
B E R K E L E Y
O D Y S S E Y

Ten years of BSD history

by Marshall Kirk McKusick

9mm

'-•fy&Z

?*S£

WMm

mm?

j?m

Ken Thompson and Dennis Ritchie presented the first UNIX
paper at the Symposium on Operating Systems Principles at Pur
due University in November, 1973. Professor Bob Fabry was in
attendance and immediately became interested in obtaining a
copy of the system to experiment with at Berkeley.

At the time, Berkeley had only large mainframe computer
systems doing batch processing, so the first order of business was
to get a PDP-11/45 suitable for running the then current Version
4 of UNIX. The Computer Science Department, together with the
Mathematics Department and the Statistics Department were able
to jointly purchase a PDP-11/45. In January, 1974, a Version 4
tape was delivered and UNIX was installed by graduate student
Keith Standiford.

Although Ken Thompson was not involved in the installation
— as he had been for most systems up to that time — his exper
tise was soon needed to determine the cause of several strange
system crashes. Because Berkeley had only a 300 baud acoustic-
coupled modem without auto answer capability, Thompson would
call Standiford in the machine room and have him insert the
phone into the modem; in this way Thompson was able to remote
ly debug crash dumps from New Jersey.

£££
SK wmmMm

gist
&?<%?+•*>' £ ^ -

f -

¥<~

mmm
^ssg®

SP m^f,

r^^^m^^S?^^
:%%&m.

':•! '-^SS&^i

* Jfjfe BERKELEY ODYSSEY

Many of the crashes were
caused by the disk controller's
inability to reliably do overlapped
seeks, contrary to the documenta
tion. Berkeley's 11/45 was among
the first systems that Thompson
had encountered that had two
disks on the same controller!
Thompson 's remote debugging
was the first example of the
cooperation that sprang up be
tween Berkeley and Bell Labs. The
willingness of the researchers at
the Labs to share their work with
Berkeley was instrumental in the
rapid improvement of the softwrare
available at Berkeley.

T h o u g h UNIX was soon
reliably up and running, the coa
li t ion of C o m p u t e r Sc ience ,
Mathematics, and Statistics began
to run into problems: Math and
Statistics wanted to run DEC's
RSTS system. After much debate,
a compromise was reached in
which each department would get
an eight-hour shift: UNIX would
run for eight hours followed by 16
hours of RSTS. To promote
fairness, the time slices were
rotated each day. Thus UNIX ran
8 am to 4 pm one day, 4 pm to
midnight the next day, and mid
night to 8 am the third day.
Despite the bizarre schedule,
s tudents taking the Operating
Systems course preferred to do
their projects on UNIX rather than
on the batch machine.

Professors Eugene Wong and
Michael Stonebraker were both
stymied by the confinements of
the batch environment, so their
Ingres d a t a b a s e project was
among the first groups to move
from the batch machines to the in
teractive environment provided
by UNIX. They quickly found the
shortage of machine time and the
odd hours on the 11/45 in
tolerable, so in the Spring of 1974,
they purchased an 11/40 running
the newly available Version 5.
With their first distribution of In
gres in the Fall of 1974, the Ingres

project became the first group in
the Computer Science department
to distribute its software. Several
h u n d r e d Ingres t a p e s were
shipped over the next six years,
helping to establish Berkeley's
reputa t ion for designing and
building real systems.

Even with the departure of
the Ingres project from the 11/45,
there was still insufficient time

Arriving in the Fall
of 1975 were two
unnoticed graduate

students, Bill Joy
and Chuck Haley.

available for the remaining stu
dents. To alleviate the shortage,
Professors Michael Stonebraker
and Bob Fabry set out in June ,
1974. to get two instructional
1 l/45s for the Computer Science
depar tment ' s own use. Early in
1975. the money was obtained. At
nearly the same time DEC an
nounced the 11/70, a machine
that appeared to be much superior
to the 11/45. Money for the two
1 l/45s was pooled to buy a single
11/70 that arrived in the Fall of
1975. Coincident with the arrival
of the 11/70, Ken Thompson
decided to take a one-year sab
batical as a visiting professor at
h is a l m a mate r . T h o m p s o n ,
together with Jeff Schriebman
and Bob Kridle, brought up the
latest UNIX, Version 6, on the
newly installed 11/70.

Also arriving in the Fall of
1975 , were two unno t i ced
graduate students. Bill Joy and
Chuck Haley; they both took an

immediate interest in the new
system. Initially they began work
ing on a Pascal system tha t
Thompson had hacked together
while hanging around the 11/70
machine room. They expanded
and improved the interpreter
system to the point that it became
the p r o g r a m m i n g s y s t e m of
choice for students because of its
excellent error recovery scheme
and fast compile and execute
time.

With the r e p l a c e m e n t of
Model 33 teletypes by ADM-3
screen terminals, Joy and Haley
began to feel stymied by the con
straints of the ed editor. Working
from an editor named e m that
they had obtained from Professor
George Coulouris at Queen Mary's
College in London, they worked to
produce the line-at-a-time editor
ex.

With Ken Thompson's depar
ture at the end of the Summer of
1976, Joy and Haley begin to take
an interest in exploring the inter
nals of the UNIX kernel. Under
Schriebman's watchful eye, they
first installed the fixes and im
provements provided on the "fif
ty changes" tape from Bell Labs.
Having learned to m a n e u v e r
through the source code, they sug
gested several small enhance
ments to streamline certain kernel
bottlenecks.

FIRST DISTRIBUTIOM
Meanwhile, interest in the er

ror recovery work in the Pascal
compiler brought in requests for
copies of the system. Early in
1977, J o y pu t toge the r t h e
"Berkeley Software Distribution".
This first distribution included the
Pascal sys tem and — in an
obscure subdirectory of the Pascal
source — the editor ex. Over the
next year, Joy, acting in J .he
capacity of distributiojijsecretary,
sent out about 30 free copies of the
system.

With the arrival of some
32 UNIX REVIEW JANUARY 1985

BERKELEY

ADM-3a terminals offering screen-
addressable cursors, Joy was
finally able to write vi, bringing
screen-based editing to Berkeley.
He soon found himself in a quan
dary. As is frequently the case in
universities strapped for money,
old equipment is never replaced
all at once. Rather than support
code for optimizing the updating
of several different terminals, he
decided to consolidate the screen
management by using a small
interpreter to redraw the screen.
This interpreter was driven by a
description of the terminal char
acteristics, thus spawning the
now famous termcap.

By mid-1978, the software
distribution clearly needed to be
updated. The Pascal system had
been made markedly more robjast
through feedback from its expand
ing us^_conimjunity, and had
been split intojtwo passes so that
IF could be run on PDP"-ll/34s.
The result of the update was the
" S e c o n d Berkeley Software
Distribution" that was quickly
shortened to 2 BSD. Along with
the enhanced Pascal system, vi
and termcap for several terminals
was included. Once again, Bill Joy
s ingle-handedly put together
d i s t r i b u t i o n s , answered the
phone, and incorporated user
feedback into the system. Over the
next year, nearly 75 tapes were
shipped. Though Joy moved on to
other projects the following year,
the 2 BSD distribution continued
to expand. Today the latest ver
sion of this distribution, 2.9 BSD,
is a complete system for PDP-1 Is .

VAX UNIX
Early in 1978, Professor

Richard Fateman began looking
for a machine with a larger ad
dress space that he could use to
continue his work on Macsyma
that had started on a PDP-10. The
newly announced VAX-11/780
seemed to fulfill the requirements
and was available within budget.

34 UNIX REVIEW JANUARY 1985

ODYSSEY

Fateman and 13 other faculty
members put together an NSF
proposal that they combined with
some departmental funds to pur
chase a VAX.

Initially the VAX ran DEC's
operating system VMS, but the
department had gotten used to the
UNIX environment and wanted to
continue using it. So, shortly after

Initially the VAX
ran DEC'S

operating system
VMS, but the

department had
gotten used to the
UNIX environment

and wanted to
continue using it.

the arrival of the VAX, Fateman
obtained a copy of the 32/V port of
UNIX to the VAX by John Reiser
and Tom London of Bell Labs.

Although 32/V provided a
Version 7 UNIX environment on
the VAX, it did not take advantage
of the virtual memory capability of
the VAX ha rdware . Like i ts
predecessors on the PDP-11, it
was entirely a swap-based system.
For the Macsyma g roup a t
Berkeley, the lack of virtual
memory meant that the process
address space was limited by the
size of the physical memory,
initially 1 MB on the new VAX.

To alleviate this problem,
Fateman approached Professor
Domenico Ferrari, a member of
the systems faculty at Berkeley,
to investigate the possibility of

having his group write a virtual
memory system for UNIX. Ozalp
Babaoglu, one of Ferrari 's stu
dents, set about to find some way
of implementing a working set
paging system on the VAX; his
task was complicated because the
VAX lacked reference bits.

As Babaoglu neared the com
pletion of his first cut at an im
plementation, he approached Bill
Joy for some help in understand
ing the intricacies of the UNIX
kernel. Intrigued by Babaoglu's
approach, Joy joined in helping to
integrate the code into 32/V and
then with the ensuing debugging.

