
The C++ Programming

Language

C++ Tips and Traps

Outline

Tips for C Programmers

C++ Traps and Pitfalls

E�ciency and Performance

1

Tips for C Programmers

� Use const instead of #de�ne to declare
program constants, e.g.,

{ C

#de�ne PI 3.14159

#de�ne MAX INT 0x7FFFFFFF

#de�ne MAX UNSIGNED 0xFFFFFFFF

{ C++

const double PI = 3.14159;

const int MAX INT = 0x7FFFFFFF;

const unsigned MAX UNSIGNED = 0xFFFFFFFF;

� Names declared with #de�ne are untyped
and unrestricted in scope

{ In contrast, names declared with const are

typed and follow C++ scope rules

� e.g., consts have static linkage: : :

2

Tips for C Programmers (cont'd)

� Use inline functions and parameterized types
instead of preprocessor macros, e.g.,

{ C

� Macros

#de�ne MAX(A,B) (((A) >= (B)) ? (A) : (B))

/* : : :*/

MAX (a++, b++); /* Trouble! */

� Using a type as a parameter:

#de�ne DECLARE MAX(TYPE) \

TYPE MAX (TYPE a, TYPE b) \

f return a >= b ? a : b; g

DECLARE MAX (int)

DECLARE MAX (double)

DECLARE MAX (char)

{ C++

inline int MAX (int a, int b) freturn a >= b ? a : b;g

/* : : :*/

MAX (a++, b++); /* No problem! */

template <class T> inline

MAX (T a, T b) f return a >= b ? a : b; g

3

Tips for C Programmers (cont'd)

� Note, there are still some uses for prepro-
cessor, however, e.g.,

{ Wrapping headers and commenting out code

blocks:

#ifndef FOOBAR H

#de�ne FOOBAR H

: : :

#endif

{ Stringizing and token pasting

#de�ne name2(A,B) A##B

{ File inclusion

#include <iostream.h>

4

Tips for C Programmers (cont'd)

� Be careful to distinguish between int and

unsigned

� Unlike C, C++ distinguishes between int

and unsigned int, so be careful when us-
ing overloaded functions:

#include <iostream.h>

inline void f (int) f cout << "f (int) called\n"; g

inline void f (unsigned) f cout << "f (unsigned) called\n"; g

int main (void) f

f (1); // calls f (int)

f (1U); // calls f (unsigned)

g

5

Tips for C Programmers (cont'd)

� Consider using references instead of point-
ers as function arguments, e.g.,

{ C

void screen size (unsigned *height, unsigned *width);

/* : : :*/

unsigned height, width;

screen size (&height, &width);

{ C++

void screen size (unsigned &height, unsigned &width);

// : : :

unsigned height, width;

screen size (height, width);

� However, it is harder to tell if arguments

are modi�ed with this approach!

6

Tips for C Programmers (cont'd)

� Declare reference or pointer arguments that
are not modi�ed by a function as const,
e.g.,

{ C

struct Big Struct f int array[100000], int size; g;

void foo (struct Big Struct *bs);

// passed as pointer for e�ciency

int strlen (char *str);

{ C++

void foo (const Big Struct &bs);

int strlen (const char *str);

� This allows callers to use const values

as arguments and also prevents functions

from accidentally modifying their arguments

7

Tips for C Programmers (cont'd)

� Use overloaded function names instead of
di�erent function names to distinguish be-
tween functions that perform the same
operations on di�erent data types:

{ C

int abs (int x);

double fabs (double x);

long labs (long x);

{ C++

int abs (int x);

double abs (double x);

long abs (long x);

� Do not forget that C++ does NOT per-

mit overloading on the basis of return type!

8

Tips for C Programmers (cont'd)

� Use new and delete instead of malloc and
free, e.g.,

{ C

int size = 100;

int *ipa = malloc (size); /* Error!!! */

/* : : :*/

free (ipa);

{ C++

const int size = 100;

int *ipa = new int[size];

// : : :

delete ipa;

� new can both help avoid common errors

with malloc and also ensure that construc-

tors and destructors are called

9

Tips for C Programmers (cont'd)

� Use iostream I/O operators << and >> in-
stead of printf and scanf

{ C

oat x;

scanf ("%f", &x);

printf ("The answer is %f\n", x);

fprintf (stderr, "Invalid command\n");

{ C++

cin >> x;

cout << "The answer is " << x << "\n";

cerr << "Invalid command\n";

� The << and >> stream I/O operators are

(1) type-safe and (2) extensible to user-

de�ned types

10

Tips for C Programmers (cont'd)

� Use static objects with constructor/destructors
instead of explicitly calling initialization/�nalization
functions

