
External Polymorphism

An Object Structural Pattern for Transparently
Extending C++ Concrete Data Types

Chris Cleeland and Douglas C. Schmidt
chris@cs.wustl.edu and schmidt@cs.wustl.edu

Department of Computer Science, Washington University
St. Louis, MO 63130, (314) 935-7538

This paper appeared in the September 1998 issue of
the C++ Report magazine. An earlier subset of this pa-
per appeared as a chapter in the book “Pattern Languages
of Program Design 3” ISBN, edited by Robert Martin,
Frank Buschmann, and Dirke Riehle published by Addison-
Wesley, 1997.

Introduction

This paper describes the External Polymorphism pattern,
which allows classes that are not related by inheritance
and/or have no virtual methods to be treated polymorphi-
cally. This pattern combines C++ language features with pat-
terns like Adapter and Decorator [1] to give the appearance
of polymorphic behavior on otherwise unrelated classes. The
External Polymorphism pattern has been used in a number of
C++ frameworks such as ACE [2] and the OSE class library.

This article is organized as follows. Section 1 describes
the External Polymorphism pattern in much greater de-
tail than an earlier version appearing in [3], Section 2 de-
scribes an example implementation using C++, and Section 3
presents concluding remarks.

1 The External Polymorphism Pat-
tern

1.1 Intent

Allow classes that are not related by inheritance and/or have
no virtual methods to be treated polymorphically.

1.2 Motivation

Debugging applications built using reusable class libraries
can be hard. For example, when an error occurs in the library,
developers often don’t know the names of all the relevant
objects comprising their application. This makes it hard to
display the current state of these objects in a debugger or in
print statements.

It is often useful, therefore, for class libraries to enable ap-
plications to dump the content of some or all objects that are
“live” at any given point. In object-oriented languages like

C++, live objects include (1) all global objects, (2) initialized
static objects, (3) dynamically allocated objects that have not
yet been freed, and (4) all automatic objects that are in valid
activation records on the run-time stack of active threads.

To motivate the External Polymorphism pattern, con-
sider the following code that uses theSOCKStream ,
SOCKAcceptor , andINET Addr library classes, which
encapsulate the socket network programming interface
within type-safe C++ wrappers [4]:

1. // In-memory Singleton object database.
2. class Object_DB { /* ... */ };
3. SOCK_Acceptor acceptor; // Global storage
4.
5. int main (void) {
6. SOCK_Stream stream; // Automatic storage
7. INET_Addr *addr =
8. new INET_Addr; // Dynamic storage.
9. Object_DB::instance ()->dump_all (cerr);

If the state of this program were dumped when reaching
line 13, we might get the following output:

Sock_Stream::this = 0x47c393ab,
handle_ = {-1}

SOCK_Acceptor::this = 0x2c49a45b,
handle_ = {-1}

INET_Addr::this = 0x3c48a432,
port_ = {0},
addr_ = {0.0.0.0}

which is a dump of the current state of each object.
Object DB is an in-memory database Singleton[1],i.e.,

there’s only one copy per-process. To preserve encapsula-
tion, theObject DB::dump all method could access the
state information of theSOCKStream , SOCKAcceptor ,
andINET Addr objects by calling adump method defined
by these classes. These objects register and unregister with
Object DB in their constructors and destructors, respec-
tively, as illustrated below:

SOCK_Stream::SOCK_Stream (void)
{

Object_DB::instance ()->
register_object ((void *) this);

// ...
}

SOCK_Stream::˜SOCK_Stream (void)
{

// ...
Object_DB::instance ()->remove_object

((void *) this);
}

1



ImplementingObject DB in a statically-typed language
like C++ requires the resolution of the following forces that
constrain the solution:

1. Space efficiency– the solution must not constrain the
storage layout of existing objects. In particular, classes
having no virtual methods,i.e., “concrete data types”
[5], must not be forced to add a virtual table pointer
(vptr ).

2. Polymorphism– all library objects must be accessed in
a uniform manner.

The remainder of this section describes and evaluates three
solutions for implementing theObject DB facility. The
first two solutions exhibit several common traps and pitfalls.
The third solution employs the External Polymorphism pat-
tern to avoid the problems with the first two approaches.

1.3 Common Traps and Pitfalls

The limitations with two “obvious” ways of implementing
the functionality ofObject DB for statically-typed object-
oriented programming languages (such as C++ or Eiffel) are
presented below.

