
Object Interconnections

Comparing Alternative Programming Techniques for Multi-threaded CORBA Servers: Thread Pool
(Column 6)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column will appear in the April 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

Modern OS platforms like Windows NT, and OS/2 and many
flavors of UNIX provide extensive library and system call
support for multi-threaded applications. However, program-
ming multi-threaded applications is hard and programming
distributed multi-threaded applications is even harder. In par-
ticular, developers must address sources ofaccidentaland
inherentcomplexity:

� Accidental complexity of multi-threaded programming
arises from limitations with programming tools and design
techniques. For example, many debuggers can’t handle
threaded programs and can’t step across host boundaries.
Likewise, algorithmic design [1] makes it hard to reuse ap-
plication components because it tightly couples the structure
of a threaded application to the functions it performs.

� Inherent complexity of multi-threaded programming
arises from challenges such as avoiding deadlock and live-
lock, eliminating race conditions for shared objects, and
minimizing the overhead of context switch, synchronization,
and data movement. An inherently complex aspect of pro-
gramming multi-threaded distributed applications (particu-
larly servers) involves selecting the appropriate concurrency
model, which is the focus of this column.

Our previous column examined several ways to program
multi-threaded stock quote servers using C, C++ wrappers,
and two versions of CORBA (HP ORB Plus and MT Or-
bix). In that column, we focused on thethread-per-request
concurrency model, where every incoming request causes a
new thread to be spawned to process it. This column exam-
ines and evaluates another concurrency model:thread pool,
which pre-spawns a fixed number of threads at start-up to
service all incoming requests. We illustrate this model by
developing new multi-threaded C, C++, and CORBA imple-
mentations of the stock quote server.

QUOTE SERVERQUOTE SERVER 3:3: ENQUEUE ENQUEUE

REQUESTREQUEST

5:5: RETURN QUOTE VALUE RETURN QUOTE VALUE

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

: Request: Request
QueueQueue

4:4: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

2:2: RECEIVE RECEIVE

REQUESTREQUEST

1:1: REQUEST REQUEST

QUOTEQUOTE

poolpool
threadthread

poolpool
threadthread

poolpool
threadthread

mainmain
threadthread

Figure 1: thread pool Architecture for the Stock Quote
Server

2 The Thread Pool Concurrency
Model

The thread pool concurrency model is a variation of the
thread-per-request we examined last column. The main ad-
vantage of thread-per-request is its simplicity, which is why
it’s used in many multi-threaded ORBs (such as Orbix and
HP ORB Plus). However, dynamically spawning a thread to
handle each new request causes excessive resource utiliza-
tion if the number of requests becomes very large and the
OS resources required to support threads don’t scale up effi-
ciently.

The thread pool model avoids this overhead by pre-
spawning a fixed number of threads at start-up to service all

1

incoming requests. This strategy amortizes the cost of thread
creation and bounds the use of OS resources. Client requests
can execute concurrently until the number of simultaneous
requests exceeds the number of threads in the pool. At this
point, additional requests must be queued (or rejected) until
a thread becomes available.

Figure 1 illustrates the main components in this concur-
rency model. These components include amain thread, a
request queue, and a set ofpool threads. The main thread
receives new requests and inserts them into the tail of the
request queue, while the pool threads remove requests from
the head of the queue and service them. We’ll explore the
implementation and use of these components in this column
using C, C++ wrappers, and CORBA, respectively.

3 The Multi-threaded C Thread Pool
Solution

3.1 C Code

The following example shows a solution written using C,
sockets, and Solaris threads [2]1 As in previous columns, we
use a set of C utility functions to receive stock quote requests
from clients (recv request), look up quote information
(lookup stock price), and return the quote to the client
(send response).

/* WIN32 already defines this. */
#if defined (unix)
typedef int HANDLE;
#endif /* unix */

HANDLE create_server_endpoint (u_short port);
int recv_request (HANDLE, struct Quote_Request *);
int send_response (HANDLE, long stock_value);
int handle_quote (HANDLE);

These functions were first implemented in the October 1995
issue of the C++ Report and were revised to become thread-
safe in the February 1996 issue.

3.1.1 The main() Thread

Our servermain is similar to the one we presented for the
multi-threaded C solution in our last column. The key dif-
ference is that we don’t dynamically spawn a thread for each
new client request. Instead, we create a thread-safe message
queue, a pool of threads, and start an event loop in the main
thread, as shown below:

const int DEFAULT_PORT = 12345;
const int DEFAULT_POOL_SIZE = 4;

int main (int argc, char *argv[])
{

u_short port = /* Port to listen for connections. */
argc > 1 ? atoi (argv[1]) : DEFAULT_PORT;

int pool_size = /* Size of the thread pool. */
argc > 2 ? atoi (argv[2]) : DEFAULT_POOL_SIZE;

/* Create a passive-mode listener endpoint. */

1Porting our implementation to POSIX pthreads or Win32 threads is
straightforward.

HANDLE listener = create_server_endpoint (port);

Handle_Queue handle_queue;

/* Initialize the thread-safe message queue. */
handle_queue_init (&handle_queue);

/* Initialize the thread pool. */
thread_pool_init (&handle_queue, pool_size);

/* The event loop for the main thread. */
svc_run (&handle_queue, listener);
/* NOTREACHED */

}

Thesvc run function runs the main thread’s event loop,
as follows:

void svc_run (Handle_Queue *handle_queue,
HANDLE listener)

{
/* Main event loop. */

for (;;) {
/* Wait to accept a new connection. */
HANDLE handle = accept (listener, 0, 0);

/* Enqueues the request for processing
by a thread in the pool. */

handle_queue_insert (handle_queue, handle);
}
/* NOTREACHED */

}

The main thread runs an event loop that continuously accepts
new connections from clients and enqueues each connec-
tion in a Handle Queue, which is a thread-safe queue of
HANDLEs. Subsequently, a thread in the thread pool will re-
move theHANDLEfrom the queue, extract the client’s stock
quote request, look up the result, and return the result to the
client.