Unfortunately, Berkeley had
only a single VAX for both system
development and general produc
tion use. Thus for several weeks,
the tolerant user community alter
nately found themselves logging
into 32/V and "Virtual VAX/
UNIX". Often their work on the
latter system would come to an
abrup t halt, followed several
minutes later by a 32/V login
prompt. By January of 1979, most
of the bugs had been worked out,
and 32/V had been relegated to
history.

Joy saw that the 32-bit VAX
would soon obsolete the 16-bit
PDP-11 and began to port the 2
BSD software to the VAX. While
Peter Kessler and I ported the
Pascal system, Joy ported the
editors ex and vi, the C shell, and
the myriad other smaller pro
grams on 2 BSD. By the end of
1979, a complete distribution had
been put together. This distribu
tion included the virtual memory
kernel, the standard 32/V utilities,
and the additions from 2 BSD. In
December, 1979, Joy shipped the
first of nearly a hundred copies of
3 BSD, the first VAX distribution
from Berkeley.

DARPA SUPPORT
Meanwhile, in the offices of

the planners for the Defense Ad
vanced Research Projects Agency,

if. ftti BERKELEY ODYSSEY

DARPA, discussions were being
held that would have a major in
fluence on the work at Berkeley.
One of DARPA's early successes
had been to set up a nationwide
computer network to link together
all its major research centers. At

that time, DARPA was finding that
many of the computers at these
centers were reaching the end of
their useful lifetime and had to be
replaced. The heaviest cost of
replacement was the porting of the
research software to the new

Without SoftSheli;
learning to live with UNIX™

could be a real trap.
SoftShell is a convenient interface which guides you gracefully
through UNIX. If you're new to UNIX, or have the task of training
new users, SoftShell simplifies its complexity. If you're already a
UNIX fan, you'll love SoftShell because it augments your system.
You'll find yourself further exploring the great depth and ver
satility of UNIX. Available for UNIX System-Y, Berkeley 42 and
IBM's PC/IX, SoftShell is an invaluable tool for users at all levels
of expertise. For information, contact Logical Software, Inc.,
17 Mount Auburn Street, Cambridge, MA 02138, (617) 864-0137.
UNIX is a trademark of AT&T Bell Laboratories.

L
if j f^ Logical Software Inc.

LLLL

Circle No. 16 on Inquiry Card See us at UniForum Booth # 1279

machines. In addition, many sites
were unable to share their soft
ware because of the diversity of
hardware and operating systems.

Choosing a single hardware
vendor was impractical because of
the widely varying computing
needs of the research groups and
the undesirability of depending on
a single manufacturer. Thus , the
planners at DARPA decided that
the best solution was to unify at
the operating systems level. After
m u c h discuss ion, UNIX w a s
chosen as a standard because of
its proven portability.

In the Fall of 1979, Bob Fabry
responded to DARPA's interest in
moving towards UNIX by writing
a p roposa l s u g g e s t i n g t h a t
Berkeley develop an enhanced
version of 3 BSD for the use of the
DARPA community. Fabry took a
copy of his proposal to a meeting
of DARPA image processing and
VLSI contractors, plus represen
tatives from Bolt, Beranek, and
Newman, the developers of the
ARPAnet. There was some reser
vation whether Berkeley could
p roduce a work ing s y s t e m ,
but the release of 3 BSD in Decem
ber, 1979, assuaged most of the
doubts.

With the increasingly good
reputation of the 3 BSD release to
validate his claims, Bob Fabry was
able to land an 18-month contract
with DARPA beginning in April,
1980. This contract was to add
features needed by the DARPA
contractors. He immediately hired
Laura Tong to handle the project
administration. With the negotia
tions for the contract on track,
Fabry turned his attention to find
ing a project leader to manage the
software development. Fabry had
assumed that since Joy had jus t
passed his Ph.D. qualifying ex
amination, he would rather con
centrate on completing his degree
than assume the software develop
ment position. But Joy had other
plans. One night in early March he

36 UNIX REVIEW JANUARY 1985

BERKELEY

phoned Fabry at home to express
interest in taking charge of the fur-
t he r d e v e l o p m e n t of UNIX.
Though surprised by the offer,
Fabry took little time to agree.

The project started promptly.
Tong set up a distribution system
that could handle a higher volume
of orders than Joy ' s previous
distributions. Fabry managed to
coordinate with Bob Guffy at
AT&T, and lawyers at the Uni
versity of California to formally
release UNIX under terms agree
able to all. Joy incorporated J im
Kulp's job control, added auto
reboot, a IK block file system, and
s u p p o r t for the la tes t VAX
machine, the VAX-11/750. By
October, 1980, a polished distribu
tion that also included the Pascal
compiler, the Franz Lisp system,
and an enhanced mail handling
system was released as 4 BSD.
J3uring_its; nine^nonth lifetime,
nearly 150 copies were shipped.
The license arrangement wasjon
ajperinstitution basis rather than
a per machine basis, thus the
distribution ran on about 500
machines.

With the increasingly wide
d i s t r ibu t ion and visibility of
Berkeley UNIX, several critics
began to emerge. David Kashtan
at Stanford Research Institute
wrote a paper describing the
results of benchmarks he had run
on both VMS and Berkeley UNIX.
T h e s e b e n c h m a r k s showed
several severe performance prob
lems with the UNIX system for the
VAX. Setting his future plans
aside for several months, Joy
systematically began tuning up
the kernel. Within weeks he had
a rebuttal paper written showing
that Kastan's benchmarks could
be made to run as well on UNIX as
they could on VMS. Rather than
continue shipping 4 BSD, the
tuned up system with the addition
of Robert Elz's auto configuration
code was released as 4.1 BSD in
June , 1981. Over its two-year

ODYSSEY

lifetime about 400 distributions
were shipped.

4.2 BSD
With the release of 4.1 BSD,

much of the furor over perfor
mance died down. DARPA was
sufficiently satisfied with the
results of the first contract that a
new two-year con t r ac t was
granted to Berkeley with funding

With the release of
4.1 BSD, much of

the furor over
performance died

down.

almost five times that of the
original. Half of the money went to
the UNIX project, the rest to other
researchers in the Computer
Science department. The contract
called for major work to be done
on the system so the DARPA
research community could better
do its work.

Based on the needs of the
DARPA community, goals were
set and work began to define the
modifications to the system. In
particular, the new system was
expected to include a faster
file sys t em tha t would raise
t h r o u g h p u t to the speed of
available disk technology, would
support processes with multi-
gigabyte address space require
ments , would provide flexible
i n t e r p r o c e s s c o m m u n i c a t i o n
facilities that would allow re
s e a r c h e r s to do work in
distributed systems, and would
integrate networking support so
that machines running the new

system could easily participate in
the ARPAnet.

To assist in defining the new
system, Duane Adams, Berkeley's
con t rac t moni tor at DARPA,
formed a group known as the
"steering commit tee" to help
guide the design work and ensure
that the research communi ty ' s
needs were addressed. This com
mittee met twice a year between
April, 1981 and June , 1983, and
included Bob Fabry, Bill Joy,
and Sam Leffler of the University
of California at Berkeley; Alan
Nemeth and Rob Gurwitz of Bolt,
Beranek, and Newman; Dennis
Ritchie of Bell Labora to r ies ;
Keith Lantz of Stanford Uni
versity; Rick Rashid of Carnegie-
Mellon University; Bert Halstead
of Massachuset ts Ins t i tu te of
Technology; Dan Lynch of The
Information Sciences Institute;
Duane Adams and Bob Baker of
DARPA; and Jerry Popek of the
University of California at Los
Angeles. Beginning in 1984, these
meetings were supplanted by
workshops that were expanded to
include many more people.

An initial documen t pro
posing facilities to be included in
the new system was circulated to
the steering committee and other
people outside Berkeley in July,
1981, sparking many lengthy
debates. In the Summer of 1981,
I became involved with the project
and took on the implementation of
the new file system. During the
summer, Joy concentrated on im
plementing a prototype version of
the interprocess communication
facilities. In the Fall of 1981, Sam
Leffler joined the project as a full-
time staff member to work with
Bill Joy.

When Rob Gurwitz released
an early implementation of the
TCP/IP protocols to Berkeley, Joy
integrated it into the system and
tuned its performance. During this
work, it became clear to Joy and
Leffler that the new system would

38 UNIX REVIEW JANUARY 1985

ft. tXki BERKELEY ODYSSEY

need to provide support for more
than jus t the DARPA standard
network protocols. Thus, they
redesigned the internal structur
ing of the software, refining the
interfaces so that multiple net
work protocols could be used
simultaneously.

With the internal restructur
ing completed and the TCP/IP
protocols integrated with the
prototype IPC facilities, several
simple applications were created
to provide local users access
to remote resources. These pro
grams, rep, rsh, rlogin, and rwho,
were intended to be temporary
tools that would eventually be
replaced by more reasonable
facilities (hence the use of the
dis t inguishing r prefix). This
system, called 4.1a, was first
distributed in April, 1982 for local
use; it was never intended that it
would have wide circulation,
though bootleg copies of the
system proliferated as sites grew
impatient waiting for the 4.2
release.

