
Object-Oriented Design and

Programming

C++ Advanced Examples with

Inheritance and Dynamic Binding

Introduction

Expression Tree Diagram

Expression Tree Behavior

C Version

Memory Layout of C Version

Print Tree Function

Limitations with C Approach

OO Alternative

Relationships Between Trees and Nodes

C++ Node Interface

C++ Tree Interface

C++ Int Node and Unar Node Interface1

C++ Binary Node Interface

Memory Layout for C++ Version

C++ Int Node and Unary Node Implementations

C++ Binary Node Implementation

C++ Tree Implementation

C++ Main Program

Expression Tree Diagram 1

Expression Tree Diagram 2

Extending Solution with Ternary Nodes

C++ Ternary Node Implementation

Di�erences from C Implementation

Summary

Introduction

� The following inheritance and dynamic bind-
ing example constructs expression trees

{ Expression trees consist of nodes containing oper-

ators and operands

. Operators have di�erent precedence levels and

di�erent arities, e.g.,

� Multiplication takes precedence over addition

� The multiplication operator has two arguments,

whereas unary minus operator has only one

. Operands are integers, doubles, variables, etc.

� We'll just handle integers in the example: : :

2

Expression Tree Diagram

+

5 3 4

*
BINARY

NODES

+

5 3 4

INTEGER

NODES

UNARY

NODE

_

3



Expression Tree Behavior

� Expression trees

{ These trees may be \evaluated" via di�erent traver-

sals

. e.g., in-order, post-order, pre-order, level-order

{ The evaluation step may perform various operations: : : ,

e.g.,

. Traverse and print the expression tree

. Return the \value" of the expression tree

. Generate code

. Perform semantic analysis

4

C Version

� A typical functional method for implement-
ing expression trees in C or Ada involves us-
ing a struct/union to represent data struc-
ture, e.g.,

typedef struct Tree Node Tree Node;

struct Tree Node f
enum f

NUM, UNARY, BINARY

g tag;
short use; /* reference count */

union f
int num;

char op[2];

g o;
#de�ne num o.num

#de�ne op o.op

union f
Tree Node *unary;

struct f Tree Node *l, *r; g binary;

g c;
#de�ne unary c.unary

#de�ne binary c.binary

g;

5

Memory Layout of C Version

tag

use

op

num

unary

binary

MEMORY
LAYOUT

Tree
Node

Tree
Node

1

1|2

CLASS
RELATIONSHIPS

� Here's what the memory layout of a struct

Tree Node object looks like

6

Print Tree Function

� Typical C or Ada implementation (cont'd)

{ Use a switch statement and a recursive function

to build and evaluate a tree, e.g.,

void print tree (Tree Node *root) f
switch (root->tag) f
case NUM: cout << root->num; break;

case UNARY:

cout << "(" << root->op[0];

print tree (root->unary);

cout << ")"; break;

case BINARY:

cout << "(";

print tree (root->binary.l);

cout << root->op[0];

print tree (root->binary.r);

cout << ")"; break;

default:

cerr << "error, unknown type\n";

exit (1);

g
g

7



Limitations with C Approach

� Problems or limitations with the typical de-
sign and implementation approach include

{ Language feature limitations in C and Ada

. e.g., no support for inheritance and dynamic bind-

ing

{ Incomplete modeling of the problem domain that

results in

1. Tight coupling between nodes and edges in union

representation

2. Complexity being in algorithms rather than the

data structures

. e.g., switch statements are used to select be-

tween various types of nodes in the expression

trees

� compare with binary search!

. Data structures are \passive" in that functions

do most processing work explicitly

8

Limitations with C Approach

(cont'd)

� Problems with typical approach (cont'd)

{ The program organization makes it di�cult to ex-

tend, e.g.,

. Any small changes will ripple through the entire

design and implementation

� e.g., see the ternary extension below

. Easy to make mistakes switching on type tags..

{ Solution wastes space by making worst-case as-

sumptions wrt structs and unions

. This not essential, but typically occurs

. Note that this problem becomes worse the bigger

the size of the largest item becomes!

