
Object Interconnections

Introduction to Distributed Object Computing (Column 1)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column appeared in the January 1995 issue of the
C++ Report magazine.

1 Introduction

Welcome to the first edition of our new Object Intercon-
nections column concerning distributed object computing
(DOC) and C++. In this column, we will explore a wide
range of topics related to DOC. Our goal is to de-mystify
the terminology and dispel the hype surrounding DOC. In
place of hype, we will focus on object-oriented principles,
methods, and tools that are emerging to support DOC us-
ing C++. We plan to investigate and describe various tools
and environments that are available commercially. In ad-
dition, we will discuss detailed design and implementation
problems that arise when using C++ to create DOC solu-
tions. The field of DOC is already rather broad and is still
growing rapidly. Therefore, we will have plenty of material
to cover in the coming months. If there’s any topic in par-
ticular that you’d like us to cover, please send us email at
object_connect@ch.hp.com .

It has been claimed that distributed computing can im-
prove

� collaboration through connectivity and interworking;

� performance through parallel processing;

� reliability and availability through replication;

� scalability and portability through modularity;

� extensibility through dynamic configuration and recon-
figuration;

� cost effectiveness through resource sharing and open
systems.

Our experiences and the experiences of others have shown
that distributed computing can indeed offer these benefits
when applied properly. However, developing distributed
applications whose components collaborate efficiently, reli-
ably, transparently, and scalably is a complex task. Much
of this complexity arises from limitations with conventional
tools and techniques used to develop distributed application
software. Many standard network programming mechanisms

(such as BSD sockets and Windows NT named pipes) and
reusable component libraries (such as Sun RPC) lack type-
safe, portable, reentrant, and extensible interfaces. For ex-
ample, both sockets and named pipes identify endpoints of
communication using weakly-typed I/O handles. These han-
dles increase the potential for subtle run-time errors since
compilers can’t detect type mismatches at compile-time.

Another source of development complexity arises from
the widespread use of functional decomposition. Many dis-
tributed applications are developed using functional decom-
position techniques that result in non-extensible system ar-
chitectures. This problem is exacerbated by the fact that
the source code examples in popular network programming
textbooks are based on functional-oriented design and im-
plementation techniques.

So, in this world full of hollow buzzwords and slick mar-
keting hype, it is natural to ask the question “what does
object-oriented technology contribute to the domain of dis-
tributed computing?” The short answer to this question is
that object-oriented technology provides distributed comput-
ing with many of the same benefits (such as encapsulation,
reuse, portability, and extensibility) as it does for nondis-
tributed computing.

In fact, it is often more natural to utilize object-oriented
techniques in the domain of distributed computing than it is
for non-distributed computing. This is due to the inherently
decentralized nature of distributed computing. In conven-
tional non-distributed applications, there is often a tempta-
tion to sacrifice abstraction and modularity for a perceived
increase in performance. For example, many programmers
use global variables or access fields in structures directly to
avoid the overhead of passing parameters and calling func-
tions, respectively.

In distributed computing, however, performance optimiza-
tions based on direct access to global resources are extremely
difficult to develop and scale. Research and development
on operating system support for distributed shared memory,
for example, is not yet ready for large-scale system deploy-
ment. Therefore, most distributed applications interoperate
by passing messages. There are many variations on this
message passing theme (e.g., RPC, remote event queues,
bytestream communication, etc.). However, it doesn’t re-
quire much of a stretch of the imagination to recognize that

1



message passing in distributed computing is very similar to
method invocation on an object in object-oriented program-
ming.

With this observation in mind, let’s discuss several of the
key features of DOC:

Providing many of the same enhancements to procedural
RPC toolkits that object-oriented languages provide to
conventional procedural programming languages: Dis-
tributed object computing frameworks enhance procedural
RPC toolkits (such as Sun RPC and the OSF DCE) by sup-
porting object-oriented language features. These features
include encapsulation, interface inheritance, parameterized
types, and object-based exception handling.

Encapsulation promotes the separation of interface
from implementation. This separation is crucial for
developing highly extensible architectures that decou-
ple reusable application-independent mechanisms from
application-specific policies. Interface inheritance and pa-
rameterized types promote reuse and emphasize common-
ality in a design. Object-based exception handling often
simplifies program logic by decoupling error-handling code
from normal application processing.

Enabling interworking between applications at higher
levels of abstraction: Distributed applications have tra-
ditionally been developed using relatively low-level mech-
anisms. Common mechanisms include the TCP/IP proto-
col, the socket transport layer programming interface, and
the select event demultiplexing system call. These low-
level mechanisms provide applications with reliable, un-
typed, point-to-point bytestream services. In general, these
services are optimized for performance, rather than ease of
programming, reliability, portability, flexibility, or extensi-
bility.