{ C

struct Symbol Table f

/* : : :*/
g;
void init symbol table (struct Symbol Table *);
int lookup (struct Symbol Table *);
static struct Symbol Table sym tab;
int main (void) f

char s[100];
init symbol table (&sym tab);
/* : : :*/

g

{ C++

class Symbol Table : private Hash Table f

public:
Symbol Table (void); // init table
int lookup (String &key);
~Symbol Table (void);

g;
static Symbol Table sym tab;
int main (void) f

String s;
while (cin >> s)

if (sym tab.lookup (s) != 0)
cout << "found " << s << "\n";

g

11

Tips for C Programmers (cont'd)

� Declare variables near the place where they
are used, and initialize variables in their
declarations, e.g.,

{ C

void dup assign (char **dst, char *src) f

int len;

int i;

if (src == *dst) return;

if (*dst != 0) free (*dst);

len = strlen (src);

*dst = (char *) malloc (len + 1);

for (i = 0; i < len; i++) (*dst)[i] = src[i];

g

{ C++

void dup assign (char *&dst, const char *src) f

if (src == dst) return;

delete dst; // delete checks for dst == 0

int len = strlen (src);

dst = new char[len + 1];

for (int i = 0; i < len; i++) dst[i] = src[i];

g

12

Tips for C Programmers (cont'd)

� Use derived classes with virtual functions
rather than using switch statements on
type members:

{ C

#include <math.h>

enum Shape Type f

TRIANGLE, RECTANGLE, CIRCLE

g;

struct Triangle f oat x1, y1, x2, y2, x3, y3; g;

struct Rectange f oat x1, y1, x2, y2; g;

struct Circle f oat x, y, r; g;

struct Shape f

enum Shape Type shape;

union f

struct Triange t;

struct Rectange r;

struct Circle c;

g u;

g;

13

� C (cont'd)

oat area (struct Shape *s) f

switch (s->shape) f

case TRIANGLE:

struct Triangle *p = &s->u.t;

return fabs (

(p->x1 * p->y2 � p->x2 * p->y1) +

(p->x2 * p->y3 � p->x3 * p->y2) +

(p->x3 * p->y1 � p->x1 * p->y3)) / 2;

case RECTANGLE:

struct Rectange *p = &s->u.r;

return fabs ((p->x1 � p->x2) *

(p->y1 � p->y2));

case CIRCLE:

struct Circle *p = &s->u.c;

return M PI * p->r * p->r;

default:

fprintf (stderr, "Invalid shape\n");

exit (1);

g

g

14

� C++

#include <iostream.h>

#include <math.h>

class Shape f

public:

Shape () fg

virtual oat area (void) const = 0;

g;

class Triangle : public Shape f

public:

Triangle (oat x1, oat x2, oat x3,

oat y1, oat y2, oat y3);

virtual oat area (void) const;

private:

oat x1, y1, x2, y2, x3, y3;

g;

oat Triangle::area (void) const f

return fabs ((x1 * y2 � x2 * y1) +

(x2 * y3 � x3 * y2) +

(x3 * y1 � x1 * y3)) / 2;

g

15

� C++

class Rectange : public Shape f

public:

Rectangle (oat x1, oat y1, oat x2, oat y2);

virtual oat area (void) const;

private:

oat x1, y1, x2, y2;

g;

oat Rectangle::area (void) const f

return fabs ((x1 � x2) * (y1 � y2));

g

class Circle : public Shape f

public:

Circle (oat x, oat y, oat r);

virtual oat area (void) const;

private:

oat x, y, r;

g;

oat Circle::area (void) const f

return M PI * r * r;

g

16

Tips for C Programmers (cont'd)

� Use static member variables and functions

instead of global variables and functions,

and place enum types in class declarations

� This approach avoid polluting the global
name space with identi�ers, making name
conicts less likely for libraries

{ C

#include <stdio.h>

enum Color Type f RED, GREEN, BLUE g;

enum Color Type color = RED;

unsigned char even parity (void);

int main (void) f

color = GREEN;

printf ("%.2x\n", even parity ('Z'));

g

17

Tips for C Programmers (cont'd)

� static members (cont'd)

{ C++

#include <iostream.h>

class My Lib f

public:

enum Color Type f RED, GREEN, BLUE g;

static Color Type color;

static unsigned char even parity (char c);

g;

My Lib::Color Type My Lib::color = My Lib::RED;

int main (void) f

My Lib::color = My Lib::GREEN;

cout << hex (int (My Lib::even parity ('Z')))

<< "\n";

g

� Note that the new C++ \namespaces"

feature will help solve this problem even

more elegantly

18

Tips for C Programmers (cont'd)

� Use anonymous unions to eliminate un-
necessary identi�ers

{ C

unsigned hash (double val) f

static union f

unsigned asint[2];

double asdouble;

g u;

u.asdouble = val;

return u.asint[0] ^ u.asint[1];

g

{ C++

unsigned hash (double val) f

static union f

unsigned asint[2];

double asdouble;

g;

asdouble = val;

return asint[0] ^ asint[1];

g

19

C++ Traps and Pitfalls

� Ways to circumvent C++'s protection scheme:

#de�ne private public

#de�ne const

#de�ne class struct

� Note, in the absence of exception handling
it is very di�cult to deal with constructor
failures

{ e.g., in operator overloaded expressions that

create temporaries

20

C++ Traps and Pitfalls (cont'd)

� Initialization vs Assignment

{ Consider the following code

class String f

public:

String (void); // Make a zero-len String

String (const char *s); // char * --> String

String (const String &s); // copy constructor

String &operator= (const String &s); // assignment

private:

int len;

char *data;

g;

class Name f

public:

Name (const char *t) f s = t; g

private:

String s;

g;

int main (void) f

// How expensive is this?????????

Name neighbor = "Joe";

g

21

� Initialization vs Assignment (cont'd)

{ Constructing \neighbor" object is costly

1. Name::Name gets called with parameter \Joe"

2. Name::Name has no base initialization list, so
member object \`neighbor.s"' is constructed

by default String::String

� This will probably allocate a 1 byte area

from freestore for the '\0'

3. A temporary \Joe" String is created from

parameter t using the CONST CHAR * con-

structor

� This is another freestore allocation and a

strcpy

4. String::operator= (const string &) is
called with the temporary String

5. This will delete the old string in s, use an-

other new to get space for the new string,

and do another strcpy

22

6. The temporary String gets destroyed, yet

another freestore operation

{ Final score: 3 new, 2 strcpy, and 2 delete

Total \cost units": 7

� Initialization vs Assignment (cont'd)

{ Compare this to an initialization-list version.

Simply replace

Name::Name (const char* t) f s = t; g

with

Name::Name (const char* t): s (t) f g

{ Now construction of \neighbor" is:

1. Name::Name (const char *) gets called with

parameter \Joe"

2. Name::Name (const char *) has an init list,

so neighbor::s is initialized from S with

String::String (const char *)

3. String::String (\Joe") will probably do a new

and a strcpy

{ Final score: 1 new, 1 strcpy, and 0 delete

Total \cost units": 2

{ Conclusion: always use the initialization syn-

tax, even when it does not matter: : :

23

C++ Traps and Pitfalls (cont'd)

� Although a function with no arguments
must be called with empty parens a con-
structor with no arguments must be called
with no parens!

class Foo f

public:

Foo (void);

int bar (void);

g;

int main (void) f

Foo f;

Foo � (); // declares a function returning Foo!

f.bar (); // call method

f.bar; // a no-op

�.bar (); // error!

g

24

C++ Traps and Pitfalls (cont'd)

� Default Parameters and Virtual Functions

extern "C" int printf (const char *, : : :);

class Base f

public:

virtual void f (char *name = "Base") f

printf ("base = %s\n", name);

g

g;

class Derived : public Base f

public:

virtual void f (char *name = "Derived") f

printf ("derived = %s\n", name);

g

g;

int main (void) f

Derived *dp = new Derived;

dp->f (); /* prints "derived = Derived" */

Base *bp = dp;

bp->f (); /* prints "derived = Base" */

return 0;

g

25

C++ Traps and Pitfalls (cont'd)

� Beware of subtle whitespace issues: : :

int b = a //* divided by 4 */4;

-a;

/* C++ preprocessing and parsing */

int b = a -a;

/* C preprocessing and parsing */

int b = a/4; -a;

� Note, in general it is best to use whites-
pace around operators and other syntactic
elements, e.g.,

char *x;

int foo (char * = x); // OK

int bar (char*=x); // Error

26

E�ciency and Performance

� Inline Functions

{ Use of inlines in small programs can help per-

formance, extensive use of inlines in large projects

can actually hurt performance by enlarging code,

bringing on paging problems, and forcing many

recompilations

{ Sometimes it's good practice to turn-o� inlin-

ing to set a worst case performance base for

your application, then go back an inline as part

of performance tuning

� Parameter Passing

{ Passing C++ objects by reference instead of

value is a good practice

� It's rarely to your advantage to replicate data

and �re o� constructors and destructors un-

necessarily

27

E�ciency and Performance

(cont'd)

� Miscellaneous Tips

{ Use good memory (heap) management strate-

gies

{ Develop good utility classes (for strings, in par-

ticular)

{ Good object and protocol design (particularly,

really isolating large-grained objects)

{ Give attention to paging and other ways your

application uses system resources

� While C++ features, if used unwisely, can
slow an application down, C++ is not in-
herently slower than say C, particularly for
large scale projects

{ In fact, as the size and complexity of software

increases, such comparisons aren't evenrele-

vant since C fails to be a practical approach

whereas C++ comes into its own

28

