
Object Interconnections

Overcoming Drawbacks in the OMG Events Service (Column 10)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the June 1997 issue of the SIGS
C++ Report magazine.

1 Introduction

Our last two columns have explored various techniques for
using distributed callbacks to decouple clients and servers
and create peer-to-peer relationships between the objects in a
distributed system. We’ve shown various ways to eliminate
the polling required by a stock application client. All these
approaches center around direct or indirect callbacks from the
Stock Quote Server. Like all engineering solutions, the de-
signs and implementations we’ve shown have their strengths
and weaknesses.

Our last column investigated how to use the OMG Events
Service to implement a stock quote callback mechanism. The
OMG Events Service is defined in Volume 1 of the OMG
Common Object Services (COS) Specification [1]. The fol-
lowing event delivery models are supported by Event Chan-
nels:

� Canonical Push model: The active event Supplier (in
our case, the Stock Quote Server) pushes events to the Event
Channel, which in turn pushes them to passive event Con-
sumers (in our case, interested stock quote client applica-
tions).

� Canonical Pull model: The active event Consumers pull
events from the Event Channel, which in turn pulls them from
the passive event Supplier.

� Hybrid Push/Pull model: The active event Supplier
pushes events to the Event Channel, while the active event
Consumers pull events from the Event Channel.

� Hybrid Pull/Push model: The Event Channel pulls
events from the passive event Supplier and pushes them to
passive event Consumers.

As explained in our last column, Event Channels support
all these models because the OMG Events Service is intended
as a specification for general-purpose event delivery systems.

2 Problems Galore!

Our original goal was to simplify the Stock Quote Server
by making the Event Channel responsible for delivering
stock value notifications to interested Consumers. While
we achieved that particular goal, our plan backfired on us
somewhat since the overall integrity and performance of our
system were reduced. This turn of events (no pun intended)
stemmed from the following problems with Event Channels:

� Over-generalization: Event Channels support different
event delivery models that are useful for a wide range of ap-
plications. One consequence is that Supplier and Consumer
registration is more complicated than is necessary for applica-
tions using just one delivery model. For instance, Consumers
must know all the details of how to register themselves with
an Event Channel.

� Lack of persistence: The COS Events Service standard
doesn’t require Event Channels to provide persistence. For
instance, conforming Event Channel implementations need
not store connectivity information and undelivered events
when they shut down. This lack of persistence can signifi-
cantly reduce the robustness of Event Channels, and in turn
reduce their utility for distributed applications.

� Lack of filtering: The standard semantics of the COS
Event Channel specifies that all events are delivered to all
push Consumers. Therefore, each Consumer must filter the
events to find the ones it’s interested in. In contrast, the
Notifying Quoter implementation we described in pre-
vious columns only delivered events to Consumers that had
explicitly subscribed for them.

� Lack of correlation: Some Consumers can execute
whenever an event arrives from any Supplier. Other Con-
sumers can execute only when an event arrives from a spe-
cific Supplier. Still other Consumers must postpone their
execution until multiple events have arrived from a partic-
ular set of Suppliers (i.e., they depend on a correlation of
events). The standard COS Events Service does not address
the event correlation needs of Consumers that can’t execute
until multiple events occur. As before, Consumers are re-
sponsible for performing correlations, which is very costly,
as described in the following bullet.

1

� Increased endsystem network load and Consumer load:
One consequence of delivering all events to all Consumers
is that the network load may be higher than with designs that
perform some or all of the event filtering and correlation in the
Event Channel. Moreover, the workload on the Consumers
will also increase since they must perform the filtering and
correlation at the destination. This increased workload can be
particularly problematic if Consumers run on low-end PCs.

�Multiple suppliers: An Event Channel can have multiple
suppliers attached to it, thereby increasing the potential for
more events in the system. As a result, this may further
increase network load and require Consumers to perform
even more filtering.

