
Evaluating Adaptive Resource Management for
Distributed Real-Time Embedded Systems

Nishanth Shankaran,
∗

Xenofon Koutsoukos, Douglas C. Schmidt, and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University, Nashville

ABSTRACT
A challenging problem faced by researchers and developers
of distributed real-time and embedded (DRE) systems is de-
vising and implementing effective adaptive resource manage-
ment strategies that can meet end-to-end quality of service
(QoS) requirements in varying operational conditions. This
paper presents two contributions to research in adaptive re-
source management for DRE systems. First, we describe the
structure and functionality of the Hybrid Adaptive Resource-
management Middleware (HyARM), which provides adap-
tive resource management using hybrid control techniques
for adapting to workload fluctuations and resource availabil-
ity. Second, we evaluate the adaptive behavior of HyARM
via experiments on a DRE multimedia system that distributes
video in real-time. Our results indicate that HyARM yields
predictable, stable, and high system performance, even in the
face of fluctuating workload and resource availability.

1. INTRODUCTION
Achieving end-to-end real-time quality of service (QoS)

is particularly important for open distributed real-time and
embedded (DRE) systems that face resource constraints, such
as limited computing power and network bandwidth. Over-
utilization of these system resources can yield unpredictable
and unstable behavior, whereas under-utilization can yield
excessive system cost. A promising approach to meeting
these end-to-end QoS requirements effectively, therefore, is
to develop and apply adaptive middleware [10, 15], which is
software whose functional and QoS-related properties can be
modified either statically or dynamically. Static modifi-
cations are carried out to reduce footprint, leverage capabil-
ities that exist in specific platforms, enable functional sub-
setting, and/or minimize hardware/software infrastructure
dependencies. Objectives of dynamic modifications include
optimizing system responses to changing environments or re-
quirements, such as changing component interconnections,

∗Contact author:nshankar@dre.vanderbilt.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RM ’05, November 28- December 2, 2005 Grenoble, France
Copyright 2005 ACM 1-59593-270-4/05/11 ...$5.00.

power-levels, CPU and network bandwidth availability, la-
tency/jitter, and workload.

In open DRE systems, adaptive middleware must make
such modifications dependably, i.e., while meeting strin-
gent end-to-end QoS requirements, which requires the spec-
ification and enforcement of upper and lower bounds on
system resource utilization to ensure effective use of sys-
tem resources. To meet these requirements, we have de-
veloped the Hybrid Adaptive Resource-management Middle-
ware (HyARM), which is an open-source1 distributed re-
source management middleware.

HyARM is based on hybrid control theoretic techniques [8],
which provide a theoretical framework for designing con-
trol of complex system with both continuous and discrete
dynamics. In our case study, which involves a distributed
real-time video distribution system, the task of adaptive re-
source management is to control the utilization of the dif-
ferent resources, whose utilizations are described by contin-
uous variables. We achieve this by adapting the resolution
of the transmitted video, which is modeled as a continuous
variable, and by changing the frame-rate and the compres-
sion, which are modeled by discrete actions. We have im-
plemented HyARM atop The ACE ORB (TAO) [13], which
is an implementation of the Real-time CORBA specifica-
tion [12]. Our results show that (1) HyARM ensures ef-
fective system resource utilization and (2) end-to-end QoS
requirements of higher priority applications are met, even in
the face of fluctuations in workload.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the architecture, functionality, and resource
utilization model of our DRE multimedia system case study;
Section 3 explains the structure and functionality of HyARM;
Section 4 evaluates the adaptive behavior of HyARM via ex-
periments on our multimedia system case study; Section 5
compares our research on HyARM with related work; and
Section 6 presents concluding remarks.

2. CASE STUDY: DRE MULTIMEDIA SYS-
TEM

This section describes the architecture and QoS require-
ments of our DRE multimedia system.

2.1 Multimedia System Architecture
The architecture for our DRE multimedia system is shown

in Figure 1 and consists of the following entities: (1)Data

1The code and examples for HyARM are available at www.
dre.vanderbilt.edu/∼nshankar/HyARM/.