9

OO Alternative

� Contrast previous functional approach with
an object-oriented decomposition for the same
problem:

{ Start with OO modeling of the \expression tree"

problem domain:

. e.g., go back to original picture

{ There are several classes involved:

class Node: base class that describes expression

tree vertices:

class Int Node: used for implicitly

converting int to Tree node

class Unary Node: handles unary operators,

e.g., �10, +10, !a, or ~foo, etc.

class Binary Node: handles binary operators,

e.g., a + b, 10 � 30, etc.

class Tree: \glue" code that describes

expression tree edges

{ Note, these classes model elements in the problem

domain

. i.e., nodes and edges (or vertices and arcs)

10

Relationships Between Trees and

Nodes

Tree

Node

A

Int
Node

Unary
NodeBinary

Node

Ternary
Node

1

1

1

1
1

12

3

11



C++ Node Interface

� // node.h

#ifndef NODE H

#de�ne NODE H

#include <stream.h>

#include "tree.h"

/* Describes the Tree vertices */

class Node f
friend class Tree;

friend ostream &operator << (ostream &, const Tree &);

protected: /* only visible to derived classes */

Node (void): use (1) fg
// pure virtual

virtual void print (ostream &) const = 0;

virtual ~Node (void) fg; // important to make virtual!

private:

int use; /* reference counter */

g;
#endif

12

C++ Tree Interface

� // tree.h

#ifndef TREE H

#de�ne TREE H

#include "node.h"

/* Describes the Tree edges */

class Tree f
friend class Node;

friend ostream &operator << (ostream &, const Tree &);

public:

Tree (int);

Tree (const Tree &t);

Tree (char *, Tree &);

Tree (char *, Tree &, Tree &);

void operator= (const Tree &t);

virtual ~Tree (void); // important to make virtual

private:

Node *ptr; /* pointer to a rooted subtree */

g;
#endif

13

C++ Int Node and Unar Node

Interface

� // int-node.h

#ifndef INT NODE H
#de�ne INT NODE H
#include "node.h"
class Int Node : public Node f
friend class Tree;
private:

int num; /* operand value */
public:

Int Node (int k);
virtual void print (ostream &stream) const;

g;
#endif

� // unary-node.h

#ifndef UNARY NODE H
#de�ne UNARY NODE H
#include "node.h"
class Unary Node : public Node f
friend class Tree;
public:

Unary Node (const char *op, const Tree &t);
virtual void print (ostream &stream) const;

private:
const char *operation;
Tree operand;

g;
#endif

14

C++ Binary Node Interface

� // binary-node.h

#ifndef BINARY NODE H

#de�ne BINARY NODE H

#include "node.h"

class Binary Node : public Node f
friend class Tree;

public:

Binary Node (const char *op, const Tree &t1,

const Tree &t2);

virtual void print (ostream &s) const;

private:

const char *operation;

Tree left, right;

g;
#endif

15



Memory Layout for C++ Version

tag

op

vptr

use

Node
PART

num

Node
PART

vptr

ptr

operator

operand
(Tree PART)

Node
PART

operator

left
(Tree PART)

Node
PART

operator

right
(Tree PART)

left
(Tree PART)

right
(Tree PART)

middle
(Tree PART)

tag

op

vptr

use

Node

Node
PART

num

Int_Node

Node
PART

vptr

ptr

Tree
operator

operand
(Tree PART)

Unary  Node

Node
PART

operator

left
(Tree PART)

Binary
Node

Node
PART

operator

right
(Tree PART)

left
(Tree PART)

right
(Tree PART)

middle
(Tree PART)

Ternary
Node

� Memory layouts for di�erent subclasses of

Node

16

C++ Int Node and Unary Node

Implementations

� // int-node.C

#include "int-node.h"

Int Node::Int Node (int k): num (k) f g

void Int Node::print (ostream &stream) const f
stream << this->num;

g

� // unary-node.C

#include "unary-node.h"

Unary Node::Unary Node (const char *op, const Tree &t1)

: operation (op), operand (t1) f g

void Unary Node::print (ostream &stream) const f
stream << "(" << this->operation << " "

<< this->operand // recursive call!

<< ")";

g

17

C++ Binary Node

Implementation

� // binary-node.C

#include "binary-node.h"

Binary Node::Binary Node (const char *op, const Tree &t1,

const Tree &t2):

operation (op), left (t1), right (t2) f g

void Binary Node::print (ostream &stream) const f
stream << "(" << this->left // recursive call

<< " " << this->operation

<< " " << this->right // recursive call

<< ")";

g

18

C++ Tree Implementation

� // tree.C

#include "tree.h"

#include "int-node.h"

#include "unary-node.h"

#include "binary-node.h"

#include "ternary-node.h"

Tree::Tree (int num) ptr (new Int Node (num))

g
Tree::Tree (const Tree &t): ptr (t.ptr)

f // Sharing, ref-counting.. ++this->ptr->use; g
Tree::Tree (const char *op, const Tree &t)

