enabled applications.

�This work was supported in part by Boeing, BBN, DARPA contract
9701516, and DARPA Quorum program contract F#0602-98-C-0187 moni-
tored by Rome Air Force Laboratory.

1 Introduction

Motivation: Many domains, such as aerospace, manufac-
turing, and health care, rely heavily on predictable comput-
ing and networking services to perform their respective mis-
sions. Increasingly, applications in these domains are needing
to perform more demanding functions over highly networked
environments, which in turn places more stringent require-
ments on the underlying computing and networking systems.
In particular, next-generation distributed applications are re-
quiring a broad range of features, such as service guaran-
tees and adaptive resource management, to support a widening
range of quality-of-service (QoS) aspects, such as predictable
performance, secure operation, dependability, and fault toler-
ance [1, 2].

Limitations with current techniques: Due to deregula-
tion, global competition, and budget constraints, even systems
with stringent QoS demands are increasingly required to
use commercial-off-the-shelf (COTS) hardware and software
components. Although a variety of research and commercial
operating systems, networks, and protocols now support some
QoS management features,integratedend-to-end solutions are
not yet available. For instance, research on QoS for ATM net-
works has focused largely on policies and mechanisms for al-
locating network bandwidth on a virtual-circuit basis. Sim-
ilarly, recent research on Internet2 topics has focused on ei-
ther specific signaling and enforcement mechanisms, such as
RSVP [3], or on broadly based global resource sharing tech-
niques, such as Differentiated Services [4]. In addition, re-
search on real-time operating systems [5] has focused largely
on avoiding priority inversions and non-determinism in syn-
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chronization and scheduling mechanisms for multi-threaded
applications.

In general, QoS research on networks and operating systems
has not addressed some key requirements and end-to-end us-
age characteristics of mission-critical real-time systems, espe-
cially on COTS platforms. In particular, existing approaches
have not focused on providing both avertically (i.e., network
interface$ application layer) andhorizontally (i.e., end-to-
end) integrated solution that provides a higher-level service
model, or global policy framework, to developers and end-
users. Determining how to map the results from earlier QoS
research on global policies and local enforcement techniques
onto a more suitable system architecture is an important open
research issue that is crucial to solve the challenges of next-
generation QoS-enabled distributed applications.

Solution approach! Adaptive QoS-enabled COTS mid-
dleware: To meet these research challenges, we believe it is
necessary to devise an architectural framework that (1) pre-
serves and extends the benefits of existing research areas,
while (2) simultaneously defining newmiddlewareservices,
protocols, and finterface that. This framework must provide
adaptivity encompassing the end-to-end resources needed to
address QoS requirements of next-generation applications that
involve cooperation of multiple systems.

One promising architectural framework that meets these re-
quirements is our TAO [6, 7] implementation of the Real-
time CORBA specification [8]. Real-time CORBA is a COTS
middleware standard that supports end-to-end predictability
for operations infixed-priority1 CORBA applications. As
shown in Figure 1, the Real-time CORBA specification de-
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Figure 1: TAO Support for the Real-Time CORBA Specifica-
tion

1Subsequent OMG specifications are standardizing dynamic scheduling
techniques, such as deadline-based [9] or value-based [10] scheduling.

fines standard APIs and policies that improve an application’s
ability to configure and control (1)processor resourcesvia
thread pools, priority mechanisms, intra-process mutexes, and
a global scheduling service, (2)communication resourcesvia
protocol properties and explicit bindings, and (3)memory re-
sourcesvia request queues and bounded thread pools.

TAO is an open-source2 CORBA-compliant COTS ORB de-
signed to support applications with stringent quality of service
(QoS) requirements. The TAO real-time ORB provides a rich
set of middleware mechanisms for representing and enforcing
real-time requirements in applications. Directly programming
TAO’s lower-level real-time mechanisms to achieve specific
end-to-end quality of service (QoS) goals can be excessively
tedious and error-prone, however, particularly for large-scale
next-generation QoS-enabled distributed applications. There-
fore, higher-level middleware capabilities for end-to-end QoS
specification and control are needed.

To meet these needs, we have developed a complementary
architectural framework calledQuality Objects (QuO)[11, 12,
13]. QuO offers the following two capabilities for higher level
specification and control of TAO’s real-time CORBA middle-
ware mechanisms:

1. QuO provides additional mechanisms for middleware
adaptation that complement and improve the application
control of lower-level real-time capabilities of ORB mid-
dleware, as well as the underlying operating systems and
networks.

2. QuO allows developers to specify higher-level aspects of
real-time requirements, such as the type of real-time re-
quired (e.g., periodic or end-to-end), the relative priority
of events, and the tradeoffs between real-time and other
QoS requirements. It then maps these higher-level speci-
fications into QuO and TAO mechanisms that implement,
measure, and control them.

As shown in Figure 2, QuO defines interfaces that enable

Figure 2: The QuO Distributed Object Computing Model

2The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/ �schmidt/TAO.html .
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CORBA applications tospecifyQoS aspects of concern,con-
trol resources and mechanisms that provide QoS,measurethe
QoS provided by the system, andadaptto changing levels of
QoS in the system. To do this, we introduce the middleware
abstractions ofcontractsto organize the intended behavior into
operating regions,system conditionobjects to effect measure-
ment, anddelegatesto coordinate changing behavior under-
neath the client/server interactions.

The adaptive specification, control, and measurement ca-
pabilities of QuO are further enhanced when integrated with
TAO’s capabilities for resource configuration and manage-
ment. QuO’s higher level QoSpolicies are enforcedusing
TAO’s lower level mechanisms. By combining these comple-
mentary middleware layer frameworks, as shown in Figure 3,
we are taking a major step forward to aligning (1) adaptively
controlled behavior with (2) a more predictable operating en-
vironment that is oriented toward the needs of next-generation
QoS-enabled systems.
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Figure 3: Integrated TAO+QuO Middleware Framework

From the bottom up, we are developing and using mecha-
nisms to enhance execution predictability and control resource
management decisions across system boundaries to meet end-
to-end requirements. From the top down, we are provid-
ing advanced application-oriented QoS interfaces that adapt
to changing conditions and affect resource management deci-
sions at lower levels of middleware, OS, and network infras-
tructure. In the current phase of our joint DARPA Quorum
integration project [2], we are focusing on controlling the real

time behavior aspect of delivered QoS. Work is simultaneously
ongoing to control and integrate other QoS aspects, such as
dependability and security, as well as advanced software engi-
neering concepts and tools for controlling the intended behav-
ior of next-generation QoS-enabled applications.