1.3.1 Tree-based Class Library Solution

“Tree-based” class libraries [6] have a common class, such as
classObject , that forms the root of all inheritance hierar-
chies. For these types of class libraries, the typical polymor-
phic solution is to add a pure virtual method calleddump
into the root class. Each subclass in the library could then
override thedumpmethod to display subclass-specific state,
as shown in Figure 1. Using this approach, implementing

dump()

Dumpable

::dump<MyClass>()

MyClass

::dump<MyDerivedClass>()

MyDerivedClass

::dump<LibAClass>()

LibAClass

::dump<LibBClass>()

LibBClass

Object_DB

Figure 1: Object Model for Tree-based Solution

Object DB::dump all is straightforward:1

1Standard Template Library [7] classes are used wherever possible in
examples, based on information in [8].

void
Object_DB::dump_all (void)
{

struct DumpObject {
void operator ()(const Object &obj) {

obj->dump ();
}

};
// Dump all the objects in the table.
for_each (this->object_table_.begin (),

this->object_table_.end (),
DumpObject ());

}

There are several drawbacks to the tree-based solution,
however:

1. It requires access to the source code:It also requires
the ability to modify it and the ability to maintain the mod-
ified code. Languages like C++ that do not allow methods
to be added transparently to base classes are hard to extend
in this manner. Other OO languages, such as Smalltalk and
Objective-C, do not require programmers to have the source
code in order to augment an interface or modify existing be-
haviors.

2. It requires all classes to inherit from a common root
class: Conventional wisdom deprecates single root tree-
based class library design strategy in languages like C++
[6, 7]. For instance, inheriting from a common root ob-
ject complicates integration with third-party libraries. More-
over, the tree-based approach makes it hard to use subsets
of library functionality without including many unnecessary
headers and library code modules. For these reasons, the
Standard Template Library [7] from the ISO/ANSI C++ draft
specifically avoids inheriting from a single root class.

3. It may require changes to storage layout: For C++ li-
braries, all objects with virtual methods must containvptrs
in their storage layout. This extravptr may not be fea-
sible for class libraries that contain “concrete data types,”
such as classes for complex numbers, stacks and queues,
and interprocess communication (IPC) interfaces [4]. The
complicating factor for concrete data types is that they do
not contain any virtual methods. Since virtual methods and
inheritance are the C++ language mechanisms that support
polymorphism, a concrete data type is—by definition—
precluded from using those mechanisms to specialize the
dumpmethod.

Concrete data types are commonly used in C++ libraries
like STL to enhance:

� Performance– e.g., all method dispatching is static
rather than dynamic (static dispatching also enables
method inlining);

� Storage efficiency– e.g.,some objects cannot afford the
space required for a virtual pointer for each instance;

� Storage compatibility– e.g.,ensure object layouts are
compatible with C;

� Flexibility – e.g.,to facilitate the placement of concrete
data objects in shared memory.

2



Therefore, for libraries that have concrete data types, it
may not be feasible to implementObject DB by using a
common root class.

Of the three drawbacks described above, the first two are
relatively independent of the programming language. The
third drawback is specific to C++.

1.3.2 Static Type Encoding Solution (Brute-Force)

One way to avoid the drawbacks with the tree-based class li-
brary design is to modify the interface ofObject DB. The
revised approach is shown in Figure 2. As shown below, the

::dump<MyClass>()

MyClass

::dump<MyDerivedClass>()

MyDerivedClass

::dump<LibAClass>()

LibAClass

::dump<LibBClass>()

LibBClass

Object_DB

Figure 2: Object Model for “Brute-Force” Solution

brute-force approach explicitly allows objects of each dif-
ferent type in the class library to register and remove them-
selves, as follows:

class Object_DB
{
public:

void register_SOCK_Stream (SOCK_Stream*);
void register_SOCK_Acceptor (SOCK_Acceptor*);
void register_INET_Addr (INET_Addr *);
// ...

private:
list<SOCK_Stream> SOCK_stream_table_;
list<SOCK_Acceptor> SOCK_Acceptor_table_;
list<INET_Addr> INET_Addr_table_;
// ...

};

In this scheme theObject DB::dump all method
could be written as follows:

void
Object_DB::dump_all ()
{

template <class T>
struct Dump {

void operator ()(const T &t) {
t->dump (); // virtual method call

}
};

for_each (SOCK_stream_table_.begin (),
SOCK_stream_table_.end (),

Dump<SOCK_Stream> ());

for_each (SOCK_Acceptor_table_.begin (),
SOCK_Acceptor_table_.end (),
Dump<SOCK_Acceptor> ());

for_each (INET_Addr_table_.begin (),
INET_Addr_.end (),
Dump<INET_Addr> ());

// ...
}

Although it eliminates the need for a common ancestor
used by the tree-based solution, the brute-force approach of
enumerating all types in the system is clearly tedious and
fragile. Thus, by eliminating the common ancestor, the fol-
lowing problems arise:

� Tedious maintenance– Any time a class is added or re-
moved from the library the interface and implementa-
tion of Object DBmust change. Considerable effort
is required to maintain this scheme for large class li-
braries that evolve over time.

� Error-prone– This approach is potentially error-prone
if a developer forgets to add the necessary class-specific
dumpcode to theObject DB::dump all method.

� Integration difficulties– The brute-force solution does
not simplify integrating separately developed libraries
becauseObject DBmust be re-written for each com-
bination of libraries.

1.4 Solution: the External Polymorphism Pat-
tern

A more efficient and transparent way to extend concrete data
types is to use theExternal Polymorphism pattern. This pat-
tern allows classes that are not related by inheritance and/or
have no virtual methods to be treated polymorphically. It re-
solves the forces of object layout efficiency (e.g.,novptrs
in concrete data types) and polymorphism (e.g.,all library
objects can be treated in a uniform way) that rendered the
previous solutions inadequate. By using this pattern, we’ll be
able to reclaim the conceptual elegance of the polymorphic
solution in Section 1.3.1, while still maintaining the storage
efficiency and performance benefits of the solution in Sec-
tion 1.3.2.

