
A Decision-Theoretic Planner with Dynamic Component
Reconfiguration for Distributed Real-Time Applications

AAAI 2006 Paper ID: 955

Abstract

Distributed real-time embedded (DRE) systems of-
ten must perform sequences of coordination and het-
erogeneous data manipulation tasks to meet specified
goals. Autonomous operation of DRE systems in dy-
namic and uncertain environments can benefit from
the integrated operation of (1) a Spreading Activa-
tion Partial Order Planner that combines task plan-
ning and scheduling in uncertain environments with (2)
a Resource Allocation and Control Engine middleware
framework that integrates multiple resource manage-
ment algorithms for (re)deploying and (re)configuring
task sequence components in DRE systems. We
demonstrate the effectiveness of the decision-theoretic
mission planner and the middleware framework in the
context of managing and executing mission goals for a
multi-satellite system. Our results show that coupling
a dynamic planner that takes into account scheduling
and resource constraints using our allocation and man-
agement middleware framework enables the efficient
implementation of autonomy in DRE systems.

Introduction
Distributed real-time embedded (DRE) systems,
such as multi-satellite and multi-robot formations,
perform sequences of heterogeneous data collec-
tion/manipulation and coordination tasks to meet spec-
ified goals. For example, weather prediction requires
multiple satellites that fly coordinated missions with
multiple sensors to collect and analyze large quantities
of atmospheric and earth surface data. The data col-
lection, analysis, and earth transmission task sequences
are governed by dynamic factors, such as data analysis
results, changing goals and priorities as weather con-
ditions change, and uncertainties due to environmental
conditions and changing resource availability.

Presently task sequence implementations in DRE sys-
tems use component middleware (Heineman & Coun-
cill 2001), which automates remoting, lifecycle manage-
ment, system resource management, deployment, and
configuration. In large-scale DRE systems, the sheer
number of component sequences often poses a combina-
torial deployment problem, i.e., mapping components

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

to computing nodes. Moreover, the dynamic nature of
the operations requires runtime management and modi-
fication of deployments. Effective solutions to this prob-
lem must also include planning and replanning capabil-
ities to ensure the task sequences being executed match
current mission goals and resource availability.

For example, the NASA Earth Science Enterprise’s
Magnetospheric Multi-Scale (MMS) mission uses five
satellites with six sensors on each satellite as a solar-
terrestrial probe. The satellites orbit the earth in for-
mation and collect electromagnetic and particle data
in the earth’s magnetosphere. The mission operates in
three data modes: slow, fast, and burst. Each mode
includes different goals, orbits, and data priorities.

An automated planner for mission task sequences
must handle changing goal prescriptions specified by
mission scientists and autonomous mode changes driven
by satellite positions and the results of analyzing col-
lected data. The task sequences include components for
coordinating the trajectory and orientation of satellites,
sensor selection and data collection for individual satel-
lites, and data integration and compression to create
telemetry streams beamed down to the earth stations.
Changing resource usage and environmental conditions
may affect the likelihood that software components will
successfully complete a task. The runtime computa-
tional architecture must include dynamic planning and
replanning, as well as dynamic monitoring and realloca-
tion of resources, to accommodate changing goals and
operating conditions.

To support such DRE systems, we developed a novel
computationally efficient algorithm called the Spread-
ing Activation Partial Order Planner (SA-POP) for
dynamic (re)planning under uncertainty. Prior re-
search (Srivastava & Kambhampati 1999) identified
scaling limitations in earlier AI approaches that com-
bine planning and resource allocation/scheduling in one
computational algorithm. We therefore combined SA-
POP with a Resource Allocation and Control Engine
(RACE), which is a reusable component middleware
framework that separates resource allocation and con-
trol algorithms from the underlying middleware deploy-
ment, configuration, and control mechanisms to enforce
quality of service (QoS) requirements.