A primary objective of DOC is to enable developers to
program distributed applications using familiar techniques
such as method calls on objects. Ideally, accessing the ser-
vices of a remote object should be as simple as calling a
method on that object. For example, consider an objectobj
that provides a serviceop with argumentsarg1 , arg2 , and
arg3 and a return value of typereply . We’d like our client
applications to invokeop , pass it arguments, and obtain a
reply by simply writingreply r = obj->op (arg1,
arg2, arg3) .

A surprisingly large number of fairly complicated com-
ponents must be developed to support remote method invo-
cation on objects transparently. These components include
directory name servers, object request brokers (ORBs), in-
terface definition language compilers, object location and
startup facilities, multi-threading facilities, and security
mechanisms. In subsequent columns, we will define these
terms and illustrate how they work together to solve real-
world problems.

Providing a foundation for building higher-level mecha-
nisms that facilitate the collaboration among services in
distributed applications: Supporting transparent remote
object method invocation is only the first step in the long
journey into the realm of distributed object computing. An
increasing number of distributed applications require more
sophisticated collaboration mechanisms. These mechanisms
include common object services such as global naming,
event filtering, object migration, reliable group communica-
tion, transactional messaging, and quality of service facili-
ties. More advanced tools will support electronic mail, visu-
alization, collaborative work, and concurrent engineering.

When all these provisions of DOC are realized and stan-
dardized, we may very well finally see the long-awaited ar-
rival of “plug and play” software components and “Software
ICs.” Object vendors will be able to market various imple-
mentations of industry-standard interfaces, and users will be
able to mix and match those components, investing in the
ones that they believe best fulfill their needs. Until that time,
however, there is still quite a bit of work to do. Only recently
have the very lowest levels of support for DOC, such as ob-
ject request brokers, become commonplace in the market.

2 But What About C++?

So far, we’ve barely even mentioned C++. In future columns,
we’ll discuss ways in which C++ may be used to simplify
distributed object computing. We believe that when used
properly, C++ is well suited for the construction of both
distributed object support systems and the object compo-
nents themselves. C++ combines high-level abstractions
with the efficiency of a low-level language like C. Many of
the emerging frameworks and environments for distributed
object computing are based on C++, due to its widespread
availability and appeal. For example, commercial tools such
as several CORBA ORBs, HP OODCE, and Network OLE,
as well as freely-available software toolkits such as ILU from
Xerox PARC and the ADAPTIVE Communication Environ-
ment (ACE), support object-based distributed programming
using C++.

Certain C++ features are well-suited for programming dis-
tributed objects. For example, abstract base classes, pure
virtual inheritance, virtual functions, and exception han-
dling help to separate object interfaces from object imple-
mentations. However, the lack of other features in C++
increases the complexity of developing robust and concise
distributed applications. For instance, support for garbage
collection would greatly reduce memory management com-
plexity. Likewise,before andafter methods would en-
able greater control over the marshaling and demarshaling
of parameters passed to remote method calls. In the coming
months, we will discuss C++ language idioms that have been
successfully used in practice to address certain C++ limita-
tions.

2



3 Next Time

Over the next several months, our column will examine an
extended example that compares and contrasts different ways
to use C++ to program a representative distributed applica-
tion from the domain of financial services. In these columns
we’ll compare several solutions for developing the client-
side and server-side of this solution. These solutions will
range from using the C language sockets network program-
ming interface, to using C++ wrappers for sockets, to the
use of distributed object computing frameworks (such as
CORBA, Network OLE, and OODCE). The example will
illustrate the various tradeoffs between efficiency, extensi-
bility, and portability involved with each approach.

Electronic versions of these columns are available on-line
at the following WWW URL:

http://www.cs.wustl.edu/ �schmidt/corba.html

A brief overview of the topic in each column is provided
below, sorted in chronological order:

1. “Modeling Distributed Object Applications,”C++ Re-
port, SIGS, Vol 7. No. 2, February 1995. This column
describes the key features of DOC frameworks (such
as CORBA, Network OLE, and OODCE) and explains
how these frameworks address distributed application
requirements (such as reliability, heterogeneity, loca-
tion independence, security, and performance).

2. “Comparing Alternative Client Distributed Program-
ming Techniques,”C++ Report, SIGS, Vol. 7. No.
4, May 1995. This column examines an evaluates
three different programming techniques for develop-
ing the client-side of a distributed application. These
techniques include using the socket network program-
ming interface, using C++ wrappers for sockets, to us-
ing a distributed object computing solution based on
CORBA.

