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Abstract

Developing distributed applications that utilize multi-
processing and network services is a promising technique
for increasing system performance, scalability, and cost ef-
fectiveness. However, designing and implementing efficient,
robust, and extensible multi-threaded client/server applica-
tions is a complex and challenging task. The Service
Configurator (SVC-CON) framework described in this
paper provides an object-oriented infrastructure that simpli-
fies the development of dynamically configured, concurrent,
multi-service network daemons. The framework integrates
mechanisms for (1) local and remote interprocess communi-
cation, (2) I/O-based and timer-based event multiplexing, (3)
explicit dynamic linking, and (4) multi-threading and multi-
processing to aid the creation of network servers that may
be updated and extended without modifying, recompiling,
relinking, or restarting executing daemons.

1 Introduction

This paper describes the architectural design and func-
tionality of an object-oriented (OO) framework called the
Service Configurator (SVC-CON). This framework
provides a collection of reusable C++ components that sim-
plify the construction of network server daemons by en-
hancing the modularity, extensibility, reusability, and porta-
bility of their interprocess communication (IPC), I/O-based
and timer-based event multiplexing, service dispatching, and
concurrency mechanisms. The OO techniques and tools de-
scribed in this paper are currently being applied on a family
of client/server applications as part of the Ericsson External
Operating Systems (EOS) project. This project employs the
SVC-CON framework to enhance the configurationflexibility
and software component reuse of applications that monitor
and manage MD110 [1] private-branch exchanges (PBXs) ef-
ficiently and portably across multiple hardware and software
platforms.

In addition to describing the general structure and behav-

ior of the SVC-CON framework, this paper also explores
the process by which the framework’s reusable C++ compo-
nents “emerged” from careful analysis of the common objects
and abstractions that exist in the domain of network servers.
Since most textbooks and network programming reference
guides present function-oriented models for designing net-
work applications, it is not surprising that developers of-
ten decompose their server daemons according to functions
rather than classes and objects. Therefore, the OO network
server design perspective presented in this paper may appear
somewhat “counter-intuitive” at first. However, our experi-
ence with the strategies and tactics underlying the SVC-CON
framework offer compelling evidence that the long-term pay-
offs of applying object-oriented techniques to network pro-
gramming significantly improves application modularity, ex-
tensibility, and component reuse.

This paper is organized in the following manner: Sec-
tion 2 briefly summarizes the requirements and general ar-
chitecture of the EOS PBX project; Section 3 describes the
SVC-CON framework’s primary features and reviews related
work; Section 4 outlines the C++ design and implementation
of the SVC-CON framework; Section 5 examines the struc-
ture of several EOS applications built using the SVC-CON
framework; and Section 6 presents concluding remarks.

2 Overview of the Ericsson EOS PBX
Project

Ericsson is developing a family of applications that monitor
and manage MD110 PBXs. These applications enhance the
functionalityof a PBX (or cluster of PBXs) by providingend-
users with directory management, call center management,
and extension manager services. For example, the Directory
Management application allows a PBX operator to profile
incoming calls diverted from subscriber extensions, handle
subscriber messages, and perform other general subscriber
database queries (such as accessing visitor information and
recording facility conference room location and availability).
Likewise, the Call Center Management application allows the
staff of a call center (such as an airline reservation center) to
assess the performance and quality of the call center by pro-
viding real-time graphical displays of system resources such
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Figure 1: The EOS Client/Server Architecture

as agents and call queues. Finally, the Extension Manage-
ment application allows a PBX administrator to view, add,
modify, or delete PBX extensions interactively.

The architecture, design, and implementation of the Er-
icsson EOS applications are influenced by several general
requirements that necessitate support for (1) multiple appli-
cation services, (2) platform independence, (3) configura-
tion flexibility, and (4) efficient performance. For example,
multiple EOS application services must be available simul-
taneously to multiple remote users, potentially interacting
with one or more PBXs. A client/server architecture (illus-
trated in Figure 1) was selected to support this distributed
functionality in a scalable and relatively transparent manner.
Each PBX is directly attached to a server host via a serial
communication link, and one or more server daemons on the
host supply services required by the client applications. The
current EOS applications provide MD110 PBX communica-
tion services, database services, batch processing services,
extension administration services, and asynchronous signal
routing services (described in Section refusage).

Platform independence is another key requirement of the
EOS project. Applications are targeted for various config-
urations of host and network platforms, including Windows
NT, UNIX, Windows 3.1, and OS/2 running over TCP/IP and
Novell IPX/SPX networks. The project relies heavily upon
object-oriented design techniques and C++ language features
to reduce the overall development effort and to improve soft-
ware component reuse across platforms and among the family
of related applications. In particular, the encapsulation and
flexibility offered by C++ classes, abstract base classes, and
parameterized types are used extensively to localize platform
dependencies.

Two additional system requirements involve configuration
flexibility and service performance. Since not all customers
require every EOS feature, applications may be deployed
with various combinations of services. It would be pos-

sible (although highly undesirable) to manually construct
and deliver one or more client/server applications that are
(1) customized for the services required by a customer and
(2) optimized for the level of concurrency available on the
host platform [2]. However, such a “statically configured”
system would require the application service combination,
client/server division of labor, and host platform to be com-
pletely fixed during product deployment. Our experience
with earlier-generation EOS applications suggests that even
if this information is available at the time of deployment, it
will certainly change in the future, often upon short notice.
Therefore, to maximize installation flexibility and to take ad-
vantage of available multi-processing capabilities, the EOS
family of applications utilize SVC-CON framework features
that defer decisions regarding both (1) the set of available ser-
vices and (2) the partitioningof these services onto processes
and/or threads until as late as possible – e.g., initial server
startup-time or even during run-time. As described below,
theSVC-CON framework provides several foundation classes
that support the deferred binding of services onto processes
and/or threads. Other object-oriented components used by
the EOS applications are described elsewhere [3, 4, 5].

3 The Service Configurator Frame-
work

The SVC-CON provides an object-oriented framework that
simplifies the development, configuration, and reconfigura-
tion of concurrent, multi-service network daemons. A dae-
mon is a statically or dynamically configured process that
executes in the “background” (i.e., disassociated from any
controlling terminal) on a host computer. The fundamen-
tal unit of configuration in the SVC-CON framework is the
service. Network daemons provide communication-related
services that resolve distributed name lookups, access net-
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work file systems, manage routing tables, and perform other
remote services such as printing, login, and file transfer. In
the EOS system, network daemons orchestrate the server-side
directory management, call center management, and exten-
sion administration services.