Satellite System

Uniform Interface to deploy and manage components

RACE

Deployment, Configuration & Control Mechanism

Allocation
Algorithms

Control
Algorithms Application

Performance
Data

Resource
Utilization

Data

Application
Monitors

Resource
Monitors

 Component Middleware Infrastructure (CIAO/DAnCE)

Deploy and manage components

Task Network
Spreading
Activation

Mechanism

Operational
String

Generation

Mission
Scientists

Mission
Goals

Domain
Experts

Operational Strings Deployment/Mission Feedback
Task Map

SA-POP

Figure 1: SA-POP and RACE in a Multi-Satellite Sys-
tem

DRE System Architecture

Figure 1 shows the computational architecture of a
DRE system with two subsystems: (1) the SA-POP
planner that generates operational strings given appli-
cation goals and (2) the RACE framework that moni-
tors and manages runtime resource allocation to enforce
QoS requirements. DRE systems for shipboard com-
puting (Schmidt et al. 2001), avionics mission com-
puting (Sharp & Roll 2003), and intelligence, surveil-
lance and reconnaissance (Sharma et al. 2004) view
applications as groups of domain-related tasks that can
be implemented by parameterized and executable soft-
ware components using component technologies, such
as the OMG’s Lightweight CORBA Component Model
(CCM) and Web Services. In our architecture, com-
ponents are units of implementation and composition
that contain parameterized executable code with spec-
ified QoS requirements (such as maximum latency and
minimum throughput values) and resource consump-
tion profiles (such as expected CPU and memory us-
age).

To devise an application that achieves a given set of
goals, e.g., study the physics of plasma reconnection and
charged particle acceleration for the MMS mission, the
SA-POP planner shown in Figure 1 first generates par-
tial order task sequences that achieve specified goals us-
ing a spreading activation mechanism (Bagchi, Biswas,
& Kawamura 2000). Individual tasks in the sequences
are then mapped to available executable software com-
ponents, e.g., the planner may pick a data compression
task and then select an appropriate component imple-
mentation for a chosen compression algorithm. The
planner must know which preconditions to satisify for
a task component to execute successfully, the input data
stream and the output that will be generated from this
data stream, and other postcondition effects resulting
from their operation.

The component ouput is a function of the input
and environmental conditions during actual operation.
Other computational properties of the component, e.g.,

the throughput and the quality of the output, depend
on the available computational resources. As a result,
there is uncertainty whether the component will pro-
duce the desired output. This uncertainty is captured
by conditional probabilities associated with the com-
ponent definitions. Together, the task-component re-
lations and the conditional probability of success of
components defines the functional signature of the task.
Different parameterizations of a given component may
produce different functional signatures. Conversely, dif-
ferent components that have the same functional signa-
ture may vary in time to completion, resource usage,
and QoS parameters.

We define a task as one or more parameterized com-
ponents with a single functional signature. The func-
tional signature of each task is captured in a task net-
work, which is a directed graph that represents both
tasks and conditions (preconditions, data input, effects,
and data output) with links encoding the requisite prob-
ability information. With the task network and a given
set of utility values for goal conditions/data, the plan-
ner computes expected utility values for each task using
the spreading activation mechanism.

To ensure applications do not violate resource con-
straints, the planner also requires knowledge of each
task’s resource consumption and execution time, i.e.,
its resource signature. A given task may be associated
with multiple parameterized components, each with dif-
ferent resource signatures. SA-POP and RACE there-
fore use a shared task map that maps each task to a
set of parameterized components and their associated
resource signatures. The combination of functional and
resource signatures in a task sequence defines an op-
erational string, which specifies the tasks, a suggested
implementation for each task, the control (ordering) de-
pendencies, the data (producer/consumer) dependen-
cies, and required start and end times for tasks, if any.

Operational strings are given as input to RACE,
which provides reusable algorithms for (re)deploying
components onto nodes and managing application per-
formance, as well as utilization of system resources.
RACE allocates resources to application components
based on their resource requirements and QoS char-
acteristics and monitors application and infrastructure
performance and resource usage. Since component re-
source use and end-to-end QoS for operational strings
are sensitive to runtime changes and changes in system
performance, e.g., due to loss of resources and transient
overload, RACE can also redeploy and/or reconfigure
application components using the implementation op-
tions available in the task map to ensure the desired
end-to-end QoS requirements of operational strings are
not violated.