Figure 3 shows the object model for the External Poly-
morphism solution. Notice that it combines the best as-
pects of the strategies discussed in Sections 1.3.1 and 1.3.2.
Using the External Polymorphism pattern,Dumpable
and Dumpable Adapter combine to form the Tree
model’sDumpable (see Figure 1). The template function
::dump< AnyType> (shown in Figure 3 as a globally-scoped
member function on each class) replaces the overloading of
the virtualdumpmethod in the Tree model, thus eliminating
thevtbl for AnyType.

The key to applying the External Polymorphism pattern is
to define an abstract base class calledDumpable that con-
tains a pure virtualdumpmethod:

3



Collection

Dumpable 
 

dump()

ConcreteDumpable<AnyType> 
 
dump() 
 
AnyType* this_

instance->printTo()

SignatureAdapter<AnyType> 
 

::dump<SOCK_Stream>(instance) 
::dump<INET_Addr>(instance)

delegates

NOTE:SignatureAdapter is the name of 

the role played by the assorted template 

functions; it is not really a class.

Figure 3: Object-Model of External Polymorphism Solution

// Define the external polymorphic functionality.

class Dumpable
{
public:

virtual void dump (void) = 0;
virtual ˜Dumpable (void);

};

This class provides an abstract base class interface that can
be used uniformly for all objects that are “dumpable.” A sub-
class of this base class then provides a “concrete dumpable”
type defined by the following template wrapper function:

template <class T> void
dump (const T *t)
{

t->dump ();
}

This template function forwards thedump method call to
the object. This allows thedump method to be used if it is
defined on template classT. Otherwise, we can define a new
dump<> function for a class and overload or supply missing
functionality to dump the state ofT.

The following Adapter makes any class with adump
method accessible throughDumpable ’s interface:

template <class T>
class Dumpable_Adapter : public Dumpable
{
public:

Dumpable_Adapter (T *t): this_ (t) {}

virtual void dump (void) {
// Delegate to the global dump<T> function
dump<T> (this_);

}

private:
T *this_;

};

This solution uses C++ templates for the following reasons:

� To ensure type-safety– the compiler can detect type-
mismatches at template instantiation time.

� To eliminate the need for classT to inherit from a com-
mon base class– this is useful for integrating third-party
classes, where it is not possible to modify the code.

� To improve performance– e.g., by allowing the
dump<T> template function (and theT::dump
method) to be inlined to eliminate forwarding overhead.

By applying the External Polymorphism pattern, the
Object DB::dump all method looks almost identical to
the original polymorphic one shown in Section 1.3.1:

void
Object_DB::dump_all (void)
{

struct DumpDumpable {
void operator () (const Dumpable &dump_obj) {

dump_obj->dump (); // virtual method call
}

};

for_each (this->object_table_.begin (),
this->object_table_.end (),
DumpDumpable ());

}

The key difference is that instead of iterating over a collec-
tion of Object* ’s, this new scheme iterates over a collec-
tion of Dumpable* ’s. We can now treat all objects uni-
formly through a common ancestor (Dumpable ) without
forcing objects to inherit from a single root class. Essen-
tially, the vptr that would have been stored in the target
object is moved into theDumpable object. The key benefit
is that the flexibility provided by avptr can be added trans-
parently without changing the storage layout of the original
objects.

1.5 Applicability

Use the External Polymorphism pattern when:

1. Your class libraries contain concrete data types that can-
not inherit from a common base class that contains vir-
tual methods; and

2. The behavior of your class libraries can be simplified
significantly if you can treat all objects in a polymorphic
manner.

Do not use the External Polymorphism pattern when

1. Your class libraries already contain abstract data types
that inherit from common base classes and contain vir-
tual methods; and

2. Your programming language or programming environ-
ment allows methods to be added to classes dynami-
cally.

1.6 Structure and Participants

The following describes the roles of the participants illus-
trated in Figure 4.

4



request()

Common

request()

CommonAdapter<Concrete>

request()

AccessPoint<Concrete>

specific_request()

Concrete

client

Figure 4: Structure of Participants in the External Polymor-
phism Pattern

Common (Dumpable ):

� This abstract base class defines an abstract interface that
defines the common pure virtualrequest method(s)
that will be treated polymorphically by clients.

Common Adapter<Concrete> (Dumpable Adapter ):

� This template subclass ofDumpable implements
the pure virtual request method(s) defined in
the Common base class. A typical implementa-
tion will simply forward the virtual call to the
specific request method in the parameterized
class. If the signatures of methods in theConcrete
class don’t match those of theCommonit may be nec-
essary to use the Adapter pattern [1] to make them con-
form.

Access Method (::dump <>):

� The template function forwards requests to the ob-
ject. In some cases,e.g., where the signature of
specific request is consistent, this feature may
not be needed. However, ifspecific request has
different signatures within severalConcrete classes,
the access method can be used to insulate such differ-
ences from theCommonAdapter .