The 4. l a system was obsolete
long before it was frozen.
However, its construction and
feedback from users provided
valuable information that was us
ed to create a revised proposal for
the new system called the "4.2
BSD System Manual". This docu
ment was circulated in February,
1982 and contained a concise
description of the proposed user
interface to the system facilities
that were to be part of 4.2 BSD.

Concurrent with the 4.1a
development, I completed the
implementation of the new file
system, and by June of 1982 had
fully integrated it into the 4.1a
kernel. The resulting system was
called 4. l b and ran on only a few
select development machines at
Berkeley. Joy felt that with signifi
cant impending changes to the
system, it was best to avoid even
a local distribution, particularly
since it required every machine's

file systems to be dumped and
restored to convert from 4.1a to
4. l b . Once the file system proved
to be stable, Leffler proceeded to
add the new file system-related
system calls, while Joy worked on
revising the interprocess com
munication facilities.

In late Spring 1982, Joy
announced he was joining Sun
Microsystems. Over the summer,
he split his time between Sun and
Berkeley, spending most of his
time polishing his revisions to the
i n t e r p r o c e s s c o m m u n i c a t i o n
facilities and reorganizing the
UNIX kernel sources to isolate
machine dependencies. Pauline
Schwartz was hired to take over
the distribution duties. David
Mosher was hired as a technical
manager to resolve problems from
users in the field and to handle
ordering, installation, and run
ning of the project's hardware.

With Joy ' s departure, Leffler
took over responsibility for com
p le t ing the project . Cer ta in
d e a d l i n e s had a l ready been
established and the release had
been promised to the DARPA
community for the Spring of 1983.
Given the time constraints, the
work remaining to complete the
re lease was eva lua t ed a n d
priorities were set. In particular,
the virtual memory enhance
ments and the most sophisticated
parts of the interprocess com
munication design were relegated
to low priority (and later shelved
completely). Also, with the im
plementation more than a year old
and the UNIX community 's ex
pectat ions heightened, it was
decided an intermediate release
should be put together to hold peo
ple until the final system could be
completed. This system, called
4.1c, was distributed in April,
1983; many vendors used this
release to prepare for ports of 4.2
to their hardware.

In June , 1983, Bob Fabry
turned over administrative control

of the project to Professors
Domenico Ferrari and Susan
Graham to begin a sabbatical free
from the frantic pace of the
previous four years. Leffler con
t inued the completion of the
system, implementing the new
signal facilities, adding to the
networking support, redoing the
standalone I/O system to simplify
the ins ta l l a t ion p roces s , in
tegrating the disk quota facilities
from Robert Elz, updating all the
documentation, and tracking the
bugs from the 4.1c release. In
August, 1983, the system was
released as 4.2 BSD.

When Leffler left Berkeley for
Lucasfilm following the comple
tion of 4.2, he was replaced by
Mike Karels. Karels's previous
experience with the 2.9 BSD soft
ware distribution provided an
ideal background for his new job.
The popularity of 4.2 BSD was im
pressive; within 18 months, more
copies of 4.2 BSD had been ship
ped than of all the previous
Berkeley software distributions
combined.

As with 4 BSD, commentary
of the vociferous critics was quick
in coming. Most of the complaints
indicated that the system ran too
slowly. The problem, not surpris
ingly, was that the new facilities
had not been tuned and that many
of the kernel data structures were
not well suited to their new uses.
Karels' first year on the project
was spent tuning and polishing
the system. An anticipated release
of the polished system early in
1985 is expected to quell many of
the performance complaints —
much as the 4.1 BSD release quell
ed many of the complaints about
4 BSD.

After completing my Ph.D. in
December 1984, I joined Mike
Karels on the project. We hope
that other researchers will con
tinue to share their work with
Berkeley. By incorporating the
work of o the r r e s e a r c h e r s

40 UNIX REVIEW JANUARY 1985

BERKELEY UNDERGROUND

uniformly into the UNIX system at
Berkeley, we can continue to offer
the UNIX community a widely
available state-of-the-art UNIX
system.

ACKNOWLEDGEMENTS
/ thank Bill Joy, Sam Leffler,

Eric Allman, and Professors Bob
Fabry, Richard Fateman, and
Domenico Ferrari for providing
the historical information pre
sented in this article. Unfortunate
ly, space constraints prevent me

from describing the enormous
amount of work that went into the
user level software. I thank those
people whose accomplishments
have not been mentioned, but
nevertheless have contributed
much to the system's vitality.
For the last five years, I have
been supported by the National
Science Foundation under grant
MCS80-05144, and the Defense
Advance Research Projects Agen
cy (DoD) under ARPA Order No.
4031 monitored by Naval Elec

tronic System Command under
Contract No. N00039-82-C-0235.

Kirk McKusick is involved in
the development of Berkeley UNIX
as a Research Computer Scientist for
the Computer Systems Research
Group at the University of Califor
nia. While a graduate student, he im
plemented the fast file system
distributed on 4.2 BSD and worked
on the Berkeley Pascal system. •

FEAR AND LOATHING
ON THE "f

UNIX TRAIL *76
It was 2 am and I was lying

face down on the floor in Cory
Hall, the EECS building on the UC
Berkeley campus, waiting for Bob
to finish installing our bootleg
copy of the UNIX kernel. If suc
cessful, new and improved ter
minal drivers we had written
would soon be up and running.

We were enhancing the
system in the middle of the night
because we had no official sanc
tion to do the work. That didn't
stop us, though, since UNIX had
just freshly arrived from Bell Labs,
where computer security had
never been an issue. The system
was now facing its first acid test —
exposure to a group of intelligent,
determined students — and its
security provisions were failing
with regularity.

I was lying face down because
I'd gone without sleep for over two
days, and the prone position
somehow seemed the most logical
under the circumstances. Bob was
still working because he'd napped
not 30 hours before, giving him
seniority under the "Hacker-best-
able-to-perform" rule of our infor-

Notes from
the underground

by Doug Merrltt
with Ken Arnold and Bob Toxen

mal order. We might have called
our group "Berkeley Undergrade \
uate Programmers Sor a Better^
UNIX", or* less euphemistically^
*TrustratedH2Ktoreffrt)urO :l

Ideas". B u t to truth, our group
was never named. It was simply a
matter of Us versus Them.

'Them** was the bureaucracy
— the school administrator, the
system administrators, most pro- "
fessors, some grad students, and ^
even the legendary Implementors
themselves at Bell Labs.

••Us" w a s * smal l , ielf-
selected group o f undergraduates
with a passion for UNIX. We were
interested in computers and In
programming because it fasci
nated us; we Bved for fee high
level of intellectual, stimulation 1
only hac i ln^^couW pr^vfctel |
Although some In our group never;
expressed an Interest'in breaking
computer TOcurttyi^others^Ifr,
vested thousands of fruitful hours
to stealing accounts and gaining
superuser access tb^&iious UNIX
systems. 0ur^object? -To"read

'i

A

source is

42 UNIX REVIEW JANUARY 1985 Circle No. 20 on Inquiry Card •

BERKELEY

out of trouble, although one of our
rank once had his phone records
subpoenaed by the FBI — after a
minor incident with a Lawrence
Livermore National Laboratory
computer. The Feds seemed to
think our comrade had been did
dling with top secret weapons
research, but he actually hadn' t .

Our group could probably
best be characterized by its in
terest in creating and using power
ful software, regardless of the
source of the idea. Our battle
cry, thanks to Ross Harvey, was
"FEATURES!!!", and we took it
seriously. Well, Ross may have
been a little sarcastic about it,
since he was referring to super
fluous bells and whistles. But I
used the expression as shorthand
for "elegant, powerful, and flexi
ble". We were always bugging
Them to add "just one more
feature" to some utility like the
shell or kernel. Although They ac
cepted some suggestions. They
didn't think twice about most.

One example stands out. In
early 1977, Ross, Bob, and I spent
months collaborating on a new
and improved shell, just before
Bill Joy had started on what is
now known as the C shell. The
mos t h i s to r ica l ly s ignif icant
features we designed were Ross's
command to change the shell's
prompt, Bob's command to print
or chdir to the user 's home direc
tory, and my own edit feature,
which allowed screen editing and
re-execution of previous com
mands. What we did was smaller
in scope than what Bill later in
cluded in the C shell, but to Us it
was unarguably better than what
was then available. We ceased
work on our projects only when it
b e c a m e clear t ha t Bill was
developing what would obviously
become a new standard shell. Our
energies then were re-focused on
persuading him to include our
ideas. Some of our features
ultimately were incorporated,
some weren't.