The Spreading Activation Planner
This section describes the primary algorithmic steps
in the spreading activation planner (SA-POP), which
include (1) a decision-theoretic spreading activation
mechanism to identify task sequences that maximize an

expected utility measure given a set of goals and (2) an
operational string generation mechanism that uses the
computed expected utilities of tasks and their associ-
ated implementation resource signatures to ensure that
the extracted task sequences in the operational string
have high expected utility and meet resource, time, and
other QoS constraints.

Spreading Activation Networks

The spreading activation task network captures
the links between task sequences and goal condi-
tions (Bagchi, Biswas, & Kawamura 2000). An exam-
ple network from the MMS mission scenario is shown in
Figure 2, which consists of condition nodes (ovals) and
task nodes (rectangles) with directed links that indi-
cate the pre- and post-conditions for executing individ-
ual tasks. Condition nodes are represented as Boolean
variables with associated probabilities that define the
maximum likelihood of that node achieving true/false
values. Environmental/system conditions (e.g., a par-
ticular sensor is active) and generated data (e.g., a
data stream from a sensor) are represented as condi-
tion nodes. The data condition nodes represent the
availability (true) or non-availability (false) of the cor-
responding data.

The weight, wij , of the link from a condition node, ci,
to a task node, tj , defines the likelihood that tj succeeds
in given ci, i.e.

wij =
P (tsj |ci = true) − P (tsj |ci = false)

P (tsj |ci = true) + P (tsj |ci = false)
, (1)

where tsj indicates that task tj is successful. This en-
coding allows for hard constraints (weight = 1 (−1)),
i.e., the condition must be true (false) for the task
to succeed, and soft constraints (weight < 1 (> −1))
i.e., the true (false) value of the condition increases the
probability of task success. Soft constraints model in-
ferred conditions in uncertain environments, where an
actual precondition can not be sensed directly but is
probabilistically related to other conditions that can be
sensed. For example, an imperfect (noisy) sensor for
detecting an environmental condition necessary to the
success of a task can be modeled using a soft constraint.

The weight, wjk , of the link from a task node, tj , to a
condition node, ck, defines the probability that ck will
be true/false after tj executes, i.e.:

wjk =

{

P (ck = true|txj) if tj sets ck = true

−P (ck = false|txj) if tj sets ck = false,

(2)
where txj indicates that task tj is executed.

The likely contribution of a task toward a desired goal
is computed as an expected utility (EU), i.e., the prod-
uct of the task’s utility toward meeting the goal require-
ments and its likelihood of success. Probability values
are propagated forward through the network from pre-
conditions through tasks to effects. Utility values are
propagated backward through the network from effects

through tasks to preconditions, which allows precondi-
tions of potentially useful tasks to accumulate utility,
making them useful subgoals toward meeting the spec-
ified goal requirements.

Forward propagation of probabilities assumes that
the preconditions of a task are independent conditioned
on the success of the action. Even when the precon-
ditions of a task are not truly independent, this is a
reasonable approximation, which prevents the proba-
bility calculations from becoming intractable (Bagchi,
Biswas, & Kawamura 2000).

Forward propagation is illustrated for the network in
Figure 2. Assume that initially sensor 1 is active on
all three satellites (solid, dashed, and dotted outlined
nodes represent tasks and conditions for satellites 1, 2,
and 3, respectively), and all other conditions are false.
The links from “Sensor 1 Active” to the “Focus Sen-
sor Data” tasks all have weight 1, so the probability of
success for this node is computed to be 1.0.

Continuing forward propagation from the “Focus
Sensor Data” task node to the “Reliable Sensor1 Data”
condition node, the link weights are less than 1, i.e., the
execution of either Focus task does not ensure that this
condition will be satisfied. The spreading activation
mechanism assumes that if a condition becomes a sub-
goal in a plan, then the action most likely to accomplish
it will be selected. The probability propagated forward
is computed as the maximum of the two probabilities
from the Focus tasks, i.e., 1.0 ∗ 0.9 = 0.9.