The Handle Queue plays several roles in this design.
First, it decouples the main thread from the pool threads.
This allows multiple pool threads to be active simultaneously
and offloads the responsibility for maintaining the queue
from kernel-space to user-space. Second, it enforces flow
control between clients and the server. When there’s no more
room in the queue, the main thread blocks, which will “back-
propagate” to the clients, preventing them from establishing
new connections. New connection requests will not be ac-
cepted until pool threads have a chance to catch up and can
unblock the main thread.

Each thread in the thread pool is spawned by the
thread pool init function:

void
thread_pool_init (Handle_Queue *handle_queue,

int pool_size)
{

int i;

for (i = 0; i < pool_size; i++)
/* Spawn off the thread pool. */
thr_create

(0, /* Use default thread stack. */
0, /* Use default thread stack size. */
&pool_thread, /* Entry point. */
(void *) handle_queue, /* Entry point arg. */
THR_DETACHED | THR_NEW_LWP, /* Flags. */
0); /* Don’t bother returning thread id. */

}
}

2

3.1.2 The poolthread() Function

Each newly created thread executes the following event loop
in thepool thread function:

void *pool_thread (void *arg)
{

Handle_Queue *handle_queue =
(Handle_Queue *) arg;

/* The event loop for the each
thread in the thread pool. */

for (;;) {
HANDLE handle;

/* Get next available HANDLE. */
handle_queue_remove (handle_queue, &handle);

/* Return stock quote to client. */
handle_quote (handle);

/* Close handle to prevent leaks. */
close (handle);

}
/* NOTREACHED */
return 0;

}

When a pool thread becomes available, it will dequeue the
next handle (corresponding to a client request), use it to
look up the value of the stock quote, and return the quote to
the client.

3.1.3 The Thread-Safe Handle Queue

Most of the complexity in the thread pool implementation
resides in the thread-safeHandle Queue. The main event
loop thread uses this queue to exchangeHANDLEswith the
pool threads. We implement the queue as a Cstruct con-
taining an array ofHANDLEs, bookkeeping information, and
synchronization variables:

#define MAX_HANDLES 100

/* Defines the message queue data. */
typedef struct Handle_Queue
{

/* Buffer containing HANDLEs -- managed
as a circular queue. */

HANDLE queue_[MAX_HANDLES];

/* Keep track of beginning and end of queue. */
u_int head_, tail_;

/* Upper bound on number of queued messages. */
u_int max_count_;

/* Count of messages currently queued. */
u_int count_;

/* Protect queue state from concurrent access. */
mutex_t lock_;

/* Block consumer threads until queue not empty. */
cond_t notempty_;

/* Block consumer threads until queue not full. */
cond_t notfull_;

} Handle_Queue;

TheHandle Queue data structure is managed by the fol-
lowing C functions. Thehandle queue init function
initializes internal queue state:

void handle_queue_init (Handle_Queue *handle_queue,
u_int max)

{
handle_queue->max_count_ = max;
handle_queue->count_ = 0;
handle_queue->head_ = handle_queue->tail_ = 0;

/* Initialize synchronization variables that
are local to a single process. */

mutex_init (&handle_queue->lock_,
USYNC_THREAD, 0);

cond_init (&handle_queue->notempty_,
USYNC_THREAD, 0);

cond_init (&handle_queue->notfull_,
USYNC_THREAD, 0);

}

Three synchronization variables are used to implement
the thread-safeHandle Queue: two condition variables
(cond t notempty and notfull) and one mutex
(mutex t lock). The condition variables enable threads
to insert and removeHANDLEsto and from the queue con-
currently. The mutexlock is used by the condition vari-
ables to serialize access to the internal state of the queue, as
shown in thehandle queue insert function below:

void
handle_queue_insert (Handle_Queue *handle_queue,

HANDLE handle)
{

/* Ensure mutual exclusion for queue state. */
mutex_lock (&handle_queue->lock_);

/* Wait until there’s room in the queue. */
while (handle_queue->count_

== handle_queue->max_count_)
cond_wait (&handle_queue->notfull_,

&handle_queue->lock_);

/* Code to insert handle into queue omitted... */

/* Inform waiting threads that queue has a msg. */
cond_signal (&handle_queue->notempty_);

/* Release lock so other threads can proceed. */
mutex_unlock (&handle_queue->lock_);

}

The handle queue insert function is called by the
thread running the main event loop when it accepts a new re-
quest from a client. The client’sHANDLEis inserted into the
queue if there’s room. Otherwise, the main event loop thread
blocks until thenotfull condition is signaled. This con-
dition is signaled when a pool thread dequeues aHANDLE
from the queue via the followinghandle queue remove
function:

void
handle_queue_remove (Handle_Queue *handle_queue,

HANDLE *first_handle)
{

mutex_lock (&handle_queue->lock_);

/* Wait while the queue is empty. */
while (handle_queue->count_ == 0)

cond_wait (&handle_queue->notempty_,
&handle_queue->lock_);

/* Code to remove first_handle from
queue omitted... */

/* Inform waiting threads that queue isn’t full. */
cond_signal (&handle_queue->notfull_);
mutex_unlock (&handle_queue->lock_);

}

3

Thehandle queue remove function is called by all the
pool threads. This function removes the next available
HANDLEfrom the queue, blocking if necessary until the
queue is no longer empty. After it removes the nextHANDLE
it signals thenotfull condition to inform the main event
loop thread that there’s more room in the queue.2

3.2 Evaluating the C Thread Pool Solution

Depending on the degree of host parallelism and client ap-
plication behavior, the new thread pool solution can improve
the performance of the original thread-per-request approach.
In particular, it will bound the amount of thread resources
used by the server. There are still a number of drawbacks,
however:

� Too much infrastructure upheaval: The implementa-
tion of the thread pool concurrency model shown above is
an extension of the thread-per-request server from our pre-
vious column. We were able to reuse the core stock quote
routines (such asrecv request , send response , and
handle quote). However, the surrounding software ar-
chitecture required many changes. Some changes were
relatively minor (such as pre-spawning a thread pool
rather than a thread-per-request). Other changes required
significant work (such as implementing the thread-safe
Handle Queue).