Depending on configuration policies specified during sys-
tem installation, the EOS applications run as one or more
multi-service network daemons that simultaneously support
multiple remote services via one or more OS processes and/or
threads. Explicit dynamic linking may be used to dynami-
cally (re)configure (i.e., insert and remove) these services
from a network daemon at run-time. Deferring the binding
of services to processes and threads until run-time increases
the flexibility, extensibility, and performance of network dae-
mons. Moreover, in certain cases, daemons that execute
within the SVC-CON framework may reconfigure their ser-
vices without being terminated and restarted. In addition, the
concurrency level of a network daemon may be fine-tuned
during installation or run-time to match client application de-
mands and available OS multi-processing capabilities more
efficiently.

The SVC-CON framework integrates C++ language fea-
tures (such as inheritance, dynamic binding, and parame-
terized types) and advanced OS mechanisms (such as the
threads and explicit dynamic linking facilities available in
SVR4 UNIX [6] and Windows NT [7]) to facilitate the de-
velopment of network clients and servers that may be updated
and extended without modifying, recompiling, relinking, or
restarting the running daemons. In addition, it provides a
suite of reusable components that extend the functionality of
conventional port monitoring and service dispatching tools
such as the UNIX System V Release 4 (SVR4) listen
facility [8] and BSD inetd superserver [9].

The framework’s components also reduce the effort re-
quired to develop network daemons. For instance, the
SVC-CON framework’s components simplify development
by consolidating common server activities (such as I/O-
based and timer-based event multiplexing, service dispatch-
ing, subroutine tracing and status logging, daemonization,
service directory functionality, and various process, thread,
and linking strategies) into reusable C++ foundation classes.
These classes include the IPC SAP object-oriented transport
interface [3] and the Reactor I/O-based and timer-based
event multiplexing class library [4, 5] (both of which en-
hance application robustness by accessing OS local and re-
mote IPC mechanisms via type-secure interfaces, rather than
the weakly-typed “descriptor-based” underlying system call
interfaces).

3.1 Conventional Port Monitoring and Service
Dispatching Frameworks

This section describes several conventional frameworks for
developing, configuring, and reconfiguring network dae-
mons. Section 3.2 compares the features of these frameworks
with those of the SVC-CON framework.

3.1.1 Single-Service Daemons

In early versions of UNIX, standard network services such
as remote file transfer (ftp) and remote login (telnet and
rlogin) ran as single-service daemons that were initiated
at OS boot-time [10]. The services offered by these daemons
were configured statically at compile-time and/or static link-
time. As illustrated in Figure 2 (1), a separate program was
typically written to implement each service. Each service ran
in a separate process, though a master daemon might spawn
one or more slave processes to perform certain long-duration
services externally in a separate address space on behalf of
its clients.

As the number of system daemons grew steadily, however,
this “statically configured, single-service per-process” design
approach revealed several significant limitations. First, OS
process management overhead increased since each single-
service daemon consumed a process table slot, even though
it was often idle. Second, each daemon redundantly reim-
plemented the same daemonization and transport endpoint
initialization code. Third, the flexibility and extensibility of
statically configured daemons was limited since adding or
deleting services required modifying, recompiling, and re-
linking existing code. Moreover, running daemons had to be
terminated and restarted explicitly after making any changes.
Finally, administering and monitoring the security and per-
formance aspects of each daemon was handled in an ad hoc
manner [8].

3.1.2 Multi-Service Port Monitor and Service Dis-
patcher Frameworks

Multi-service port monitor and service dispatcher frame-
works were devised to alleviate the limitations with single-
service daemons described above. Two widely available
frameworks are the Internet superserver inetd (which orig-
inated with BSD UNIX [9]) and the listen port monitor
facility (distributed as part of the Service Access Facility
with SVR4 UNIX [8]). Inetd and listen integrate many
single-service daemons into one administrative framework in
order to (1) reduce unnecessary process overhead by spawn-
ing daemons “on-demand,” (2) simplify daemon develop-
ment by automatically performing daemonization and trans-
port endpoint initialization, (3) allow external services to be
changed without modifying source code or terminating an
executing daemon process, and (4) consolidate the adminis-
tration of network services via a standard set of configuration
files and command-line utilities.

Figure 2 (2) illustrates the general structure of daemon dis-
patcher tools such as inetd and listen. Both tools use
Internet-domain port numbers to demultiplex client requests
and dispatch them to either (1) statically named internal ser-
vices or (2) statically and/or dynamically named external
services (daemon-related terminology is defined more thor-
oughly in a companion paper available in the 1993 C++ World
conference proceedings [11]). For example, the inetd su-
perserver operates in the following manner:
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1. When invoked at OS boot-time, inetd reads service
configuration information stored in the inetd.conf
file.

2. For each service in the configuration file, inetd per-
forms the “socket/bind/listen” socket initial-
ization sequence to register the well-known port number
of the service with the OS.

3. Inetd then enters a select loop that waits for one or
more client connection requests or datagrams to arrive
at the port of any registered services. Datagrams arriv-
ing for statically named internal services (such as echo
and daytime) are performed internally by the master
inetd process. Connection requests arriving for ex-
ternal services (such as ftp or rlogin) are handled
by accept’ing the connection, fork’ing a new pro-
cess, and exec’ing the appropriate executable program
to perform the service on behalf of the client.

Although inetd’s internal services (such as echo
and daytime) are fixed at static link-time, the mas-
ter inetd daemon permits dynamic reconfiguration of its
external services (such as ftp or telnet). For in-
stance, when sent the SIGHUP signal, the inetd dae-
mon re-reads its inetd.conf file and performs the
socket/bind/listen sequence for all services listed in
that file. However, since inetd does not support dynamic
reconfiguration of internal services, any newly listed services
must still be processed by spawning slave daemons viafork
and exec. Therefore, although inetd and listen1 over-
come many limitations with single-service daemons, they
still possess several shortcomings that are addressed by the
SVC-CON framework described below.