44 UNIX REVIEW JANUARY 1985

UNDERGROUND

We modified the kernel to
support asynchronous I/O, distri
buted files, security traces, "real
t ime" interrupts for subprocess
m u l t i t a s k i n g , l imited sc reen
editing, and various new system

It was simply a
matter of Us versus

Them.

calls. We wrote compilers, ass
emblers, linkers, disassemblers,
database utilities, cryptographic
utilities, tutorial help systems,
games, and screen-oriented ver
sions of standard utilities. User
friendly utilities for new users that
avoided accidental file deletion,
l ibraries to suppor t common
operations on data s t ructures
such as lists, strings, trees, sym
bol tables, and libraries to perform
arbitrary precision arithmetic and
symbolic mathematics were other
contributions. We suggested im
provements to many system calls
and to most utilities. We offered to
fix the option flags so that the dif
ferent utilities were consistent
with one another.

To Us, nothing was sacred,
and We saw a great deal in UNIX
that could stand improvement.
Much of what We implemented, or
asked to be allowed to implement,
is now a part of System V and 4.2
BSD; others of our innovations are
still missing from all versions of
UNIX. Despite these accom
p l i s h m e n t s , it s e e m e d t h a t
whenever We asked The Powers
That Be to install Our software
and make it available to the rest of
the sys tem's users, We were
greeted with stony silence.

Fred Brooks, in The Mythical
Man-Month, describes the NIH
(Not Invented Here) Syndrome,

wherein a group of people will
tend to ignore ideas originated
outside their own social group.
However, there was a stronger
force at work at Berkeley, where
a certain social stratification
prevails that finds Nobel Lau
reates and depar tment chairs
ranking as demigods, professors
func t ion ing as high p r i e s t s ,
graduate students considered as
lower class citizens, and under
graduates existing only on suf
ferance from the higher orders —
and suffered very little at that.
Now, the individuals cannot be
blamed for what is, in essence, an
entire social order. But this is not
to say that we did not hold it
against them — for we most
assuredly did. Unfortunately, it
took time for us to appreciate the
difficulties of Fighting City Hall.

Th i s is why We were
frustrated. This is why We felt We
HAD to break security. Once We
did, We simply added Our features
to the sys tem, whe the r The
Powers That Be liked it or not.
Needless to say, They didn't. This
is why We felt like freedom
fighters, noble figures even when
found in the ignoble position of ly
ing face down on the floor of Cory
Hall at two in the morning.

We were on a mission that
morning to install our new ter
minal driver. With the old, stan
dard terminal driver, the screen
gave you no indication that the
previous charac ter had been
deleted when you pressed the
erase character. You had to accept
it on faith. This remains true on
many UNIX systems today. Most
people on Cory Hall UNIX chang
ed the i r e rase c h a r a c t e r to
backspace so that later characters
would overwrite the erased ones,
but even that was not sufficient.
This was especially true when
e r a s ing a b a c k s l a s h , w h i c h
counter-intuitively required two
erase characters. We wanted the
system to show that the character

Continued to Page 108

£ •Jflfrl BERKELEY UNDERGROUND

Continued from Page 44

was gone by blanking it out. We
also wanted the line-erase
character to display a blanked-out
line. Some UNIX systems such as
4.2 BSD and System V now sup
port this, but it was not then
available anywhere under UNIX
Version 6.

Bob and I had argued,
somewhat sleepily, for hours as to
the correct method of erasing
characters, and Bob had started
putting our joint design into effect
just as I collapsed on the floor for
"a short nap'*. I awoke around
dawn to find Bob asleep over the
terminal. When he woke up, he
said he was pretty sure he'd finish
ed the job before falling asleep, but
neither of us had enough energy
to check. It was time for food and
14 hours of sleep.

When we finally checked our
handiwork the next day, we found
some serious flaws in the im
plementation — not an uncom
mon situation with work perform
ed under extreme conditions. But
the system was up and running,
and although the new features
were flawed, they didn't seem to
cause any problems, so we forgot
about it for the time being. A week
later, I was consulting in Cory —
we all offered free programming
help to other students in the time-
honored tradition of hackers
everywhere — when Kurt Schoens
called me over to the other side of
the room.

"Hey Doug," he said. "Look at
this. It looks like someone tried to
put character deletion into the ter
minal drivers, but only half finish
ed."

My heart raced. Did he

suspect me? Or was he just chat
ting? I could never tell whether
Kurt was kidding; he had the most
perfect poker face I had ever seen.
But he quickly made the question
academic, and proved again that
he was one of Them.

"I showed this to Bill, and he
wanted to fix it", Kurt said. "Oh,
really?" I stammered. "Sounds
good to me," thinking that it was
a real stroke of luck that Bill Joy
would be interested in the half-
completed project. If Bill finished
it, then it would be in the system
on legitimate grounds, and would
stay for good.

Kurt paused for effect. "Yeah,
he was all fired up about it, but I
talked him out of it, and I just
deleted it from the system in
stead."

Oh, cruel fate! Kurt must
know that I was involved; he just

UNIX*
Marketing and Technical Professionals
UNIFORUM - Dallas January 21-25
The Hottest UNIX* Opportunities Are With Gould's Firebreathing Team in Florida. Our family of 32-bit minicomputers blast the
competition into oblivion. The Firebreather Team has the following opportunities:

UNIX* Development
• Drivers
• Communications
• Internals
• < c

Sales Support
• Los Angeles
• Chicago
• Boston
• Washington, D.C.
• Ft. Lauderdale

Marketing/Management
• Product Market
• Market Development
• Promotion
• Product Marketing

If you're contemplating a career move and plan to attend the UNIFORUM Conference in Dallas, call Al Smith collect at (305)
797-5658 to arrange a local interview with our technical staff. If unable to attend, please call or send resume to Al Smith, Dept.
UR185, GOULD INC., Computer Systems Division, 6901 W. Sunrise Blvd., Ft. Lauderdale, FL 33313. An Equal Opportunity
Employer, M/F/H/V.

'UNIX is a trademark of AT&T Bell Laboratories

• > GOULD
Electronics

Circle No. 63 on Inquiry Card

108 UNIX REVIEW JANUARY 1985

wanted to see me jump when he
said "boo!"

A l though I 'm sure Kurt
thought the whole incident very
funny, all I could think of was that
yet another of my features had
gone down the drain. I discussed
this latest setback with others in
the group, and we shared a sense
of frustration. More than ever
before, we were determined to get
our c o n t r i b u t i o n s accep ted
somehow.

Kurt was both a graduate stu
dent and a system administrator,
but I liked him all the same —
chiefly because of his practical
jokes. We had recently cooperated
in a spontaneous demonstration of
Artificial Intelligence at the ex
pense of an undergraduate named
Dave who had joined Them as a
system administrator. Dave had
watched Kurt as he typed pwd to
his shell prompt and received
usr/kurt/mind as the response.
His next command had been
mind -i -1 english . During all this
t ime, Kurt was double-talking
about psychology and natural
language processing and some
new approach to simulating the
human mind that he'd thought of.
Dave looked dubious, but was will
ing to see how well Kurt 's pro
gram worked.

What Dave didn't realize was
that Kurt had not been typing
commands to the system at all;
although we were sitting not 10
feet apart, Kurt and I had been
writing to each other and chatting
for half an hour, and as a joke I
had been pretending I was Kurt 's
shell, sending him prompts and
faking responses to commands.
Dave had walked in at just the
right time. So when Kurt typed
mind -i -1 english , I had natural
ly responded with:

"Synthetic Cognition System, ver
sion 17.8"

Interactive mode on,
Language = english"

"Please enter desired conversational
topic: (default:philosophy)"

Dave couldn't help looking a little
impressed; Kurt's "artificial in
telligence" system was off to a
great start. Kurt had talked to his
budding mind for several minutes,
and Dave of course had grown
more and more impressed. Kurt
and I faced the greatest challenge
of our lives in keeping a straight
face during the demonstration,
bu t we eventually made the
mistake of making the mind
a l toge ther TOO s m a r t to be
believable, in effect sending Dave
off to tackle more serious work.

There was one practical joke
that was notable for the length of
time it was supported by the en
tire group. The target was system
administrator Dave Mosher. Dave
had been suspicious of bugs in our
system's homebrewed terminal
multiplexer for some time. Ross
decided to persecute Dave by hav
ing random characters appear on
his screen from time to time,
which of course convinced Dave
that the terminal multiplexer did
indeed have problems. To help
Ross with the prank, each of us
sent Dave some garbage char
a c t e r s a t r a n d o m in t e rva l s
whenever any one of us was on the
system. We had settled on the let
ter "Q" so that Dave would be sure
it was always the same bug show
ing the same symptom. Since
Dave had these problems no mat
ter which terminal he was on, day
or night, no matter who else was
logged onto the system, he was
positive there was a problem, and
he spent much time and effort try
ing to get someone to fix it.

Unfortunately for Dave, he
was the only one who ever saw
these symptoms, so everyone
thought he was a little paranoid.
We thought it was pretty funny at
first, but after a few months of
this, it seemed that Dave was real
ly getting rattled, so one day Ross
generated a capital " Q " as big as
the entire terminal screen and
sent it to Dave's screen. This made
it pretty obvious to poor Dave that

T\1

PC works
WORKS!

Here at BASIS, we've
checked FCworks carefully.

