module Bigarray:Large, multi-dimensional, numerical arrays.sig..end
This module implements multi-dimensional arrays of integers and floating-point numbers, thereafter referred to as ``big arrays''. The implementation allows efficient sharing of large numerical arrays between OCaml code and C or Fortran numerical libraries.
   Concerning the naming conventions, users of this module are encouraged
   to do open Bigarray in their source, then refer to array types and
   operations via short dot notation, e.g. Array1.t or Array2.sub.
Big arrays support all the OCaml ad-hoc polymorphic operations:
=, <>, <=, etc, as well as compare);Hash);output_value
     and input_value, as well as the functions from the
     Marshal module).Bigarray.float32_elt),Bigarray.float64_elt),Bigarray.complex32_elt),Bigarray.complex64_elt),Bigarray.int8_signed_elt or Bigarray.int8_unsigned_elt),Bigarray.int16_signed_elt or Bigarray.int16_unsigned_elt),Bigarray.int_elt),Bigarray.int32_elt),Bigarray.int64_elt),Bigarray.nativeint_elt).type 
type 
type 
type 
type 
type 
type 
type 
type 
type 
type 
type 
type ('a, 'b) kind 
float32_elt contains
   32-bit single precision floats, but reading or writing one of
   its elements from OCaml uses the OCaml type float, which is
   64-bit double precision floats.
   The abstract type ('a, 'b) kind captures this association
   of an OCaml type 'a for values read or written in the big array,
   and of an element kind 'b which represents the actual contents
   of the big array.  The following predefined values of type
   kind list all possible associations of OCaml types with
   element kinds:
val float32 : (float, float32_elt) kindBigarray.char.val float64 : (float, float64_elt) kindBigarray.char.val complex32 : (Complex.t, complex32_elt) kindBigarray.char.val complex64 : (Complex.t, complex64_elt) kindBigarray.char.val int8_signed : (int, int8_signed_elt) kindBigarray.char.val int8_unsigned : (int, int8_unsigned_elt) kindBigarray.char.val int16_signed : (int, int16_signed_elt) kindBigarray.char.val int16_unsigned : (int, int16_unsigned_elt) kindBigarray.char.val int : (int, int_elt) kindBigarray.char.val int32 : (int32, int32_elt) kindBigarray.char.val int64 : (int64, int64_elt) kindBigarray.char.val nativeint : (nativeint, nativeint_elt) kindBigarray.char.val char : (char, int8_unsigned_elt) kindfloat32_elt and float64_elt are
   accessed using the OCaml type float.  Big arrays of complex kinds
   complex32_elt, complex64_elt are accessed with the OCaml type
   Complex.t.  Big arrays of
   integer kinds are accessed using the smallest OCaml integer
   type large enough to represent the array elements:
   int for 8- and 16-bit integer bigarrays, as well as OCaml-integer
   bigarrays; int32 for 32-bit integer bigarrays; int64
   for 64-bit integer bigarrays; and nativeint for
   platform-native integer bigarrays.  Finally, big arrays of
   kind int8_unsigned_elt can also be accessed as arrays of
   characters instead of arrays of small integers, by using
   the kind value char instead of int8_unsigned.type 
type 
   In the C-style layout, array indices start at 0, and
   multi-dimensional arrays are laid out in row-major format.
   That is, for a two-dimensional array, all elements of
   row 0 are contiguous in memory, followed by all elements of
   row 1, etc.  In other terms, the array elements at (x,y)
   and (x, y+1) are adjacent in memory.
   In the Fortran-style layout, array indices start at 1, and
   multi-dimensional arrays are laid out in column-major format.
   That is, for a two-dimensional array, all elements of
   column 0 are contiguous in memory, followed by all elements of
   column 1, etc.  In other terms, the array elements at (x,y)
   and (x+1, y) are adjacent in memory.
   Each layout style is identified at the type level by the
   abstract types Bigarray.c_layout and fortran_layout respectively.
type 'a layout 
'a layout represents one of the two supported
   memory layouts: C-style if 'a is Bigarray.c_layout, Fortran-style
   if 'a is Bigarray.fortran_layout.
   The abstract values c_layout and fortran_layout represent
   the two supported layouts at the level of values.
val c_layout : c_layout layoutval fortran_layout : fortran_layout layoutmodule Genarray:sig..end
module Array1:sig..end
module Array2:sig..end
module Array3:sig..end
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.tval genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.tval genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.tval array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.tInvalid_argument if the generic big array
   does not have exactly one dimension.val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.tInvalid_argument if the generic big array
   does not have exactly two dimensions.val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.tInvalid_argument if the generic big array
   does not have exactly three dimensions.val reshape : ('a, 'b, 'c) Genarray.t ->
       int array -> ('a, 'b, 'c) Genarray.treshape b [|d1;...;dN|] converts the big array b to a
   N-dimensional array of dimensions d1...dN.  The returned
   array and the original array b share their data
   and have the same layout.  For instance, assuming that b
   is a one-dimensional array of dimension 12, reshape b [|3;4|]
   returns a two-dimensional array b' of dimensions 3 and 4.
   If b has C layout, the element (x,y) of b' corresponds
   to the element x * 3 + y of b.  If b has Fortran layout,
   the element (x,y) of b' corresponds to the element
   x + (y - 1) * 4 of b.
   The returned big array must have exactly the same number of
   elements as the original big array b.  That is, the product
   of the dimensions of b must be equal to i1 * ... * iN.
   Otherwise, Invalid_argument is raised.val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.tBigarray.reshape for reshaping to
   one-dimensional arrays.val reshape_2 : ('a, 'b, 'c) Genarray.t ->
       int -> int -> ('a, 'b, 'c) Array2.tBigarray.reshape for reshaping to
   two-dimensional arrays.val reshape_3 : ('a, 'b, 'c) Genarray.t ->
       int -> int -> int -> ('a, 'b, 'c) Array3.tBigarray.reshape for reshaping to
   three-dimensional arrays.