Concrete (SOCKStream , SOCKAcceptor ):

� The Concrete classes in this pattern define one or
morespecific request methods that perform the
desired tasks. AlthoughConcrete classes are not re-
lated by inheritance, the External Polymorphism pattern
make it possible to treat all or some of their methods
polymorphically.

Collection (Object DB):

� TheCollection maintains a table of all theCommon
objects that are currently active in the program. This
table can be iterated over to “polymorphically” apply
operations to allCommonobjects (e.g.,to dump them).

1.7 Collaborations

The External Polymorphism pattern is typically used by hav-
ing a function call a virtualrequest method(s) through a
polymorphicCommon*. Each of those methods, in turn, for-
wards to the correspondingspecific request method
of the Concrete class via theCommonAdapter . Fig-
ure 5 shows an interaction diagram for this collaboration.

Common

request 
operation

ConcreteCommon ConcreteType

requestrequest

SignatureAdapter

::request specificRequest

Figure 5: Interaction Diagram for Collaborators in External
Polymorphism Pattern

1.8 Consequences

The External Polymorphism pattern has the following bene-
fits:

Transparent: Classes that were not originally designed to
work together can be extended relatively transparently so
they can be treated polymorphically. In particularly, the ob-
ject layouts need not be changed by adding virtual pointers.

Flexible: It’s possible to polymorphically extend other-
wise non-extensible data types, such asint or double ,
when the pattern is implemented in a language supporting
parameterized types (e.g.,C++ templates).

Peripheral: Because the pattern establishes itself on the
fringes of existing classes, it’s easy to use conditional com-
pilation to remove all trace of this pattern. This feature is
particularly useful for frameworks that use the External Poly-
morphism pattern solely for debugging purposes.

However, this pattern has the following drawbacks:

Unstable: All of the methods in theCommon and
CommonAdapter must track changes to methods in the
Concrete classes.

Obtrusive: It may be necessary to modify the source
code of existing library classes to insert/remove pointers to
Commonclasses.

Inefficient: Extra overhead is increased due to multiple
forwarding from virtual methods in theCommonAdapter
object to the corresponding methods in theConcrete ob-
ject. However, using inline methods for theConcrete class
will reduce this overhead to a single virtual method dispatch.

5



Inconsistent: Externally Polymorphic methods are not ac-
cessible through pointers to the “polymorphized” classes.
For instance, in the object model in Figure 3 it’s impossi-
ble to accessdump through a pointer toSOCKStream .
In addition, it is not possible to access other methods
from the “polymorphized” classes through a pointer to
Dumpable Adapter .

1.9 Known Uses

The External Polymorphism pattern has been used in the fol-
lowing software systems:

� The ACE framework uses the External Polymorphism
pattern to allow all ACE objects to be registered with a
Singleton in-memory “object database.” This database
stores the state of all live ACE objects and can be used
by debugger to dump this state. Since many ACE
classes are concrete data types it was not possible to
have them inherit from a common root base class con-
taining virtual methods.

� The External Polymorphism pattern also has been used
in custom commercial projects where code libraries
from disparate sources were required to have a more
common, polymorphic interface. The implementation
of the pattern presented a unified interface to classes
from a locally-developed library, the ACE library, and
various other “commercial” libraries.

� The idea for the “access method (see Section 2.1)
came from usage in the OSE class library, by Graham
Dumpleton.2 In OSE, template functions are used to
define collating algorithms for ordered lists, etc.

1.10 Related Patterns

The External Polymorphism pattern is similar to the Deco-
rator and Adapter patterns from the Gang of Four (GoF) de-
sign patterns catalog [1]. The Decorator pattern dynamically
extends an object transparently without using subclassing.
When a client uses a Decorated object it thinks it’s operating
on the actual object, when in fact it operates on the Decora-
tor. The Adapter pattern converts the interface of a class into
another interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of incompatible in-
terfaces.

There are several differences between these two GoF pat-
terns and the External Polymorphism pattern. The Decorator
pattern assumes that the classes it adorns are already abstract,
i.e., they have virtual methods, which are overridden by the
Decorator. In contrast, External Polymorphism adds poly-
morphism to concrete classes,i.e., classes without virtual
methods. In addition, since the Decorator is derived from

2The OSE class library is written and distributed by Graham Dumpleton.
Further information can be found atwww.dscpl.com.au/ .

the class it adorns, it must define all the methods it inher-
its. In contrast, theConcreteCommon class in the Exter-
nal Polymorphism pattern need only define the methods in
the Concrete class it wants to treat polymorphically.

The External Polymorphism pattern is similar to the GoF
Adapter pattern. However, there are subtle but important dif-
ferences:

Intents differ: An Adapterconvertsan interface to some-
thing directly usable by a client. External Polymorphism has
no intrinsic motivation to convert an interface, but rather to
provide a new substrate for accessing similar functionality.

Layer vs. Peer: The External Polymorphism pattern cre-
ates an entire class hierarchy outside the scope of the con-
crete classes. Adapter creates new layers within the existing
hierarchy.