3. “Comparing Alternative Server Distributed Program-
ming Techniques – the Reactive Model,”C++ Report,
SIGS, Vol 7. No 8. October 1995. This column ex-
amines and evaluates three techniques for developing
the server-side a distributed application using a single-
threaded, reactive model. These techniques include us-
ing the socket network programming interface, using
C++ wrappers for sockets, to using CORBA.

4. “Comparing Alternative Programming Techniques for
Multi-threaded Servers – the Thread-per-Request Con-
currency Model,”C++ Report, SIGS, Vol 8. No 2.
Febuary 1996. This column examines and evaluates
four techniques for developing multi-threaded servers
using thethread-per-requestconcurrency model. These
techniques include using the socket network program-
ming interface, using C++ wrappers for sockets, and us-
ing two multi-threaded versions of CORBA (MT Orbix
and HP ORB Plus).

5. “Comparing Alternative Programming Techniques for
Multi-threaded Servers – the Thread-Pool Concurrency
Model,” C++ Report, SIGS, Vol 8. No 4. April 1996.
This column examines and evaluates three techniques
for developing multi-threaded servers using thethread-
pool concurrency model. These techniques include us-
ing the socket network programming interface, using
C++ wrappers for sockets, and using a multi-threaded
version of CORBA (MT Orbix).

6. “Comparing Alternative Programming Techniques for
Multi-threaded Servers – the Thread-per-Session Con-
currency Model,”C++ Report, SIGS, Vol 8. No 6.
June 1996. This column examines and evaluates three
techniques for developing multi-threaded servers using
the thread-per-sessionconcurrency model. These tech-
niques include using the socket network programming
interface, using C++ wrappers for sockets, and using
multi-threaded version of CORBA (MT Orbix).

7. “Distributed Callbacks and Decoupled Communication
in CORBA,” C++ Report, SIGS, Vol 8. No 9. Octo-
ber 1996. This column examinesdistributed callbacks
in CORBA and illustrates why they are useful for de-
coupling relationships between consumers and suppli-
ers in object-oriented communication applications. The
source code examples are based on the HP ORB Plus
CORBA implementation.

8. “The OMG Events Service,”C++ Report, SIGS, Vol 9.
No 2. February 1997. This column outlines the roles
of the key components in the OMG Events Service, ex-
amines the IDL interfaces of the Events Service com-
ponents in detail, shows how to use it to build a flexible
implementation of the distributed stock quoter system,
and evaluates the strengths and weaknesses of the OMG
Event Services model and its specification.

9. “‘Overcoming Drawbacks with the COS Events Ser-
vice,” C++ Reort, SIGS, Vol. 9, No 6. June, 1997. This
column describes techniques for overcoming draw-
backs with the OMG Events Service. These techniques
range from changing the COS Events Service specifi-
cation, to changing implementations of the COS Events
Service specification, as well as changing applications
that use a COS Events Service implementation.

10. “Object Adapters: Concepts and Terminology,”C++
Report, SIGS, Vol. 9, No 10. October, 1997. This
column presents issues surrounding CORBAObject
Adapters(OAs). It focuses on what Object Adapters are
and describe their roles within a CORBA-based system.
In addition, it begins an in-depth discussion of the new
Portable Object Adapter (POA) specification that was
recently adopted by the OMG.

11. “Using the Portable Object Adapter for Transient and
Persistent CORBA Objects,”C++ Report, SIGS, Vol.
10, No 4. April, 1998. This column continues our pre-
sentation of the new OMG POA, focusing on POA fea-

3



tures that supporttransientandpersistentCORBA ob-
jects.

12. “Developing C++ Servant Classes Using the Portable
Object Adapter,”C++ Report, SIGS, Vol. 10, No
5. June, 1998. This column shows the definitions
of the C++ servant classes and explains how the new
POA specification separates the client-side stub hierar-
chy from the server-side skeleton hierarchy in order to
facilitate collocation and ensure source-level portabil-
ity.

13. “Developing C++ Servant Classes Using the Portable
Object Adapter,”C++ Report, SIGS, Vol. 10, No
5. June, 1998. This column shows the definitions
of the C++ servant classes and explains how the new
POA specification separates the client-side stub hierar-
chy from the server-side skeleton hierarchy in order to
facilitate collocation and ensure source-level portabil-
ity.

14. “C++ Servant Managers for the Portable Object
Adapter,”C++ Report, SIGS, Vol. 10, No 7, Septem-
ber, 1998. This column describes servant managers and
default servants. Servant managers are responsible for
managing the association of an object (as characterized
by its Object Id value) with a particular servant, and for
determining whether an object exists or not. Default
servants can process requests for an object if no other
servant is available for it.

Please let us know if you have any comments or sug-
gestions for improving these columns by writing us at
object_connect@cs.wustl.edu .

4