� Lack of type-safety: Untyped Event Channels deliver
event data using the OMG IDL any type. This forces Con-
sumers to perform additional work converting the any to a
specific type so they can examine and manipulate the data.

3 Avoiding Common Traps and Pitfalls

We originally chose to use an Event Channel to separate the
concerns of monitoring stock values from those of delivering
notifications about changes in those values. In this column,
we’ll address each of the problems listed in the previous
section to see what changes are needed so that we can use an
Event Channel to simplify our Stock Quote Server. Along
the way, we’ll distinguish between solutions that require the
following:

� Changes to the COS Events Service specification:
For example, the current COS Events Service specifica-
tion doesn’t support event filtering or correlation. Although
adding these features can significantly improve performance,
it can be difficult to accomplish this in practice due to the
long lead times required by the OMG standardization pro-
cess. Fortunately, the OMG is already working on a new
Notification Service [2] that will augment the existing Events
Service to help address these concerns.

� Changes to implementations of the COS Events Ser-
vice specification: The COS Events Service is intention-
ally vague, to avoid over-constraining the innovation and
opportunity for optimization of implementors. Thus, there
are a number of different ways to implement the COS Events
Service. Certain implementation decisions make it easier to
address the drawbacks we discuss in this article.

� Changes to applications that use a COS Events Service
implementation: This solution is not always the most aes-
thetic or efficient. However, it’s often the quickest and most
pragmatic way to overcome common drawbacks with the
existing COS Events Service specification and implementa-
tions.

The remainder of this section explains techniques for avoid-
ing the common traps and pitfalls described in Section 1.

EVENTEVENT

CHANNELCHANNEL
CONSUMERCONSUMER

for_consumers()for_consumers()

obtain_push_supplier()obtain_push_supplier()

connect_push_consumer(this)connect_push_consumer(this)C
O

N
N

E
C

T
IO

N
P

H
A

S
E

P
U

S
H

P
H

A
S

E push(event)push(event)

OBTAINOBTAIN AA

CONSUMERADMINCONSUMERADMIN

FACTORYFACTORY

OBTAINOBTAIN AA

PROXYPROXY SUPPLIERSUPPLIER

CONNECTCONNECT TOTO

THETHE CHANNELCHANNEL

RECEIVERECEIVE

NOTIFICATIONSNOTIFICATIONS

Figure 1: Connecting a Consumer to an Event Channel

3.1 Alleviating Over-generalization

Problem – complex registration process: The COS
Events Service is very general, to the point where it is hard to
apply for many common use-cases. This is particularly evi-
dent when trying to connect a Supplier or Consumer with an
Event Channel. As we showed in our last column, registra-
tion with an Event Channel requires a “double dispatching”
handshake between the Consumer and Supplier proxies. The
Channel uses this bi-directional exchange of object refer-
ences to keep track of its Consumers and Suppliers so it can
disconnect them gracefully.

Both Consumers and Suppliers must make three sepa-
rate operation invocations to register with a Channel. As
shown in Figure 1, Consumers that want to register as a
push consumer must first call the for consumers oper-
ation on the Event Channel to obtain a ConsumerAdmin
object reference. This object reference is then used to invoke
the obtain push supplier operation to get a proxy
from the Event Channel with which to register. Finally, the
ProxyPushSupplier returned from the previous step is
used to invoke the connect push consumer operation,
passing it a reference to its PushConsumer object to re-
ceive the events.

Unfortunately, this handshake is more complicated than
necessary for most applications.

Solution: The solution is obvious: to simplify the Event
Channel registration protocol, we must hide it behind a sim-
pler interface. For example, the registration interface we
showed several columns ago for our Notifying Quoter
was much simpler:

// IDL
module Stock {
// Requested stock does not exist.
exception Invalid_Stock {};

// Distributed callback information.
module Callback {

interface Handler {
// ...