Extension vs. Conversion: The External Polymorphism
pattern extends existing interfaces so that similar functional-
ity may be accessed polymorphically. Adapter creates a new
interface.

Behavior vs. Interface: The External Polymorphism pat-
tern concerns itself mainly with behavior rather than the
names associated with certain behaviors.

Finally, the External Polymorphism pattern is similar to
the Polymorphic Actuatorpattern documented and used in-
ternally at AG Communication Systems.

2 Implementing External Polymor-
phism in C++

The steps and considerations necessary to implement the Ex-
ternal Polymorphism pattern are described below.

2.1 Implementation Steps

This section describes how to implement the External Poly-
morphism pattern by factoring behaviors into an abstract
base class, implementing those behaviors in a descendant
concrete class, and then performing the following steps:

1. Identify common polymorphic functionality and de-
fine it in an abstract base class: The key to polymorphic
behavior is a common ancestor. Inheritance is typically used
when polymorphic behavior is desired. It’s not always pos-
sible or desirable, however, to use the implementation lan-
guage’s inheritance to achieve polymorphism. For instance,
in C++, polymorphic behavior generally requires addition of
a vptr a class’ internal data structure. To avoid this, the
External Polymorphism pattern can be applied.

In either situation, one must first determine the desired
shared behaviors and factor them into an abstract base class.
This class simply specifies aninterfacefor the behaviors, not
an implementation, as follows:

6



class Polymorphic_Object
{
public:

virtual void operation1 () = 0;
virtual void operation2 () = 0;
...

}

In some cases it may be desirable to define more than one
abstract class, grouping related behaviors by class.

2. Define an access method for each behavior method:
The abstract base defined in Step #1 above defines the sig-
natures of the behaviors. The actual implementation of the
behavior will differ (as one might expect) from concrete class
to concrete class. Likewise, names of the interfaces to actual
implementations may differ. In all cases, access to the im-
plementation of each shared behavior is provided through a
template wrapper function, such as

template <class T> void
operation1 (const T *t)
{

t->operation1_impl (...someargs...);
}

which provides a generic, default access method to an im-
plementation namedoperation impl . Likewise, the ap-
proach would be applied foroperation2 , and any other
shared behaviors defined in thePolymorphic Object
class.

Names of the interfaces may differ as well. In situations
whereoperation impl is not the correct interface name
for some classT, a special-case access method can be pro-
vided. Consider a classT1 implementing the required func-
tionality through an interface namedsomeimpl. The special-
case access method would be defined as

void
operation1<T1> (const T1 *t)
{

t->some_operation1_impl (...args...);
}

3. Define a parameterized adapter, inheriting from the
abstract base: Step #1 defines an abstract base class to
aggregate desired polymorphic behaviors. As in language-
based inheritance, concrete descendant classes provide be-
havior implementation. In the External Polymorphism pat-
tern, a concrete, parameterized adapter serves this purpose.

The parameterized adapter specifies an implemen-
tation for each interface defined in the base class
Polymorphic Object . Each implementation calls the
corresponding access method defined in Step #2, delegating
to the access method the task of calling the actual implemen-
tation.

The adapter forPolymorphic Object might be writ-
ten as

template <class T>
class Polymorphic_Adapter : public Polymorphic_Object
{
public:

Polymorphic_Adapter (T *t) : this_(t) { }

virtual void operation1 (void) {
// delegate!
operation1<T> (this_);

}

virtual void operation2 (void) {
// delegate!
operation2<T> (this_);

}

...

private:
// Make the constructor private to ensure
// that this_ is always set.
Polymorphic_Adapter ();

T *this_;
}

4. Change the application to reference through the ab-
stract base: All facilities are now in place for the ap-
plication to treat disparate classes as if they share a com-
mon ancestor. This can be done by creating instances of
Polymorphic Adapter that are parameterized over dif-
ferent typesT, and managing those instances solely through
a pointer to the abstract base,Polymorphic Object .

It should be noted that the External Polymorphism pattern
is really no different from managing concrete descendants in
“normal” inheritance/polymorphism. The main differences
is that the parameterization and additional layer of indirec-
tion is provided by the access method template function.

2.2 Implementation Considerations

The following issue arises when implementing the External
Polymorphism pattern.

Transparency: The scheme shown in Section 1.4 is not
entirely transparent to the concrete classT. In particular,
the SOCKStream ’s constructor and destructor must be
revised slightly to register and de-register instances with
Object DB, as follows:

SOCK_Stream::SOCK_Stream (void)
{

Object_DB::instance ()->register_object
(new Dumpable_Adapter<SOCK_Stream> (this));

// ...
}

SOCK_Stream::˜SOCK_Stream (void)
{

// ...
Object_DB::instance ()->remove_object

((void*) this);
}

Therefore, this solution isn’t suitable for transparently reg-
istering objects in binary-only libraries.