Wireless Link

Wireless Link

W
ireless

Link

`

`

`

Physical Link

Physical Link

Physical Link

Base Station
End Receiver

End Receiver

End Receiver`
Physical Link

End Receiver

UAV

Camera

Video
Encoder

Camera

Video
Encoder

Camera

Video
Encoder

UAV

Camera

Video
Encoder

Camera

Video
Encoder

Camera

Video
Encoder

UAV

Camera

Video
Encoder

Camera

Video
Encoder

Camera

Video
Encoder

Figure 1: DRE Multimedia System Architecture

source (video capture by UAV), where video is captured
(related to subject of interest) by camera(s) on each UAV,
followed by encoding of raw video using a specific encoding
scheme and transmitting the video to the next stage in the
pipeline. (2)Data distributor (base station), where the
video is processed to remove noise, followed by retransmis-
sion of the processed video to the next stage in the pipeline.
(3) Sinks (command and control center), where the
received video is again processed to remove noise, then de-
coded and finally rendered to end user via graphical displays.

Significant improvements in video encoding/decoding and
(de)compression techniques have been made as a result of
recent advances in video encoding and compression tech-
niques [14]. Common video compression schemes are MPEG-
1, MPEG-2, Real Video, and MPEG-4. Each compression
scheme is characterized by its resource requirement, e.g., the
computational power to (de)compress the video signal and
the network bandwidth required to transmit the compressed
video signal. Properties of the compressed video, such as res-
olution and frame-rate determine both the quality and the
resource requirements of the video.

Our multimedia system case study has the following end-
to-end real-time QoS requirements: (1) latency, (2) inter-
frame delay (also know as jitter), (3) frame rate, and (4)
picture resolution. These QoS requirements can be clas-
sified as being either hard or soft. Hard QoS requirements
should be met by the underlying system at all times, whereas
soft QoS requirements can be missed occasionally.2 For our
case study, we treat QoS requirements such as latency and
jitter as harder QoS requirements and strive to meet these
requirements at all times. In contrast, we treat QoS require-
ments such as video frame rate and picture resolution as
softer QoS requirements and modify these video properties
adaptively to handle dynamic changes in resource availabil-
ity effectively.

2.2 DRE Multimedia System Rresources
There are two primary types of resources in our DRE

multimedia system: (1) processors that provide computa-
tional power available at the UAVs, base stations, and end
receivers and (2) network links that provide communication
bandwidth between UAVs, base stations, and end receivers.
The computing power required by the video capture and

2Although hard and soft are often portrayed as two discrete
requirement sets, in practice they are usually two ends of
a continuum ranging from “softer” to “harder” rather than
two disjoint points.

encoding tasks depends on dynamic factors, such as speed
of the UAV, speed of the subject (if the subject is mobile),
and distance between UAV and the subject. The wireless
network bandwidth available to transmit video captured by
UAVs to base stations also depends on the wireless connec-
tivity between the UAVs and the base station, which in-turn
depend on dynamic factors such as the speed of the UAVs
and the relative distance between UAVs and base stations.
The bandwidth of the link between the base station and
the end receiver is limited, but more stable than the band-
width of the wireless network. Resource requirements and
availability of resources are subjected to dynamic changes.

Two classes of applications – QoS-enabled and best-effort
– use the multimedia system infrastructure described above
to transmit video to their respective receivers. QoS-enabled
class of applications have higher priority over best-effort
class of application. In our study, emergency response appli-
cations belong to QoS-enabled and surveillance applications
belong to best-effort class. For example, since a stream from
an emergency response application is of higher importance
than a video stream from a surveillance application, it re-
ceives more resources end-to-end.

Since resource availability significantly affects QoS, we use
current resource utilization as the primary indicator of sys-
tem performance. We refer to the current level of system
resource utilization as the system condition. Based on this
definition, we can classify system conditions as being either
under, over, or effectively utilized.