};

// ...
};

2

interface Notifying_Quoter {
// Register a distributed callback handler
// that is invoked when the given stock
// reaches the desired threshold value.
void register_callback

(in string stock_name,
in long threshold_value,
in Callback::Handler handler)

raises (Invalid_Stock);

// Remove the handler.
void unregister_callback

(in Callback::Handler handler);
};

};

To register using this Notifying Quoter interface, a
client simply calls the register callback operation,
passing a Callback::Handler object reference to be in-
voked when the named stock reaches the indicated value.
This solution doesn’t require any changes to the Events Ser-
vice specification or vendor implementations. It just provides
a wrapper around the Event Channel registration protocol that
makes it much easier to use.

The Consumer registration protocol supported by our
Notifying Quoter is simpler than the one used by the
Event Channel because it only supports the Canonical Push
Model of event delivery. In particular, the Event Channel
registration handshake required to select the delivery model
isn’t necessary for the Notifying Quoter.

Keep in mind, however, that
the Notifying Quoter::unregister handler op-
eration can have problems of its own. Specifically, it relies
on theCORBA::Object::is equivalent operation to
compare object references and ensure that the right one is un-
registered. However, the semantics of this operation are too
weak to allow it to be used for this purpose. The problem is
that is equivalentmay return false even though the two
object references identify the same remote object.1

3.2 Resolving Persistence Issues

Problem – loss of non-persistent data and connection in-
formation: Any time the Event Channel is shut down, or if
it fails unexpectedly, non-persistent information can be lost.
For instance, the Event Channel could lose information about
the Consumers and Suppliers connected to it. Moreover, it
could lose undelivered event data.

The italicized labels in Figure 2 depict potential sources of
lost data and connection information in an Event Channel.

Solution: Saving and restoring Consumer and Supplier
registration information isn’t hard, assuming that the rate of
connections and disconnections is not too high. Since object
references can be changed into string form by the ORB, the
Event Channel only needs to utilize a suitable persistent store
in which to write stringified object references for Consumers
and Suppliers as they register.

1Our September 1996 column [3] discusses the reason for these non-
intuitive semantics in more detail.

SupplierSupplier

ProxyProxy

SupplierSupplier

ProxyProxy

SupplierSupplier

ProxyProxy

CONNECTIONSCONNECTIONS

TO CONSUMERSTO CONSUMERS

EventEvent
ChannelChannel

ConsumerConsumer

ProxyProxy

ConsumerConsumer

ProxyProxy

ConsumerConsumer

ProxyProxy

EventsEvents

CONNECTIONSCONNECTIONS

TO SUPPLIERSTO SUPPLIERS

NONNON--PERSISTENTPERSISTENT

EVENT DATAEVENT DATA

Figure 2: Failure Points in an Event Channel

Storing undelivered event data is more difficult, however.
Typically the rate of event delivery is much higher than the
rate of connections and disconnections. To be completely
reliable, an Event Channel must store a copy of each event
it receives until it successfully delivers it to all Consumers.
In most network environments, this requires end-to-end ac-
knowledgements between the Channel and all of its Con-
sumers.

There are many protocols for ensuring reliable group com-
munication. However, these protocols are non-trivial to
implement. Moreover, they can reduce performance sig-
nificantly compared with non-reliable group communication
protocols (such as IP multicast).

Note that the functionality for ensuring Event Channel
reliabilitymust be provided by implementors. It’s outside the
scope of what end-users and Consumer/Supplier applications
can accomplish since they don’t program the internal details
of an Event Channel.

Problem – storing CORBA anys: A related problem with
the storage of event data is the fact that the data arrives at
the Event Channel in the form of a CORBA any. CORBA
anys are self-describing types capable of storing any built-in
or user-defined OMG IDL type. Storing such types isn’t too
difficult if one can extract the compiled C++ form from the
CORBA::Any type. It’s not practical, however, to recompile
the Event Channel every time a new user-defined event type
is added to the distributed system.