Note, however, that the changes shown above don’t re-
quire theSOCKStream to inherit from a common class.
Neither do they change the storage layout ofSOCKStream
instances. Moreover, it’s possible to use macros to condi-
tionally include this feature at compile-time, as follows:

7



#if defined (DEBUGGING)
#define REGISTER_OBJECT(CLASS) \

Object_DB::instance ()->register_object \
(new Dumpable_Adapter<CLASS> (this))

#define REMOVE_OBJECT \
Object_DB::instance ()->remove_object \

((void*) this)
#else
#define REGISTER_OBJECT(CLASS)
#define REMOVE_OBJECT
#endif /* DEBUGGING */

SOCK_Stream::SOCK_Stream (void)
{

REGISTER_OBJECT (SOCK_Stream);
// ...

}

SOCK_Stream::˜SOCK_Stream (void)
{

//...
REMOVE_OBJECT (SOCK_Stream);

}

2.3 Sample Code

The following code was adapted3 from the ACE framework,
which is an object-oriented toolkit for developing commu-
nication software [2]. This code illustrates how to use the
External Polymorphism pattern to implement a mechanism
that registers all live ACE objects with a central in-memory
object database. Applications can dump the state of all live
ACE objects,e.g.,from within a debugger.

There are several interesting aspects to this design:

� It uses the External Polymorphism pattern to avoid hav-
ing to derive all ACE classes from a common base class
with virtual methods. This design is crucial to avoid un-
necessary overhead. In addition, there is no additional
space added to ACE objects. This design is crucial to
maintain binary layout compatibility.

� This mechanism can be conditionally compiled to com-
pletely disable External Polymorphism entirely. More-
over, by using macros there are relatively few changes
to ACE code.

� This mechanism copes with single-inheritance hierar-
chies of dumpable classes. In such cases we typically
want only one dump, corresponding to the most derived
instance.4 Note, however, that this scheme doesn’t gen-
eralize to work with multiple-inheritance or virtual base
classes.

2.4 The Dumpable Class

TheDumpable class defines a uniform interface for all ob-
ject dumping:

class Dumpable
{
friend class Object_DB;
friend class Dumpable_Ptr;
public:

3The original code does not utilize STL in its operations.
4Thanks to Christian Millour for illustrating how to do this.

Dumpable (const void *);

// This pure virtual method must be
// filled in by a subclass.
virtual void dump (void) const = 0;

protected:
virtual ˜Dumpable (void);

private:
const void *this_;

};

The implementations of these methods are relatively
straightforward:

Dumpable::˜Dumpable (void) {}

Dumpable::Dumpable (const void *this_ptr)
: this_ (this_ptr)

{
}

2.5 The DumpablePtr Class

The Dumpable Ptr is a smart pointer stored in the in-
memory object databaseObject DB. The pointee (if any)
is deleted when reassigned.

class Dumpable_Ptr
{
public:

Dumpable_Ptr (const Dumpable *dumper = 0);

// Smart pointer delegation method.
const Dumpable *operator->() const;

// Assignment operator.
void operator= (const Dumpable *dumper) const;

private:
// Points to the actual Dumpable.
const Dumpable *dumper_;

};

TheDumpable Ptr is defined to cope with hierarchies
of dumpable classes. In such cases we typically want only
onedump, corresponding to the most derived instance. To
achieve this, the handle registered for the subobject corre-
sponding to the base class is destroyed. Therefore, on de-
struction of the subobject its handle won’t exist any more, so
we’ll have to check for that.

The Dumpable Ptr methods are implemented below.
Once again, these are not tricky:

Dumpable_Ptr::Dumpable_Ptr (const Dumpable *dumper)
: dumper_ (dumper)

{
}

const Dumpable *
Dumpable_Ptr::operator->() const
{

return this->dumper_;
}

void
Dumpable_Ptr::operator= (const Dumpable *dumper) const
{

if (this->dumper_ != dumper) {
delete (Dumpable_Ptr*) this->dumper_;
((Dumpable_Ptr*) this)->dumper_ = dumper;

}
}

8



2.6 The Object Database (ObjectDB) Class

TheObject DBclass is the Singleton object database that
keeps track of all live objects. Instances must be registered
with the database using theregister object method,
and subsequently removed usingremove object . The
entire database can be traversed and registered objects
dumped usingdump objects .

class Object_DB
{
public:

// Iterates through the entire set of
// registered objects and dumps their state.
void dump_objects (void);

// Add the tuple <dumper, this_> to
// the list of registered objects.
void register_object

(const Dumpable *dumper);

// Use ’this_’ to locate and remove
// the associated ’dumper’ from the
// list of registered ACE objects.
void remove_object (const void *this_);

// Factory method to get the singleton database
static Object_DB *Object_DB::instance (void);

private:
// Singleton instance of this class.
static Object_DB *instance_;

// Ensure we have a Singleton (nobody
// can create instances but this class)
Object_DB (void);

struct Tuple
{

// Pointer to the registered C++ object.
const void *this_;

// Smart pointer to the Dumpable
// object associated with this_.
const Dumpable_Ptr dumper_;

};

typedef vector<Tuple> TupleVector;

// Holds all registered C++ objects.
TupleVector object_table_;

};

The instance method, along with the private construc-
tor, enforces the policy thatObject DBis a singleton. Note
that this implementation does not protect itself against con-
current access; however, we can easily apply theDouble-
Checked Locking Pattern[9] to achieve that.