The “Sensor1 Data Analyzed” and “Sensor1 Data
Transmitted” conditions are goals selected by the mis-
sion scientists, who assign these goals utility values that
imply their relative importance to the overall mission.
The goal utilities are backpropagated through the task
network links to the “Reliable Sensor1 Data” condition,
which accumulates utility from both goals (by sum-
mation), increasing its importance as a subgoal that
will contribute to the overall mission success. Com-
puted utilities are further propagated backward taking
into account the likelihood of being set to the desired
value, i.e., the product of the condition’s utility and
link weight. Backward propagated utilities multiplied
with the forward propagated probability of success at
each task node determines the EU for the node. For
the example, the EU of “Focus Multi Sensor1 Data” is
greater than that of “Focus Sensor1 Data” because it
is more likely to set the “Reliable Sensor1 Data” condi-
tion to true, and both have equal forward propagated
probabilities of successful execution.

Operational String Generation

For MMS and similar DRE systems, the fewer con-
straints imposed by the operational string, the easier
it is for RACE to make initial deployment decision
and manage resources at runtime. To ensure this, we
adopt a modified Partial Order Causal Link (POCL)
design (Smith, Frank, & Jonsson 2000) to generate op-
erational strings. The least commitment strategies typ-
ical of partial order planning allow SA-POP to impose

Sat2
Sensor1
Active

Sat2
Sensor1

Collect Data

Sat2
Sensor1

Data
1.0 1.0

Focus Multi
Sensor1

Data

1.0

Sat3
Sensor1
Active

Sat3
Sensor1

Collect Data

Sat3 Part
Sensor1

Data
1.0 1.0 1.0

Reliable
Sensor1

Data

0.9

Analyze
Sensor1

Data

1.
0

Sensor1
Data

Analyzed
1.0

Sat1
Sensor1
Active

Sat1
Sensor1

Collect Data
1.0

0.5

Sat2
Transmit to

Sat1

Sat3
Transmit to

Sat1

Sat2
Sensor1

Data
1.0

Sat3
Sensor1

Data
1.0

Focus
Sensor1

Data

Sat1
Sensor1

Data
1.0

1.0

1.
0

1.0

1.0

Compress
Sensor1

Data

1.
0

Compressed
Sensor1

Data
1.0

Transmit
Data to
Earth

Sensor1
Data

Transmitted

1.0

1.0

Figure 2: A Spreading Activation Network for the MMS Scenario

relatively few constraints compared to other popular
planning techniques, such as state space search and con-
straint satisfaction problem based planners. Recent re-
search (Nguyen & Kambhampati 2001) also indicates
that in many cases the performance of partial order
planning can be brought up to par with these other
approaches.

SA-POP uses four hierarchical decision points with
backtracking in the generation of operational strings.
Each step in the generation of an operational string
from the task network with assigned probability and EU
values involves the following layered decision points: (1)
Goal/subgoal choice: choose an open condition, which is
goal or subgoal unsatisfied in the current plan, (2) Task
choice: choose a task that can achieve the open condi-
tion from 1, removing the open condition and adding
the task’s unsatisfied preconditions to the set of open
conditions, (3) Task instantiation: choose an implemen-
tation (parameterized component) for this task from
the task map, and (4) Scheduling decision(s): adjust
task start/end time windows and/or add ordering con-
straints between pairs of tasks to avoid resource viola-
tions. We describe each of these decision points below.
Goal/Subgoal Choice. SA-POP begins with the mis-
sion goals as the set of open conditions. Since data
manipulation tasks are resource intensive and tend to
be concuurent with other data tasks in DRE domains,
SA-POP gives priority to data operation nodes. This
heuristic also enables early detection of resource viola-
tions in operational strings.
Task Choice. Task choice is based on EU (tasks with
higher EU’s are preferred) provided their likelihood of
success exceeds a pre-defined threshold. This represents
a tradeoff between the total expected utility, which may
accumulate from multiple goals, and the likelihood of
achieving the subgoal currently under consideration. In
the creation of an operational string for the example
network from Figure 2, the “Reliable Sensor1 Data”
condition node is a subgoal needed to achieve both mis-
sion goals, so at some point it will be an open condi-
tion that needs to be mapped onto a task execution.
Since the “Focus Multi Sensor1 Data” task has both
a greater expected utility and greater probability of
achieving this condition than “Focus Sensor1 Data”,
it is added to the operational string. This corresponds
to traditional partial order planning with preference for
tasks with high expected utility.