Another network service management facility that recently
become available is the Service Control Manager (SCM) dis-
tributed with Windows NT [7]. Unlikeinetd and listen,
SCM is not a port monitor i.e., it does not provide built-in sup-
port for listening to a set of I/O ports and dispatching server
processes “on-demand” when client requests arrive. Instead,
it provides an RPC-based interface that allows the masterSCM
process to automatically initiate and control (i.e., pause, re-
sume, terminate, etc.) administrator-installed services (such
as ftp and telnet) that typically run as separate threads
within either a single-service or a multi-service daemon pro-
cess. Each installed service is individually responsible for
configuring the service and monitoring any communication
endpoints (which may be more general than I/O ports, e.g.,
named pipes). Note that the SVC-CON framework may be
utilized within the SCM environment to provide additional
support for dynamic daemon configuration, port monitoring,
and service dispatching.

1The SVR4 listen port monitoring facility is similar to inetd,
though it only supports connection-oriented protocols accessed via TLI
and STREAMS, and does not provide internal services. However, unlike
inetd, listen supports “standing-daemons” by passing initialized file
descriptors via STREAM pipes from the listen process to a previously-
registered standing-daemon.

3.2 Primary Features of the Service Configu-
rator

This subsection outlines the primary features offered by the
SVC-CON framework and compares these features with those
provided by inetd and listen. Figure 3 illustrates the
major architectural features of the three frameworks. In gen-
eral, the features of the SVC-CON framework are designed
to (1) increase configuration flexibility and daemon extensi-
bility, (2) improve performance, and (3) reduce development
effort for concurrent, multi-service network daemons.

3.2.1 Increase Flexibility and Extensibility

The SVC-CON framework enhances configuration flexibility
and network daemon extensibility by decoupling and defer-
ring the point at which services are bound to OS processes
and/or threads. In particular, services may be configured into
the SVC-CON framework either (1) statically (at compile-
time or link-time) or (2) dynamically (when a daemon first
begins executing or even while it is running). Moreover, the
choice between these two alternatives may be deferred. For
example, services may be partitioned and/or migrated be-
tween clients and servers during or after installation, thereby
enabling a flexible division of labor on the placement of ser-
vices within a distributed application.

The SVC-CON framework provides an object-oriented in-
terface to OS explicit dynamic linking features. As described
in Section 4.1, this interface facilitates the dynamic con-
figuration and reconfiguration of network daemon services,
often without requiring the modification, recompilation, or
relinking of existing code. Dynamic linking also provides an
opportunity to reconfigure services without terminating and
restartinga daemon. Inetd andlisten, on the other hand,
provide a more limited form of dynamic configuration that
does not support reconfiguration of internal services at run-
time. Instead, adding new internal services requires modify-
ing, recompiling, relinking, and restarting inetd (listen
does not support internal services).

3.2.2 Improve Performance

By deferring the binding of services to processes and threads,
applications may postpone certain decisions until run-time,
when additional information is available to guide the selec-
tion of more efficient daemon configurations. For instance,
customizing or reconfiguring daemons during or after startup-
time helps to account for factors such as (1) the class of
service required by applications (e.g., reliable vs. unreli-
able and real-time vs. non-real-time), (2) the type of traffic
generated by applications (e.g., bursty vs. continuous and
short-duration vs. long-duration), (3) the class of protocol
that implements the application services (e.g., connection-
oriented vs. connectionless vs. request-response), (4) certain
static and dynamic characteristics of the hardware and oper-
ating system architecture (e.g., message passing vs. shared
memory, process and thread management overhead, number
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of CPUs, and current end-system load), and (5) the under-
lying network environment (e.g., high-speed vs. low-speed
and large frame size vs. small frame size) [12].

The SVC-CON framework automates many of the steps
required to (re)configure network daemons and helps de-
velopers navigate through the diverse set of factors that
affect the configuration of network daemons. For ex-
ample, a “concurrent/multi-service” daemon configuration
may be efficient for an OS that effectively utilizes multi-
ple CPUs. In this case, each application service may be
mapped onto a separate process or thread. On the other hand,
an “iterative/single-service” configuration may be more suit-
able for certain combinations of OS platform and applica-
tion service characteristics. For instance, on a uni-processor
platform, daemon efficiency may be improved by executing
short-duration, request/response services in a single-threaded
process, due to the reduction in scheduling and context
switching overhead [13].

The SVC-CON framework also employs OS mecha-
nisms such as dynamic linking, multi-threading, and multi-
processing to improve performance. Explicit dynamic link-
ing and threads support the (re)configuration of concurrent
internal services without spawning a new OS process. This
helps improve the performance of multi-service daemons
that perform short-duration, request-response services. Con-
versely, inetd andlisten spawn a new process to achieve
similar dynamic service invocation functionality. However,
this invocation technique may be too costly for short-duration
services, due to the overhead of fork and exec.

Dynamic linking also helps reduce overall host memory
utilization, which may improve aggregate end-system per-
formance [14]. For example, dynamically linked services
are not fully loaded, resolved, or relocated into the address
space of an executing daemon until they are first referenced,
which often reduces a daemon’s consumption of primary and
secondary storage resources. Moreover, to further reduce
run-time memory utilization, a dynamically linked service
may be shared between multiple network daemons running
simultaneously [6]. In addition, services may be dynamically
unlinked from daemons when they are no longer required,
thereby releasing resources for subsequent use by other ap-
plications and daemon services.

3.2.3 Reduce Development Effort via Reusable Compo-
nents

The SVC-CON framework provides a collection of reusable
components that implement the following common founda-
tion services used by network daemons and distributed ap-
plications:

� Event Multiplexing and Service Dispatching: Network
server daemons often multiplex different types of I/O events
sent or received simultaneously from one or more clients on
multiple communication ports. The SVC-CON framework
provides port multiplexing and service dispatching function-
ality via a C++ class library called the Reactor [4, 5]. The

Reactor provides a set of extensible, reusable, and type-
secure C++ classes that portably encapsulate and enhance
the select and poll I/O multiplexing facilities. The
Reactor integrates the multiplexing of synchronous and
asynchronous I/O-based events together with timer-based
events. When events occur, the Reactor automatically
dispatches “call-back” member functions of previously reg-
istered objects to perform application-specified services. The
Reactor enables developers to concentrate on higher-level
daemon design and functionality issues, rather than reimple-
menting the same lower-level event detection and dispatching
code for each new network daemon.