Solution: What’s required is a way to store instances of
the any type regardless of whether the type is compiled into
the Event Channel or not. Currently, the ability to store
instances of the any type depends upon which ORB you
use. Unfortunately, there is no standard way to decompose
an instance of an any for storage to disk, though some ORB
products support proprietary extensions to solve this problem.

Fortunately, this particular portability problem has already
been recognized by the submitters to the OMG Portability
Enhancement RFP. The solution will be included in their
joint submission that should be completed by the time you
read this column. A new IDL interface named DynAny will
allow anys to be created dynamically. It will also allow

3

Event
Channel

Supplier

Supplier

Supplier

Type T1

Type T2

Consumer

Consumer

Consumer
Type T3

Figure 3: Multiple Suppliers Generating Multiple Types of
Events

an instance of an any to be decomposed into its constituent
built-in IDL types.

Once adopted as a standard, the DynAny interface will al-
low a portable program (such as an Event Channel and event
filters) to manipulate instances of the any type regardless
of what programming language it’s written in. More impor-
tantly, DynAny will work regardless of whether the actual
type stored in the any is statically known to the program or
not.

3.3 Eliminating Multiple Suppliers

Problem – multiple suppliers with multiple type systems:
Security implications aside, there’s nothing to stop an appli-
cation from acquiring an object reference to an Event Channel
and connecting itself as a Supplier. This is problematic for
the following reasons:

� Increased Channel workload – As more Suppliers con-
nect to a Channel, there is a greater potential for the
Channel to become a bottleneck as Suppliers push more
events to the Channel.

� Increased Consumer workload – As more Suppliers
push events through a Channel, the more events must
be propagated to Consumers. Moreover, it’s likely that
new Suppliers will generate different types of events
(as shown in Figure 3). It’s possible that many of these
types won’t be of interest to all the Consumers, however.

Solution: One way to eliminate the problem of multiple
Suppliers is to have an application create its own Event Chan-
nel and keep it hidden by not advertising its object reference.
This prevents any other applications from connecting to it
as a Supplier. For example, in our Quote Server example,
we can employ the special registration interfaces described
in Section 3.1 to ensure that unwanted Suppliers can’t access
the Event Channel directly.

Event
Channel

Supplier

Supplier

Supplier Consumer
C1

push()

Filter C1

Filter C2

Filter C3

Consumer
C2

Consumer
C3

push()

Figure 4: Co-locating Filters with an Event Channel

Note that this solution only requires changes to applica-
tions and doesn’t require any changes to the Event Channel
specification or implementations.

3.4 Performing Filtering and Correlation in
Event Channels

Problem – filtering at the consumers: In a standard COS
Events Service, each Consumer typically perform its own
filtering. COS Event Channels can be chained to create an
event filtering graph that allows Consumers to register for
a subset of the total events in the system. However, this
filter graph increases the number of hops that a message
must take between Suppliers and Consumers. This increased
overhead may be unacceptable for applications with low la-
tency requirements. In addition, a general-purpose filtering
mechanism that interprets CORBA::Any types may be too
inefficient for high-performance applications.

Solution 1: One solution is to attach co-located filters di-
rectly to the Event Channel so that Consumers only receive
events they’re actually interested in. For instance, we’ve
made the Event Channel private with respect to our Quote
Server. Therefore, we can ensure that it only receives events
that are relevant for it. Moreover, since the Event Channel is
private, we statically know the IDL types flowing through it,
so filtering is much easier and more efficient.

Note that this solution doesn’t require any changes to the
Event Channel specification, but it does require extra in-
terfaces on the Event Channel implementation that allows
filters to be installed directly within the Event Channel pro-
cess. The following sketches how this functionality could be
implemented by an Event Channel provider:

1. Filter interposition – Each Consumer registration causes
the creation of a co-located filtering Consumer object
that is interposed locally between the Event Channel
and the actual Consumer (shown in Figure 4). The fact
that the filter is located within the Event Channel server
means that events are not needlessly transmitted over

4

the network2 only to be thrown away, thus helping to
decrease the network load.

