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Introduction

� The following inheritance and dynamic bind-
ing example constructs expression trees

{ Expression trees consist of nodes containing oper-

ators and operands

. Operators have di�erent precedence levels and

di�erent arities, e.g.,

� Multiplication takes precedence over addition

� The multiplication operator has two arguments,

whereas unary minus operator has only one

. Operands are integers, doubles, variables, etc.

� We'll just handle integers in the example: : :
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Expression Tree Behavior

� Expression trees

{ These trees may be \evaluated" via di�erent traver-

sals

. e.g., in-order, post-order, pre-order, level-order

{ The evaluation step may perform various operations: : : ,

e.g.,

. Traverse and print the expression tree

. Return the \value" of the expression tree

. Generate code

. Perform semantic analysis
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C Version

� A typical functional method for implement-
ing expression trees in C or Ada involves us-
ing a struct/union to represent data struc-
ture, e.g.,

typedef struct Tree Node Tree Node;

struct Tree Node f
enum f

NUM, UNARY, BINARY

g tag;
short use; /* reference count */

union f
int num;

char op[2];

g o;
#de�ne num o.num

#de�ne op o.op

union f
Tree Node *unary;

struct f Tree Node *l, *r; g binary;

g c;
#de�ne unary c.unary

#de�ne binary c.binary

g;
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Memory Layout of C Version
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� Here's what the memory layout of a struct

Tree Node object looks like
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Print Tree Function

� Typical C or Ada implementation (cont'd)

{ Use a switch statement and a recursive function

to build and evaluate a tree, e.g.,

void print tree (Tree Node *root) f
switch (root->tag) f
case NUM: cout << root->num; break;

case UNARY:

cout << "(" << root->op[0];

print tree (root->unary);

cout << ")"; break;

case BINARY:

cout << "(";

print tree (root->binary.l);

cout << root->op[0];

print tree (root->binary.r);

cout << ")"; break;

default:

cerr << "error, unknown type\n";

exit (1);

g
g
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Limitations with C Approach

� Problems or limitations with the typical de-
sign and implementation approach include

{ Language feature limitations in C and Ada

. e.g., no support for inheritance and dynamic bind-

ing

{ Incomplete modeling of the problem domain that

results in

1. Tight coupling between nodes and edges in union

representation

2. Complexity being in algorithms rather than the

data structures

. e.g., switch statements are used to select be-

tween various types of nodes in the expression

trees

� compare with binary search!

. Data structures are \passive" in that functions

do most processing work explicitly
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Limitations with C Approach

(cont'd)

� Problems with typical approach (cont'd)

{ The program organization makes it di�cult to ex-

tend, e.g.,

. Any small changes will ripple through the entire

design and implementation

� e.g., see the ternary extension below

. Easy to make mistakes switching on type tags..

{ Solution wastes space by making worst-case as-

sumptions wrt structs and unions

. This not essential, but typically occurs

. Note that this problem becomes worse the bigger

the size of the largest item becomes!
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OO Alternative

� Contrast previous functional approach with
an object-oriented decomposition for the same
problem:

{ Start with OO modeling of the \expression tree"

problem domain:

. e.g., go back to original picture

{ There are several classes involved:

class Node: base class that describes expression

tree vertices:

class Int Node: used for implicitly

converting int to Tree node

class Unary Node: handles unary operators,

e.g., �10, +10, !a, or ~foo, etc.

class Binary Node: handles binary operators,

e.g., a + b, 10 � 30, etc.

class Tree: \glue" code that describes

expression tree edges

{ Note, these classes model elements in the problem

domain

. i.e., nodes and edges (or vertices and arcs)
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C++ Node Interface

� // node.h

#ifndef NODE H

#de�ne NODE H

#include <stream.h>

#include "tree.h"

/* Describes the Tree vertices */

class Node f
friend class Tree;

friend ostream &operator << (ostream &, const Tree &);

protected: /* only visible to derived classes */

Node (void): use (1) fg
// pure virtual

virtual void print (ostream &) const = 0;

virtual ~Node (void) fg; // important to make virtual!

private:

int use; /* reference counter */

g;
#endif
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C++ Tree Interface

� // tree.h

#ifndef TREE H

#de�ne TREE H

#include "node.h"

/* Describes the Tree edges */

class Tree f
friend class Node;

friend ostream &operator << (ostream &, const Tree &);

public:

Tree (int);

Tree (const Tree &t);

Tree (char *, Tree &);

Tree (char *, Tree &, Tree &);

void operator= (const Tree &t);

virtual ~Tree (void); // important to make virtual

private:

Node *ptr; /* pointer to a rooted subtree */

g;
#endif
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C++ Int Node and Unar Node

Interface

� // int-node.h

#ifndef INT NODE H
#de�ne INT NODE H
#include "node.h"
class Int Node : public Node f
friend class Tree;
private:

int num; /* operand value */
public:

Int Node (int k);
virtual void print (ostream &stream) const;

g;
#endif

� // unary-node.h

#ifndef UNARY NODE H
#de�ne UNARY NODE H
#include "node.h"
class Unary Node : public Node f
friend class Tree;
public:

Unary Node (const char *op, const Tree &t);
virtual void print (ostream &stream) const;

private:
const char *operation;
Tree operand;

g;
#endif
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C++ Binary Node Interface

� // binary-node.h

#ifndef BINARY NODE H

#de�ne BINARY NODE H

#include "node.h"

class Binary Node : public Node f
friend class Tree;

public:

Binary Node (const char *op, const Tree &t1,

const Tree &t2);

virtual void print (ostream &s) const;

private:

const char *operation;

Tree left, right;

g;
#endif
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Memory Layout for C++ Version
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C++ Int Node and Unary Node

Implementations

� // int-node.C

#include "int-node.h"

Int Node::Int Node (int k): num (k) f g

void Int Node::print (ostream &stream) const f
stream << this->num;

g

� // unary-node.C

#include "unary-node.h"

Unary Node::Unary Node (const char *op, const Tree &t1)

: operation (op), operand (t1) f g

void Unary Node::print (ostream &stream) const f
stream << "(" << this->operation << " "

<< this->operand // recursive call!