� Automatic Service Configuration: To help automate
many daemon configuration steps, the SVC-CON provides a
standard model for installing application services into net-
work daemons. This configuration model leverages off no-
tations and tools that (1) identify the service(s) to activate,
(2) statically or dynamically instantiate, link, and initialize
C++ object(s) that implement the service(s), (3) notify the un-
derlying OS transport provider to bind communication ports
and network addresses for the object(s), (4) register the ob-
ject(s) with an instance of the Reactor, and (5) arrange
to run the service via one or more processes and/or threads.
The SVC-CON framework’s configuration model is flexible
enough to support dynamic and static configuration, as well
as hybrid approaches that provide both configuration meth-
ods simultaneously. Section 4.3.1 examines the SVC-CON
framework’s service configuration model in detail.

� Process and Thread Generation Strategies: Several
SVC-CON framework facilities implement on-demand, ea-
ger, and lazy process and thread generation strategies. In
general, these strategies help to further decouple the ser-
vices offered by network daemons from the OS processes
and threads that execute the services. In particular, they
enable daemons to adaptively tune their concurrency levels
to match client demands and available OS parallelism. For
example, on-demand generation spawns a new process or
thread in response to the arrival of client requests. Eager
generation pre-spawns one or more OS processes or threads
at daemon creation time to reduce service startup overhead
and improve response time. Conversely, lazy allocation does
not immediately spawn a process when a client request is
received. Instead, a timer is set and the request is handled
“iteratively” by the daemon. Only if the timer expires is
a new process spawned to continue processing the service
concurrently [13].

� Distributed Logging: Network daemons are often dif-
ficult to develop and debug since diagnostic output appears
in different windows and/or on remote host systems. To
simplify network daemon debugging, the SVC-CON frame-
work supports a distributed logging facility (described and
implemented in [4, 5]). This logging facility coalesces di-
agnostic output (potentially sent from multiple daemons on
multiple hosts) at a designated location in a local and/or wide
area network. The distributed logging facility utilizes several
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levels of “many-to-one” multiplexing. For example, applica-
tions send logging records vianamed pipes or message
queues to a client logging daemon running on their local
host machine. Each client daemon timestamps and forwards
the logging records via TCP/IP connections to a remote server
logging daemon running on a designated server host. This
concurrent server daemon processes the logging records and
displays them on one or more output devices (such as printers,
persistent storage devices, and/or monitoring consoles).

� Function-Call Tracing: To further aid debugging, the
SVC-CON framework provides a function-call Trace class
that interoperates with the distributed logging facility. The
Trace class enables developers to monitor the calling se-
quence of any or all stand-alone subroutines or member func-
tions at run-time. A simple regular-expression-based filter
tool automatically instruments application source code with
Trace object definitions. At run-time, output from the con-
structor and destructor of Trace objects visually indicates
the function calling sequence. This output is indented ap-
propriately to illustrate the current call-chain nesting level
as functions are entered and exited. The creation and termi-
nation semantics of C++ simplify function-call tracing since
Trace object destructors are automatically invoked regard-
less of the point that the function returns. In addition, the
SVC-CON framework enables tracing to be toggled on or off
via signals or other asynchronous notification events gener-
ated by a user.

� Daemonization: The daemonization utility provides net-
work servers with robust capabilities to execute and survive
as daemon processes executing “in the background.” These
daemonized processes do not automatically receive events
generated from a terminal nor do they receive hangup indica-
tions if/when their parent process exits. As described in [10],
daemonization under UNIX typically involves (1) dynam-
ically spawning a new process, (2) closing all unnecessary
file descriptors, (3) changing the current working directory to
the root directory, (4) resetting the file access creation mask,
(5) disassociating from the controlling process group and the
controlling terminal, and (6) ignoring terminal I/O-related
signals.

In general, component reuse in the SVC-CON framework
is enhanced by (1) accessing framework services via exten-
sible object-oriented interfaces written in C++ and (2) sep-
arating higher-level application processing policies that per-
form client requests from lower-level daemon mechanisms
(such as event demultiplexing and dispatching, logging and
tracing, daemonization, and various process and thread gen-
eration strategies). In contrast, both inetd and listen
allow only course-grain “black-box” reuse of their general
service dispatching facilities, without encouraging more fine-
grain reuse of their internal components. For example, the
standard BSD inetd implementation is written in C and is
characterized by global variables, lack of information hiding,
and a functional decomposition that complicates direct reuse
of its internal components.

4 The Server Daemon Design and Im-
plementation

This section outlines the object-oriented design and im-
plementation of the SVC-CON framework’s primary com-
ponents and describes the sequence of steps performed to
develop and configure a daemon’s services statically and/or
dynamically. In addition to examining the interfaces and
general functionality of the framework’s components, the
strategic decisions that yielded the decomposition illustrated
in Figure 4 are also discussed.2

The SVC-CON framework was developed using several
object-oriented design techniques and C++ language fea-
tures. Domain analysis on the typical attributes and oper-
ations performed by network daemons yielded the following
class components in the SVC-CON framework:

� The Service Object inheritance hierarchy (Fig-
ure 4 (1)) – this hierarchy ensures that developers specify
the information necessary to automate dynamic linking,
initialization, port multiplexing, and dispatching of an
application service at run-time.

� The Service Repository class (Figure 4 (2)) –
this class provides an object manager that coordinates
individual and/or collective access to active services in
a daemon.

� The Service Config class (Figure 4 (3)) – this
“framework integration class” orchestrates the configu-
ration and reconfiguration of statically/dynamically con-
figured, iterative/concurrent, single/multi-service net-
work daemons.

Though difficult to quantify precisely, it appears rather un-
likely that a functional design approach would have yielded
a set of reusable components that offer such a high degree of
modularity and extensibility to distributed applications.