And It does just what it
claims to do: it makes your

IBM PC™ (or compatible)
a part of the UNIX™

revolution.

Now you and your PC can:

• Access UNIX programs

• Transfer PC & UNIX files

• Use the UNIX printer

• Back up PC files on UNIX

• Read, Create, & Send mail

* Access public & private
networks

CALL or WRITE for
More Information

fcfl.SJ.S.
UNIX Software, Hardware. & Timesharing

1700 Shattuck #1
Berkeley, CA 94709

{415)841-1800
PCworks i$ a trademark of Touchstone Software

IBM PC is a trademark of IBM Corporation
UNIX is a trademark of Bell Laboratories

Circle No. 64 on Inquiry Card

UNIX REVIEW JANUARY 1985 109

if tttei BERKELEY UNDERGROUND

someone, somehow, really had
been persecuting him, and that he
wasn't paranoid after all. He had
an understandably low tolerance
for practical jokes after that.

The numerous practical jokes
we played were probably a reac
tion to the high level of stress we
felt from our ongoing illicit opera
tions; it provided some moments
of delightful release from what
was, at times, a grim battle. There
were many secret battles in the
war; if Our motto was "Features!",
Theirs was "Security for Securi
ty's Sake" and the more the bet
ter. We were never sure how long
our victories would last; on the
other hand. They were never sure
whether They had won. The war
lasted almost three years.

We were primarily interested

in the EECS department's PDP
11/70 in Cory Hall, since that was
the original UNIX site and con
tinued to be the hotbed of UNIX
development, but We "collected"
all the other UNIX systems on
campus, too. One peculiar aspect
of the way the Underground had
to operate was that we rarely
knew the root password on
systems to which we had gained
superuser access. This is because
there were easier ways to get into,
and stay into, a system than
guessing the root password. We
tampered, for instance, with the
su program so that it would make
someone superuser when given
our own secret password as well
as when given the usual root
password, which remained
unknown to us. In the early days,

Great-looking TROFF output
from low-cost laser printer!

For several years, Textware has been licensing TPLUS software to process the
output of TROFF and DITROFF for a wide variety of typesetters, laser printers,
letter-quality and dot-matrix printers, and high-resolution displays. Our device-
independent approach permits TPLUS to exploit the specific capabilities (and to
work around the limitations) of all the imaging devices we support.

Now we are excited to announce the availability of TPLUS for the Hewlett-
Packard LaserJet printer. The low-cost LaserJet is a remarkable value on its
own—8 page per minute output speed, 300 dot per inch resolution, and

typesetter-quality fonts. TPLUS gives you access to all
this and more from your own system. We support all the
characters and accents needed by TROFF and EQN; in
addition, special characters (©; logos too) can be sup
plied or generated to meet specific requirements. Our
precise handling of rules and boxes allows you to take
full advantage of TBL for forms, charts, etc.

If you haven't been impressed with the output from low-cost laser printers in
the past, take another look. While even LaserJet output is not in the same class as
the best of phototype, it is certainly well suited to documentation and a broad
range of other applications. When you do have a need for phototypeset images,
TPLUS and the LaserJet will help save you time and money. Preview mode lets
you proof all aspects of your documents conveniently, in-house, before sending
out for finished phototypesetting (from our UNKTEXT service).

The HP LaserJet printer is not only inexpensive—it is an exceptional value!
Want proof? This entire ad was set in position using TPLUS on the LaserJet!

For further information, please write or call.

1 EQN examples |
lim (tanx) , in2x = 1

1 *-*»/2 1
q+ff

sin(x) n<Sk'k,k\
Jb>l

Also available for:

• AM 5810/5900 it 6400, APS 5 it fiS
CG 8400 it 8600, Mergcnthaler 202

• Xerox 2700, 8700 it 9700

• BBN, Sun it 5620 CRT*

• Diablo, Qume it NEC LQPs
• C Itoh it Epson dot-matrix

TEXTWARE
INTERNATIONAL

PO Box 14 Harvard Square Telephone-
Cambridge, MA 02238 (617) UNI-TEXT

one system administrator would
mail a new root password to all the
other system administrators on
the system, apparently not realiz
ing that we were monitoring their
mail for exactly this kind of securi
ty slip. Sadly, they soon guessed
that this was not a good pro
cedure, and we had to return to
functioning as "password-less
superusers", which at times could
be a bit inconvenient.

Late one night on Cory Hall
UNIX, as I was using my il
legitimate superuser powers to
browse through protected but in
teresting portions of the system, I
happened to notice a suspicious-
looking file called usr/adm/su.
This was suspicious because there
were almost never any new files in
the administrative usr/adm direc
tory. If I was suspicious when I
saw the filename, I was half
paralyzed when I saw it contain
ed a full record of every command
executed by anyone who had
worked as superuser since the
previous day, and I was in a full
state of shock when I found, at the
end of the file, a record of all the
commands that I'd executed dur
ing my current surreptitious ses
sion, up to and including reading
the damning file.

It took me perhaps 10 min
utes of panic-stricken worry before
I realized that I could edit the
record and delete all references to
my illicit commands. I then im
mediately logged out and warned
all other members of the group.
Since nothing illicit ever appeared,
the system administrators were
lulled into a sense of false securi
ty. Their strategy worked brilliant
ly for us, allowing us to work in
peace for quite a while before the
next set of traps were laid.

The next potential trap I
found was another new file in
/usr/adm called password, that
kept track of all unsuccessful at
tempts to login as root or to su to
root, and what password was used

HO UNIX REVIEW JANUARY 1985 Circle No. 65 on Inquiry Card

Jf. fXtei BERKELEY UNDERGROUND

in the at tempt. Since none of us
had known the root password for
months and therefore weren't go
ing to become superuser by any
thing as obvious as logging in as
root, th is wasn ' t particularly
threatening to us, but it was very
interesting. The first few days that
we watched the file it showed
at tempts by legitimate system ad
m i n i s t r a t o r s who had m a d e
mistakes of various sorts. One of
Them once gave a password that
We discovered, through trial and
error, to be the root password on
a different system. Several of
Them gave passwords that seem
ed to be the p rev ious root
password. Most of them were
misspellings of the correct root
password. Needless to say, this
was a rather broad hint, and it

took Us less than five minutes to
ascertain what the correct spelling
was.

One might think that, since
we had several ways to become
superuser anyway, it wouldn't
make any real difference whether
or not we knew the actual root
password as well. The problem
was that our methods worked on
ly so long as nothing drastically
changed in the system; the usual
way that They managed to win a
battle was to backup the entire
system from tape and recompile
all utilities. That sometimes set Us
back weeks, since it undid all of
our "backdoors" into superuser-
dom, forcing us to start from
ground zero on breaking into the
system again. But once we knew
the root password, we could

always use that as a starting place.
We worked very hard to stay

one step ahead of Them, and we
spent most of our free t ime
reading source code, in search of
either pure knowledge or another
weapon for the battle. At one time,
I had modified every single utility
that ran as superuser with some
kind of hidden feature that could
be triggered to give us superuser
powers. Chuck Haley once sent a
letter to Jeff Schriebman com
menting that he "had even found
the card reader program" to show
signs of tampering. I thought that
I had disguised it well, but it was
extremely difficult to keep things
hidden from a group of system ad
ministrators who were not only
very intelligent, but also highly
knowledgeable about the inner

UNIX™ VALIDATION

formerly

THE
SYSTEMS

GROUP

Validation Suite versions available
• UNIX System III and System V(tmBeiiubs)

• BSD 4.1 and BSD 4.2

• /usr /group Standard

• XENIX (tm Microsoft)

PERENNIAL
Validation Suites Include

Source code for entire suite • Test driver control program
Template for adding tests • System exercisor—stress tests
Installation support service • Automatic and manual tests
User documentation • Touch tests of all utilities
Audit trail for all tests • Functional tests for all system calls

PERENNIAL SOFTWARE SERVICES GROUP
3130 De La Cruz Blvd. • Santa Clara, California 95054 • (408)727-2255
SOFTWARE DEVELOPMENT, TESTING, MAINTENANCE AND SUPPORT SERVICES

Circle No. 66 on Inquiry Card

112 UNIX REVIEW JANUARY 1985

workings of UNIX. As an indica
tion of the caliber of the people we
were working against, I should
note that Chuck Haley is now a
researcher at Bell Labs; Bill Joy
is VP of Engineering at Sun Micro
systems; Kurt Schoens is a re
searcher at IBM; Jeff Schriebman
is founder and Pres iden t of
UniSoft; and Bob Kridle, Vance
V a u g h n , and Ed Gould are
founders of Mt. Xinu.

This was an unusual situa
tion; system administrators are
not usually this talented. Other
wise, they'd be doing software
development rather than admin
istration. But at the time, there
was no one else capable of doing
UNIX system administration.