<< ")";

g
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C++ Binary Node

Implementation

� // binary-node.C

#include "binary-node.h"

Binary Node::Binary Node (const char *op, const Tree &t1,

const Tree &t2):

operation (op), left (t1), right (t2) f g

void Binary Node::print (ostream &stream) const f
stream << "(" << this->left // recursive call

<< " " << this->operation

<< " " << this->right // recursive call

<< ")";

g
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C++ Tree Implementation

� // tree.C

#include "tree.h"

#include "int-node.h"

#include "unary-node.h"

#include "binary-node.h"

#include "ternary-node.h"

Tree::Tree (int num) ptr (new Int Node (num))

g
Tree::Tree (const Tree &t): ptr (t.ptr)

f // Sharing, ref-counting.. ++this->ptr->use; g
Tree::Tree (const char *op, const Tree &t)

: ptr (new Unary Node (op, t)) fg
Tree::Tree (const char *op, const Tree &t1,

const Tree &t2):

: ptr (new Binary Node (op, t1, t2)) fg
Tree::~Tree (void) f // Ref-counting, garbage collection

if (--this->ptr->use <= 0)

delete this->ptr;

g
void Tree::operator= (const Tree &t) f

++t.ptr->use;

if (--this->ptr->use == 0) // order important

delete this->ptr;

this->ptr = t.ptr;

g
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C++ Main Program

� // main.C

#include <stream.h>
#include "tree.h"

ostream &operator<< (ostream &s, const Tree &tree) f
tree.ptr->print (s); /* Virtual call! */
// (*tree->ptr->vptr[1]) (tree->ptr, s);
return s;

g

int main (void) f
const Tree t1 = Tree ("*", Tree ("-", 5),

Tree ("+", 3, 4));
// Tree ("*", Tree ("-", Tree (5)),
// Tree ("+", Tree (3), Tree (4)));

/* prints ((�5) * (3 + 4)) */
cout << t1 << "\n";
const Tree t2 = Tree ("*", t1, t1);

/* prints (((�5) * (3 + 4)) * ((�5) * (3 + 4))) */
cout << t2 << "\n";

/* virtual destructor recursively deletes
entire tree leaving scope */

g
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Expression Tree Diagram 1
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Expression Tree Diagram 2

Binary
Node

Unary
Node

Int
Node

t1

*

5
3

4

- +

print()

t2

*

� Expression tree for t2 = (t1 * t1)

22

Extending Solution with

Ternary Nodes

� Extending the existing solution to support
ternary nodes is very straight forward

{ i.e., just derived new class Ternary Node

class Ternary Node: handles ternary
operators, e.g., a == b ? c : d, etc.

� // ternary-node.h

#ifndef TERNARY NODE
#de�ne TERNARY NODE
#include "node.h"

class Ternary Node : public Node f
friend class Tree;

private:
const char *operation;
Tree left, middle, right;

public:
Ternary Node (const char *, const Tree &,

const Tree &, const Tree &);
virtual void print (ostream &) const;

g;
#endif
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C++ Ternary Node

Implementation

� // ternary-node.C

#include "ternary-node.h"
Ternary Node::Ternary Node (const char *op,

const Tree &a,
const Tree &b,
const Tree &c)

: operation (op), left (a), middle (b), right (c) fg
void Ternary Node::print (ostream &stream) const f

stream << this->operation << "("
<< this->left // recursive call
<< "," << this->middle // recursive call
<< "," << this->right // recursive call
<< ")";

g

� // Modi�ed class Tree

class Tree f // add 1 class constructor
// Same as before
public:
// Same as before

Tree (const char *, const Tree &,
const Tree &, const Tree &);

g;
Tree::Tree (const char *op, const Tree &a,

const Tree &b, const Tree &c):
: ptr (new Ternary Node (op, a, b, c)) fg
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Di�erences from C

Implementation

� On the other hand, modifying the original
C approach requires changing:

{ The original data structures, e.g.,

struct Tree Node f
enum f

NUM, UNARY, BINARY, TERNARY
g tag;
// same as before
union f

// same as before
// add this
struct f

Tree Node *l, *m, *r;
g ternary;

g c;
#de�ne ternary c.ternary
g;

{ and many parts of the code, e.g.,

void print tree (Tree Node *root) f
// same as before
case TERNARY: /* must be TERNARY */

cout << "(";
print tree (root->ternary.l);
cout << root->op[0];
print tree (root->ternary.m);
cout << root->op[1];
print tree (root->ternary.r);
cout << ")"; break;

// same as before
g
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Summary

� OO version represents a more complete mod-
eling of the problem domain

{ e.g., splits data structures into modules that cor-

respond to \objects" and relations in expression

trees

� Use of C++ language features simplify the
design and facilitate extensibility

{ e.g., the original source was hardly a�ected
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Summary (cont'd)

� Potential Problems with OO approach

{ Solution is very \data structure rich"

. e.g., Requires con�guration management to han-

dle many headers and .C �les!

{ May be somewhat less e�cient than original C

approach

. e.g., due to virtual function overhead

{ In general, however, virtual functions may be no
less ine�cient than large switch statements or

if/else chains: : :

{ As a rule, be careful of micro vs. macro optimiza-

tions

. i.e., always pro�le your code!
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