Under-utilization of system resources occurs when the cur-
rent resource utilization is lower than the desired lower bound
on resource utilization. In this system condition, residual
system resources (i.e., network bandwidth and computa-
tional power) are available in large amounts after meeting
end-to-end QoS requirements of applications. These resid-
ual resources can be used to increase the QoS of the applica-
tions. For example, residual CPU and network bandwidth
can be used to deliver better quality video (e.g., with greater
resolution and higher frame rate) to end receivers.

Over-utilization of system resources occurs when the cur-
rent resource utilization is higher than the desired upper
bound on resource utilization. This condition can arise
from loss of resources - network bandwidth and/or com-
puting power at base station, end receiver or at UAV - or
may be due to an increase in resource demands by appli-
cations. Over-utilization is generally undesirable since the
quality of the received video (such as resolution and frame
rate) and timeliness properties (such as latency and jitter)
are degraded and may result in an unstable (and thus inef-
fective) system.

Effective resource utilization is the desired system con-
dition since it ensures that end-to-end QoS requirements of
the UAV-based multimedia system are met and utilization of
both system resources, i.e., network bandwidth and compu-
tational power, are within their desired utilization bounds.
Section 3 describes techniques we applied to achieve effective
utilization, even in the face of fluctuating resource availabil-
ity and/or demand.

3. OVERVIEW OF HYARM
This section describes the architecture of the Hybrid Adap-

tive Resource-management Middleware (HyARM). HyARM
ensures efficient and predictable system performance by pro-
viding adaptive resource management, including monitoring

of system resources and enforcing bounds on application re-
source utilization.

3.1 HyARM Structure and Functionality

Resource Utilization

Legend

Resource Allocation

Application Parameters

Figure 2: HyARM Architecture

HyARM is composed of three types of entities shown in
Figure 2 and described below:

Resource monitors observe the overall resource utiliza-
tion for each type of resource and resource utilization per
application. In our multimedia system, there are resource
monitors for CPU utilization and network bandwidth. CPU
monitors observe the CPU resource utilization of UAVs, base
station, and end receivers. Network bandwidth monitors ob-
serve the network resource utilization of (1) wireless network
link between UAVs and the base station and (2) wired net-
work link between the base station and end receivers.

The central controller maintains the system resource
utilization below a desired bound by (1) processing periodic
updates it receives from resource monitors and (2) modi-
fying the execution of applications accordingly, e.g., by us-
ing different execution algorithms or operating the appli-
cation with increased/decreased QoS. This adaptation pro-
cess ensures that system resources are utilized efficiently and
end-to-end application QoS requirements are met. In our
multimedia system, the HyARM controller determines the
value of application parameters such as (1) video compres-
sion schemes, such as Real Video and MPEG-4, and/or (2)
frame rate, and (3) picture resolution. From the perspective
of hybrid control theoretic techniques [8], the different video
compression schemes and frame rate form the discrete vari-
ables of application execution and picture resolution forms
the continuous variables.

Application adapters modify application execution ac-
cording to parameters recommended by the controller and
ensures that the operation of the application is in accordance
with the recommended parameters. In the current mple-
mentation of HyARM, the application adapter modifies the
input parameters to the application that affect application
QoS and resource utilization - compression scheme, frame
rate, and picture resolution. In our future implementations,
we plan to use resource reservation mechanisms such as Dif-
ferentiated Service [7, 3] and Class-based Kernel Resource
Management [4] to provision/reserve network and CPU re-
sources. In our multimedia system, the application adapter
ensures that the video is encoded at the recommended frame
rate and resolution using the specified compression scheme.

3.2 Applying HyARM to the Multimedia Sys-
tem Case Study

HyARM is built atop TAO [13], which is a widely used
open-source implementation of Real-time CORBA [12]. HyARM
can be applied to ensure predictable, efficient, and adaptive
resource management of any DRE system where resource
availability and requirements are subject to dynamic change.