Task Instantiation. This step moves from pure plan
generation to task selection that meets stated resource
requirements. SA-POP first determines the change in
potential resource usage for possible components (from
the task map), given current task orderings. The per-
centage decreases in available resource capacities are
summed to provide a resource impact score, and the
component with the lowest score is chosen to imple-
ment the task. This heuristic is comparable to the least
constraining value heuristic often used in general con-
straint satisfaction problems. For example, there may
be multiple compression components that are associ-
ated with the “Compress Sensor1 Data” task from Fig-
ure 2, each with a different tradeoff between memory
and CPU usage requirements. If other tasks in the op-
erational string that operate concurrently (e.g. tasks
connected through data nodes to this task and tasks on
entirely different paths in the task network) are caus-
ing CPU utilization to reach its upper limit, but this
is not the case with memory use, SA-POP chooses the
component that uses more memory but has a low CPU
usage profile.

Scheduling Decision(s). In tracking resource con-
straints and finding resource violations, SA-POP em-
ploys the ordering constraints between tasks. In DRE
systems, such as the MMS scenario, a significant num-
ber of the tasks in an application may be data manip-
ulation tasks. Often, these data handling tasks oper-
ate over long time windows with a required start time,
but no defined end time. Rather the end time is dy-
namically determined by ongoing analysis of the data.
This limits the effectiveness of many popular schedul-
ing approaches such as timetabling (Pape 1994), edge-
finding (Baptiste & Pape 1996), and classical energetic
reasoning (Laborie 2003). Instead of primarily relying
on start/end time window manipulation, as in those
approaches, SA-POP leverages the ordering constraints
common to partial order plans. These constraints are
used to create precedence graphs (Laborie 2003) that
partition all other tasks into sets based on their order-
ing with respect to a particular task under considera-
tion. With this information, SA-POP applies Laborie’s
energy precedence constraint and balancing constraint
techniques (Laborie 2003) to detect potential resource
violations and add other ordering constraints or de-
crease start/end time windows.

When an unresolvable resource violation is detected

during the scheduling step, backtracking is employed.
In the Figure 2 example, the choice of “Focus Multi Sen-
sor1 Data” instead of “Focus Sensor1 Data” may yield
operational strings for which there are no possible im-
plementation and scheduling choices that meet resource
constraints. Backtracking will return to the decision
point and choose the lower EU task, “Focus Sensor1
Data” over “Focus Multi Sensor1 Data.” This demon-
strates how SA-POP trades off EU versus feasibilty of
execution based on meeting resource constraints.

Resource Allocation and Control Engine

The architecture of RACE and its interplay with SA-
POP is illustrated in Figure 1. RACE is built atop of
CIAO and DAnCE, which are open-source implementa-
tions of the OMG Lightweight CCM (Obj 2003b), De-
ployment and Configuration (D&C) (Obj 2003a), and
Real-time CORBA (Object Management Group 2002)
specifications. RACE provides a range of resource al-
location and control algorithms that use middleware
deployment and configuration mechanisms to allocate
resources to operational strings and control system per-
formance after operational strings have been deployed.
RACE uses Resource Monitors and ApplicationQoS-
Monitors, which are implemented as CCM components,
to track system resource utilization and application
QoS respectively.

RACE’s algorithms determine how to (re)deploy an
application specified by operational strings and ensure
desired QoS requirements are met, while maintaining
resource utilization within desired bounds at all times.
The allocation algorithms determine the initial com-
ponent deployment by determining the best mapping
of these components to the appropriate target nodes
based on the availability of system resources. Like-
wise, RACE’s control algorithms adapt the execution
of an operational strings’ components at runtime in re-
sponse to changing environments and variations in re-
source availability and/or demand.