Object_DB *
Object_DB::instance (void)
{

// For thread safety we would employ
// double-checked locking, but not now.
if (Object_DB::instance_ == 0)

Object_DB::instance_ = new Object_DB;
return Object_DB::instance_;

}

The dump objects method traverses the database and
calls thedumpmethod on each registered instance.

// Dump all the live objects registered

// with the Object_DB Singleton.
void
Object_DB::dump_objects (void)
{

// A "funcstruct" to dump what’s in a tuple
struct DumpTuple {

bool operator ()(const Tuple &t) {
t.dumper_->dump ();

}
};
for_each (this->object_table_.begin (),

this->object_table_.end (),
DumpTuple ());

}

An object’s lifecycle with respect to the database is man-
aged by the following methods which register and remove
instances from the database. An STL-style predicate func-
tion is used to compare for equality (see code comments for
details).

// STL predicate function object to determine
// if the ’this_’ member in two Tuples is
// equal. This will be useful throughout.
struct thisMemberEqual :

public binary_function<Tuple, Tuple, bool> {
bool operator ()(const Tuple &t1,

const Tuple &t2) const {
return t1.this_ == t2.this_;

}
};

// This method registers a new <dumper>. It
// detects duplicates and simply overwrites them.
void
Object_DB::register_object (const Dumpable *dumper)
{

TupleVector::iterator slot;

slot = find_if (this->object_table_.begin (),
this->object_table_.end (),
bind2nd (thisMemberEqual (), dumper));

if (slot == this->object_table_.end ())
// Reached the end and didn’t find it, so append
this->object_table_.push_back (*dumper);

else
// Found this already--replace
*slot = *dumper; // Silently replace the duplicate

}

void
Object_DB::remove_object (const void *this_ptr)
{

Dumpable d (this_ptr);

(void) remove_if (this->object_table_.begin (),
this->object_table_.end (),
bind2nd (thisMemberEqual (), d));

}

Object_DB *Object_DB::instance_ = 0;

2.7 The DumpableAdapter Class

This class inherits the interface of the abstractDumpable
class and is instantiated with the implementation of the con-
crete component classConcrete . This design is similar
to the Adapter and Decorator patterns [1]. Note that class
Concrete need not inherit from a common class since
Dumpable provides the uniform virtual interface.

template <class Concrete>

9



class Dumpable_Adapter : public Dumpable
{
public:

Dumpable_Adapter (const Concrete *t);

// Concrete dump method (simply delegates to
// the <dump> method of <class Concrete>).
virtual void dump (void) const;

// Delegate to methods in the Concrete class.
Concrete *operator->();

private:
// Pointer to <this> of <class Concrete>
const Concrete *this_;

};

TheDumpable Adapter methods are implemented as
follows:

template <class Concrete>
Dumpable_Adapter<Concrete>::Dumpable_Adapter

(const Concrete *t)
: this_ (t), Dumpable ((const void*) t)

{
}

template <class Concrete> Concrete *
Dumpable_Adapter<Concrete>::operator->()
{

return (Concrete*) this->this_;
}

template <class Concrete> void
Dumpable_Adapter<Concrete>::dump (void) const
{

this->this_->dump<Concrete> (this_);
}

The critical “glue” between the external class hierarchy
and the existing class hierarchy is theaccess method, which
is defined for thedumpmethod as follows:

template <class Concrete> void
dump<Concrete> (const Concrete* t)
{

t->dump ();
}

Since it may not always be desireable to have this debug-
ging hierarchy compiled in, we created some useful macros
for conditionally compiling this implementation of External
Polymorphism into an application or framework:

#if defined (DEBUGGING)
#define REGISTER_OBJECT(CLASS) \

Object_DB::instance ()->register_object
(new Dumpable_Adapter<CLASS> (this));

#define REMOVE_OBJECT \
Object_DB::instance ()->remove_object

((void*) this);
#else
#define REGISTER_OBJECT(CLASS)
#define REMOVE_OBJECT
#endif /* DEBUGGING */

2.8 The Use Case

The following code illustrates how theDumpable mech-
anisms are integrated into ACE components like the
SOCKAcceptor andSOCKStream.

class SOCK
{
public:

SOCK (void) { REGISTER_OBJECT (SOCK); }
˜SOCK (void) { REMOVE_OBJECT; }

void dump (void) const {
cerr << "hello from SOCK = "

<< this << endl;
}

// ...
};

class SOCK_Acceptor : public SOCK
{
public:

SOCK_Acceptor (void) {
REGISTER_OBJECT (SOCK_Acceptor);

}
˜SOCK_Acceptor (void) { REMOVE_OBJECT; }

void dump (void) const {
cerr << "hello from SOCK_Acceptor = "

<< this << endl;
}

// ...
};

class SOCK_Stream : public SOCK
{
public:

SOCK_Stream (void) {
REGISTER_OBJECT (SOCK_Stream);