� Lack of flexibility and reuse: Despite all the effort spent
on our thread-safeHandle Queue, the current implemen-
tation is tightly coupled to the queueing ofHANDLEs. Closer
examination reveals that the synchronization patterns used in
handle queue insert and handle queue remove
can be factored out and reused for other types of thread-safe
queue management. Unfortunately, it is hard to do this flex-
ibly, efficiently, and robustly with the current solution be-
cause C lacks features like parameterized types and method
inlining.

� High queueing overhead: Another problem with the
thread pool solution shown above is that the it may incur a
non-trivial amount of context switching and synchronization
overhead due to implement the thread-safe message queue.
One way to eliminate this overhead is to remove the explicit
message queue and have each of the threads in the pool block
in anaccept call, as follows:

void *pool_thread (void *arg)
{

HANDLE listener = (HANDLE *) arg;
HANDLE handle;

/* Each thread accepts connections
and performs the client’s request. */

while ((handle = accept (listener)) != -1)
/* Return stock quote to client. */
handle_quote (handle);

2There are techniques for minimizing the number of calls to
cond signal , which can improve performance significantly by reducing
context switching overhead. These techniques are beyond the scope of this
column and are discussed in [2, 3].

/* Close handle to prevent leaks. */
close (h);

}
/* NOTREACHED */

}

The main program is similar to the one shown in Sec-
tion 3.1.1, as shown below:

int main (int argc, char *argv[])
{

/* ... */

/* Create a passive-mode listener endpoint. */
listener = create_server_endpoint (port);

/* Initialize the thread pool. */

for (i = 0; i < pool_size; i++)
/* Spawn off the thread pool. */
thr_create

(0, /* Use default thread stack. */
0, /* Use default thread stack size. */
&pool_thread, /* Entry point. */
(void *) listener, /* Entry point arg. */
THR_DETACHED | THR_NEW_LWP, /* Flags. */
0); /* Don’t bother returning thread id. */

}

/* Block waiting for a notification to
close down the server. */

/* ... */

/* Unblock the threads by closing
down the listener. */

close (listener);
}

The main difference between thismain and the previous
one is that we no longer need to use the thread-safe mes-
sage queue since each thread in the pool blocks directly on
theaccept call.

There are factors that may make this new approach less
desirable in some usecases, however:

� Reprioritize request processing– It may be desirable
to handle incoming requests in a different order than
they arrive. By separating request processing from pas-
sive connection establishment, the thread-safe queueing
mechanism makes it possible to reorder the requests rel-
ative to some priority scheme.

� Limits on OS socket accept queue– Many implemen-
tations of sockets limit the number of connections that
can be queued by the operating system. Typically, this
number is fairly low (e.g.,8 to 10). On highly active
servers (such as many WWW sites), this low limit will
prevent clients from accessing the server, even though
there may be available resources to process the client
requests. By queueing the requests in user-space, our
original approach may be more scalable in many situa-
tions.

� Lack of atomicity foraccept – Some operating sys-
tems (e.g., kernels based on BSD UNIX) implement
accept as a system call, so that calls toaccept are
atomic. Other operarting systems (e.g.,many kernels
based on System V UNIX) implement it as a library

4

call, so that calls toaccept arenotatomic. Ifaccept
is not atomic then it’s possible for threads to receive
EPROTOerrors fromaccept , which means “protocol
error” [4]. One solution to this problem is to explicitly
add mutexes around theaccept call, but this locking
can itself become a bottleneck.

� Caching open connections– Our alternative thread pool
solution forces each thread to allocate a new connection
since threads are always blocked inaccept . As shown
below, this may be inefficient in some situations.

Therefore, we’ll continue to use the thread-safe message
queue example throughout the remainder of this paper. Be
aware, however, that there are other ways to implement the
thread pool concurrency model. Some of these approaches
may be better suited for your requirements in certain circum-
stances.

� High connection management overhead: All the
thread pool and thread-per-request server implementations
we’ve examined thus far have set up and torn down a con-
nection for each client request. This approach works fine if
clients only request a single stock quote at a time from any
given server. When clients make a series of requests to the
same server, however, the connection management overhead
can become a bottleneck.