Discussion and Conclusions

This section demonstrates the power of combining the
decision-theoretic, resource-constrained planning of SA-
POP with the component allocation and runtime man-
agement of RACE to produce an efficient and scalable
architecture for DRE systems operating in dynamic and
uncertain domains. SA-POP produces partial-order
plans that contain sufficient information to be instan-
tiated with parameterized component implementations
that do not violate coarse-grained resource constraints.
For example, in the MMS system, SA-POP considers
the computational resources for each satellite, such as
CPU, memory, and communication bandwidth to be
monolithic, discrete resources. In actuality, there are
multiple nodes with individual CPU and memory ca-
pacities within each satellite. In general, each task only
uses a small fraction of these resources, so the course-
grained resource constraints used by SA-POP helps en-

sure that RACE can find a valid deployments for com-
ponents on the real node resources at runtime.

Through the association of multiple functionally
equivalent implementations for each task in the task
map, RACE can find valid (re)allocations by substitut-
ing the original task components suggested by SA-POP
with ones that are more resource firendly under the cur-
rent conditions. In the unusual case that no such allo-
cation is possible, RACE provides feedback to SA-POP
indicating its failure to find a valid allocation due to
one or more resource constraints. If this occurs, SA-
POP generates a new operational string that uses less
resources (and probably has less EU). However, this
does not require the spreadinga ctivation process to be
repeated.

This loose coupling of SA-POP and RACE through a
feedback loop, enables operational string generation as
a search through a smaller space of potential resource-
committed plans. The search is computationally less
intensive than if resources were considered at the fine-
grained node level. Similarly, RACE does not have to
consider the cascading task choices of planning to find
a valid allocation, so its search space is also limited
to a manageable size. Moreover, SA-POP only consid-
ers the feasibility of resource allocation in generating
operational strings, while RACE considers the harder
resource optimization problem, but limits it to a given
operational string. The limited size and complexity of
the search spaces used in SA-POP and RACE, as well
as the flexibility afforded by the task map, yields an
architecture that can scale to large planning and allo-
cation problems without becoming intractable.

In generating the operational string from mission
goals, SA-POP takes into account domain uncertainty
by preferring operational strings of high expected util-
ity. Rather than attempting the often intractable prob-
lem of finding operational strings with the highest over-
all expected utility, SA-POP’s generates operational
strings using a greedy approximation algorithm. The
greedy choice of high expected utility tasks still yields
a robust application as specified by the resulting oper-
ational string, but does not require the much greater
search time needed to find the optimal solution.

After an application specified by one or more opera-
tional strings is deployed, RACE monitors application
performance and domain resource utilization using its
Application Monitors and Resource Monitors. If the
performance of an operational string falls below its QoS
requirement, RACE’s control algorithms take corrective
actions to achieve the specified QoS requirement. For
example, a control algorithm could (1) modify input
parameters of one or more parameterized components
of the operational string, (2) dynamically update task
implementations from the choices available in the task
map, and/or (3) redeploy all or part of an application’s
components to other target nodes to meet end-to-end
QoS requirements. These actions help ensure that the
QoS requirements of each operational string are met
and resource utilization is maintained within specified

bounds. If these control adaptations can not correct/-
prevent a QoS or resource violation, however, RACE
notifies SA-POP, triggering replanning.

For example, when a resource shortage that cannot
be corrected occurs due to unexpectedly high resource
consumption by one or more tasks, RACE notifies SA-
POP of the problem and the offending task(s). Replan-
ning is then done efficiently by continuing the original
operational string extraction after removing the offend-
ing task(s) and reintroducing the resulting unsatisfied
(sub)goals as open conditions, which is analogous to the
plan repair performed by other dynamic partial order
planners. After a revised operational string has been
generated, SA-POP transmits it to RACE. The appli-
cation specified by this operational string will usually
only be minimally different from the currently deployed
application because the expected utilities and resource
usage of other tasks and task implementations have not
changed, thereby minimizing the amount of work neces-
sary for RACE to reconfigure or redeploy components.

In addition to varying levels of resource utilization,
runtime changes can occur in the environmental/system
conditions represented in the task network. RACE con-
tinuously monitors these conditions and provides feed-
back on changes to SA-POP. SA-POP uses this infor-
mation to incrementally update the probability values
of conditions in the network, running forward propa-
gation as necessary. Most changes correspond to the
expected behavior of applications specified by opera-
tional strings. By keeping the task network up-to-date
in this manner, when a critical, unexpected change does
occur, it can be handled more quickly. Critical changes
are those that render the current application deploy-
ment nonfunctional for the achievement of some mission
goal(s). As in the case of resource shortages, SA-POP
performs plan repair by continuing operational string
extraction with an open condition corresponding to the
unexpectedly changed condition.

