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1 Introduction

The termenterprise applicationapplies to a large class of
applications that perform important business functions, such
as planning enterprise resource usage, automating key busi-
ness functions, and managing supply chains and customer re-
lationships. Examples of enterprise applications include air-
line reservation systems, bank asset management systems, and
just-in-time inventory control systems. These types of appli-
cations constitute the majority of worldwide information tech-
nology (IT) investment and staffing, with annual expenditures
expected to exceed $7.3 billion US dollars by 2004 and with
millions of IT professionals employed.

Enterprise applications historically ran on mainframes and
were developed using custom built in-house applications and
proprietary systems, such asHighExPlus, BancsConnect,
and EX. Due to deregulation, time-to-market pressures, and
stiff global competition for human and economic resources,
however, enterprise applications increasingly run on servers
and PC’s and are developed using commercial-off-the-shelf
(COTS) component middleware. Component middleware en-
capsulates specific services or sets of services to provide
reusable building blocks that can be composed to develop en-
terprise applications more rapidly and robustly than those built
entirely from scratch. In particular, component middleware
offers enterprise application developers the following reusable
capabilities:

� Horizontal infrastructure services, such as request bro-
kers

� Vertical models of domain concepts, such as common
semantics for higher-level reusable component services,
and

� Connector mechanisms between components, such as re-
mote method invocations or message passing.

Examples of COTS component middleware include the
Common Object Request Broker Architecture (CORBA)
(www.omg.org ), Java 2 Enterprise Edition (J2EE) (java.
sun.com/j2ee ), and emerging web services middleware,
such as .NET (www.microsoft.com/net/default.
asp ) and ONE (wwws.sun.com/software/sunone/
index.html ), based on XML (www.w3c.org/XML ) and
SOAP (www.w3c.org/2000/xp/Group/ ).

Despite advances in the ubiquity and quality of component
middleware, however, developers of enterprise applications
still face the following challenges:

Proliferation of middleware technologies. Large-scale,
long-lived enterprise applications require component middle-
ware platforms to work with heterogeneous platforms and
languages, interface with legacy code written in different
languages, and interoperate with multiple technologies from
many suppliers. However, COTS component middleware
technologies do not yet provide complete end-to-end solutions
that support enterprise application development in diverse en-
vironments.

Satisfying multiple quality of service requirements simul-
taneously. An increasing number of enterprise applications,
such as high-volume e-commerce systems and automated
stock trading systems, have stringent quality of service (QoS)
demands, such as efficiency, scalability, dependability, and se-
curity, that must be satisfied simultaneously and that cross-cut
multiple layers and require end-to-end enforcement. Conven-
tional implementations of component middleware cannot en-
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force complex QoS requirements of enterprise applications ef-
fectively, however, since they were designed for applications
with less stringent requirements.
Accidental complexities in assembling components.To
reduce lifecycle costs and time-to-market, application devel-
opers are attempting to assemble and deploy enterprise appli-
cations by selecting the right set of compatible COTS compo-
nents, which in itself is a daunting task. The problem is further
exacerbated by the existence of myriad strategies for config-
uring and deploying the underlying component middleware.
Application developers therefore spend non-trivial amounts of
time debugging problems associated with the selection of in-
compatible strategies and components.

A promising way to address the challenges described above
is to apply Model-Integrated Computing(MIC) technolo-
gies [1]. MIC is a paradigm for expressing application func-
tionality and QoS requirements at higher levels of abstraction
than is possible with programming languages like Visual Ba-
sic, Java, C++, or C#. In the context of enterprise applications,
MIC tools can be applied to

1. Analyze different—but interdependent—characteristics
of system behavior, such as scalability, safety, and se-
curity. Tool-specific model interpreters translate the in-
formation specified by models into the input format ex-
pected by analysis tools. These tools check whether the
requested behavior and properties are feasible given the
constraints.