Figure 3 shows the interaction of various parts of the
DRE multimedia system developed with HyARM, TAO,
and TAO’s A/V Streaming Service. TAO’s A/V Streaming
service is an implementation of the CORBA A/V Stream-
ing Service specification. TAO’s A/V Streaming Service is
a QoS-enabled video distribution service that can transfer
video in real-time to one or more receivers. We use the A/V
Streaming Service to transmit the video from the UAVs to
the end receivers via the base station. Three entities of

Receiver

UAV

 TAO

Resource

Utilization

HyARM

Central

Controller

A/V Streaming
Service : Sender

MPEG1
MPEG4

Real
Video

HyARM

Resource

Monitor

A/V Streaming
Service : Receiver

Compressed
Video Compressed

Video

Application

HyARM
Application

Adapter

Remote Object Call

Control
Inputs Resource

Utilization

Resource
Utilization /

Control Inputs

Control

Inputs

Legend

Figure 3: Developing the DRE Multimedia System
with HyARM

HyARM, namely the resource monitors, central controller,
and application adapters are built as CORBA servants, so
they can be distributed throughout a DRE system. Re-
source monitors are remote CORBA objects that update
the central controller periodically with the current resource
utilization. Application adapters are collocated with appli-
cations since the two interact closely.

As shown in Figure 3, UAVs compress the data using var-
ious compression schemes, such as MPEG1, MPEG4, and
Real Video, and uses TAO’s A/V streaming service to trans-
mit the video to end receivers. HyARM’s resource monitors
continuously observe the system resource utilization and no-
tify the central controller with the current utilization. 3

The interaction between the controller and the resource
monitors uses the Observer pattern [5]. When the controller
receives resource utilization updates from monitors, it com-
putes the necessary modifications to application(s) param-
eters and notifies application adapter(s) via a remote oper-
ation call. Application adapter(s), that are collocated with
the application, modify the input parameters to the applica-
tion – in our case video encoder – to modify the application
resource utilization and QoS.

4. PERFORMANCE RESULTS AND ANAL-
YSIS

This section first describes the testbed that provides the
infrastructure for our DRE multimedia system, which was
used to evaluate the performance of HyARM. We then de-
scribe our experiments and analyze the results obtained to

3The base station is not included in the figure since it only
retransmits the video received from UAVs to end receivers.

empirically evaluate how HyARM behaves during under-
and over-utilization of system resources.

4.1 Overview of the Hardware and Software
Testbed

Our experiments were performed on the Emulab testbed
at University of Utah. The hardware configuration consists
of two nodes acting as UAVs, one acting as base station,
and one as end receiver. Video from the two UAVs were
transmitted to a base station via a LAN configured with
the following properties: average packet loss ratio of 0.3 and
bandwidth 1 Mbps. The network bandwidth was chosen to
be 1 Mbps since each UAV in the DRE multimedia system
is allocated 250 Kbps. These parameters were chosen to em-
ulate an unreliable wireless network with limited bandwidth
between the UAVs and the base station. From the base sta-
tion, the video was retransmitted to the end receiver via a
reliable wireline link of 10 Mbps bandwidth with no packet
loss.

The hardware configuration of all the nodes was chosen as
follows: 600 MHz Intel Pentium III processor, 256 MB physi-
cal memory, 4 Intel EtherExpress Pro 10/100 Mbps Ethernet
ports, and 13 GB hard drive. A real-time version of Linux
– TimeSys Linux/NET 3.1.214 based on RedHat Linux 9 –
was used as the operating system for all nodes. The follow-
ing software packages were also used for our experiments: (1)
Ffmpeg 0.4.9-pre1, which is an open-source library (http:
//www.ffmpeg.sourceforge.net/download.php) that com-
presses video into MPEG-2, MPEG-4, Real Video, and many
other video formats. (2) Iftop 0.16, which is an open-
source library (http://www.ex-parrot.com/∼pdw/iftop/)
we used for monitoring network activity and bandwidth uti-
lization. (3) ACE 5.4.3 + TAO 1.4.3, which is an open-
source (http://www.dre.vanderbilt.edu/TAO) implemen-
tation of the Real-time CORBA [12] specification upon which
HyARM is built. TAO provides the CORBA Audio/Video
(A/V) Streaming Service that we use to transmit the video
from the UAVs to end receivers via the base station.