Paper organization: The remainder of this paper is struc-
tured as follows: Section 2 describes properties of next-
generation distributed applications that illustrate and motivate
the key research challenges and design forces addressed by
our QoS research; Section 3 describes our integrated TAO and
QuO middleware strategy for delivering end-to-end QoS adap-
tively and presents quantitative and qualitative results gleaned
from applying TAO and QuO to several mission-critical real-
time distributed applications; Section 4 compares our efforts to
related work on end-to-end QoS; and Section 5 presents con-
cluding remarks and summarizes our directions for research
on middleware for next-generation QoS-enabled applications.

2 Synopsis of Key Research Challenges
and Design Forces

Development methodologies for many types of distributed ap-
plications, particularly those with stringent real-time require-
ments, have historically lagged behind the state of the art due
to the constraints on footprint, performance, and weight/power
consumption. As a result, such systems are expensive and
time-consuming to develop, validate, optimize, deploy, main-
tain, and upgrade. Moreover, they are often so specialized and
tightly coupled to their current configuration and operating en-
vironment that they cannot adapt readily to new market oppor-
tunities, technology innovations, or changes in run-time situa-
tional environments.

In addition to the development methodology and system
lifecycle constraints mentioned above, designers of real-time
applications have historically used relatively static methods
to allocate scarce or shared resources to system compo-
nents. For instance, flight-qualified avionics mission com-
puting systems [14] establish the priorities for all resource
allocation and scheduling decisions very early in the system
lifecycle, i.e., well before run-time. Static strategies have
traditionally been used for mission-critical real-time applica-
tions because (1) system resources were insufficient for more
computationally-intensivedynamic on-line approaches and (2)
simplifying analysis and validation was essential to remain on
budget and on schedule, particularly when systems were de-
signed from scratch using low-level, proprietary tools.

Unfortunately, the static methodologies and techniques out-
lined above are too inflexible to support the requirements of
next-generation QoS-enabled distributed applications. The re-
mainder of this section describes requirements of several rep-
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resentative next-generation QoS-enabled applications and dis-
tills the key research challenges and design forces that are be-
ing addressed by our middleware-based QoS research to sup-
port these requirements.

2.1 Key Features of Next-generation Applica-
tions

One of the most demanding next-generation QoS-enabled dis-
tributed applications istele-immersion[15], which combines
tele-conferencing, tele-presence, and virtual reality. Tele-
immersion places stringent demands at all levels along the
end-to-end path for distributed applications. It requires real-
time, predictable behavior fromendsystemsin order to (1) in-
teract with the physical world within specific delay bounds and
(2) present images or other stimuli in real-time to users [15].
Likewise, users may be distributed across intranets or the In-
ternet thus requiring predictable performance from thenet-
work to provide low-latency and high-bandwidth to applica-
tions end-to-end [16].

Applying tele-immersion to health care: Intensive care
medicine is a domain where tele-immersion can provide sig-
nificant benefits. For instance, teams of medical personnel
must make critical decisions, often at an accelerated tempo,
based on information emerging at a range of time scales and
from a variety of sources. Consultations with remote experts,
modeling of physiological processes, and integration of both
existing and emerging information often must be performed
while in close proximity to the patient, as illustrated in Fig-
ure 4. In this context, it is essential that the computing and
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Figure 4: Real-Time Medical Informatics Example

networking technologies perform and adapt in real-time to the
changing situational requirements, while still maintaining QoS
guarantees.

Applying tele-immersion to aerospace: The aerospace do-
main is tele-immersion applications. In the battle zone of the
future, a distributed web of sensors, weapons, and decision-
makers must interact rapidly in real-time to gain and preserve
military advantage. The battle environment will be changing
constantly, requiring the system to adapt both globally and lo-
cally. For instance, multiple unmanned combat air vehicles
(UCAVs) can provide surveillance, weapons delivery, and bat-
tle damage assessment capabilities both on tactical and strate-
gic scales.

With tele-immersion, immediate remote interaction with the
physical environment can help maximize effectiveness at all
levels of the system. For example, a group of UCAVs can
share sensor data, post-process data products, and remote op-
erator requests. Next-generation avionics mission comput-
ing systems [17], such as the sensor-driven example shown
in Figure 5, must collaborate with remote command and con-
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Figure 5: Sensor-driven Avionics Mission Computing Exam-
ple

trol systems, provide on-demand browsing capabilities for a
human operator, and respond flexibly to unanticipated situ-
ational factors that arise in the run-time environment [18].
Moreover, these systems must perform unobtrusively, shield-
ing human operators from unnecessary details, while simul-
taneously communicating, highlighting, and responding to
mission-critical information in real-time.

The next-generation applications outlined above will re-
quire a range of QoS support from middleware, endsystems,
and networks. The end-to-end QoS received by the appli-
cations will translate directly into users’ perceived worth of
the new applications and related services. For example, if a
medical video conference application routinely delivers pack-
ets late, it will have a relatively low value to its users. Thus, by
providing real-time access to emerging information and real-
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time actuation of responses, QoS-enabled systems can pro-
vide (1) improved situational awareness, (2) reduced decision-
action times, and (3) greater overall responsiveness to emerg-
ing situations.

2.2 Synopsis of QoS Requirements for Next-
generation Applications

The characteristics of the next-generation systems outlined in
Section 2.1 present QoS requirements that can vary signifi-
cantly at run-time. In turn, this increases the demands on end-
to-end system resource management, which makes it hard to
simultaneously (1) create effective resource managers using
traditional statically constrained allocators and schedulers and
(2) achieve reasonable resource utilization. In addition, the
mission-critical aspects of these systems require that they re-
spond adaptively to changing situational features in their run-
time environment.