2. Event interception – As events are pushed to the Event
Channel from Suppliers they are intercepted and com-
pared against the filtering object. If they match the
filtering criteria they are forwarded to the Consumer.
If not, they are discarded. Therefore, this mechanism
ensures that only those of events interest to the real Con-
sumer actually reaching that Consumer. For instance,
Figure 4 illustrates a scenario where an event pushed by
a Supplier to the Event Channel only passes the filter
installed by Consumer C1.

There are two drawbacks to this solution:

1. Filter registration – This solution requires Event Chan-
nel implementations to support special filter registration
interfaces. Such interfaces are not yet standardized, so
their signatures and their semantics would vary between
Event Channel implementations.

2. Filter implementation – This solution begs the question
of how filters could possibly be implemented. An obvi-
ous solution is to pass an object reference reference for
each filter, which the Event Channel can invoke before
pushing an event to a Consumer. The problem with
this approach is that the filter object can’t be passed by
value to the Event Channel, and thus could not be lo-
cated directly with the Channel. Therefore, the benefits
of co-located filters could not be realized. Other possi-
ble implementations for filters are mentioned in Solution
2 below.

Solution 2: A potentially more efficient and scalable so-
lution is to extend the COS Events Service specification to
explicitly support event filtering. There are a number of
techniques for accomplishing this, such as parallel process-
ing of composite filters, trie-based filter composition, and
context-free grammar-based filter composition using “skip-
ahead parsing” [4]. It is very likely that the submissions
to the OMG Notification Service RFP mentioned above will
standardize one or more filtering solutions.

[5] describes a filtering mechanism for a real-time imple-
mentation of the COS Events Service. This implementation
provides filtering and correlation mechanisms that allow con-
sumers to specify logical OR and AND event dependencies.
When those dependencies are met, the real-time Event Ser-
vice dispatches all events that satisfy the Consumers’ depen-
dencies and timing requirements. The Appendix describes
additional information on event filtering architectures.

3.5 Minimizing Network and Consumer Load

Problem – excessive load on the network and Consumers:
If all events are delivered to all push Consumers, both the

2This assumes that the ORB performs “short-circuited” local dispatching
(such as direct or near-direct function calls) for messages to objects in the
same address space.

network load and the workload on the Consumers may in-
crease. The increase in network load is obviously due to the
need to deliver all events to all Consumers. The increase in
Consumer workload is due to each Consumer having to per-
form event filtering and correlation. Increasing the workload
of Consumers can be particularly problematic if they run on
low-end machines.

Solution 1: Instead of just making the Event Channel pri-
vate, as suggested above, it can also be created directly within
the Quote Server. This eliminates one of the network hops
(i.e., Supplier to Channel). However, the resulting decrease
in network traffic may be negligible since our Event Channel
is private and the Quote Server is the only Supplier attached
to it. Moreover, the additional workload of having the Event
Channel in the same process as the Quote Server may actu-
ally decrease the overall performance of our server, unless
careful multi-threading or asynchronous event processing is
utilized.

Despite these potential drawbacks, a co-located Event
Channel makes it much easier to implement co-located event
filters. As described above, registering or creating co-located
filters for a stand-alone Event Channel requires that it sup-
ports extra proprietary interfaces that go beyond the OMG
Events Service Specification. If the Event Channel is local,
however, co-located filters can simply be implemented as
normal Consumer objects, and thus can registered with the
Event Channel using the regular Consumer registration inter-
faces. Because such filters reside in the same process as the
Event Channel, the benefits of co-located filtering are easily
achieved without requiring the Event Channel to support a
general filter interpreter as described above. From a program-
ming perspective, this solution is desirable since it doesn’t
require any changes to the specification or implementation of
existing Event Channels.