Revisions to mission goals are other runtime changes
that may require modifications to deployed applica-
tions, e.g., due to autonomous data analysis onboard
a satellite or revisions from mission scientists on the
ground. In either case, the new/changed utility val-
ues for goals are inserted into the task network and the
spreading activation mechanism is used to update it.
These changes generally occur only for a small subset of
the mission goals and thus must be propagated through
a relatively small portion of the full network. Moreover,
only backpropagation of utility is necessary since prob-
ability values already forward propagated through the
network are unchanged, which allows the task network
to be updated efficiently.

With the updated task network, a new operational
string is extracted using the same process as for the
original operational string. In this case, the opera-
tional string extraction usually takes much longer than
for plan repair because it must be completely regener-
ated in order to take advantage of the changed expected
utilities. Fortunately, revised mission goals rarely ren-

der the current application deployment nonfunctional
for all goals. In fact, unless the goals have changed
drastically, the current operational string is probably
still of high utility. As such, an immediate response to
goal changes is not as critical as in the cases necessi-
tating plan repair, so the time to extract a completely
new operational string is insignificant in practice.

References
Bagchi, S.; Biswas, G.; and Kawamura, K. 2000. Task
Planning under Uncertainty using a Spreading Activation
Network. IEEE Transactions on Systems, Man, and Cy-
bernetics 30(6):639–650.

Baptiste, P., and Pape, C. L. 1996. Edge-Finding Con-
straint Propagation Algorithms for Disjunctive and Cumu-
lative Scheduling. In Proceedings of the Fifteenth Workshop
of the U.K. Planning Special Interest Group.

Heineman, G. T., and Councill, B. T. 2001. Component-
Based Software Engineering: Putting the Pieces Together.
Reading, Massachusetts: Addison-Wesley.

Laborie, P. 2003. Algorithms for Propagating Resource
Constraints in AI Planning and Scheduling: Existing Ap-
proaches and New Results. Artif. Intell. 143(2):151–188.

Nguyen, X., and Kambhampati, S. 2001. Reviving Par-
tial Order Planning. In Nebel, B., ed., IJCAI, 459–466.
Morgan Kaufmann.

Object Management Group. 2003a. Deployment and Con-
figuration Adopted Submission, OMG Document ptc/03-
07-08 edition.

Object Management Group. 2003b. Light Weight CORBA
Component Model Revised Submission, OMG Document
realtime/03-05-05 edition.

Object Management Group. 2002. Real-time CORBA
Specification, OMG Document formal/02-08-02 edition.

Pape, C. L. 1994. Implementation of Resource Constraints
in ILOG SCHEDULE: A Library for the Development of
Constraint-Based Scheduling Systems. Intelligent Systems
Engineering 3(2):55–66.

Schmidt, D. C.; Schantz, R.; Masters, M.; Cross, J.; Sharp,
D.; and DiPalma, L. 2001. Towards Adaptive and Re-
flective Middleware for Network-Centric Combat Systems.
CrossTalk.

Sharma, P.; Loyall, J.; Heineman, G.; Schantz, R.; Shapiro,
R.; and Duzan, G. 2004. Component-Based Dynamic QoS
Adaptations in Distributed Real-time and Embedded Sys-
tems. In Proc. of the Intl. Symp. on Dist. Objects and
Applications (DOA’04).

Sharp, D. C., and Roll, W. C. 2003. Model-Based Inte-
gration of Reusable Component-Based Avionics System. In
Proc. of the Workshop on Model-Driven Embedded Systems
in RTAS 2003.

Smith, D.; Frank, J.; and Jonsson, A. 2000. Bridging
the Gap Between Planning and Scheduling. Knowledge
Engineering Review 15(1):61–94.

Srivastava, B., and Kambhampati, S. 1999. Scaling up
Planning by Teasing out Resource Scheduling. In Biundo,
S., and Fox, M., eds., ECP, volume 1809 of Lecture Notes
in Computer Science, 172–186. Springer.