Key features of these next-generation systems, such as inter-
action with the real world, produce stringent requirements that
serve to distill the key research challenges and design forces
that must be addressed by QoS research to support these ap-
plications. The following design forces characterize the key
research challenges we have identified based on our R&D ef-
forts [14, 1, 17, 19, 18, 20] developing next-generation avion-
ics mission computing systems. These forces must be ad-
dressed by researchers to ensure system correctness, perfor-
mance, adaptability, and adequate resource utilization.

Diverse inputs: Many next-generation distributed applica-
tions must simultaneously use diverse sources of information,
such as raw sensor data, command and control directives, and
operator inputs, while sustaining real-time timing behavior.

Diverse outputs: Next-generation distributed applications
often must concurrently produce diverse outputs, such as fil-
tered sensor data, mechanical device commands, and imagery,
whose resolution quality and timeliness is crucial to other
systems with which they interact.

Critical operations: QoS management for next-generation
distributed applications with hard timing constraints for
application-critical operations must insulate critical operations
from the resource demands of non-critical operations.

End-to-end requirements: Many next-generation dis-
tributed applications may operate in heterogeneous environ-
ments, and must manage distributed resources to enforce
QoS requirements end-to-end. For example, such systems
may need to manage resource reservations and allocations
involving several end-system CPUs and network links along a
request-response path between client and server endsystems.

System configuration: Developers and managers of next-
generation distributed applications must be able to control the
internal concurrency, resource management, and resource uti-
lization configurations throughout networks, endsystems, mid-
dleware and applications, to provide the necessary level of
end-to-end QoS to applications.

System adaptation: Next-generation distributed infrastruc-
ture frameworks and applications must be able to (1) reflect on
situational factors as they arise dynamically in the run-time en-
vironment and (2) adapt to these factors while preserving the
integrity of key mission-critical activities. Operators must be
insulated from the programming model for resource manage-
ment,e.g., via a set of suitable abstractions for communicating
operator QoS requirements and monitoring/controlling the re-
ceived QoS.

The distilled requirements of next-generation QoS-enabled
distributed applications outlined above motivate solutions that
(1) offer deterministic real-time performance end-to-end, (2)
protect resources needed by application-critical operations, (3)
promote adaptation to a rapidly evolving environment, and (4)
offer flexible configuration and control of key mechanisms
for resource management. In Section 3, we present our ap-
proach to addressing these requirements, based on adaptive
QoS-enabled middleware.

3 Solution Approach: Adaptive QoS-
enabled Middleware

This section presents our approach to integrating the individ-
ual capabilities of existing QoS technologies to create a uni-
fied adaptive middleware solution. Our approach leverages
properties of deterministic end-to-end performance, combined
with configurable and adaptive QoS management capabilities,
to meet the requirements of next-generation QoS-enabled dis-
tributed applications described in Section 2.

Our work focuses on supplying additional coordination and
control capabilities across diverse lower-level QoS mecha-
nisms to provide end-to-end QoS to a broad range of advanced
QoS-enabled distributed applications. Our progress to date in
identifying key patterns and developing techniques for adap-
tive and dynamic resource management and applying them
to real-time mission-critical systems has focused onadaptive
QoS-enabled middleware architectures, which we describe be-
low in Section 3.1. Section 3.2 then presents quantitative and
qualitative results derived from applying our adaptive middle-
ware to several mission-critical real-time distributed applica-
tions.

5



3.1 Adaptive System Architectures

During our earlier efforts to integrate adaptation capabilities
from different low-level system layers and components man-
ually, it became evident that a higher-level, highly automated
integration capability was desirable for the following reasons:

Simplified programming model: Providing a higher-level
description of the various adaptive capabilities in different sys-
tem layers helps to simplify and reify the programming model
for adaptive real-time mission-critical systems.

Application-independence: Providing a higher-level de-
scription of system operating regions decouples the adaptive
architecture from the particulars of any specific application,
thereby increasing the relevance of the adaptive system archi-
tecture across real-time mission-critical system domains.

Automated language and tool support: Providing lan-
guage and tool support for these descriptions helps to automate
and decouple system aspects, such as functionality, timing be-
havior, and fault tolerance, so that (1) new aspects can be in-
tegrated when new system requirements arise and (2) interac-
tions between the various aspects can be managed effectively.

To provide these capabilities, we have developed an archi-
tectural framework that (1) preserves and extends the ben-
efits of individual QoS research contributions while (2) si-
multaneously defining new middleware services, protocols,
and interfaces that provide adaptivity encompassing end-to-
end resources needed to address QoS requirements of next-
generation applications involving cooperation of multiple
systems. This architectural framework is based onQuality Ob-
jects (QuO)andThe ACE ORB(TAO) [7] technologies devel-
oped under the DARPA Quorum object integration [2] pro-
gram. Below, we summarize how QuO and TAO help provide
an adaptive architecture for QoS-enabled applications.

3.1.1 Overview of QuO

QuO is a middleware framework designed to develop dis-
tributed applications that can specify (1) their QoS require-
ments, (2) the system elements that must be monitored and
controlled to measure and provide QoS, and (3) the behavior
for adapting to QoS variations that occur at run-time. By pro-
viding these features, QuO opens up distributed object imple-
mentations [21] to control an application’s functional aspects
and implementation strategies that are encapsulated within its
functional interfaces.

The functional path of QuO illustrated in Figure 2 is a su-
perset of the functional path of CORBA. The components pro-
vided by QuO to support the above operations are defined be-
low.

Contracts: The operating regions and service requirements
of the application are encoded incontracts, which describe the
possible states the system might be in, as well as the actions to
perform when the state changes.

Delegates: QuO insertsdelegatesinto the CORBA func-
tional path. Delegates project the same interfaces as the stub
(client-side delegate) and the skeleton (server-side delegate),
but support adaptive behavior upon method call and return.
When a method call or return is made, the delegate checks the
system state, as recorded by a set of contracts, and selects a
behavior based upon it.