4.2 Experiment Configuration
Our experiment consisted of two (emulated) UAVs that si-

multaneously send video to the base station using the exper-
imentation setup described in Section 4.1. At the base sta-
tion, video was retransmitted to the end receivers (without
any modifications), where it was stored to a file. Each UAV
hosted two applications, one QoS-enabled application (emer-
gency response), and one best-effort application (surveil-
lance). Within each UAV, computational power is shared
between the applications, while the network bandwidth is
shared among all applications.

To evaluate the QoS provided by HyARM, we monitored
CPU utilization at the two UAVs, and network bandwidth
utilization between the UAV and the base station. CPU re-
source utilization was not monitored at the base station and
the end receiver since they performed no computationally-
intensive operations. The resource utilization of the 10 Mpbs
physical link between the base station and the end receiver
does not affect QoS of applications and is not monitored by
HyARM since it is nearly 10 times the 1 MB bandwidth
of the LAN between the UAVs and the base station. The
experiment also monitors properties of the video that affect
the QoS of the applications, such as latency, jitter, frame
rate, and resolution.

The set point on resource utilization for each resource was
specified at 0.69, which is the upper bound typically recom-
mended by scheduling techniques, such as rate monotonic
algorithm [9]. Since studies [6] have shown that human eyes
can perceive delays more than 200ms, we use this as the
upper bound on jitter of the received video. QoS require-
ments for each class of application is specified during system
initialization and is shown in Table 1.

4.3 Empirical Results and Analysis
This section presents the results obtained from running

the experiment described in Section 4.2 on our DRE multi-
media system testbed. We used system resource utilization
as a metric to evaluate the adaptive resource management
capabilities of HyARM under varying input work loads. We
also used application QoS as a metric to evaluate HyARM’s
capabilities to support end-to-end QoS requirements of the
various classes of applications in the DRE multimedia sys-
tem. We analyze these results to explain the significant dif-
ferences in system performance and application QoS.

Comparison of system performance is decomposed into
comparison of resource utilization and application QoS. For
system resource utilization, we compare (1) network band-
width utilization of the local area network and (2) CPU
utilization at the two UAV nodes. For application QoS, we
compare mean values of video parameters, including (1) pic-
ture resolution, (2) frame rate, (3) latency, and (4) jitter.

Comparison of resource utilization. Over-utilization
of system resources in DRE systems can yield an unstable
system. In contrast, under-utilization of system resources
increases system cost. Figure 4 and Figure 5 compare the
system resource utilization with and without HyARM. Fig-
ure 4 shows that HyARM maintains system utilization close
to the desired utilization set point during fluctuation in in-
put work load by transmitting video of higher (or lower) QoS
for QoS-enabled (or best-effort) class of applications during
over (or under) utilization of system resources.

Figure 5 shows that without HyARM, network utiliza-
tion was as high as 0.9 during increase in workload condi-
tions, which is greater than the utilization set point of 0.7
by 0.2. As a result of over-utilization of resources, QoS of
the received video, such as average latency and jitter, was
affected significantly. Without HyARM, system resources
were either under-utilized or over-utilized, both of which
are undesirable. In contrast, with HyARM, system resource
utilization is always close to the desired set point, even
during fluctuations in application workload. During sud-
den fluctuation in application workload, system conditions
may be temporarily undesirable, but are restored to the de-
sired condition within several sampling periods. Temporary
over-utilization of resources is permissible in our multimedia
system since the quality of the video may be degraded for
a short period of time, though application QoS will be de-
graded significantly if poor quality video is transmitted for
a longer period of time.

Comparison of application QoS. Figures 6, Figure 7,
and Table 2 compare latency, jitter, resolution, and frame-
rate of the received video, respectively. Table 2 shows that
HyARM increases the resolution and frame video of QoS-
enabled applications, but decreases the resolution and frame
rate of best effort applications. During over utilization of
system resources, resolution and frame rate of lower priority
applications are reduced to adapt to fluctuations in applica-

Class Resolution Frame Rate Latency (msec) Jitter (msec)
QoS Enabled 1024 x 768 25 200 200
Best-effort 320 x 240 15 300 250

Table 1: Application QoS Requirements

Figure 4: Resource utilization with HyARM Figure 5: Resource utilization without HyARM

tion workload and to maintain the utilization of resources
at the specified set point.