4.1 The Service Object Class

The Service Object class (illustrated in Figure 4 (1))
forms one part of a multi-level hierarchy of types related
by inheritance. This hierarchy decouples the application-
specific portions of a network service from the underlying
mechanisms provided by the framework that link, register,
and dispatch the service at run-time. This separation of con-
cerns minimizes the effort required to add and/or remove
of services to and/or from a network daemon. Each class
in this hierarchy performs a set of well-delineated tasks for
application developers, as described below:

� The Event Handler Abstract Base Class: The root of
the inheritance hierarchy is defined by theEvent Handler

2These components and their relationships are illustrated via Booch no-
tation [15]. Dashed clouds indicate classes and directed edges indicate
inheritance relationships between these classes. Solid clouds indicate one or
more class objects and undirected edges indicate composition relationships
between these objects (cf. Figure 6).
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Figure 4: The Server Daemon Class Components and their Relationships

abstract base class. This base class supplies an event dis-
patching interface that consists of virtual member functions
for (1) synchronous input, output, and exception events
and (2) timer-based events. In the SVC-CON framework,
application-specific subclasses indirectly inherit and refine
this functionality through the Service Object derived
class. This derivation process results in composite ob-
jects that are subsequently registered with an instance of
the Reactor [5]. The Reactor then extracts the under-
lying I/O descriptor from the Event Handler portion of
a composite object and passes it along with other descrip-
tors to select or poll I/O demultiplexing system calls.
When events associated with a registered object occur at
run-time, the Reactor automatically dispatches the appro-
priate member function(s) of the object, which then perform
application-specific services.

� The Service Object Abstract Derived Class: The
Service Object class exports an abstract interface con-
sisting of three pure virtual functions [16] that impose a
“contract” between the general-purpose foundation classes
provided by the SVC-CON and application-specific services
utilizing these classes. The use of pure virtual functions
ensures that an application service supplies the SVC-CON
framework with the appropriate information necessary to
link, initialize, identify, and unlink a service at run-time.

During development, application-specific subclasses must
implement the init function to perform initialization oper-
ations when an instance of a composite Service Object
first comes into existance. Likewise, during service initial-
ization, init serves as the “entry-point” to an application
service, (i.e., it is passed a pair of “argc/argv”-style pa-
rameters that are similar to those passed to themain function
of a stand-alone executable program). The fini member

function is called automatically to perform any necessary ter-
mination operations when a Service Object is unlinked
and removed from a daemon at run-time. The infomember
function returns a humanly-readable string that documents
the functionality and addressing information of a service.

� Application-Specific Concrete Derived Subclasses:
The Service Object and Event Handler are both
“abstract” classes since they contain pure virtual functions.
Therefore, developers must derive concrete subclasses (such
as theSignal Router subclass described in Section 5) that
define the functions inherited from the abstract base classes
and implement the application-specific service functionality.
Application-specific classes are also responsible for supply-
ing the necessary “encode-state” and “decode-state” conver-
sion functions necessary to enable service migration [17].

4.2 The Service Repository Class

The SVC-CON framework supports the configuration of
both single-service and multi-service network daemons.
To simplify administration, it is often necessary to in-
dividually and/or collectively control and coordinate the
Service Objects that comprise a daemon’s services.
The Service Repository is an object manager that
coordinates local and remote queries and updates involv-
ing the services offered by a SVC-CON-based application.
A search structure within the object manager binds ser-
vice names (represented as ASCII strings) with instances
of composite Service Objects (represented as C++ ob-
ject code). A service name uniquely identifies an instance
of a Service Object stored in the repository. As shown
in Figure 4 (2), each entry in the Service Repository

8



Symbol Description

dynamic Dynamically link and enable a service
static Enable a statically linked service
remove Completely remove a service
suspend Suspend service without removing it
resume Resume a previously suspended service
stream Configure a Stream into a daemon

Table 1: Service Config Directives

contains a pointer to the Service Object portion of an
application-specific C++ derived class.

Figure 4 (2) also depicts the member functions that load,
enable, disable, reenable, or remove Service Objects
from a daemon statically and/or dynamically. For dynami-
cally linked Service Objects, the repository also stores
a handle to the underlying shared object. This handle is
used to unlink and unload a Service Object from a
running daemon when its services are no longer required.
In addition, an iterator class is provided to visit every
Service Object in the repository without compromis-
ing data encapsulation. For example, a complete listing of
all currently enabled daemon services may be obtained by
calling the info virtual function on each enabled entry in
the Service Repository. This iterator feature is used
by the standard Service Directory service described
in Section 4.3.2 below.

4.3 The Service Config Class

As illustrated in Figure 4 (3), the Service Config class
is the central abstraction in the SVC-CON framework. This
class integrates the other foundation services (such as the
Service Repository and the Reactor) to facilitate
the static and/or dynamic configuration of concurrent, multi-
service network daemons. The following subsections out-
line the configuration and run-time activities performed by
Service Config class functions.

4.3.1 Server Daemon Configuration Activities

This subsection briefly describes the standard daemon con-
figuration process supported by the SVC-CON framework.
Alternative mechanisms for statically or dynamically insert-
ing and/or removing services from a daemon are also exam-
ined. In addition, the steps used to implement the various
mechanisms are also outlined.

� The svc.conf File: The svc.conf file is the heart of the
SVC-CON configuration and reconfiguration process. Each
instance of the Service Config class may be associated
with a distinct svc.conf configuration file that charac-
terizes essential attributes of the services offered by a dae-
mon. This file simplifies both service administration and
daemon development. Service administration is simplified
by consolidating service installation parameters into a sin-
gle location. Likewise, daemon development is simplified

by decoupling the configuration and reconfiguration mecha-
nisms provided by the framework from the policies specified
in the svc.conf file. The svc.conf file is consulted
when a new instance of a daemon is first started. This file is
also when a running daemon receives either a pre-designated
external signal or IPC request from a remote management
facility.

Figure 5 uses extended-Backus/Naur Format (EBNF) to
describe the primary syntactical elements of service config
entries used in a svc.conf file. Each line in the file begins
with a service config directive that indicates the configuration
activity to perform (Table 1 summarizes the valid service
config directives). For example, the dynamic directive is
followed by a service identifier:

dynamic /svcs/Logger.so:_alloc() Logger -p 7001

/svcs/Logger.so: alloc() is a service identifier that
indicates the pathname of a shared object file to dynamically
link (/svcs/logger), as well as the name of the associ-
ated Service Object (or in this case, a function called
alloc that dynamically allocates a Service Object).