Contracts and delegates support two means for triggering
manager-level, middleware-level, and application-level adap-
tation. The delegate triggersin-bandadaptation by making
choices upon method calls and returns. The contract triggers
out-of-bandadaptation when region transitions occur which
can be caused by changes in observed system condition ob-
jects.

System Condition Objects: These objects provide uniform
interfaces to multiple levels of system resources, mechanisms,
and managers to translate between application-level concepts,
such as operating modes, to resource and mechanism-level
concepts, such as scheduling methods and real-time attributes.
System condition objects are used to measure the states of sys-
tem resources, mechanisms, and managers that are relevant to
contracts in the overall system. In addition, they can pass in-
formation to interfaces that control the levels of desired ser-
vices.

Higher-level system condition objects can interface to other,
lower-level system condition objects, forming a tree of system
condition objects that translate mechanism data into applica-
tion data. System condition objects can be eitherobservedor
non-observed. Changes in the values measured by observed
system conditions trigger contract evaluation, possibly result-
ing in region transitions and triggering adaptive behavior.

Observed system condition objects are suitable for measur-
ing conditions that either change infrequently or for whom a
measured change can indicate an event of notice to the applica-
tion or system. Non-observed system condition objects repre-
sent the current value of whatever condition they are measur-
ing, but do not trigger an event whenever the value changes.
Instead, they provide the value upon demand, whenever the
contract needs it,i.e., whenever the contract is evaluated due
to a method call or return or due to an event from an observed
system condition object.

Instrumentation Probes: QuO provides a library ofinstru-
mentation probesthat can be inserted throughout the remote
method invocation path. These probes can be used by the QuO
infrastructure to gather performance statistics and validation
information unobtrusively. To accomplish this, the QuO dele-
gate adds a data structure to each method call and return. This
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structure can be populated or read by any or all the instrumen-
tation probes along the method call/return path.

Quality Description Languages (QDLs) and Code Gener-
ators: QuO provides a suite of QDLs, which are similar
to CORBA’s Interface Description Language (IDL), andcode
generators, which are similar to the stub and skeleton genera-
tors of CORBA IDL compilers. QDLs and code generators de-
scribe and automatically output, respectively, the components
of QuO applications [11, 12, 13]. QuO currently provides a
contract description language (CDL); a structure description
language (SDL) to specify adaptive behavior and adaptation
strategies; and a connector setup language (CSL) to specify
the components of a QuO application and how they are instan-
tiated, connected, and initialized.

QuO Runtime Kernel and GUI Monitor: QuO provides a
runtime kernelthat coordinates contract evaluation and pro-
vides other runtime QuO services [22]. These services include
initializing contracts and system conditions, binding them to
each other and to delegates, triggering contract evaluation, and
triggering adaptive behavior. In addition, the QuO kernel pro-
vides a graphical user interface (GUI) that enables monitoring
applications to observe the QuO middleware in action. The
GUI displays contracts and regions and indicates the current
active region and the previously active regions. It also dis-
plays the system condition objects in the system and their val-
ues, indicating when region transitions occur and the adaptive
behavior triggered by the transition. Finally, it displays statis-
tics showing how much time applications have spent in each
contract region.

QuO Gateway: QuO provides a general object gateway
component, illustrated in Figure 6, which allows low-
level communication mechanisms and special-purpose to be
plugged intoan application [23]. The QuO gateway resides
between the client and server ORBs. It is a mediator [24] that
intercepts IIOP messages sent from the client-side ORB and
delivers IIOP messages to the server-side ORB (on the mes-
sage return the roles are reversed). On the way, the gateway
translates the IIOP messages into a custom transport protocol,
such as group multicast in a replicated, dependable system.
The QuO gateway is implemented using TAO’s pluggable pro-
tocol feature [25].

The gateway also provides an API that allows adaptive be-
havior or processing control to be configured below the ORB
layer. For example, the gateway can select between alternate
transport mechanisms based on low-level message filtering or
shaping, as well as the overall system’s state and condition
objects. Likewise, the gateway can be used to integrate secu-
rity measures, such as authenticating the sender and verifying
access rights to the destination object.

Potential applications of this integrated adaptive architec-
ture include end-to-end control of distinct QoS aspects in a

Figure 6: The QuO gateway

distributed real-time environment with high variability of situ-
ational factors.

3.1.2 Overview of TAO

TAO is a high-performance, real-time ORB endsystem tar-
geted for applications with deterministic and statistical QoS
requirements, as well as best-effort requirements. The TAO
ORB endsystem contains the network interface, OS, commu-
nication protocol, and CORBA-compliant middleware compo-
nents and services shown in Figure 7.

TAO supports the standard OMG CORBA reference
model [26] and Real-time CORBA specification [8], with en-
hancements designed to ensure efficient, predictable, and scal-
able QoS behavior for high-performance and real-time appli-
cations. Below, we outline the features of TAO’s components
shown in Figure 7.

Optimized IDL Stubs and Skeletons: IDL stubs and skele-
tons perform marshaling and demarshaling of application op-
eration parameters, respectively. TAO’s IDL compiler gener-
ates stubs/skeletons that can selectively use highly optimized
compiled and/or interpretive (de)marshaling [27]. This flex-
ibility allows application developers to selectively trade off
time and space, which is crucial for high-performance, real-
time, and/or embedded distributed systems.

Real-time Object Adapter: An Object Adapter associates
servants with the ORB and demultiplexes incoming requests
to servants. TAO’s real-time Object Adapter [28] uses perfect
hashing [29] and active demultiplexing [28] optimizations to
dispatch servant operations in constantO(1) time, regardless
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Figure 7: Components in the TAO Real-time ORB Endsystem

of the number of active connections, servants, and operations
defined in IDL interfaces.

Run-time Scheduler: TAO’s run-time scheduler [8] maps
application QoS requirements, such as bounding end-to-end
latency and meeting periodic scheduling deadlines, to ORB
endsystem/network resources, such as CPU, memory, network
connections, and storage devices. TAO’s run-time scheduler
supports both static [7] and dynamic [19] real-time scheduling
strategies.