It can be seen from Figure 6 and Figure 7 that HyARM
reduces the latency and jitter of the received video signif-
icantly. These figures show that the QoS of QoS-enabled
applications is greatly improved by HyARM. Although ap-
plication parameters, such as frame rate and resolutions,
which affect the soft QoS requirements of best-effort appli-
cations may be compromised, the hard QoS requirements,
such as latency and jitter, of all applications are met.

HyARM responds to fluctuation in resource availability
and/or demand by constant monitoring of resource utiliza-
tion. As shown in Figure 4, when resources utilization in-
creases above the desired set point, HyARM lowers the uti-
lization by reducing the QoS of best-effort applications. This
adaptation ensures that enough resources are available for
QoS-enabled applications to meet their QoS needs. Fig-
ures 6 and 7 show that the values of latency and jitter of
the received video of the system with HyARM are nearly half
of the corresponding value of the system without HyARM.
With HyARM, values of these parameters are well below
the specified bounds, whereas without HyARM, these value
are significantly above the specified bounds due to over-
utilization of the network bandwidth, which leads to network
congestion and results in packet loss. HyARM avoids this
by reducing video parameters such as resolution, frame-rate,
and/or modifying the compression scheme used to compress
the video.

Our conclusions from analyzing the results described above
are that applying adaptive middleware via hybrid control to
DRE system helps to (1) improve application QoS, (2) in-
crease system resource utilization, and (3) provide better
predictability (lower latency and inter-frame delay) to QoS-
enabled applications. These improvements are achieved largely
due to monitoring of system resource utilization, efficient
system workload management, and adaptive resource provi-
sioning by means of HyARM’s network/CPU resource mon-
itors, application adapter, and central controller, respec-
tively.

5. RELATED WORK
A number of control theoretic approaches have been ap-

plied to DRE systems recently. These techniques aid in over-
coming limitations with traditional scheduling approaches
that handle dynamic changes in resource availability poorly
and result in a rigidly scheduled system that adapts poorly
to change. A survey of these techniques is presented in [1].

One such approach is feedback control scheduling (FCS) [2,
11]. FCS algorithms dynamically adjust resource allocation
by means of software feedback control loops. FCS algo-
rithms are modeled and designed using rigorous control-
theoretic methodologies. These algorithms provide robust
and analytical performance assurances despite uncertainties
in resource availability and/or demand. Although existing
FCS algorithms have shown promise, these algorithms often
assume that the system has continuous control variable(s)
that can continuously be adjusted. While this assumption
holds for certain classes of systems, there are many classes
of DRE systems, such as avionics and total-ship computing
environments that only support a finite a priori set of dis-
crete configurations. The control variables in such systems
are therefore intrinsically discrete.

HyARM handles both continuous control variables, such
as picture resolution, and discrete control variable, such as
discrete set of frame rates. HyARM can therefore be applied
to system that support continuous and/or discrete set of
control variables. The DRE multimedia system as described
in Section 2 is an example DRE system that offers both con-
tinuous (picture resolution) and discrete set (frame-rate) of
control variables. These variables are modified by HyARM
to achieve efficient resource utilization and improved appli-
cation QoS.

6. CONCLUDING REMARKS
Many distributed real-time and embedded (DRE) systems

demand end-to-end quality of service (QoS) enforcement
from their underlying platforms to operate correctly. These
systems increasingly run in open environments, where re-
source availability is subject to dynamic change. To meet

Figure 6: Comparison of Video Latency Figure 7: Comparison of Video Jitter

Source Picture Size / Frame Rate
With HyARM Without HyARM

UAV1 QoS Enabled Application 1122 X 1496 / 25 960 X 720 / 20
UAV1 Best-effort Application 288 X 384 / 15 640 X 480 / 20

UAV2 QoS Enabled Application 1126 X 1496 / 25 960 X 720 / 20
UAV2 Best-effort Application 288 X 384 / 15 640 X 480 / 20

Table 2: Comparison of Video Quality

end-to-end QoS in dynamic environments, DRE systems can
benefit from an adaptive middleware that monitors system
resources, performs efficient application workload manage-
ment, and enables efficient resource provisioning for execut-
ing applications.