A reasonable tradeoff might be to run the Event Chan-
nel on the same system but not in the same process as the
Quote Server, and use an ORB capable of communicating via
shared memory. This keeps the Supplier-to-Channel message
traffic off the network, but does not require an Event Chan-
nel implementation that can be linked into and run within
another program. With this solution, filters could still be im-
plemented as regular Consumer objects. Even though they
would no longer be co-located within the Event Channel pro-
cess, communication with the filters from the Event Channel
via shared memory would still be quite efficient.

In any case, implementing a server with its own local
Event Channel can be simplified greatly if shared library or
DLL-based Event Channel implementations are available.
Currently, only stand-alone server-based Event Channels are
common.

Solution 2: Another solution is to use “batching.” This
approach is shown in Figure 5, where the Channel queues up
groups of events destined to the same Consumer and delivers
them en masse, rather than individually. This results in lower

5

Event
Channel

Supplier

Supplier

Supplier

push(E1)

push(E3)

push(E1,2,3)
push(E2)

push(E2)E1
E2
E3

Consumer
C1

"BATCHING"
QUEUE

Figure 5: Batching Requests to Consumers

network utilization since the fixed costs (e.g., interrupts, con-
text switching, and protocol processing) of transmitting an
event are amortized over a larger payload. The main draw-
back is an increase in latency due to delay incurred while
batching up the events.

Batching can be implemented with minor changes to the
Event Channel implementation and specification. Because
the Event Channel for our Quote Server is private, we know
that all events flowing through the system are actually the
same IDL type. Since events are delivered in the form of
a CORBA::Any, our Event Channel can either put a single
event into an any, which is the norm, or can bend the rules
slightly and actually store a sequence of events in the any.
Pushing a sequence of events allows the Event Channel to
deliver multiple events to a given Consumer with a single
push operation. However, it requires that Consumers be
aware that the anys they receive can hold either a single
event or a sequence of events.

3.6 Improving Type Safety

Problem – CORBA::Any can be error-prone: With an
untyped event channel, event data is delivered via the OMG
IDLany type. Anany is similar to the C/C++void pointer
in that it can contain the state of any OMG IDL type. It also
shares some drawbacks with void pointers in that using an
any can be error-prone.

Fortunately, a CORBA::Any keeps a TypeCode along
with the data so that it is possible to detect type errors at
run-time. However, applications written with any can be
complex since each Consumer must be prepared to actively
distinguish the events it understands from those it does not.

Solution: We can create our own event type system and
use it via our private interfaces. As shown in Figure 6,
this solution interposes a type-safe software layer that hides
the insertion and extraction of event data into and out of
CORBA::Any. The benefit of this approach is that the code

Event
Channel

Supplier
Type T1

Consumer

T1 Adapter Any T1 AdapterAny

Type T1

Figure 6: Interposing a Typed Interface over Untyped Events

to handle the Anys can isolate the handling of Any values
from the rest of the application. In addition, this solution
doesn’t require any changes to the specification or imple-
mentation of the COS Events Service.

Thus far, we have focused solely on the untyped interfaces
of the OMG Events Service Specification. However, the
specification also describes how an Event Channel can sup-
port typed interfaces. In theory, using a typed Event Channel
interface is essentially equivalent to a solution that involves
wrapping an untyped Event Channel with private typed inter-
faces. In practice, the specification for typed Event Channels
is vague and confusing.

To the best of our knowledge no ORB vendors support
typed Event Channels. Until support for typed Event Chan-
nels becomes available, it’s best to encapsulate the Event
Channel with your own private C++ wrapper interfaces.

4 Conclusion

This column concludes our investigation of distributed call-
backs and event delivery services – we hope you’ve found
our exploration of these issues and design tradeoffs useful.
Along the way, we’ve suggested various solutions to many
drawbacks with the COS Events Service via a combination
of application changes, Event Channel implementation en-
hancements, and proposed extensions to the COS Events
Service specification. Not surprisingly, there are still many
challenges awaiting those who use the COS Events Service
in practice.