Real-time ORB Core: An ORB Core delivers client re-
quests to the Object Adapter and returns responses (if any) to
clients. TAO’s real-time ORB Core [30] uses a multi-threaded,
preemptive, priority-based connection and concurrency archi-
tecture [27] to provide an efficient and predictable CORBA
protocol engine. TAO’s ORB Core allows customized proto-
cols to be plugged into the ORB without affecting the standard
CORBA application programming model.

Real-time I/O subsystem: TAO’s real-time I/O (RIO) sub-
system [31] extends support for CORBA into the OS. RIO as-
signs priorities to real-time I/O threads so that the schedulabil-
ity of application components and ORB endsystem resources
can be enforced. When integrated with advanced hardware,
such as the high-speed network interfaces described below,
RIO can (1) perform early demultiplexing of I/O events onto
prioritized kernel threads to avoid thread-based priority inver-
sion and (2) maintain distinct priority streams to avoid packet-
based priority inversion. TAO also runs efficiently and rel-

atively predictably on conventional I/O subsystems that lack
advanced QoS features.

High-speed network interface: At the core of TAO’s I/O
subsystem is a “daisy-chained” network interface consisting
of one or more ATM Port Interconnect Controller (APIC)
chips [32]. The APIC is designed to sustain an aggregate bi-
directional data rate of 2.4 Gbps using zero-copy buffering op-
timization to avoid data copying across endsystem layers. In
addition, TAO runs on conventional real-time interconnects,
such as VME backplanes and multi-processor shared memory
environments, as well as Internet protocols like TCP/IP.

TAO internals: TAO is developed using lower-level mid-
dleware called ACE [33], which implements core concur-
rency and distribution patterns [34] for communication soft-
ware. ACE provides reusable C++ wrapper facades and frame-
work components that support the QoS requirements of high-
performance, real-time applications and higher-level middle-
ware like TAO. ACE and TAO run on a wide range of OS plat-
forms, including Win32, most versions of UNIX, and real-time
operating systems like Sun/Chorus ClassiX, LynxOS, and Vx-
Works.

3.2 Adaptive System Architecture Implemen-
tation and Performance

Our recent research has focused on two principal activities.
First, we have quantified the performance of adaptation on
small time scales via dynamic scheduling in the TAO Real-
Time Event Service when integrated with an adaptive [18]
avionics mission computing application, under varying condi-
tions of CPU load. Second, we have demonstrated the ability
of the QuO middleware to guide adaptation to changes in sys-
tem conditions, by adjusting both the rate of event generation
and the priorities of events. Below, we summarize the quanti-
tative and qualitative results gleaned from both these research
activities.

3.2.1 Avionics Mission Computing Application Integra-
tion

Benchmark overview: The focus of the benchmarks de-
scribed below is to quantify the benefits and costs of schedul-
ing systems using hybrid static/dynamic approaches, when
compared to statically scheduled systems. Our hypothesis is
that hybrid approaches, though they can incur additional run-
time overhead, will prove to be more flexible, both in terms
of application development ease and overall computational
throughput.

Ease of application development is facilitated by two adap-
tive properties of hybrid static/dynamic scheduling: (1) when
load exceeds the schedulable bound, non-critical operations
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are dropped, whereas critical operations are scheduled, and
(2) dynamic scheduling supports selectively dropping non-
critical operations that will miss deadlines, while preserving
non-critical operations that might be schedulable later. Encap-
sulating fine-grain adaptive control over operation dispatching
in the middleware layers relieves developers of tedious, error-
prone, and often redundant tasks related to developing this as-
pect of their applications.

Increased computational throughput is achieved through
greater processor utilization compared to static systems, which
generally require under-utilization of the CPU to be schedu-
lable. Here too, hybrid static/dynamic scheduling provides
fine-grain adaptive control over operation dispatching so that
more operations can be scheduled to increase CPU utilization.
Moreover, dropping operation dispatch requests that will not
meet their QoS requirements can improve the amount of use-
ful computation that is performed.

Below, we report the results of benchmarks that quantify
key aspects of our hypothesis outlined above. As shown below,
computational overhead is a primary metric because schedul-
ing operations are run frequently with respect to application
execution frequency. Thus, overly burdensome algorithms
or algorithm implementations that scale poorly as application
size grows will be undesirable in most real-time applications.

Benchmark configuration: Our experiment used a com-
plete real-time embedded information systems application,
with roughly 70 distinct operations. The application ran us-
ing the TAO ORB [7], the TAO Scheduling Service [19], and
the TAO Real-Time Event Service [14], configured for var-
ious scheduling strategies. We conducted measurements on
four key areas of resource control overhead:dispatching over-
head, operation execution times, operation cancellation, and
protecting critical operations. The analysis below features a
comparison of two publically available scheduling algorithms,
Maximum Urgency First (MUF) [35] and Rate Monotonic
Scheduling (RMS) [36]. Measurements were conducted on
200 MHz Power PC Single Board Computers running the Vx-
Works 5.3 operating system.

Benchmark Results:

� Dispatching overhead: We measured the time spent
within the mechanisms that actually assign the processor to
application functions. The dispatching mechanism is made up
of multiple dispatching queues, each serviced by a thread at
a different priority level. For dynamic scheduling, the queues
must be reordered according to laxity or time to deadline as
requests age.

Figure 8 shows a graph of the measured enqueue over-
head, collected at the same time as the dequeue measurements.
Dynamic queues may perform re-ordering before trying to
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Figure 8: Measured RMS and MUF Enqueue Dispatching
Overhead

wait on anot emptyor not full condition variable and then en-
queue or dequeue the operation after acquiring the appropriate
lock. Therefore, it was necessary to exclude the time spent
waiting for locks from the measurement, so that only the CPU
time actually consumed by the dynamic queue was measured.
This was achieved by extending the time probe class provided
by ACE [33] framework to log suspend and resume time probe
events around the call to acquire the lock, and to assess total
overhead accordingly.