As a result, we had to move
quickly, quietly, and cleverly to
stay ahead, and planting devious
devices in the midst of standard
software was our primary tech
nique. Normally trusted programs
which have been corrupted in this
way are called "Trojan Horses",
after the legend of the Greeks who
were taken in by a bit of misplaced
trust. One of our favorite tricks for
hiding our tracks when we modi
fied standard utilities was the
diddlei program, which allowed
us to reset the last change time on
a modified file so that it appeared
to have been unchanged since the
previous year. Bob modified the
setuid system call in the UNIX
kernel so that, under certain cir
cumstances, it would give the pro
gram that used it root privileges.
The "certain circumstances'* con
sisted simply of leaving a capital
" S " (for Superuser) in one of the
machine's registers. Bob was bold
enough to leave this little feature
in the system's source code. We
usually put our Trojan Horses in
the system executables only — to
decrease the chance of it being
noticed. But Bob took the chance
so that the feature would persist
even if the system were recompil
ed. Sure enough, it lasted for

UNDERGROUND

several months and through more
than one sys tem compilation
before Dave Mosher noticed it (un
doubtedly with a sense of shock)
as he was patiently adding com
m e n t s to the previously un
documented kernel.

This sort of battling continued
for several years, and although
They were suspicious of most of
Us at one time or another, none of
Us was ever caught red-handed. It
undoubtedly helped that we never
performed any malicious acts. We
perhaps flouted authority, but we
always enhanced the system's
features. We never interfered with
the system's normal operation,
nor damaged any user 's files. We
learned that absolute power need
not corrupt absolutely; instead it
taught us restraint.

This is probably why we were
eventually accepted as members
of the system staff, even though
by then several of Us had confess
ed to our nefarious deeds. Once we
were given license to modify and
improve UNIX, we lost all motiva
tion to crack system security. We
didn't know it at the time, but this
has long been known to be one of
the most effective ways of dealing
with security problems: hire the
offenders, so that there is no more
Us versus Them, but simply Us.

It worked well in our case;
under the auspices of the System
Deve lopmen t and Resea rch
Group , created by the ever-
industrious Dave Mosher, we went
happily to work on UNIX develop
ment. The development of UNIX
at Berkeley, always fast-paced,
exploded once everyone — in
cluding undergraduates — were
participating.

The only fly in the ointment
was the introduction a short while
later of UNIX Version 7. While it
was a vast improvement in many
ways over the Version 6 that we
had been working with, most of
the e n h a n c e m e n t s we had
developed were lost in the

changeove r . Some were re-
implemented under Version 7 by
those of the group who remained
at Berkeley, but by then many of
us were leaving school, and the
impetus behind our ideas left with
us.

Ken Arnold is, perhaps, the
most famous of our original group.
He stayed at Berkeley longer than
any of the rest of us, and became
well known for such contributions
as Termlib, curses,fortune, Mille
Bourne, and of course his co-
authorship of Rogue. But some
how it seemed a Pyrrhic victory
even for Ken; much of his best
work in the early years never saw
the light of day.

We could not help but feel
that we had passed through a sort
of Dark Age for UNIX develop
m e n t , and even wi th t h e
Renaissance in full bloom, We
ponder what might have been,
and bewail the features that UNIX
will now never have.

Doug Merritt became one of the
earliest UNIX users outside Bell
Laboratories while attending UC
Berkeley in 1976. He helped to debug
termcap and contributed to the
development of vi and curses. Mr.
Merritt now works as a consultant
in the San Francisco Bay Area.

Bob Toxen is a member of the
technical staff at Silicon Graphics,
Inc., who has gained a reputation as
a leading expert on uucp com
munications, file system repair and
UNIX utilities. He has also done
ports of System III and System V
to systems based on the Zilog 8000
and Motorola 68010 chips.

Best known as the author of
curses and co-author of Rogue, Ken
Arnold was also President of the
Berkeley Computer Club and the
Computer Science Undergraduates
Association during his years at UC
Berkeley. He currently works as a
programmer in the Computer
Graphics Lab at UC San Francisco
and serves as a member of the UNIX
REVIEW Software Review Board. •

114 UNIX REVIEW JANUARY 1985

$ HE GENESIS STORY
;vc , A n unofficial, ^irreverent, incomplete account of how *

the UNIX operating system developed - - • . . - - • • • - . -

*' -̂ -. . by August Mohr ^;^r

*afeg|

>^j"wif!^^5^^ ls^J:>^i?,5VT^

-•3SSJ%KS(*i»

^ • i ^ ^ ^ ^ ^ ^ ^ ^ r - '
Ji i i i^nnjM^Ji^B.^j iL j j^ .mj i

^Aftr>^V;3

i^&:-"Z<

| & ^ ^ ^yL

his is. so to speak, a history of how UNIX cvolv-
e d a s a p r o ^ u e i : notthe*vofficiar history of who

• was responsible, for WTbar features, and what
y e a r which tnjle^tpnes were crossed, but the
-mpbl ihcarV^^°iy .° ' ,h 0^* decisions were made and
wha tmot iva t ed tffe people involved. Most of the

. readers^of'this magazine are familiar with the system
itself, so I don't want to go into great detail about how
the system goVtobewhat j.t is internally-Jutt rather
how it"g6rto be at all. ;? "\ :>\

...... - p ^ p ^ years ago. I u ^ s one of niany espousing

Illustration bv firth' Dun

rs.
«>v«v%4. ...

-a-:*

**1gg^^

the idea that Bell Laboratories and .Western Electric-
had engaged in a masterful piece of long-term
strategy by first releasing UNIX to universities and
then later releasing it to the commercial world..How-
clever. I thought, to get universities involved in the
development of the system and gel a whole erop of
UNIX experts trained in the process. But after talk
ing to some of the people involved. I have reversed
my opinion. Bell. it seems, was dragged kicking and
screamihi! into providing UNIX to the world.

GENESIS

IN THE BEGINNING, THERE
WAS MULTICS

Multics, in some ways UNIX's
predecessor, was a huge project, a
combined effort of three of the
largest computing centers of the
day. All three principles — Bell,
GE, and MIT, had already done
operating systems, even time-
shared systems, before, and
following Fred Brooks' Second
System Syndrome, it was felt
Multics was going to solve all the
problems of its predecessors.
Ultimately, the project proved to
be too late and Bell dropped out,
leaving Ken Thompson, Dennis
Ritchie, and Rudd Canaday with
out a timeshared system to play
with.

So they set about building an
operating system of their own.

So until this point, time
sharing systems had only been
developed for big machines
costing hundreds of thousands
of dollars. It was unlikely that
Computer Research was going to
get another investment of that sort
out of Bell so soon after Multics.
In any event, Thompson, Ritchie,
and Canaday weren't particularly
interested in working on another
large scale project, so they set
their s ights on obtaining a
minicomputer on which to build a
timesharing system they could
use as a program development en
vironment. They wanted the kind
of flexibility and power they had
worked toward in Multics, without
incurring the expensive rings of
protection and interlocks.

The project was short on
computing power, though. With
only a PDP-7 to work on, the
researchers yearned for another
machine — preferably a VAX
11/20. To get the necessary funds
for a new machine, though, it was
clear they would first need to find
an application.

Fortunately, the Bell Labs'
Legal Department — which was
close at hand to Thompson and

STORY

Ritchie's Murray Hill office — was
looking for a word processing
system at about this time. A
paper-tape system for an old
Teletype machine was under
consideration.

With a bit of salesmanship,
Thompson and Ritchie got the
legal team interested in a UNIX-
supported system. It proved to be

The combination of
program

development and
word processing

was to have
serendipitous

effects.

a momentous deal. The UNIX proj
ect got the machine it needed and
the legal department got the word
processing system it wanted —
along with some rather impressive
local support.

A number of important bar
riers thus were crashed. First, the
business side of Bell Labs, general
ly held at arm's length by the peo
ple in Research, got a healthy dose
of Research assistance. More im
portantly for UNIX users, Thomp
son and Ritchie got their first live
customer. UNIX word processing
suddenly had to be usable by
secretarial staff as well as by pro
gramming staff. The changes
made to accomplish this transi
tion were to have serendipitous
effects as UNIX evolved.

Richard Haight, now AT&T
Bell Labs Supervisor of Video
Systems Software (a UNIX appli

cation), had his first exposure to
UNIX at about this time. As he
remembers it, "I came across Ken
Thompson by accident and wanted
to do some software development
on a PDP-11. He said he had a
machine I could use but that it
didn't run on a DEC operating
system. I had lots of exposure to
timesharing systems and it was
pretty obvious that this was
superior in many ways.

"It was uphill in the begin
ning. The fact that it was
homegrown in the Labs didn't cut
anything with the people that I
was working with at that time.
They went and visited Ken and
Dennis in their sixth-floor attic at
Murray Hill and all they saw was
hardware laying all over the floor
and a bunch of guys in T-shirts
and sneakers. It wasn't the sort of
place that would warm the heart
of a manager who had been
brought up in a traditional data
processing environment. It really
was the *two good guys in a
garage* kind of syndrome except
that they happened to be in an
attic.