In our next column, we’ll start presenting issues surround-
ing CORBA Object Adapters, which is where programming
language object implementations meet the world of CORBA
objects. In particular, we’ll describe the new Portable Ob-
ject Adapter currently being added to CORBA. The POA
solves many issues with existing non-portable object im-
plementations, which is the bane of cross-vendor CORBA
development today.

References
[1] Object Management Group, CORBAServices: Common Object

ServicesSpecification,Revised Edition, 95-3-31 ed., Mar. 1995.

6

CONSUMERCONSUMER

SUPPLIERSUPPLIER

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

FILTERS

FILTERS

FILTERS

FILTERS

Event

Channel

Figure 7: Decentralized Event Filtering

[2] Object Management Group, Notification Service Request For
Proposal, OMG Document telecom/97-01-03 ed., January
1997.

[3] D. Schmidt and S. Vinoski, “Distributed Callbacks and Decou-
pled Communication in CORBA,” C++ Report, vol. 8, October
1996.

[4] D. C. Schmidt, “High-Performance Event Filtering for Dynamic
Multi-point Applications,” in 1st Workshop on High Perfor-
mance ProtocolArchitectures(HIPPARCH), (Sophia Antipolis,
France), INRIA, December 1994.

[5] T. Harrison, D. Levine, and D. C. Schmidt, “The Design
and Performance of a Real-time Event Service,” in Submit-
ted to OOPSLA ’97, (Atlanta, GA), ACM, October 1997.
http://www.cs.wustl.edu/�schmidt/oopsla.html.

A Event Filtering Architectures

There are several types of event filtering architectures illus-
trated in Figures 7, 8, and 9. This appendix outlines the
advantages and disadvantages of each architecture.

�Decentralized Event Filtering: In certain environments,
it is beneficial to decentralize event filtering by performing it
on consumer hosts (shown in Figure 7). This configuration
is appropriate when the following conditions exist:

� The Consumer hosts are powerful computing platforms;

� A high-speed network is available to connect the Sup-
pliers to the Consumer hosts;

� Consumers subscribe to most events;

� Event filters are relatively complex.

When these conditions exist it may become more efficient to
perform filtering in the Consumer endsystems.

CONSUMER

SUPPLIER

CONSUMER

CONSUMER

CONSUMER
SUPPLIER

EVENT

SERVER

FILTERS

Event

Channel

Figure 8: Centralized Event Filtering

�Centralized Event Filtering: In other environments, it is
beneficial to centralize the event filtering in one Event Chan-
nel located on a single event server (shown in Figure 8). This
configuration is appropriate when the following conditions
exist:

� An Event Channel is installed on a high-performance
event server platform (such as a multi-processor);

� The Consumer hosts are run on less powerful platforms
(such as inexpensive PCs);

� A relatively low-bandwidth (or highly congested) net-
work connects the event server to the Consumer hosts;

� Consumers subscribe to a relatively limited subset of
events;

� The complexity and number of event filters subscribed
to by Consumers does not produce a major processing
bottleneck at the event server.

When these conditions exist, the network and the Consumer
hosts at the edges of the network are typically the process-
ing bottleneck, rather than the Event Channel running on
the event server. Therefore, a centralized event filtering ar-
chitecture helps to off-load work from the network and the
Consumer hosts.

� Distributed Event Filtering: More complex event fil-
tering scenarios are also possible (shown in Figure 9). For
example, network topology in complex systems may inter-
connect Suppliers, Event Channels running on event servers,
and Consumers that span multiple computers across local-
area networks and wide-area networks.

7

SUPPLIER

CONSUMER

SUPPLIER

EVENT

SERVER

CONSUMERCONSUMER

CONSUMERCONSUMER CONSUMERCONSUMER

EVENTEVENT

SERVERSERVER

CONSUMERCONSUMER

CONSUMERCONSUMER

FILTERS

FILTERS

Event

Channel

Event

Channel

Figure 9: Distributed Event Filtering

8