2. Synthesize platform-specific code that is customized for
specific component middleware and enterprise applica-
tion properties, such as isolation levels of a transaction,
recovery strategies to handle various runtime failures, and
authentication and authorization strategies modeled at a
higher level of abstraction.

Understanding how to integrate MIC and component mid-
dleware is essential to resolve the configuration, manage-
ment, and deployment challenges of enterprise applications
described above. The remainder of this paper presents an
overview of component middleware and Model-Integrated
Computing and then describes how combining the best el-
ements of these two technologies can address the key chal-
lenges associated with developing enterprise applications.

2 Overview of Component Middleware

Middleware capabilities. Middleware is reusable software
that resides between the applications and the underlying oper-
ating systems, network protocol stacks, and hardware [2]. Its
primary role is to bridge the gap between application programs
and the lower-level hardware and software infrastructure to co-
ordinate how parts of applications are connected and how they
interoperate.

Various technologies, such as OSF’s Distributed Com-
puting Environment (DCE) (www.opengroup.org/dce ),
IBM’s MQ Series (www-3.ibm.com/software/ts/
mqseries/ ), and CORBA, emerged over the past two
decades to alleviate complexities associated with developing
software for enterprise applications. Their successes have
added the middleware paradigm to the familiar operating sys-
tem, programming language, networking, and database of-
ferings used by previous generations of software develop-
ers. By decoupling application-specific functionality and logic
from the accidental complexities inherent in the infrastruc-
ture, middleware enables application developers to concen-
trate on programming application-specific functionality, rather
than wrestling repeatedly with lower-level infrastructure chal-
lenges.
Limitations with object-oriented middleware. The Object
Management Architecture (OMA) in the CORBA 2.x speci-
fications [3] defines an object-oriented middleware standard
for building portable distributed applications. The CORBA
2.x specification focuses oninterfaces, which are contracts
between clients and servers that define how clientsview and
accessobject services provided by a server. These objects can
be distributed or collocated throughout a network. Although
this model has certain virtues, such as location transparency, it
has the following limitations [4]:

� Lack of functional boundaries. The CORBA 2.x ob-
ject model treats all interfaces as client/server contracts.
This object model, however, does not provide sufficient
mechanisms to prevent tight coupling among collabo-
rating object implementations. For example, object im-
plementations that depend on other objects need to dis-
cover and connect to these objects explicitly. To construct
large-scale enterprise applications, therefore, application
developers need to program the connections among in-
terdependent services, which can yield brittle and non-
reusable implementations.

� Lack of generic application servers.CORBA 2.x does
not specify a genericapplication serverframework to
perform common “bookkeeping” work, including initial-
izing the broker and its QoS policies, providing com-
mon services (such as a transaction service), and manag-
ing the runtime environment of components. Although
CORBA 2.x standardized the interactions between ob-
ject implementations and object request brokers (ORBs),
server developers are still responsible for determining
how object implementations are installed in an ORB and
the interaction between the ORB and object implementa-
tions. The lack of a generic application server standard
has yielded tightly coupled,ad-hocapplication server
implementations, which increase the complexity of soft-
ware upgrades and reduce the reusability and flexibility
of CORBA-based applications.
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Promising solution! component middleware. In the past
several years,component middleware[5] has emerged to ad-
dress the limitations with object-oriented middleware outlined
above. Component middleware addresses these issues by cre-
ating a virtual boundary around application components with
well-defined interfaces and composing and executing compo-
nents in generic application servers. Popular COTS compo-
nent middleware platforms being used for enterprise applica-
tions today include the CORBA Component Model [6], J2EE,
and emerging web services middleware, such as .NET and
ONE, that are based on XML and SOAP.