This paper described HyARM, an adaptive middleware,
that provides effective resource management to DRE sys-
tems. HyARM employs hybrid control techniques to pro-
vide the adaptive middleware capabilities, such as resource
monitoring and application adaptation that are key to pro-
viding the dynamic resource management capabilities for
open DRE systems. We employed HyARM to a represen-
tative DRE multimedia system that is implemented using
Real-time CORBA and CORBA A/V Streaming Service.

We evaluated the performance of HyARM in a system
composed of three distributed resources and two classes of
applications with two applications each. Our empirical re-
sults indicate that HyARM ensures (1) efficient resource uti-
lization by maintaining the resource utilization of system re-
sources within the specified utilization bounds, (2) QoS re-
quirements of QoS-enabled applications are met at all times.
Overall, HyARM ensures efficient, predictable, and adaptive
resource management for DRE systems.

7. REFERENCES
[1] T. F. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu.

Feddback Performance Control in Software Services. IEEE:

Control Systems, 23(3), June 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In IEEE Real-Time
Systems Symposium, Dec. 2002.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss. An architecture for differentiated services. Network
Information Center RFC 2475, Dec. 1998.

[4] H. Franke, S. Nagar, C. Seetharaman, and V. Kashyap.
Enabling Autonomic Workload Management in Linux. In
Proceedings of the International Conference on Autonomic
Computing (ICAC), New York, New York, May 2004. IEEE.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[6] G. Ghinea and J. P. Thomas. Qos impact on user perception

and understanding of multimedia video clips. In
MULTIMEDIA ’98: Proceedings of the sixth ACM
international conference on Multimedia, pages 49–54, Bristol,
United Kingdom, 1998. ACM Press.

[7] Internet Engineering Task Force. Differentiated Services
Working Group (diffserv) Charter.
www.ietf.org/html.charters/diffserv-charter.html, 2000.

[8] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu. Hybrid
Supervisory Control of Real-Time Systems. In 11th IEEE
Real-Time and Embedded Technology and Applications
Symposium, San Francisco, California, Mar. 2005.

[9] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior. In Proceedings of the 10th IEEE Real-Time

Systems Symposium (RTSS 1989), pages 166–171. IEEE
Computer Society Press, 1989.

[10] J. Loyall, J. Gossett, C. Gill, R. Schantz, J. Zinky, P. Pal,
R. Shapiro, C. Rodrigues, M. Atighetchi, and D. Karr.
Comparing and Contrasting Adaptive Middleware Support in
Wide-Area and Embedded Distributed Object Applications. In
Proceedings of the 21st International Conference on
Distributed Computing Systems (ICDCS-21), pages 625–634.
IEEE, Apr. 2001.

[11] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback
Control Real-Time Scheduling: Framework, Modeling, and
Algorithms. Real-Time Systems Journal, 23(1/2):85–126, July
2002.

[12] Object Management Group. Real-time CORBA Specification,

OMG Document formal/02-08-02 edition, Aug. 2002.

[13] D. C. Schmidt, D. L. Levine, and S. Mungee. The Design and
Performance of Real-Time Object Request Brokers. Computer
Communications, 21(4):294–324, Apr. 1998.

[14] Thomas Sikora. Trends and Perspectives in Image and Video

Coding. In Proceedings of the IEEE, Jan. 2005.

[15] X. Wang, H.-M. Huang, V. Subramonian, C. Lu, and C. Gill.
CAMRIT: Control-based Adaptive Middleware for Real-time
Image Transmission. In Proc. of the 10th IEEE Real-Time and
Embedded Tech. and Applications Symp. (RTAS), Toronto,
Canada, May 2004.