One way to fix this problem is to keep each connection
open until the client explicitly closes it down. However, ex-
tending the C solution to implement this connection caching
strategy is subtle and error-prone. Several “obvious” solu-
tions will cause race conditions between the main thread and
the pool threads. For example, theselect event demul-
tiplexing call can be added to the originalsvc run event
loop, as follows:

// Global variable shared by the svc_run()
// and pool_thread() methods.
static fd_set read_hs;

void svc_run (Handle_Queue *handle_queue,
HANDLE listener)

{
HANDLE maxhp1 = listener + 1;
fd_set temp_hs;

/* fd_sets maintain a set of HANDLEs that
select () uses to wait for events. */

FD_ZERO (&read_hs);
FD_ZERO (&temp_hs);
FD_SET (listener, &read_hs);

/* Main event loop. */

for (;;) {
HANDLE handle;
/* Demultiplex connection and data events */
select (maxhp1, &temp_hs, 0, 0, 0);

/* Check for stock quote requests and
insert the handle in the queue. */

for (handle = listener + 1;
handle < maxhp1;
handle++)

if (FD_ISSET (handle, &temp_hs))
handle_queue_insert (handle_queue, handle);

/* Check for new connections. */
if (FD_ISSET (listener, &temp_hs)) {

handle = accept (listener, 0, 0);
FD_SET (handle, &read_hs);
if (maxhp1 <= handle)

maxhp1 = handle + 1;
}
temp_hs = read_hs;

}
/* NOTREACHED */

}

In addition, thepool thread function would have to
change (to emphasize the differences we’ve prefixed the
changes with/* !!!):

void *pool_thread (void *arg)
{

Handle_Queue *handle_queue =
(Handle_Queue *) arg;

/* The event loop for each
thread in the thread pool. */

for (;;) {
HANDLE handle;

/* Get next available HANDLE. */
handle_queue_remove (handle_queue, &handle);

/* !!! Return stock quote to client. A
return of 0 means the client shut down. */

if (handle_quote (handle) == 0) {
/* !!! Clear the bit in read_hs (i.e., the

fd_set) so the main event loop will ignore
this handle until it’s reconnected. */

FD_CLR (handle, &read_hs);

/* Close handle to prevent leaks. */
close (handle);

}
/* NOTREACHED */
return 0;

}
}

Unfortunately, this code contains several subtle race con-
ditions. For instance, more than one thread can access
the fd set global variableread hs concurrently, which
can confuse thesvc run method’s demultiplexing strat-
egy. Likewise, the main thread can insert the sameHANDLE
into theHandle Queue multiple times. Therefore, multi-
ple pool threads can read from the sameHANDLEsimultane-
ously, potentially causing inconsistent results.

Alleviating these problems will force us to rewrite por-
tions of the server by adding new locks and modifying the
existinghandle quote code. Rather than spending any
more effort revising the C version, we’ll incorporate these
changes into the C++ solution in the next section.

4 The Multi-threaded C++ Wrappers
Thread Pool Solution

4.1 C++ Wrapper Code

This section illustrates a C++ thread pool implementation
based on ACE [5]. The C++ solution is structured using the
following four classes (shown in Figure 2):

� Quote Handler: This class interacts with clients by re-
ceiving quote requests, looking up quotes in the database,
and returning responses.

5

: Reactor: Reactor

QUOTE SERVER

: Quote: Quote
AcceptorAcceptor

1:1: REQUEST REQUEST

QUOTEQUOTE

2:2: HANDLE INPUT HANDLE INPUT

3:3: ENQUEUE REQUEST ENQUEUE REQUEST

: Quote: Quote
HandlerHandler

5:5: RETURN QUOTE VALUE RETURN QUOTE VALUE

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Request: Request
QueueQueue

: Quote: Quote
HandlerHandler

: Quote: Quote
HandlerHandler

4:4: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

poolpool
threadthread

poolpool
threadthread

poolpool
threadthread

poolpool
threadthread

Figure 2: ACE C++ Architecture for the Thread Pool Stock
Quote Server

�Quote Acceptor: A factory that implements the strategy
for accepting connections from clients, followed by creating
and activatingQuote Handlers .

� Reactor: Encapsulates theselect and poll event
demultiplexing system calls with an extensible and
portable callback-driven object-oriented interface. The
Reactor dispatches thehandle input methods of
Quote Acceptor and Quote Handler when connec-
tion events and quote requests arrive from clients, respec-
tively.

�RequestQueue: This thread-safe queue passes client re-
quests from the main thread to the pool threads.

The C++ implementation of the thread pool model is
considerably easier to develop than the C solution because
we don’t need to rewrite all the infrastructure code from
scratch. For instance, variations of theQuote Handler ,
Quote Acceptor , andReactor have been used in pre-
vious implementations of the quote server in the Octo-
ber 1995 and February 1996 C++ Report. Likewise, the
Request Queue can be implemented by using compo-
nents available with C++ libraries like ACE and STL [6].
Below, we illustrate how these components are used to con-
struct a multi-threaded quote server based on the C++ thread
pool concurrency model.

4.1.1 The Thread-Safe C++ Request Queue

We’ll start off by using several ACE and STL classes to cre-
ate a thread-safe C++ queue that holds a tuple containing in-
formation necessary to process a client request. Since there

is only one of these, we’ll define it using the Singleton pat-
tern [7]. Doing this is easy using the following components
provided by STL and ACE:

// Forward declaration.
template <class PEER_STREAM>
class Quote_Handler;

// Use the STL ‘‘pair’’ component to create a
// tuple of objects to represent a client request.
typedef pair<Quote_Handler<SOCK_Stream> *,

Quote_Request *>
Quote_Tuple;

// An ACE thread-safe queue of Quote_Pairs.
typedef Message_Queue<Quote_Tuple> Quote_Queue;

// An ACE Singleton that accesses the Quote_Queue.
typedef Singleton<Quote_Queue, Mutex> Request_Queue;

The STL pair class is a template that stores two values.
We usepair to create a tuple containing pointers to a
Quote Handler and aQuote Request . This tuple con-
tains the information necessary to process client requests ef-
ficiently and correctly in the thread pool model.

The ACEMessage Queue is a flexible, type-safe C++
wrapper that uses templates to generalize the type of data
that can be stored in the CHandle Queue implementation
from Section 3:

template <class TYPE, size_t MAX_SIZE = 100U>
class Message_Queue
{
public:

int insert (const TYPE &);
int remove (TYPE &);
// ...

private:

// Buffer of TYPE, managed as a queue.
TYPE queue_[MAX_SIZE];

// ...