3 Overview of Model-Integrated Com-
puting

Model-Integrated Computing (MIC) [1] is a development
paradigm that systematically applies domain-specific model-
ing languages to engineer computing systems ranging from
small-scale real-time embedded systems to large-scale enter-
prise applications. MIC provides rich, domain-specific model-
ing environments, including model analysis and model-based
program synthesis tools [7]. In the MIC paradigm, applica-
tion developers model an integrated, end-to-end view of the
entire application, including the interdependencies of its com-
ponents. Rather than focusing on a single, custom application,
therefore, MIC models capture the essence of a class of ap-
plications. MIC also allows the modeling languages and envi-
ronments themselves to be modeled by so-calledmeta-models,
which help to synthesize domain-specific modeling languages
that can capture the nuances of domains they are designed to
model.

Various technologies, such as Computer-Aided Software
Engineering (CASE) and related OOA/OOD approaches by
Yourdon and others, have evolved into sophisticated tools,
such asobjectiF and in-Stepfrom MicroTool andParadigm
Plus, VISION, andCOOL from Computer Associates. This
class of products has evolved over the past two decades to alle-
viate complexities associated with developing software for en-
terprise applications. Their successes have added the Model-
Integrated Computing paradigm to the familiar programming
languages and language processing tool offerings used by pre-
vious generations of software developers. Popular examples
of MIC being used today include the Generic Modeling Envi-
ronment (GME) [7] and Ptolemy [8] (which are used primarily
in the real-time and embedded domain) and UML/XML tools
based on the OMG Model Driven Architecture (MDA) [9]
(used primarily in the business domain thus far).

As shown in Figure 1, MIC uses a set of tools to analyze the
interdependent features of the system captured in a model and
determine the feasibility of supporting different QoS require-
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Figure 1:The Model-Integrated Computing Process

ments in the context of the specified constraints. Another set
of tools then translates models into executable specifications
that capture the platform behavior, constraints, and interac-
tions with the environment. These executable specifications
in turn can be used to synthesize application software.

4 Combining Model-Integrated Com-
puting with Component Middleware

As described in the previous two sections, MIC and compo-
nent middleware have evolved independently from different
perspectives. Although these two paradigms have achieved
good success independently, each has the following limita-
tions:
Complexity due to heterogeneity. Conventional compo-
nent middleware is developed using separate tools and in-
terfaces written and optimized manually for each middle-
ware specification, such as CORBA, J2EE, and .NET, and
for each target deployment, such as the various OS, network,
and hardware configurations. Developing, assembling, vali-
dating, and evolvingall this middleware manually is costly,
time-consuming, tedious, and error-prone, particularly for run-
time platform variations and complex application use-cases.
This problem is getting worse as more middleware, target
platforms, and complex enterprise applications continue to
emerge.
Lack of sophisticated modeling tools. Previous efforts at
model-based development and code synthesis attempted by
CASE tools generally failed to deliver on their potential for
the following reasons [10]:

� They attempted to generate entire applications, including
the infrastructure and the application logic, which often
lead to inefficient, bloated code that was hard to optimize,
validate, evolve, or integrate with legacy code.

� Due to the lack of sophisticated domain-specific lan-
guages and associated modeling tools, it was hard to

3



Integrated
Model

Model
Interpreter &

Code
Synthesizer

System
Constraints

Executable
specifications

Platform Component
Repository

Component
Assembly/

Code
Generator

Middleware
Specific Code

Middleware
specific

Component
Assembly

Integrate &
Generate

Select
Components

synthesize &
assemble

Figure 2: Combining Model-Integrated Computing and
Component Middleware

achieve round-trip engineering,i.e., moving back and
forth seamlessly between model representations and the
synthesized code.

� Since CASE tools and modeling languages dealt primar-
ily with a restricted set of platforms (such as mainframes)
and legacy programming languages (such as COBOL)
they did not adapt well to the distributed computing
paradigm that arose from advances in PC and Internet
technology and newer object-oriented programming lan-
guages, such as Java, C++, and C#.