Figure 9 shows a graph of the measured dequeue dispatch-
ing overhead using both the MUF and RMS scheduling strate-
gies. As Figure 8 and Figure 9 show, several anomalous data
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Figure 9: Measured RMS and MUF Dequeue Dispatching
Overhead

points were observed in the measured enqueue and dequeue
overheads. We attribute these to non-determinism in our ex-
perimental setup, possibly due to network interrupt handling
in the VxWorkstNetTask , rather than to the behavior of the
queues themselves. Excluding these outlying data points, the
observed enqueue and dequeue overheads were approximately
the same for the static RMS scheduling strategy and the hy-
brid static/dynamic MUF scheduling strategy, with a slightly
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higher overhead observed for the dynamic queues used for
MUF.

These results indicate that (1) the amount of dynamic re-
ordering was low in this experiment, and (2) the fundamental
overhead for dynamic and static queue management is com-
parable when there is little dynamic reordering. For future
investigation, we plan to conduct similar experiments across
a wider range of real-time embedded applications and appli-
cation features. In particular, we hope to determine whether
increased heterogeneity of application features would induce
greater levels of reordering for dynamic scheduling, and if so
at what resulting cost.

� Operation execution times: We compared the execu-
tion times of both critical and non-critical operations, which
comprise a representative subset of all operations in the sys-
tem. All operations were scheduled using MUF, which re-
orders operations dynamically by laxity in each priority level.
Figure 10 illustrates this comparison. The operation execu-
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tion times showed several anomalous spikes, similar in value
and prevalence to those observed in the dispatching overhead
measurements. We again interpret these as the result of non-
determinism in our experimental configuration rather than in
dispatching the operations themselves. Otherwise, the opera-
tion execution times were reasonably deterministic, even with
all operations dispatched from dynamically managed queues.

� Operation cancellation: Figure 11 shows the effects
of operation cancellation for non-critical operations in dy-
namic scheduling strategies. As described above, the MUF
scheduling strategy can use operation cancellation to reduce
the amount of wasted work performed in operations that miss
their deadlines. Assuming there is no residual value of an op-
eration that completes past its deadline, this time increases the
amount of unusable overhead. Note that while the MUF strat-
egy with operation cancellation was more effective in limit-
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Figure 11: Effects of Non-Critical Operation Cancellation

ing the number of operations that were dispatched and then
missed their deadlines, the number of operations that made
their deadlines in each case was comparable. We attribute this
to the short execution times of several of the non-critical op-
erations. In fact, the variation with cancellation had slightly
lower numbers of non-critical operations that were success-
fully dispatched, as operation cancellation is necessarily pes-
simistic.

� Protecting critical operations: We examined the rela-
tive effects of CPU overload on critical and non-critical oper-
ations, in the hybrid static/dynamic MUF scheduling strategy
and the static RMS strategy. Figure 12 shows the number of
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Figure 12: Effects of CPU Overload under RMS and MUF

deadlines made and missed for each strategy. With no opera-
tion cancellation, MUF meets all of its deadlines, while RMS
misses between 2 and 6 critical operations per sample. Fur-
thermore, MUF successfully dispatches additional non-critical
operations. We investigated whether adding operation can-
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cellation might have reduced the number of missed deadlines
for critical operations with RMS, by reducing the amount of
wasted work. However, it appears that the overhead of opera-
tion cancellation in fact makes matters worse, missing between
6 and 7 operations per sample. We interpret this to mean that
there were few opportunities for effective non-critical opera-
tion cancellation in RMS under the experimental conditions.

3.2.2 Adaptive Middleware Layer Integration

Integration overview: The QuO and TAO QoS policies and
mechanisms described in Sections 3.1.1 and 3.1.2 provide an
adaptive framework for meeting the application requirements
listed in Section 2.2. To illustrate how we have integrated TAO
and QuO framework to meet the QoS requirements of mission-
critical real-time applications, we describe an example sensor-
actuator application, representative of those found in event-
driven avionics systems [14].

Synopsis of sensor-actuator applications: As illustrated in
Figure 13, sensor-actuator applications contain many subsys-
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Figure 13: A Real-time Event-Driven Avionics System

tems operating in concert, responding to sensor data events,
and managing functions of the aircraft. These subsystems in-
clude functionality, such as the heads-up display and naviga-
tion subsystems. Sensor data can come from a number of sen-
sors on the aircraft, such as a global positioning satellite re-
ceivers, or various radar sensors.

In general, sensor-actuator applications have crucial QoS
requirements, such as real-time response, dependability, and
resource utilization. Moreover, the set of QoS requirements
that must be satisfied can be highly variable, differing (1) be-
tween families of aircraft and between specific products within
a family of aircraft, (2) between subsystems within a single
aircraft, and (3) even between missions and between operating
modes, within a single aircraft subsystem.

Currently fielded avionics systems are designed to be con-
figured between missions, so that pilots can manually switch
between mission computer operating modes [20]. However,
for the most part current avionics software systems are con-
figured statically. Therefore, changes occur in the form of
software upgrade cycles and mission reprogramming. These
legacy sensor-actuator systems are inflexible because the sen-
sors are tightly coupled to the actuators, and the software is
often tightly coupled to special-purpose hardware.

To overcome these limitations, it is necessary to apply
new engineering methods to the process of developing these
systems. In particular, improving the reliability and flexibility
of distributed real-time systems requires advanced techniques,
such as leveraging COTS hardware and software, increasing
software reuse through middleware, and applying design pat-
terns and adaptive object-oriented programming techniques.
Moreover, these techniques serve to manage the monetary and
time costs of the overall system development lifecycle.

Supporting sensor-actuator applications with QuO and
TAO: As part of the TAO and QuO integration, we have
developed a prototypical sensor-actuator application test-bed
that uses the QuO adaptation engine to adjust the rate of event
generation and the priority of generated events in response to
system conditions. As illustrated in Figure 14, this test-bed
can be configured with multiple suppliers that generate events
at similar priorities. Other suppliers can flood the TAO real-

Figure 14: QuO Control of TAO Real-time Event Channel

time event channel in response to an external stimulus. A QuO
system condition object recognizes that events are not being
delivered on time and, in response, the QuO delegate of the
non-critical supplier reduces the rate at which it is generating
events. Similarly, the delegate of the non-critical supplier can
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reduce the priority of the events that it is generating. Con-
versely, a delegate of the critical supplier can increase the pri-
orities of its events.