The ACESingleton class is an adapter that turns ordi-
nary classes into Singletons [7], as follows:

template <class TYPE, class LOCK = Mutex>
class Singleton
{
public:

static TYPE *instance (void) {
// Perform the Double-Checked Locking
// pattern to ensure proper initialization.
if (instance_ == 0) {

Guard<LOCK> lock (lock_);
if (instance_ == 0)

instance_ = new TYPE;
}
return instance_;

}

protected:
// Singleton instance of TYPE.
static TYPE *instance_;

// Lock to ensure serialization.
static LOCK lock_;

};

The ACESingleton adapter avoids subtle race conditions
by using the Double-Checked Locking pattern [8]. This pat-
tern allows atomic initialization, regardless of thread initial-
ization order, and eliminates subsequent locking overhead).

6

Using the ACESingleton wrapper in conjunction with
the ACEMessage Queue and STLpair , the thread pool
server can insert and removeQuote Handler objects as
follows:

Quote_Tuple qt (quote_handler, quote_request);
// ...
Request_Queue::instance ()->insert (qt);

// ...
Request_Queue::instance ()->remove (qt);

The first time thatinsert or remove is called, the
Singleton::instance method dynamically allocates
and initializes the thread-safeRequest Queue. The
Singleton pattern also minimizes the need for global ob-
jects, which is important in C++ since the order of ini-
tialization of global objects in C++ programs is not well-
defined. Therefore, we’ll use the same approach for the
Quote Database and theReactor :

// Singleton for looking up quote values.
typedef Singleton<Quote_Database> QUOTE_DB;

// Singleton event demultiplexing and dispatching.
typedef Singleton<Reactor> REACTOR;

4.1.2 The QuoteHandler Class

The Quote Handler class is responsible for processing
client quote requests. Its implementation differs consider-
ably from the one used for the thread-per-request concur-
rency model in the February C++ Report.

template <class STREAM> // IPC interface
class Quote_Handler

: public Svc_Handler<STREAM>
// This ACE base class defines "STREAM peer_;"

{
public:

// !!! This method is called by the Quote_Acceptor
// to initialize a newly connected Quote_Handler,
// which registers with the Reactor Singleton.
virtual int open (void) {

REACTOR::instance ()->register_handler
(this, READ_MASK);

}

// !!! This method is called by the Reactor when
// a quote request arrives. It inserts the request
// and the Quote_Handler into the thread-safe queue.
virtual int handle_input (void) {

Quote_Request *request = new Quote_Request;
if (recv_request (*request) <= 0)

return -1; // Destroy handler...
else {

Quote_Tuple qt (request, this)

// Insert tuple into queue, blocking if full.
Request_Queue::instance ()->insert (qt);

}
}

// !!! Static method that runs in the thread,
// dequeueing next available Quote_Request.
static void *pool_thread (void *) {

for (;;) {
Quote_Tuple qt;

// Get next request from queue. This
// call blocks if queue is empty.
Request_Queue::instance ()->remove (qt);

// typeid (qt->first) == Quote_Handler *

// typeid (qt->second) == Quote_Request *
if (qt->first->handle_quote

(qt->second) == 0)
// Client shut down, so close down too.
qt->first->close ();

delete qt->second;
}
/* NOTREACHED */

}

// !!! Complete the processing of a request.
int handle_quote (Quote_Request *req) {

int value;
{

// Constructor of m acquires lock.
Read_Guard<RW_Mutex> m (lock_);

// Lookup stock price via Singleton.
value = QUOTE_DB::instance ()->

lookup_stock_price (*req);

// Destructor of m releases lock.
}
return send_response (value);

}

// Close down the handler and release resources.
void close (void) {

// Close down the connection.
this->peer_.close ();

// Reference counting omitted...

// Commit suicide to avoid memory leaks...
delete this;

}

private:
// Ensure mutual exclusion to QUOTE_DB.
RW_Mutex lock_;

};

Each thread in the pool executes the staticpool thread
function. This function runs an event loop that continuously
removesQuote Tuples from the queue. Thefirst field
in this tuple is theQuote Handler associated with the
client and thesecond field is a clientQuote Request .
The pool thread uses thefirst field to invoke the
handle quote method, which lookups the value of the
desired stock and returns it to the client.

When the client closes down, theQuote Handler
cleans up the connection. Even though the client has already
closed the connection, note that theclose function must
perform reference counting on its targetQuote Handler
object (to save space, we’ve omitted this code). If
this reference counting were not performed, theclose
function could prematurely delete theQuote Handler .
This could cause thepool thread function to invoke
handle quote on a danglingfirst pointer, which in
turn would probably cause the server to crash.

Note that bothhandle input andpool thread can
block since each manipulates the global thread-safe queue.
Thehandle input method will block if the queue is full,
whereas thepool thread function will block if the queue
is empty.

4.1.3 The QuoteAcceptor Class

The Quote Acceptor class is an implementation of the
Acceptor pattern [9] that createsQuote Handlers to pro-

7

cess quote requests from clients. Its implementation is simi-
lar to the one shown in our previous column:

typedef Acceptor <Quote_Handler <SOCK_Stream>,
// Quote service.
SOCK_Acceptor> // Passive conn. mech.

Quote_Acceptor;

The Quote Acceptor ’s
strategy for initializing aQuote Handler is driven by up-
calls from theReactor . Whenever a new client connects
with the server, theQuote Acceptor ’s handle input
method dynamically creates aQuote Handler , accepts
the connection into the handler, and automatically calls the
Quote Handler::open method. In the thread pool im-
plementation, thisopen method registers itself with the
Reactor , as we showed in Section 4.1.2 above.