}
˜SOCK_Stream (void) { REMOVE_OBJECT; }

void dump (void) const {
cerr << "hello from SOCK_Stream = "

<< this << endl;
}

// ...
};

int
main (void)
{

SOCK sock;
// Note that the SOCK superclass is *not*
// printed for SOCK_Stream or SOCK_Acceptor.
// because of the smart pointer Dumpable_Ptr.
SOCK_Stream stream;
SOCK_Acceptor acceptor;
Object_DB::instance ()->dump_objects ();
{

SOCK sock;
// Note that the SOCK superclass is *not*
// printed for SOCK_Stream or SOCK_Acceptor.
SOCK_Stream stream;
SOCK_Acceptor acceptor;
Object_DB::instance ()->dump_objects ();

}
Object_DB::instance ()->dump_objects ();
return 0;

}

2.9 Variants

The Object DB that maintains the live objects can be
implemented using the GoF Command Pattern. In this
case, theObject DB::register object method is
implemented by “attaching” a new Command. This Com-
mand contains the object and itsdump method. When an

10



Object DB::dump all is invoked all the Commands are
“executed.” This solution allows the Command executor to
iterate through a collection of unrelated objects with no vta-
bles and pick out the right method for each one.

For example, assume that theObject DB had a
CommandList , as follows:

class Object_DB
{
public:

void register_object (Command_Base *base) {
dumpables_.attach (base);

}

void dump_all (void) {
dumpables_.execute ();

}
// ...

private:
// List of Commands_Base *’s.
Command_List dumpables_;

};

Individual objects can be registered as follows:

SOCK_Stream *ss = new SOCK_Stream;
SOCK_Acceptor *sa = new SOCK_Acceptor;

Object_DB::register_object
(new Command0<SOCK_Stream>

(ss, &SOCK_Stream::dump));

Object_DB::register_object
(new Command0<SOCK_Acceptor>

(sa, &SOCK_Acceptor::dump));

This implementation is more flexible than the one shown
in Section 2.3 since it allows the other methods besides
dump to be invoked when iterating over theObject DB.

3 Concluding Remarks

External Polymorphism is likely not destined for the design
patterns “Hall of Fame.” In particular, it is not as broadly
applicable as theSingletonorAdapterpatterns [1]. However,
External Polymorphism does solve a very subtle, real-world
problem encountered by developers implementing complex
software in statically-typed languages like C++.

Re-use, and thus integration, typically occurs at source
level. While patterns cannot change fundamental linkage
styles of languages or environments from “source” to “bi-
nary,” the External Polymorphism pattern enforces software
integration at a different conceptual level. In particular, it
encourages a component-like “black-box” style of develop-
ment and integration, as opposed to a “white-box” approach
[10]. Therefore, substituting one set of library components
for another can be simplified. Likewise, bringing in new,
externally-produced libraries is also easier.

The following analogy is offered in closing: automobiles
are complex interworking systems. Many repairs or main-
tainence tasks can be performed by using general-purpose
tools such as screwdrivers or a socket set. However, there
are some automotive subsystems such as mounting a tire or

performing a wheel alignment, that require the application
of highly specialized tools and techniques to efficiently com-
plete the job. In the world of design patterns, External Poly-
mophism is definitely a special-purpose tool. Hopefully, our
description of this pattern will enable you to apply it and “ef-
fectively complete the job.”

Acknowledgements

Many people have given comments on earlier versions of this
paper including: Alex Maclinovsky, Ralph Johnson, Jody
Hagins, Christian Millour, Phil Brooks, Phil Mesnier, Bill
Hess, and Jerome Zingg. The authors also wish to thank ev-
eryone from PLoP ’96 who provided substantive comments
on content and form for this pattern.

References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-

terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[2] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[3] C. Cleeland, D. C. Schmidt, and T. Harrison, “External Poly-
morphism – An Object Structural Pattern for Transparently
Extending Concrete Data Types,” inPattern Languages of
Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

[4] D. C. Schmidt, “IPCSAP: An Object-Oriented Interface to
Interprocess Communication Services,”C++ Report, vol. 4,
November/December 1992.

[5] Bjarne Stroustrup,The C++ Programming Language, 2nd

Edition. Addison-Wesley, 1991.

[6] D. Lea, “libg++, the GNU C++ Library,” inProceedings of the
1
st C++ Conference, (Denver, CO), pp. 243–256, USENIX,

Oct. 1988.

[7] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

[8] D. L. Musser and A. Saini,STL Tutorial and Reference
Guide: C++ Programming with the Standard Template Li-
brary. Addison-Wesley, 1995.

[9] D. C. Schmidt and T. Harrison, “Double-Checked Locking
– An Object Behavioral Pattern for Initializing and Access-
ing Thread-safe Objects Efficiently,” inThe3rd Pattern Lan-
guages of Programming Conference (Washington University
technical report #WUCS-97-07), February 1997.

[10] H. Hueni, R. Johnson, and R. Engel, “A Framework for Net-
work Protocol Software,” inProceedings of OOPSLA ’95,
(Austin, Texas), ACM, October 1995.

11