The limitations with Model-Integrated Computing and com-
ponent middleware outlined above can largely be overcome by
integrating them as follows:

� Combining MIC with component middleware helps to
overcome problems with earlier-generation CASE tools
since it does not require the modeling tools to generate
all the code. Instead, large portions of applications can be
composedfrom reusable, prevalidated middleware com-
ponents, as shown in Figure 2.

� Combining MIC and component middleware helps ad-
dress environments where business procedures and rules
change at rapid pace, by synthesizing and assembling
newer extended components that conform to new busi-
ness rules.

� Combining component middleware with MIC helps to
make middleware more flexible and robust by automating
the configuration of many QoS-critical aspects, such as
concurrency, distribution, transactions, security, and de-
pendability. Moreover, MIC-synthesized code can help
bridge the interoperability and portability problems be-
tween different middleware for which standard solutions
do not yet exist.
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Figure 3:Integration Points for Model-Integrated Comput-
ing and Component Middleware

� Combining component middleware with MIC helps to
model the interfaces among various components in terms
of standard middleware, rather than language-specific
features or proprietary APIs.

� Changes to the underlying middleware or language map-
ping for one or many of the components modeled can
be handled easily as long as they interoperate with other
components. Interfacing with other components can be
modeled as constraints that are validated by model check-
ers.

Figure 3 illustrates six points at which Model-Integrated
Computing can be integrated into component middleware ar-
chitectures. We describe each of these six integration points
below:
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1. Configuring and deploying application services end-to-
end. Developing large-scale enterprise applications requires
application developers to handle a variety of configuration and
deployment challenges, such as
� Locating the appropriate existing services
� Partitioning and distributing business processes and
� Provisioning the QoS required for each service that com-

prises an application end-to-end.
It is a daunting task to identify and deploy all these capabilities
into an efficient, correct, and scalable end-to-end application
configuration. For example, to maintain correctness and ef-
ficiency, services may change or migrate when the business
requirements change. Careful analysis is therefore required
to partition collaborating services on distributed nodes so the
information can be processed efficiently, dependably, and se-
curely.

Integrating MIC and component middleware to deploy ap-
plication services end-to-end can help application developers
configure the right set of services into the right part of an ap-
plication in the right way. MIC analysis tools can help deter-
mine the appropriate partitioning of functionality that should
be deployed into various application servers throughout a net-
work. For example, tools likeArcStyler, objectiF, case/4/0and
Dezign for Databasesallow application developers to express
their end-to-end application architecture graphically.

2. Composing components into application servers. Inte-
grating MIC with component middleware provides capabilities
that help application developers to compose components into
application servers by
� Selecting a set of suitable, semantically compatible com-

ponents from reuse repositories.
� Specifying the functionality required by new components

to isolate the details of business systems that (1) operate
in environments where business processes change peri-
odically and/or (2) interface with third-party software as-
sociated with external information systems.

� Determining the interconnections and interactions be-
tween components in metadata.

� Packaging the selected components and metadata into an
assembly that can be deployed into the application server.

CASE tools such asobjectIfandArcStylerprovide visual tools
for composing application servers.

3. Configuring application component containers. Appli-
cation components use containers to interact with the applica-
tion servers in which they are configured. Containers provide
many policies that enterprise applications can use to fine-tune
underlying component middleware behavior, such as its secu-
rity, transactional, and quality of service properties. Since en-
terprise applications consist of many interacting components,
their containers must be configured with consistent and com-
patible policies.

Due to the number of policies and the intricate interactions
among them, it is tedious and error-prone for an application to
manuallyspecify and maintain its component policies and se-
mantic compatibility with policies of other components. MIC
tools can help automate the validation and configuration of
these container policies by allowing system designers to spec-
ify the required system properties as a set of models. Other
MIC tools can then analyze the models and generate the nec-
essary policies and ensure their consistency.