"That first time I met Ken
Thompson, he had a small book
shelf, maybe 2 1/2 feet long, above
an old Teletype Model 37 terminal.
On the shelf were hardware
manuals from Digital Equipment
for the PDP-11. occupying maybe
five inches, and the rest of the
shelf was nothing but chess
books. I think Thompson will tell
you himself that he developed
UNIX as a good place to develop
chess programs. It turns out that
it's everybody else's idea of where
and how to develop programs
too."

Haight has had many years of
experience in the Bell Labs
environment. Before moving to
his current post, he served as
part of the UNIX Support group
and the PWB (Programmer's
Workbench) development group.
He believes that the environment

20 UNIX REVIEW JANUARY 1985

GENESIS

of the Labs was a major factor in
the creation of UNIX.

"There's a small fraction of
people who just go crazy over
computers," he explained. We
hire a bunch of them and they
remain workaholics for several
years after coming in. Eventually
they get a house and a mortgage
and they get married and have
kids and settle down to be normal
human beings, but it's wonderful
to hire these people because you
get two or three people's work out
of them for several years. Those
are the kind of people that give
you things like UNIX."

AN INFLUENTIAL FEATURE:
PIPES

Dick Haight is one of the
people who became hooked on
UNIX at the very beginning, and
even yet is an outspoken pro
ponent of its value and power —
although he will tell you he is still
waiting for something better to
come along. "There's a lot of com
plaint about UNIX being terse and
for experts only," he said. "I've
seen that blamed on the pipe
mechanism. If terseness is the
price for having pipes, I'll take it
any day."

As one of the new system's
first users, Haight got to follow
many of the changes. "I happened
to have been visiting the research
crew the day they implemented
pipes," he recalled. It was clear to
everyone, practically minutes
after the system came up with
pipes working, that it was a
wonderful thing. Nobody would
ever go back and give that up if
they could help it."

Haight believes that the pipe
facility has had a major effect on
the evolution of UNIX. Because of
the shell and the piping facility,
programs running under UNIX
can be conversational without be
ing explicitly programmed that
way. This is because piping adds
to the shell's ability to accomplish

STORY

this purpose for the system as a
whole.

Doug Mcllroy is usually credi
ted with the idea of adding pipes,
although the idea may have been
around since Multics. Haight
believes there may have been yet
another reason for implementing
them. The original UNIX had a file
size limitation of 64K and, accord
ing to Haight. "one of the people
there in research was constantly
blowing that size restriction
in an intermediate pass of the
Assembler." Between Mcllroy's
lobbying for the idea and this
other problem with file size,
Thompson and Ritchie were final
ly convinced to implement pipes.

MOVING INTO THE COMPANY
Independent of what was hap

pening in the research area, Bell
was starting to perceive the need

"Naturally I knew
that once they got

on UNIX they
wouldn't be able to
get off. It's just like

drugs."

for minicomputer support for its
telephone operations. It needed
Operations Systems, not Oper
ating Systems. With the numbers
of systems under consideration,
the possibility of being tied to a
single vendor, or having each site
tied to a different vendor, induced
a kind of paranoia. There just had
to be another way.

The groups responsible for
developing operations systems
had many people from hardware

and applications software back
grounds who were considering
writing their own- operating
system — their first — when
Berkley Tague, now head of Bell
Labs' Computing Technology
Department, suggested they use
UNIX to get started.

t4I observed that people were
starting to put these minis out in
the operating company, and saw
that it was an area of both oppor
tunity and potential problems,"
Tague remembered. "I found that
some of the people in development
had never built an operating
system for any computer before;
many of them had very little soft
ware background. They were
coming out of hardware develop
ment and telephone technology
backgrounds, and yet were starting
to build their own operating
systems. Having been through
that phase of the business myself,
it seemed silly to go through it
another hundred times, so I
started pushing the UNIX
operating system into these pro
jects.'*

Tague's backing of UNIX, as
a development system for opera
tions, was not just a personal
preference. "I had every con
fidence in the people who built it
because I'd worked with them on
Multics," he explained. "With
their experience and training, I
figured they could build a much
better operating system than
somebody who's building one for
the first time, no matter how
smart that person is."

SUPPORT?
UNIX had been running long

enough in research by that time
that Tague knew that the system
the operations group would get
would serve as a very good start
ing point. Unfortunately, there
was no vendor support for it.

The argument Tague made
for UNIX was: if the operations
people were going to build their

22 UNIX REVIEW JANUARY 1985

KEY EVENTS IN
UNIX SYSTEM EVOLUTION

MARKETING EDUCATIONAL CACM I COMMERCIAL
LICENSES ARTICLE I LICENSES

I f 1
CACM[COMMI
TICLE I LICEN!

DISTRIBUTION
TOBOC

— z z
INTERACTIVE C BOOK

SYSTEMS UNIX BSTS
MARKETS

IS/1

1 - ? A 4 A T
MICROSOFT I ATAT I IBM PC/IX N

MARKETS I SUPPORT! DEC ULTR1X S
XENIX " •

MOTOROLA
SYSTEM V/88

XENIX
UNISOFT

MARKETS
UN1PLUS

MICRO
CONTRACTS

BELL LABS
RESEARCH

DEVELOPMENT

BELL LABS
SUPPORT

BERKELEY
RESEARCH

" 1 X 1
PDP-11 V8-UNIX MERT/UNIX

WRITTEN IN C

x
V-7 PORTABLE

UNIX ON
INTERDATA 8/32

DATAKIT
T T

BLIT

32-V-UNIX
ON VAX

V8-DIST OS
NETWORK ARCH

— x —
USE BY

DEV DEPTS

ANNUAL
RELEASES
TO SUPPORT
DEV DEPTS

PWB
10

MERT
UNIX

PWB
CB-UNIX

(MERT
DROPPED)

t ?

UNIX
370 .1100

SUPPORT BEGINS T
RELEASE

3

X
SYSTEM

III

T X
RELEASE SYSTEM

4 V
RELEASE I

"X
SYSTEM V
RELEASE 2

— x x
THOMPSON VERSION 2.0 VERSION

SABBATICAL (11/70) (VAX)

x x—x—i"
ON 4.0 I 4 1C 4.2

VERSION 4.1

J _ J I I I I I L J I I I L
'70 *72 '74 '76

Courtesy of Larry Crume, AT AT UNIX Pacific.

'78 '80 '82 *84

own system, they were going to
have to maintain it themselves.
Surely, UNIX could be no worse.
They could use it to get started
and do the development. If a more
efficient or better operating
system was needed for a target
machine when they got into the
field, they could always build it,
but UNIX would at least get them
off the ground. "Naturally I knew
that once they got on this thing
they wouldn't be able to get off.
It's just like drugs," Tague
explained.

Tague also knew it was impor
tant to get some field support.
"We were starting to put these
things in the operating companies
all around the countryside and the
prospects were that there were
going to be several hundred minis
over the next few years that were
going to have to be maintained
with all their software and hard
ware," he said.

Bell had already gained some
field support experience maintain
ing electronic switching machines
and their software. Supporting a

24 UNIX REVIEW JANUARY 1985

network of minicomputers would
be a significantly different prob
lem, though. Maintaining an
operating system is not at all like
maintaining an electronic switch
ing system. The minicomputers
had different reliability demands,
requiring a different support
structure in the organization —
one that did not yet exist in any
form. In many ways, the opera
tions group was breaking new
ground.

Up to this point, Tague had
served as head of the Computer
Planning department responsible
for systems engineering. After
gaining support for UNIX in the
operations group over the course
of 1971 and 1972, he made a push
for two significant changes. The
first was to make UNIX an inter
nal standard and the second was
to offer central support through
his organization. In September,
1973, he was permitted to form a
group called UNIX Development
Support, the first development
organization supporting a "Stand
ard UNIX". While this group

worked closely with Bell Labs
Research, its concerns sometimes
diverged.

One area the two groups could
agree on, though, was portability.
By 1973, it was already on the
horizon. Tague foresaw the
possibility of UNIX becoming an
interface between hardware and
software that would allow applica
tions to keep running while the
hardware underneath was
changing.

From the support point of
view, such a capability would
solve a very important problem.
Without UNIX and its potential
portability, the people building
the operations support systems
were faced with selecting an out
side vendor that could supply the
hardware on .which to get their
development done. Once that was
complete, they would be locked
into that vendor. Portability ob
viated this limitation and offered
a number of other advantages.
When making a hardware upgrade,
even to equipment from the same
vendor, there are variations from

GENESIS

version to version. That could cost
a lot of money in software revi
sions unless there were some level
of portability already written into
the scenario. Fortunately, the in
tegral portability of the system
developed by Research proved
adequate to make UNIX portable
over a wide range of hardware.

The first UNIX applications
were installed in 1973 on a system
involved in updating directory in
formation and intercepting calls to
numbers that had been changed.
The automatic intercept system
was delivered for use on early
PDP-1 Is. This was essentially the
first time UNIX was used to sup
port an actual, ongoing operating
business.