4.1.4 The main() Server Function

The servermain is responsible for creating a thread pool
and theQuote Acceptor , as follows:

// !!! Default constants.
const int DEFAULT_PORT = 12345;
const int DEFAULT_POOL_SIZE = 4;

int main (int argc, char *argv[])
{

u_short port =
argc > 1 ? atoi (argv[1]) : DEFAULT_PORT;

int pool_size = // !!! Size of the thread pool.
argc > 2 ? atoi (argv[2]) : DEFAULT_POOL_SIZE;

// !!! Create a pool of threads to
// handle quote requests from clients.
Thread::spawn_n

(pool_size,
Quote_Handler<SOCK_Stream>::pool_thread,
(void *) 0,
THR_DETACHED | THR_NEW_LWP);

// !!! Factory that produces Quote_Handlers.
Quote_Acceptor acceptor (port);

svc_run (acceptor);

/* NOTREACHED */
return 0;

}

First, the ACE methodspawn n [3] is called to cre-
ate a pool of n threads. Each thread executes the
Quote Handler::pool thread function. Next, a
Quote Acceptor object is created. This object is
used to accept connections from clients and create
Quote Handler objects to service them. Finally, the fol-
lowing svc run function is called to run the main thread’s
event loop:

void svc_run (Quote_Acceptor &acceptor)
{

// !!! Install Quote_Acceptor with Reactor.
REACTOR::instance ()->register_handler (&acceptor);

// !!! Event loop that dispatches all events as
// callbacks to appropriate Event_Handler subclass
// (such as the Quote_Acceptor or Quote_Handlers).

for (;;)
REACTOR::instance ()->handle_events ();

/* NOTREACHED */
}

The main thread’s event loop runs continuously, han-
dling events like client connections and quote requests.
The server’s event handling is driven by callbacks from
the REACTORSingleton to theQuote Acceptor and
Quote Handler objects. Since this server uses the thread
pool model, requests can be handled concurrently by any
available thread.

4.2 Evaluating the C++ Thread Pool Solution

The C++ implementation solves the drawbacks with the C
version shown in Section 3.2 as follows.

� Less infrastructure upheaval: Compared to the
changes between our C program in our last column and the
C program shown in this column, the changes between the
respective C++ programs are much fewer and more local-
ized. In addition to creating a thread-safeRequest Queue
Singleton, the primary changes to our C++ thread pool im-
plementation are in theQuote Handler class and in our
servermain routine.

In our last column, ourQuote Handler::open
function spawned a thread to handle each incoming re-
quest. Here,open has been changed to register the new
Quote Handler with the Reactor . Then, when client
requests arrive, theQuote Handler ’s handle input
method will queue both the request and the handler until a
thread from the pool becomes available to service it. The
only other change required was to makemain create the
thread-safe queue, the thread pool, and theReactor before
entering into its event loop.

� Greater flexibility and reuse: Fewer changes were re-
quired in the C++ version than in the C version due to the
encapsulation of connection handling, queueing, and request
servicing within C++ classes.

� Minimal connection management overhead: The C++
solution keeps each client connection open until the client
closes it down. In addition, by using the thread-safe
Request Queue and theQuote Tuple , we can avoid
the subtle race conditions that plagued the earlier C version.

Obviously, the C++ solution is not without its drawbacks.
For instance, we’ve omitted the code that performs refer-
ence counting to ensure that aQuote Handler is not
deleted until all of theQuote Requests stored in the
Request Queue are removed. In addition, the program-
mer must either be able to buy or build a thread-safe queue
class. Developing such a class is not trivial, especially when
portability among different threads packages, OS platforms,
and C++ compilers is required. The Standard Template Li-
brary (STL) is of no help here since the draft C++ standard
does not require its queue class to be thread-safe. Fortu-
nately, we are able to leverage the ACE components to sim-
plify our implementation. ACE has been ported to most ver-
sions of UNIX, as well as the Microsoft Win32 platform.

8

5 The Multi-threaded CORBA
Thread Pool Solution

This section illustrates how to implement the thread pool
concurrency model with MT-Orbix. The solution we de-
scribe below uses the same general design as our C++ im-
plementation above. It also uses many of the same compo-
nents (such as the ACESingleton andMessage Queue
classes).

5.1 Implementing Thread Pools in MT-Orbix

The My Quoter implementation class shown below is al-
most identical to the one we used in our previous column
to implement the thread-per-request model. The main dif-
ference is the use of object composition to associate the
My Quoter implementation class with theQuoter IDL
interface. We’ll discuss this below, but first, here’s the com-
plete implementation:

class My_Quoter // Note the absence of inheritance!
{
public:

// Constructor
My_Quoter (const char *name);

// Returns the current stock value.
virtual CORBA::Long get_quote

(const char *stock_name,
CORBA::Environment &env)

{
CORBA::Long value;
{

// Constructor of m acquires lock.
Read_Guard<RW_Mutex> m (lock_);

value = QUOTE_DB::instance ()->
lookup_stock_price (stock_name);

// Destructor of m releases lock.
}
if (value == -1)

// Raise exception.
env.exception (new Stock::Invalid_Stock);

return value;
}

protected:
// Serialize access to database.
RW_Mutex lock_;

};

As before, it’s necessary to protect access to the quote
database with a readers/writer lock since multiple requests
can be processed simultaneously by threads in the pool.

5.1.1 Associating the IDL Interface with an Implemen-
tation

If you’ve been following our columns carefully, you’ll notice
that the Orbix implementation of theMy Quoter class in
the May 1995 C++ Report inherited from a skeleton called
QuoterBOAImpl . This class was automatically generated
by the Orbix IDL compiler,i.e.:

class My_Quoter
// Inherits from an automatically-generated
// CORBA skeleton class.