Our results to date indicate that adaptive QoS-enabled mid-
dleware frameworks, such as QuO and TAO, implement the
necessary patterns, strategies, and infrastructure needed to
build modern, more flexible avionics systems. In the ex-
ample illustrated in Figure 13, sensors and actuators are de-
coupled and largely hidden from one another through sensor
proxies and event channels. This allows sensors and actua-
tors to be independently reconfigured, upgraded, or replaced
dynamically without affecting the other subsystems. Further-
more, the avionics software can automatically adapt to chang-
ing missions and operational conditions by making tradeoffs
between QoS dimensions, and dynamically reallocating re-
sources. For example, an avionics system may temporarily
sacrifice progress of non-critical operations for increased per-
formance of critical operations.

Integration benefits: This adaptive TAO+QuO architecture
provides the following combined assets:

� Decoupling and enforcement: The integrated middle-
ware can decouple sensors and actuators while offering real-
time enforcement, such as that provided by the TAO real-time
ORB.

� Flexible integration: The architecture readily supports
integrating other layers and components, such as dynamic re-
source managers and mechanisms, such as RT-ARM [37] or
Darwin [38].

� Application control: Adaptable middleware, such as
the QuO system, can provide application-level control and
adaptation based upon changing mission goals, operational
modes, environmental conditions, and changing QoS trade-
offs.

These capabilities are complementary. The TAO ORB en-
ables the decoupling of sensor and actuator functionality while
guaranteeing real-time delivery of sensor events. Dynamic
resource managers enable access to and reallocation of re-
sources in response to changing system conditions and mission
needs, while the QuO middleware enables the application- and
subsystem-level control to allocate the resources and function-
ality to the proper mission or operating mode.

4 Relationship to Existing Techniques
and Research Communities

We view the techniques discussed in this paper, such as dy-
namic scheduling [19], multi-resource scheduling [39], and
adaptive reconfiguration [1], as necessary and appropriate ex-
tensions to the static resource allocation techniques that have

been used historically. By preserving the best attributes of
these approaches and extending their capabilities as efficiently
as possible, we believe a new generation of mission-critical
adaptive real-time systems can be realized. For example,
sensor-driven systems with hard real-time processing require-
ments can benefit greatly from dynamic scheduling capabili-
ties, particularly to make effective use of over-provisioned re-
sources during non-peak loads.

Another valuable feature used in many real-time systems
is statically allocated priority banding [19], which can be en-
forced by preemptive thread priorities. Priority banding is es-
sential because higher priority operations can be shielded from
the resource demands of lower priority operations. Hybrid
static-dynamic scheduling techniques [35] offer a way to pre-
serve the off-line scheduling guarantees for critical operations,
while increasing overall system utilization.

As more real-time systems are interconnected, both with
each other and with non-real-time systems, the need to sup-
port flexible and configurable scheduling capabilities [19] be-
comes increasingly important. We also believe that emerg-
ing standards for dynamic and adaptive resource management
in real-time mission-critical systems,e.g., the OMG Dynamic
Scheduling RFP [40], should extend corresponding standards
for static resource management. For example, standards for
dynamic CPU scheduling in real-time middleware should ex-
tend the existing static CPU scheduling mechanisms of current
real-time middleware specifications, so that the existing static
mechanisms will interoperate with additional capabilities for
dynamic scheduling.

Finally, important insights can be gleaned from the oper-
ating system and networking research communities. These
communities have developed a plethora of QoS policies and
mechanisms that address enforcement, allocation, and adap-
tation. These research activities have addressed specific is-
sues, such as hierarchical scheduling [41], fair resource alloca-
tion [42], distributed signaling protocols [43], and admission
control policies [44].

Core networking technologies: During the past decade,
there has been substantial R&D emphasis onhigh-speed
networkingand performance optimizationsfor network ele-
ments [45] and protocols [3]. These efforts have paid off such
that networking products are now available off-the-shelf that
can support Gbps on every port,e.g., Gigabit Ethernet and
ATM switches. Moreover, OC-12 (622 Mbps) ATM connec-
tivity in WAN backbones are becoming standard and OC-48
(2.4 Gbps) is being deployed for advanced networks such as
Abilene [46] and Advanced Technology Demonstration Net-
work (ATDnet) [47]. There are already plans to deploy OC-
192 (9.6Gbps) within these backbones as it becomes practical.

Advanced architectures for modern high-performance
routers and switches are being designed and constructed to
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support novel approaches for providing QoS. For example,
the Active Network Node (ANN) [48] project at Washington
University is using the Washington University Gigabit Switch
(WUGS) [49] switch with the Smart Port Cards (SPC) [50] to
provide a robust environment to support active networking and
QoS research and development.

QoS architectures and models: The various real-time ap-
plications demand QoS assurance at the endsystem and net-
work resource levels. Providing QoS guarantees at both these
levels ensures true end-to-end QoS. There is extensive on-
going research at both these levels. AQUA (Adaptive QUal-
ity of service Architecture) [51] is a resource-management ar-
chitecture, at the endsystem level, in which applications and
the OS cooperate to dynamically adapt to variations in re-
source requirements and availability. AQUA manages the
CPU and network-I/O resources in an integrated fashion to
provide predictable QoS. At the network resource level the
current Internet supports only best-effort service, irrespective
of user expectations. Moreover, application heterogeneity dic-
tates that there be service heterogeneity and service differen-
tiation. QoS architectures and models have been proposed to
address the end-to-end QoS challenge. For example, the IETF
has several ongoing efforts directed to defining an architec-
ture and proposing necessary protocols and infrastructure re-
quirements. These working groups include Differentiated Ser-
vices (DiffServ) [52], Integrated Services (IntServ) [53] and
Integrated Services over Specific Link Layers (ISSLL) [54].
Additionally, the Internet2 QoS working group has proposed
a testbed for IP differentiated services (QBone [55]) where
commercial equipment is deployed in order to investigate dif-
ferent approaches or implementations supporting the DiffServ
model. These all support the allocation of resources to provide
different levels of guarantees to applications.