The remaining contents on the line (Logger -p 7001)
represent a service-specific set of configuration parame-
ters. These parameters are passed to the init function
of the service as argv-style command-line arguments. The
argv[0] argument (Logger) specifies the service name
that will identify the corresponding Service Object
within the Service Repository.

Figure 6 illustrates a complete svc.conf file used to
configure EOS project services (described further in Sec-
tion 5). This figure also indicates how services may be selec-
tively configured either statically (e.g., Svc Directory,
MML Svc, and GICI Svc) or dynamically (e.g., PBX Svc,
XAD Svc, and Client Muxer) in the same daemon, de-
pending on the format of the configuration file.

� Static Configuration: In a statically configured daemon,
all Service Objects are completely specified at daemon
installation-time. This limits a daemon to a specific, non-
reconfigurable set of services, which may be necessary for
secure daemons that contain only “trusted” services. Imple-
menting a daemon composed solely of statically configured
services requires developers to derive a subclass from the
Service Config base class. This subclass then becomes
responsible for pre-initializing theService Repository
to contain only trusted services. The derived class may
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<service-config-entry> ::= <service-config-directive>
[ <service-identifier> ]
SERVICE_NAME
[ <optional-parameters> ]

<service-config-directive> ::= DYNAMIC | STATIC | REMOVE | DISABLE | ENABLE
<service-identifier> ::= SHARED_OBJECT ’:’ [ <service_initializer> ]
<service_initializer> ::= OBJECT_NAME | FUNCTION_NAME ’(’ ’)’

Figure 5: EBNF Format for a Service Config Entry

Svc
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Reactor

Service
Config

Client
Logger

Device
Adapter

Client
Router

Event
Analyzer

CCM
App

svc.conf
static        Svc_Manager  "-p  911"
dynamic   Client_Logger
                 Service_Object * /svcs/Cli_Logger.so : alloc() "-p 2112"
stream CCM_App dynamic STREAM * /svc/CCM_App.so : alloc()
{
    dynamic Device_Adapter Module * /svcs/DA.so : alloc() "-p 2001"
    dynamic Event_Analyzer Module * /svcs/EA.so : alloc()
    dynamic Client_Router Module * /svcs/CR.so : alloc() "-p 2010"
}

Figure 6: Object Components in the Server Daemon Framework

also redefine one or more of the virtual functions inher-
ited from the base class so that only the pre-initialized
Service Repository is searched to locate a service
(the default behavior is to search the symbol table of the
dynamically linked shared object to locate the appropriate
Service Object). These modifications ensure that any
dynamic service configuration directives in the svc.conf
file will be properly ignored. As a further precaution to pre-
vent the use of non-trustedservices, derived classes should be
configured to use onlyService Objects that are fully re-
solved at static link-time (i.e., no implicit dynamically linked
services should be allowed). Clearly, static configuration
trades off flexibility for increased security.

�Dynamic Configuration: A dynamically configured dae-
mon permits the insertion, modification, or removal of
Service Objects during the initial daemon invocation

sequence. This behavior is specified by placing the dynamic
service configuration directive before the service identifier in
the svc.conf file. Dynamic configuration requires the un-
derlying operating system to support explicit dynamic linking
(SVR4 and OSF/1 UNIX and Windows NT all support this
feature). In general, dynamic linking simplifies the config-
uration of network daemons by avoiding the modification,
recompilation, relinking, or restarting of running daemon
code. Moreover, if every daemon service is dynamically
configured, the svc.conf file contains all the information
necessary to populate the Service Repository. This
makes it possible to extend a daemon’s services “in the field”
without requiring an administrator to have access to the orig-
inal source code.

Dynamic configuration also helps reduce overall end-
system memory utilization by creating instantiations of
Service Object derived classes as dynamically linked
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shared objects. These Service Objects will not be
loaded into a daemon unless the svc.conf file indicates
they are actually required. Naturally, developers must care-
fully consider the subtle trade-offs between flexibility and
time/space efficiency when choosing between dynamic and
static linking ([6] enumerates many of the trade-offs).

�Dynamic Reconfiguration: Dynamic reconfiguration al-
lows the modification of services offered by a network dae-
mon without actually terminating an executing instance of
the daemon [18]. Reconfiguration may be triggered by
external events that are generated both locally and/or re-
motely. For example, when an executing SVC-CON receives
a pre-designated signal (e.g., SIGHUP) that was generated
on the local host machine, the configuration steps are per-
formed again for any services added to or removed from the
svc.conf file. Likewise, the Service Directory ser-
vice described below in Section 4.3.2 may also be used to
initiate reconfigurationacross a network via a remote daemon
service management facility.

The development and administrative steps used to add a
service to aSVC-CON are straight-forward. First, a developer
writes a new service that inherits from the interface offered
by the Service Object/Event Handler class hierar-
chy. In general, services may be arbitrarily complex, though
many standard network services (such as ftp and telnet)
do not require the retention of persistent state informationbe-
tween consecutive service invocations (these “stateless” ser-
vices are often simpler to configure and reconfigure reliably).
Next, an object of the derived class is instantiated, linked into
the daemon, and inserted into the Service Repository
(this sequence of steps may be performed by the SVC-CON
either statically at compile-time or dynamically at run-time).
The svc.conf file is then updated manually or via an ad-
ministrative tool to contain an additional entry that identifies
the location of the new service and specifies its command-line
configuration parameters, which indicate the arguments to
pass the init function of the specified Service Object
and whether to use static or dynamic linking. At this point,
the developer either starts, restarts, or sends a pre-designated
signal to a SVC-CON to initiate configuration or reconfigu-
ration.

The configuration steps performed internally by a net-
work daemon are initiated when the application calls the
open function of the SVC-CON class. This function parses
command-line arguments to enable daemon options, opens
a channel to the distributed logging service, invokes the
daemonization code, dynamically creates an instance of the
Reactor, and calls the process directives function
to process the daemon’s configuration file.

The process directives function processes the
svc.conf file line-by-line. It first converts each line
into an argv-style vector of arguments. Then it carries
out the specified service configuration directive. For exam-
ple, if the dynamic directive appears, the load service
function is called to (1) dynamically link the appropri-
ate Service Object into the address space of the dae-

mon and (2) insert the address of the object into the
Service Repository. Likewise, if the remove direc-
tive is specified, the unload service function is called
to gracefully close down and delete the service from the
Service Repository. If the service was dynamically
linked, the shared object file is unloaded from the executable
daemon.