: virtual public Stock::QuoterBOAImpl

In contrast, our current implementation ofMy Quoter does
not inherit from any generated skeleton. Instead, it uses
an alternative provided by Orbix called the “TIE” approach,
which is based on object composition rather than inheritance:

class My_Quoter // Note lack of inheritance!
{

// ...
};

We use the Orbix “TIE” approach to associate the CORBA
interfaces with our implementation as follows:

DEF_TIE_Quoter (My_Quoter)

The TIE approach is an example of an “object form” of the
Adapter pattern [7], whereas the inheritance approach we
used last column uses the “class form” of the pattern. The
object form of the Adapter usesdelegationto “tie” the in-
terface of theMy Quoter object implementation class to
the interface expected by theQuoter skeleton generated by
MT-Orbix. When a request is received, the Orbix Object
Adapter upcalls the TIE object. In turn, this object dispatches
the call to theMy Quoter object that is associated with the
TIE object.

The TIE approach is mentioned in the C++ Language
Mapping chapters of the CORBA 2.0 specification [10]. Not
surprisingly, the idea for putting it there originally came from
IONA Technologies, the makers of Orbix. Conforming ORB
implementations are not required to support either the TIE
approach or the inheritance approach, however.3

5.1.2 The C++ Thread-Safe Request Queue

TheRequest Queue used by the CORBA implementation
is reused almost wholesale from the C++ implementation
shown in Section 4.1.1:

// An ACE Singleton that accesses an ACE
// thread-safe queue of CORBA Request pointers.
typedef Singleton<Message_Queue<CORBA::Request *>,

Mutex>
Request_Queue;

The primary difference is that we parameterize it with a
CORBA::Request pointer, rather than aQuote Tuple .
The reason for this is that MT-Orbix performs the low-level
demultiplexing, so we don’t have to do it ourselves.

5.1.3 Thread Filters

Orbix implements a non-standard CORBA extension called
“thread filters.” Each incoming CORBA request is passed
through a chain of filters before being dispatched to its target
object implementation. To dispatch an incoming CORBA
request to a waiting thread, a subclass ofThreadFilter
must be defined to override theinRequestPreMarshal
method. By using aThreadFilter , the MT Orbix ORB
and Object Adapter are unaffected by the choice of concur-
rency model selected by a CORBA server.

3The lack of a clear specification of whether CORBA C++ server skele-
tons use inheritance or delegation is another indication of the CORBA
server-side portability problems we have described in previous columns.

9

SERVERSERVERCLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Request: Request
QueueQueue

:: OBJECT OBJECT

ADAPTERADAPTER

2:2: RECEIVE RECEIVE

3:3: INVOKE INVOKE

 FILTER FILTER((SS))

4:4: ENQUEUE REQUEST ENQUEUE REQUEST

5:5: DEQUEUE REQUEST DEQUEUE REQUEST

: TP: TP
ThreadThread
FilterFilter

QUOTE SERVERQUOTE SERVER

1:1: REQUEST REQUEST

QUOTEQUOTE

7:7: RETURN QUOTE VALUE RETURN QUOTE VALUE

: My_Quoter: My_Quoter

poolpool
threadthread

poolpool
threadthread

6:6: UPCALLS UPCALLS

: My_Quoter: My_Quoter

: My_Quoter: My_Quoter

poolpool
threadthread

MMYY_Q_QUOTERUOTER

FFACTORYACTORY

Figure 3: MT Orbix Architecture for the Thread Pool Stock
Quote Server

The following class defines a server-specific thread fil-
ter that handles incoming requests in accordance with the
Thread Pool concurrency model:

class TP_Thread_Filter : public CORBA::ThreadFilter
{
public:

// Intercept request insert at end of msg_que.
virtual int inRequestPreMarshal (CORBA::Request &,

CORBA::Environment &);

// A pool thread uses this as its entry point,
// so this must be a static method.
static void *pool_thread (void *);

};

Orbix calls inRequestPreMarshal method before
the incoming request is processed. In the Thread Pool model,
requests are inserted in FIFO order at the end of a thread-safe
Message Queue as they arrive, as follows:

TP_Thread_Filter::inRequestPreMarshal
(CORBA::Request &req,

CORBA::Environment&)
{

// Will block if queue is full...
Request_Queue::instance ()->insert (&req);

// We’ll dispatch the request later.
return -1;

}

Note that this method must return the magic number�1 to
indicate to the Orbix Object Adapter that it has dealt with the
request. This value informs the Object Adapter that it need

not perform the operation dispatch itself, nor should it return
the result to the client. These operations will be performed
by one of the threads in the thread pool, as shown in Figure 3.

Figure 3 illustrates the role of theTP Thread Filter
in the MT Orbix architecture for the Thread Pool stock quote
server. Our quote server must explicitly create an instance of
TP Thread Filter to get it installed into the Orbix filter
chain:

TP_Thread_Filter tp_filter;

The constructor of this object automatically inserts the thread
pool thread filter at the end of the filter chain.

The pool thread static method serves as the entry
point for each thread in the thread pool, as shown below:

void *TP_Thread_Filter::pool_thread (void *)
{

// Loop forever, dequeueing new Requests,
// and dispatching them....

for (;;) {
CORBA::Request *req;

// Called by pool threads to dequeue
// the next available message. Will block
// if queue is empty.
Request_Queue::instance ()->remove (req);

// This call will perform the upcall,
// send the reply (if any) and
// delete the Request for us...
CORBA::Orbix.continueThreadDispatch (*req);

}

return 0;
}

All threads wait for requests to arrive on the head of the mes-
sage queue stored in ourTP Thread Filter . The MT-
Orbix method continueThreadDispatch will con-
tinue processing the request until it sends a reply to the client.
At this point, the thread will loop back to retrieve the next
CORBA request. If there is no request available the thread
will block until a new request arrives on the message queue.
Likewise, if all the threads are busy, the queue will continue
growing until it reaches its high-water mark, at which point
the thread running theinRequestPreMarshal method
will block. This relatively crude form of flow control was
also used in the C and C++ implementations shown earlier.
Naturally, robust servers should be programmed more care-
fully to detect and handle queue overflow conditions.