4. Synthesizing application component implementations.
Developing enterprise applications today involves program-
ming new components that add application-specific function-
ality. Likewise, new components must be programmed to in-
teract with external information systems, such as supplier or-
dering systems, that are not internal to the application. Since
these components involve substantial knowledge of applica-
tion domain concepts, such as government regulations, busi-
ness rules, organizational structure, and legacy systems, it
would be ideal if they could be developed in conjunction with
end-users or business domain experts, rather than programmed
manually in isolation by software developers.

The shift toward high-level design languages and modeling
tools is creating an opportunity for increased automation in
generating and integrating application components. The goal
is to bridge the gap between specification and implementation
via sophisticated aspect weavers [11] and generator tools that
can synthesize platform-specific code customized for specific
application properties, such as resilience to denial of service
attacks, robust behavior under heavy load, and good perfor-
mance for normal load.

5. Synthesizing middleware-specific configurations. The
infrastructure middleware technologies used by component
middleware provide a wide range of policies and options to
configure and tune their behavior. For example, CORBA
ORBs often provide the following options and tuning parame-
ters:

� Various types of transports and protocols
� Various levels of fault tolerance
� Middleware initialization options
� Efficiency of (de)marshaling event parameters
� Efficiency of demultiplexing incoming method calls
� Threading models and thread priority settings and
� Buffer sizes, flow control, and buffer overflow handling

Certain combinations of the options provided by the middle-
ware may be semantically incompatible when used to achieve
multiple QoS properties.

Advanced meta-programming techniques, such as reflec-
tion [12] and aspect-oriented programming [11], are being de-
veloped to configure middleware options so they can be tai-
lored for particular use cases.
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6. Synthesizing middleware implementations. Model-
Integrated Computing can also be integrated with component
middleware by using MIC tools to generate custom middle-
ware implementations. This is a more aggressive use of mod-
eling and synthesis than integration point 5 described above
since it affects middlewareimplementations, rather than their
configurations. Application integrators could use these ca-
pabilities to generate highly customized implementations of
component middleware so that

� It only includes the features actually needed for a partic-
ular application and

� It is carefully fine-tuned to the characteristics of particu-
lar programming languages, operating systems, and net-
works.

5 Concluding Remarks

Due to tight coupling between software modules, conventional
methods for building enterprise applications increase the time
and effort required to develop and evolve the software. More-
over, many application quality aspects, such as persistent data
store, security, and management of run-time resources, cut
across multiple layers, which also tightly couples application
software modules with the middleware infrastructure and its
associated housekeeping tasks. These tight couplings yield
brittle enterprise applications that are hard to reuse, maintain,
and evolve.

Component middlewarehas emerged as a promising so-
lution to many limitations with object-oriented application
frameworks. This type of middleware consists of reusable
software artifacts that can be distributed or collocated through-
out a network. A proliferation of component middleware tech-
nologies have emerged recently to address various require-
ments of enterprise applications. These types of applications
are increasingly being assembled from components belong-
ing to disparate middleware technologies, which increases the
effort required to integrate and deploy semantically compati-
ble and interoperable components across multiple middleware
platforms. Moreover, enterprise applications must increas-
ingly support multiple simultaneous QoS properties, such as
dependability, security, and scalability.

This paper describes a solution to these problems that in-
volves combining Model-Integrated Computing (MIC) with
component middleware. This combination is important be-
cause it does not require the modeling tools to generate all
the code. Instead, large portions of applications can be
reused and/or customized from existing middleware compo-
nents. These middleware components handle many critical
QoS aspects, such as concurrency, distribution, transactions,
security, and dependability.

We are developing a MIC toolsuite called CoSMIC
(deuce.doc.wustl.edu/CoSMIC ), which extends the
popular GME modeling and synthesis tools [7] to support the
development, assembly, and deployment of QoS-enabled en-
terprise applications using component middleware. To ensure
these QoS requirements can be realized in the middleware
layer, we are also developing a QoS-aware CCM implemen-
tation called CIAO. CIAO allows MIC tools to specify these
QoS requirements of components in the accompanying meta-
data.
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