The enable service function is invoked if the con-
figuration directive is static or enable. This function
queries the Service Repository to determine the ap-
propriate instance of the statically or dynamically configured
Service Object that is currently bound to the associ-
ated service name. After the instance is located, its init
function is called and the remaining argv arguments are
passed as a parameter. If init returns the REGISTER SVC
value, the Event Handler portion of the newly initialized
Service Object is registered with the Reactor auto-
matically.

If the disable directive appears at the beginning of a line,
the disable service function is invoked. This func-
tion temporarily restricts access to the named service without
actually unlinking and fully removing it from the daemon.
Temporarily disabling services is useful during maintenance
periods when certain services may be inaccessible, but their
existing non-persistent state informationmust be retained un-
til the service is reactived. A subsequence reconfiguration
may be performed to re-enable the service without perform-
ing the entire sequence of initialization steps again.

4.3.2 Server Daemon Run-Time Activities

When configuration activities are complete, an application
calls theService Config’srun event loop function.
This function enters an endless loop that continuously calls
the Reactor’s handle events service dispatch func-
tion, which blocks awaiting the occurrence of events such
as I/O from clients or timer expiration. As these events
occur, the Reactor automatically dispatches previously-
registered application-specific handler(s) to perform the des-
ignated services.

Run-time activities may be influenced by a set of
Service Object subclasses (illustrated in Figure 7) that
perform the following standard daemon foundation services:

� Eager and Lazy Process and Thread Generation: Two
standard subclasses of Service Object implement the
“eager” and “lazy” process and thread generation techniques
discussed in Section 3.2.3 above. The Eager Gen sub-
class pre-spawns one or more processes or threads to form a
pool that minimizes service startup overhead when requests
arrive. The Lazy Gen subclass, on the other hand, only
spawns a new process if an executing request does not finish
within a certain time interval. Application services that use
these techniques may inherit from either the Eager Gen or
Lazy Gen subclasses.

� Lightweight Dynamic Service Spawning: Two sub-
classes of Service Object implement service spawning
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Figure 7: Standard Service Object Subclasses

techniques that are typically “lighter-weight” than the process
invocation method used by inetd and listen. For exam-
ple, rather than use fork and exec to create new processes
that perform service requests externally, the Link Spawn
subclass dynamically links and executes a new service in-
ternally. Moreover, services derived from Link Spawn are
loaded and unloaded on demand. This contrasts with the
default dynamic configuration behavior obtained by speci-
fying the dynamic service config directive, which pre-loads
services during daemon initialization. The Link Spawn
subclass is implemented by (1) dynamically linking an ob-
ject file, (2) obtaining the entry-point of the appropriate
Service Object in this file, and (3) invoking the ser-
vice to perform the client request. Upon completion, the
service installed by Link Spawn is automatically removed
by closing down the Service Object and unlinking the
object file from the daemon’s address space.3

TheThread Spawn subclass provides another technique
for handling service requests internally. It creates a separate
thread on-demand and each thread carries out the service
to completion. However, unlike the Eager Gen subclass,
these threads are not pre-spawned and cached. The use of
threads is typically less time consuming than using fork
and exec [20]. On the other hand, the fork/exec ap-
proach may be preferable in situations where the owner of
the child process must differ from the parent for security
reasons, which is typically the case with remote login and
file access services. Moreover, spawning separate threads
may be less robust than spawning separate processes since
all threads share resources in a process and global data struc-
tures may be corrupted if errors occur. In general, developers
must consider their application requirements carefully when
selecting an appropriate service execution agent.

� Service Directory: The Service Directory sub-
class provides local and/or remote clients with access to
daemon administration commands that report and manage

3This technique was inspired by the command-line interpreter mecha-
nisms used to invoke programs in Multics [19].

the services currently offered by a network daemon. These
commands “externalize” certain internal service attributes
in an active network daemon. During daemon config-
uration, a Service Directory object may be regis-
tered at a well-known communication port accessible by
clients using the following entry in the svc.conf file (the
Service Directory service is statically linked into the
SVC-CON framework):

static Service_Directory -d -p 9000

When clients request a summary of a daemon’s active ser-
vices, theService Repository iterator is automatically
invoked by the Service Directory. This iterator trans-
fers a complete listing of the developer-supplied information
for each enabled service back to the client. This listing indi-
cates both the address format and the transport protocol to use
to contact a given service, and provides a brief explanation
of each service. The Service Directory may also be
used to trigger reconfiguration requests from remote sites.

� Internet Superserver Emulation: The external service
dispatching semantics of inetd are provided via a subclass
of Service Object called Extern Spawn. This class
spawns processes on-demand to handle client requests as
external services. By default, Extern Spawn utilizes the
standard inetd.conf file and serves as a replacement for
inetd.

5 Using the Server Daemon for EOS
Applications

This section describes how the SVC-CON framework
forms the basis for implementing the primary services that
comprise the Ericsson EOS application family. The boxes en-
closing certain collections of services in Figure 8 indicate the
default binding of services to processes (the thread bindings
are described further below). The SVC-CON framework’s
configuration techniques, tools, and resources simplify the
task of modifying these default bindings in response to per-
formance enhancements and additional application require-
ments. The following paragraphs describe the EOS services
and indicate the communication protocol, service, and con-
currency dimensions associated with each service:

� GICI Manager Services: The GICI (General Informa-
tion Computer Interface) Manager provides services that ex-
change low-level, real-time status information with a PBX.
The GICI protocol operates over an RS-232 serial link, ex-
changing signals (represented as short sequences of ASCII
characters) between an external computer and the Informa-
tion Computer Unit (ICU) port on the PBX. The GICI Man-
ager provides services that transmit signals to the PBX upon
request of a client and asynchronously receive signals gener-
ated by the PBX. To increase throughout and reduce latency,
this service is implemented internally via a single separate
thread within the Directory Management application process.
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Figure 8: Services Offered by EOS Applications

� MML Manager Services: The MML (Man-Machine
Language) Manager provides services that perform low-
level, static configuration operations on the PBX. The MML
protocol involves the synchronous, request-response trans-
mission of an MML command from an external computer to
the I/O Processor Unit (IPU) of a PBX via an RS-232 serial
link. An MML command is a string of ASCII characters con-
taining a command identification code and associated param-
eters. The response from the PBX is returned to the external
computer via the same RS-232 link. The MML Manager is
implemented in the Extension Management application as an
internal service via a separate thread that serializes multiple
clients accessing a PBX.