The main server program implements the Thread Pool
concurrency model by spawning offpool size number of
threads, as follows:

const int DEFAULT_POOL_SIZE = 4;

int main (int argc, char *argv[])
{

// Initialize the factory implementation.
My_Quoter_var my_quoter =

new TIE_My_Quoter (My_Quoter) (new My_Quoter);

int pool_size = argc == 1 ? DEFAULT_POOL_SIZE
: atoi (argv[1]);

// Create a pool of threads to handle
// quote requests from clients.

10

Thread::spawn_n (pool_size,
Thread_Filter::pool_thread,
(void *) 0,
THR_DETACHED | THR_NEW_LWP);

// Wait for work to do in the main thread
// (which is also the thread that shepherds
// CORBA requests through TP_Thread_Filter).
TRY {

CORBA::Orbix.impl_is_ready ("Quoter",
IT_X);

} CATCHANY {
cerr << IT_X << endl;

} ENDTRY

return 0;
}

When the Quote server first starts up, it creates a
My Quoter object to service client quote requests. It then
creates a pool of threads to service incoming requests us-
ing the ACEspawn n method. Finally, the main server
thread callsOrbix.impl is ready to notify Orbix that
the Quoter implementation is ready to service requests.
The main thread is responsible for sheparding CORBA re-
quests through the filter chain to theTP Thread Filter .

Finally, the object we initially created is implicitly de-
stroyed by the destructor of theMy Quoter var . The
OMG C++ Mapping provides for each IDL interface a
“ var ” class that can manage object references (“ptr ”
types) of that interface type. If we didn’t use a
My Quoter var type here, our code would have to man-
ually duplicate and release the object as required. By using
aMy Quoter var , we let the smart pointer perform the re-
source management.

5.2 Evaluating the MT-Orbix Thread Pool So-
lution

The following benefits arise from using MT-Orbix to imple-
ment the thread pool concurrency model:

� Almost no infrastructure upheaval: The implemen-
tation of the MT-Orbix thread pool concurrency model
shown above is almost identical to the thread-per-request
server from our previous column. The primary changes we
added were cosmetic (such as using Singletons rather than
global variables and using the object composition to “tie”
theQuoter skeleton with theMy Quoter implementation
rather than using inheritance). The ability to quickly and
easily modify applications in this manner allows them to be
rapidly tuned and redeployed when necessary.

� Increased flexibility and reuse: The flexibility and
reuse of the MT-Orbix solution is similar to the ACE C++
solution. The main difference is that MT-Orbix is responsi-
ble for most of the low-level demultiplexing and concurrency
control that we had to implement by hand in our C++ solu-
tion. In particular, MT-Orbix hides all its internal synchro-
nization mechanisms from the server programmer. Thus, we
are only responsible for locking server-level objects (such as
theRequest Queue).

� Optimized connection management overhead: MT-
Orbix can perform certain optimizations (such as caching
connections in a thread-safe manner) without requiring any
programmer intervention. It also separates the concerns of
application development from those involving the choice of
suitable transports and protocols for the application. In other
words, using an ORB allows an application to be developed
independently of the underlying communication transports
and protocols.

The primary drawback, of course, is that the mechanisms
used by MT-Orbix are not standardized across the indus-
try. In general, all the multi-threading techniques we dis-
cuss in this column aren’t standardized yet, and in particular
theTP Thread Filter approach shown above is propri-
etary to Orbix. The fact that the CORBA solution shown
here is not portable is yet another indication of the server-
side portability problems with CORBA that we’ve discussed
in previous columns.

Despite these issues, it is important to note that the con-
currency models, patterns, and techniques we discussed in
this articleare reusable. Our goal is to help you navigate
through the space of design alternatives. We hope that you’ll
be able to apply them to your projects, regardless of whether
you program in CORBA, DCE, Network OLE, ACE, or any
other distributed computing toolkit.

6 Concluding Remarks

In this column, we examined the thread pool concurrency
model and illustrated how to use it to develop multi-threaded
servers for a distributed stock quote application. This
example illustrated how object-oriented techniques, C++,
CORBA, and higher-level abstractions like the Singleton pat-
tern help to simplify programming and improve extensibility.

Our next column will explore yet another concurrency
model: thread-per-session. This model is supported by a
number of CORBA implementations including MT-Orbix
and ORBeline. Having a choice of concurrency models can
help developers meet the performance, functionality, and
maintenance requirements of their applications. The key
to success, of course, lies in thoroughly understanding the
tradeoffs between different models. As always, if there are
any topics that you’d like us to cover, please send us email at
object_connect@ch.hp.com .

Thanks to Prashant Jain, Tim Harrison, Ron Resnick, and
Esmond Pitt for comments on this column.

References

[1] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[2] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,

11

“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedings of the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

[3] D. C. Schmidt, “An OO Encapsulation of Lightweight OS
Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
1995.

[4] W. R. Stevens,UNIX Network Programming, Second Edition.
Englewood Cliffs, NJ: Prentice Hall, 1997.

[5] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[6] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[8] D. C. Schmidt and T. Harrison, “Double-Checked Locking
– An Object Behavioral Pattern for Initializing and Access-
ing Thread-safe Objects Efficiently,” inPattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[9] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,”
C++ Report, vol. 7, November/December 1995.

[10] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.0 ed., July 1995.

12