IntServ is defined in RFC 1633 [56] and is intended to pro-
vide QoS transport over IP internets. IntServ effort uses RSVP
(Resource ReSerVation Protocol) [3] for signaling resource re-
quirements. IntServ requires flow classification and forward-
ing state for each active flow at each router along each QoS
path. ISSLL is intended to provide QoS transport for IP over
specific networking technologies.

As an alternative, theDifferentiated Services(DiffServ) [4]
working group was formed to address perceived scalability
and implementation issues associated with IntServ. DiffServ
aggregates flows into service classes rather than maintaining
per flow state. Moreover, QoS requirements are specified out-
of-band, removing the necessity for a signaling protocol such
as RSVP. Packet classification is based on the setting of a few
bits in the IP header.

Providing QoS to applications: Most existing approaches
are highly platform/protocol-specific, however, which makes
it hard to develop and deploy portable applications. The dif-

ferent R&D focuses outlined above have not, in general, ad-
dressed providing middleware with standard QoS models and
interfaces. And very little has been done to provide applica-
tion developers with a standard programming interface that
can leverage the underlying advances to provide end-to-end
QoS guarantees.

Application developers need a standardized framework and
interfaces which allow for QoS specification and to receive
guarantees from the underlying network and QoS infrastruc-
ture. There have been several attempts [57] at designing and
implementing a unified QoS API that leverages the QoS fea-
tures available in networks and end-systems. Our QoS API
(1) provides a simple interface for the users to QoS enable
their applications, (2) hides the underlying platform/protocol
specific issues of a QoS implementation, and (3) is integrated
with middleware like CORBA, so the application not only con-
tinues to benefit from the middleware for distribution but also
gets QoS guarantees through the standard middleware APIs.

5 Concluding Remarks

Over the past decade, individual QoS technologies, such as
Differentiated Services [52] or the Resource ReSerVation Pro-
tocol (RSVP) [3], have emerged from previous R&D efforts
and been applied successfully to specific application domains,
such as audio/video streaming. In isolation, however, these
achievements yield only a portion of the potential benefits for
the broad domain of next-generation QoS-enabled distributed
applications and services. For example, managing network
resource reservations, without coordinating these reservations
with other resource management mechanisms, such as prior-
itized thread pools or global middleware resource manage-
ment, is insufficient to meet the end-to-end QoS requirements
of next-generation systems.

During the same time period, commercial-off-the-shelf
(COTS) middleware, such as CORBA, Java EJB, and COM+,
has emerged from previous R&D efforts and been applied
successfully to reduce the development cost and cycle-time
associated with developing distributed applications. How-
ever, meeting the increasingly demanding QoS requirements
of next-generation applications is currently beyond the capa-
bilities of conventional COTS middleware solutions. In partic-
ular, meeting the QoS requirements of these next-generation
systems requires more than higher-level design and program-
ming techniques, such as encapsulation and separation of con-
cerns, associated with conventional COTS middleware. In-
stead, it requires an integrated architecture, based on adaptive
real-time middleware, network, and application patterns, poli-
cies, and mechanisms, that can deliver end-to-end QoS support
at multiple levels in distributed systems.

This paper has illustrated how next-generation applications
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with a variety of QoS requirements can be supported by adap-
tive middleware, such as QuO and TAO, in order to meet the
QoS requirements end-to-end. To make the example concrete,
and to document our on-going R&D activities in the DARPA
Quorum integration effort [2], we have focused our examples
and empirical benchmarks on the avionics mission comput-
ing domain. In our future work, however, we are addressing
the following research issues to demonstrate the broader ap-
plicability of our adaptive multi-level middleware strategy for
QoS-enabled distributed applications:

Leveraging existing QoS research: The operating system
and networking research communities have produced a wealth
of techniques, architectures, and empirical information for
QoS management issues in the network and OS kernel lay-
ers. These techniques must be used as the basis for developing
and evaluating middleware QoS management approaches, and
wherever possible built into end-to-end middleware solutions.
Some middleware solutions leverage particular point-solutions
for QoS management,e.g., TAO leverages preemptive thread
scheduling in the OS kernel to enforce static priorities. How-
ever, a more comprehensive integration of policies and mech-
anismsat the middleware levelis needed.

Identifying general-purpose patterns: To leverage exist-
ing QoS research at the OS and networking levels effectively,
it is necessary to identify the key general-purpose patterns for
composingthe lower level mechanisms end-to-end. For exam-
ple, identifying different patterns for co-scheduling network
and CPU resources along a request-response path between a
client and a server will be relevant to many applications. These
client-server resource allocation patterns will in turn guide the
creation of flexible middleware that is suited to the common
requirements of a wide range of QoS-enabled client-server ap-
plications.

Identifying domain-specific patterns: Where effective res-
olutions of common design forces are captured by general-
purpose patterns, each individual application domain also pro-
duces design forces that are specific to that domain. QoS
requirements such as timing, utilization, or reliability con-
straints may differ between different application domains,e.g.,
telecommunications and sensor-actuator systems. Additional
research is needed to identify the key design forces for each
domain, along with the patterns that can resolve those forces.

Building flexible QoS frameworks: After identifying the
general-purpose and domain-specific patterns outlined above,
along with the necessary lower-level mechanisms for QoS en-
forcement, it is possible to reify these patterns in flexible QoS
frameworks. Implementing key QoS mechanisms, strategies
and policies, and embedding these within middleware frame-
works, allows middleware to support (1) the common require-
ments of a wide range of QoS-enabled applications and (2) the

specific requirements of individual domains and applications.
Moreover, building these frameworks offers practical insights
into additional patterns and techniques for QoS management
in adaptive middleware for distributed and embedded systems.
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