: ptr (new Unary Node (op, t)) fg
Tree::Tree (const char *op, const Tree &t1,

const Tree &t2):

: ptr (new Binary Node (op, t1, t2)) fg
Tree::~Tree (void) f // Ref-counting, garbage collection

if (--this->ptr->use <= 0)

delete this->ptr;

g
void Tree::operator= (const Tree &t) f

++t.ptr->use;

if (--this->ptr->use == 0) // order important

delete this->ptr;

this->ptr = t.ptr;

g
19



C++ Main Program

� // main.C

#include <stream.h>
#include "tree.h"

ostream &operator<< (ostream &s, const Tree &tree) f
tree.ptr->print (s); /* Virtual call! */
// (*tree->ptr->vptr[1]) (tree->ptr, s);
return s;

g

int main (void) f
const Tree t1 = Tree ("*", Tree ("-", 5),

Tree ("+", 3, 4));
// Tree ("*", Tree ("-", Tree (5)),
// Tree ("+", Tree (3), Tree (4)));

/* prints ((�5) * (3 + 4)) */
cout << t1 << "\n";
const Tree t2 = Tree ("*", t1, t1);

/* prints (((�5) * (3 + 4)) * ((�5) * (3 + 4))) */
cout << t2 << "\n";

/* virtual destructor recursively deletes
entire tree leaving scope */

g
20

Expression Tree Diagram 1

Binary
Node

Unary
Node

Int
Node

t1

5
3

4

-

*

+

print()

� Expression tree for t1 = ((�5) * (3 + 4))

21

Expression Tree Diagram 2

Binary
Node

Unary
Node

Int
Node

t1

*

5
3

4

- +

print()

t2

*

� Expression tree for t2 = (t1 * t1)

22

Extending Solution with

Ternary Nodes

� Extending the existing solution to support
ternary nodes is very straight forward

{ i.e., just derived new class Ternary Node

class Ternary Node: handles ternary
operators, e.g., a == b ? c : d, etc.

� // ternary-node.h

#ifndef TERNARY NODE
#de�ne TERNARY NODE
#include "node.h"

class Ternary Node : public Node f
friend class Tree;

private:
const char *operation;
Tree left, middle, right;

public:
Ternary Node (const char *, const Tree &,

const Tree &, const Tree &);
virtual void print (ostream &) const;

g;
#endif

23



C++ Ternary Node

Implementation

� // ternary-node.C

#include "ternary-node.h"
Ternary Node::Ternary Node (const char *op,

const Tree &a,
const Tree &b,
const Tree &c)

: operation (op), left (a), middle (b), right (c) fg
void Ternary Node::print (ostream &stream) const f

stream << this->operation << "("
<< this->left // recursive call
<< "," << this->middle // recursive call
<< "," << this->right // recursive call
<< ")";

g

� // Modi�ed class Tree

class Tree f // add 1 class constructor
// Same as before
public:
// Same as before

Tree (const char *, const Tree &,
const Tree &, const Tree &);

g;
Tree::Tree (const char *op, const Tree &a,

const Tree &b, const Tree &c):
: ptr (new Ternary Node (op, a, b, c)) fg

24

Di�erences from C

Implementation

� On the other hand, modifying the original
C approach requires changing:

{ The original data structures, e.g.,

struct Tree Node f
enum f

NUM, UNARY, BINARY, TERNARY
g tag;
// same as before
union f

// same as before
// add this
struct f

Tree Node *l, *m, *r;
g ternary;

g c;
#de�ne ternary c.ternary
g;

{ and many parts of the code, e.g.,

void print tree (Tree Node *root) f
// same as before
case TERNARY: /* must be TERNARY */

cout << "(";
print tree (root->ternary.l);
cout << root->op[0];
print tree (root->ternary.m);
cout << root->op[1];
print tree (root->ternary.r);
cout << ")"; break;

// same as before
g

25

Summary

� OO version represents a more complete mod-
eling of the problem domain

{ e.g., splits data structures into modules that cor-

respond to \objects" and relations in expression

trees

� Use of C++ language features simplify the
design and facilitate extensibility

{ e.g., the original source was hardly a�ected

26

Summary (cont'd)

� Potential Problems with OO approach

{ Solution is very \data structure rich"

. e.g., Requires con�guration management to han-

dle many headers and .C �les!

{ May be somewhat less e�cient than original C

approach

. e.g., due to virtual function overhead

{ In general, however, virtual functions may be no
less ine�cient than large switch statements or

if/else chains: : :

{ As a rule, be careful of micro vs. macro optimiza-

tions

. i.e., always pro�le your code!

27