� Signal Router Services: The Signal Router services pro-
vide capabilities for demultiplexing GICI signals passed from
the GICI Manager monitoring a PBX to the proper client(s)
that have registered to receive the generated signals. This
service is implemented internally via a single separate thread
within the Call Center Management application (the thread
uses a multicast protocol [21] to forward signals to interested
clients).

� PBX Manager Services: The PBX Manager provides
services for high-level PBX management operations such as
call profiling, diversion management, and message manage-
ment. This service is implemented internally within the Di-
rectory Management application and is controlled by a Client
Muxer.

� Client Muxer: A Client Muxer enables one or more ser-
vices to communicate concurrently with multiple clients via
connection-oriented or request-response protocols (such as
TCP or RPC, respectively). A separate thread is maintained
for each client connection. Depending on configuration pa-
rameters, threads may be allocated from pool spawned by
Eager Gen or on-demand via Thread Spawn.

�Extension Administration (XAD) Services: The Exten-
sion Administration services provide high-level PBX opera-
tions such as adding, deleting, and modifying extensions. In
addition, services are provided to download PBX extension
configuration information, which is mirrored in a database on
the server to improve response time and off-load redundant
processing from the PBX. This service is implemented as an
internal service that interacts with clients via a Client Muxer
communicating over a connection-oriented protocol.

� Batch Manager Services: The Batch Manager provides
scheduling services for queueing and executing extension ad-
ministration requests at a pre-determined time. Services are
provided to insert new batch requests, delete batch requests
(that have not yet been executed), or query the completion
status of batch requests that have been executed. This service
is implemented as an external service running in a separate
process invoked periodically via a service dispatcher driven
by an external system clock (such as the UNIX cron facil-
ity).

The layering of the services in Figure 8 illustrates the uses
relations between the various services in each application.4

In addition to reusing the foundation classes provided by the
SVC-CON the EOS applications also reuse several of the
services described above. For example, the GICI Manager
service is shared by the Call Center Management and Direc-
tory Management applications. Likewise, the Client Muxer
service is reused by the Directory Management and Extension
Management applications. In general, services may be im-
plemented as shared objects to reduce primary and secondary

4Currently, the layered application services interoperate via ad hoc com-
munication techniques (such as message queues,shared memory,and param-
eter passing). Future versions of the SVC-CONwill incorporate a user-level
communication framework known as uStreams [22] to handle hierarchically-
organized services [23] more elegantly and efficiently (e.g., by reducing
context switching and data copying overhead [24]).
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storage consumption.
Note that the SVC-CON framework tries to make as few

assumptions as possible regarding the structure of the client
(and even the server). Basically, the primary contribution
of the SVC-CON is to provide a set of object-oriented inter-
faces and standard mechanisms for automatically configuring
a set of (practically arbitrary) services into a server applica-
tion (actually, the same approach could also be used for the
client, though that is somewhat less common). The term
“practically arbitrary” indicates that the current version as-
sumes services will be communicating via an I/O descriptor
that is capable of being select’d or poll’d. Therefore,
it is feasible to integrate the svc functionality “underneath”
an RPC communication model, though it might require some
quasi-portable assumptions to extract the underlying descrip-
tor from a given RPC toolkit.

We are currently evaluating the performance of the config-
uration depicted in Figure 8 to determine whether to incor-
porate other SVC-CON features such as Link Spawn and
Lazy Gen. We are also investigating service reconfigura-
tion policies to formulate guidelines that ensure the dynamic
modification of a daemon does not corrupt or seriously dis-
rupt existing services. A more ambitious extension involves
using the SVC-CON mechanisms to experiment with service
migration policies that relocate certain services dynamically
to reduce overall system workload.

6 Concluding Remarks

The SVC-CON is an integration framework that supports
static and dynamic configuration of internal and external net-
work services the execute within one or more OS processes
and threads. The long-termgoals of this project are (1) to pro-
duce an extensible environment that coordinates reusable ab-
stractions and components to support families of distributed
applications and (2) to devise techniques and tools for de-
veloping distributed systems that are efficient, cost-effective,
modular, scalable, extensible, and easily configured and in-
stalled. To help achieve these goals, the general principles
underlying the SVC-CON framework involve (1) separating
policies from mechanisms via object-oriented class abstrac-
tions, inheritance, dynamic binding, and parameterized types
in order to enhance the reuse of common network daemon
components, (2) decoupling the binding of OS processes
and threads from the application services to improve flex-
ibility and performance, and (3) utilizing dynamic linking
and threads to improve extensibility and permit fine-grained
time/space tradeoffs.

The existing prototype implementation described in this
paper fulfills many of the project’s goals. We are currently
using the SVC-CON framework to configure, install, and ad-
minister a suite of concurrent network services for the Erics-
son EOS client/server PBX management applications. Thus
far, the primary benefits of the framework center around en-
abling developers to (1) enhance network daemon function-
ality and reliability and (2) fine-tune performance without

extensive redevelopment and reinstallation effort. For exam-
ple, debugging a faulty service typically involves reinstalling
a functionally equivalent service containing additional instru-
mentation that helps isolate the source of erroneous behavior.
The utility of certain features remain to be seen. For exam-
ple, the Link Spawn service may be less applicable for
network servers running on multi-threaded platforms, com-
pared with the Thread Spawn service. In addition, we are
experimenting with certain reconfiguration and service mi-
gration mechanisms offered by the SVC-CON to determine
circumstances where they may be applied reliably. We are
also developing a suite of tools that reduce the effort required
to administer daemon configuration files (which are currently
managed manually).

An implementation of a public domain subset of the
SVC-CON framework described in this article is avail-
able via anonymous ftp from ics.uci.edu in the
gnu/C++ wrappers.tar.Z file. This file also con-
tains the source code, documentation, and examples for the
IPC SAP and Reactor utilities described in [3, 4, 5].
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