To Tague, at this time, "our
real problem was pruning the
tree". There were so many dif
ferent sites using UNIX that each
would come up with different
answers to the same problems of
printer spooling, mail, help, and so
on. 'The customers would invent
this stuff and make it work and
our problem was to get the slight
ly different variations together, get
the best of all of those worlds, put
it in the standard, and get it out
again." This was, in many ways,
a political process. Tague credits
the "technical underpinnings" for
making the process easier than ex
pected. "That made it easy to get
the right stuff in without upsetting
the whole world. I didn't have to
go to all of my customers and tell
them that this was now my new
version and that nothing they had
out in the field would run again,"
he said.

To provide a standard UNIX
system, the support group had to
establish what version it would
back. This was a process of
negotiation and compromise with
the UNIX-using community — not
a unilateral decision. The support
team and customers often ended
up arguing things out until
everybody understood the issues

STORY

and a suitable compromise was
made. "As one of the local gurus
put it to me one time," Tague said,
"one of the problems in UNIX is
that everybody wants to carve his
initials in the tree." When the
choice came down essentially to

From the very
beginning within

Bell, UNIX followed
what has become a
familiar pattern of
users leading their

management.

tossing a coin, Tague, as arbirator,
tried to make sure that each group
got at least one pet contribution
into the system.

Fortunately, UNIX is flexible
enough that even the particularly
traumatic decisions, such as the
ones concerning standard shell
versions, could be patched in
slowly — at the user's discretion.

A FAMILIAR PATTERN
From the very beginning

within Bell, UNIX followed what
has become a familiar pattern of
users leading their management.
While this is riot the most com
mon marketing strategy in the
commercial world, it is typical of
Bell Labs' "bottom-up" organiza
tion. According to Rudd Canaday,
now head of Bell Labs' Artificial
Intelligence and Computing En
vironments Research Department,
change within the Labs often
comes from the people doing the
work. "UNIX spread throughout

Bell Laboratories because people
loved to use it," he said.

Canaday first experienced
UNIX, although it hadn't yet been
named, while working with
Thompson and Ritchie. He left
that group and later became head
of a group building large,
mainframe-oriented s y s t e m s .
Because of his previous exposure
to UNIX, he wanted to bring it to
his new group.

Canaday found lots of support
among the programmers who had
already tasted UNIX. One of those,
Richard Haight, recalled, "I was
trying to get my management to
get UNIX and we dreamed up the
idea of using it as a common
timesharing interface to different
kinds of host computers."

Initially, the project involved
interfacing with big IBM and
Univac machines, and later ex
panded to interfacing with RCA,
Xerox, and others. The basic idea
was to edit programs and work
with files under UNIX, but instead
of compiling and executing under
UNIX, you could send the remote
job off to a big machine. This way,
the programmer didn't have to
deal with complicated IBM JCL se
quences since he could just give
the UNIX utility the parameters it
needed to know. The masses of
printout could then come back as
a file under UNIX and, as Dick
Haight put it, "save cutting down
a tree." It also saved having to
retrain programmers for a variety
of host systems.

This original Programmer's
Workbench system was built on a
PDP 11/45. The system eventually
offered lots of utilities, including
ones for analyzing host machine
dumps on the UNIX system.

While work proceeded on the
PWB system, an interesting dis
covery was made. The designers
had assumed that the majority of
the work cycle would involve the
host computer. Users were thought
of as editing a file, sending it to a

26 UNIX REVIEW JANUARY 1985

Jt Jflfcl RESEARCH ENVIRONMENT

host computer, getting the print
file back, looking at it. and doing
that over and over again. As it
turned out. samples taken from
different kinds of work groups on
different systems showed people
tended to use the text formatter.
nroff. five times as often as they
submi t ted Remote J o b Entry
programs.

This unexpected result might
not have happened had UNIX not
had fairly sophisticated word pro
cess ing facilities available to
programmers. The original devel
opment for Bell's legal department
could hardly be called "incredible
foresight", but happily for UNIX,
word processing was to become
the single most commonly used
computer application. Once the
facilities were there, programmers
made massive, unexpected use of

them. This happened, according
to Haight. because programmers
have to be able to document pro
grams on the same machine used
for development. "Things like
pipes and the power of the shell
are not to be slighted, but what ' s
really important is the fact that
you can do your documentation
and your programming on the
same machine." he said. You can
be editing your documentation
and break away from that to edit
the source. When you're finished
with that, you can submit a com
pile in the background and go
back to editing your documenta
tion while the compile happens ."

Flushed with the success of
the PWB and the Remote Job En
try facility, Canaday and his group
set about showing people what
was possible. Once the users were

conv inced . C a n a d a y sa id to
management, "Well, if you want
to keep on using this, you're going
to have to start buying machines
to do it." He knew that "once you
let people get their hands on
UNIX, they just won't let go."

A key piece in the rapid
spread of UNIX within Bell Labs
was the low pr ice of mini
computers relative to mainframes.
A department head's urging was
generally sufficient for purchase of
a VAX. Mainframe purchases were
considerably more sticky. A VAX
had sufficient power to reasonably
serve the needs of a department ,
so VAXen became increasingly
commonplace.

More and more depar tments
were becoming convinced that
UNIX was part of the path toward

Continued to Page 117

REFLECTIONS ON
SOFTWARE RESEARCH

Can the circumstances that nurtured the UNIX projectJ

be produced again? ^

The UNIX operating system
has suddenly become news, but it
is not new. It began in 1969 when
Ken Thompson discovered a little-
used PDP-7 computer and set
out to fashion a computing en
vironment that he liked. His work
soon attracted me; I joined in
the enterprise, though most of the
ideas, and most of the work for
that matter, were his. Before long,
others from our group in the
r e sea rch area of AT&T Bell
Laboratories were using the

by Dennis M. Ritchie

sys tem; Joe Ossanna, Doug
Mcllroy, and Bob Morris were es
pecially enthusiastic critics and
contributors. In 1971, we acquired
a PDP-1 1, and by the end of that
year we were supporting our first
real users: three typists entering
patent applications. In 1973, the
system was rewritten in the C
language, and in that year, too, ft
was first described publicly at the
Operating Systems Principles con
ference; the resulting paper J8J
appeared in Communications of

the ACM the next year
* Thereafter, Its ufce grew

steadily, both inside and outside of
Bell Laboratories. A development
group was established to support
projects inside the company, and
several research versions were
licensed for outoMe'.twc:'^^/""./

The last research distribution
wad the seventh edition system,
which appeared tit 1979; more
recently, AT&T began to market
System HI, and now offera System

*•-?''

28 UNIX REVIEW JANUARY 1985

Jf ftk\ RESEARCH ENVIRONMENT

UNIX* and C
TRAINING

$145
$595
$595

UNIX
C

UNIX

c

UNIX Overview (1)
UNIX Fundamentals (3 days)
C Fundamentals (3 days)

Austin Schedule
Feb. 6-8
Feb. 13-15
Mar. 9-11
Mar. 16-18

On-site training available

Call or write to register or to get on our mailing
list.

TELOS CONSULTING SERVICES
815 Brazos, Suite 504

Austin, TX 78701
512/478-2072

•UNIX is a trademark of Bell Laboratories.

Z Systems is now offering its port
of the Berkeley cshell for your
AT&T 3B2. Through enrollment
in the 3B Subscription Service,
you will get the first software
release which includes:
• Berkeley 4.2 compatible
• csh (less jobs)
• Is (links to lf.lr, . . .)
• more
• strings
• and others
Your annual subscription to
3BSS also includes newsletters
and future software releases for
a nominal media and handling
charge.

The cost is just $200/yr.
To order call 303-526-1633
major credit cards accepted

Z SYSTEMS, INC

602 Park Point Drive
Genesee Business Center
Golden, CO 80401

Call |or information on gtj^r ;••
soft ware and hardware^rQdvicts?

Circle No. 70 on Inquiry Card

Continued from Page 28
V, both products of the develop
ment group. All research versions
were "as is," unsupported soft
ware; System V is a supported
product on several different hard
ware lines, most recently in
cluding the 3B systems designed
and built by AT&T.

UNIX is in wide use, and is
now even spoken of as a possible
industry standard. How did it
come to succeed?

There are, of course, its
technical merits. Because the
system and its history have been
discussed at some length in the
literature [6, 7, 11], I will not talk
about these qualities except for
one. Despite its frequent surface
inconsistency, so colorfully an
notated by Don Norman in his
Datamation article [4] and despite
its richness, UNIX is a simple,
coherent system that pushes a few
good ideas and models to the limit.
It is this aspect of the system,
above all, that endears it to its
adherents.

Beyond technical considera
tions, there were sociological
forces that contributed to its suc
cess. First, it appeared at a time
when alternatives to large, cen
trally administered computation
centers were becoming possible;
the 1970s were the decade of the
minicomputer. Small groups
could set up their own computa
tional facilities. Because they were
starting afresh, and because
manufacturers' software was, at
best, unimaginative and often
horrible, some adventuresome
people were willing to take a
chance on a new and intriguing,
even though unsupported,
operating system.

Second, UNIX was first
available on the PDP-11, one of
the most successful of the new
minicomputers that appeared in
the 1970s, and soon its portability
brought it to many new machines
as they appeared. At the time

that UNIX was created, we were
pushing hard for a machine, either
a DEC PDP-10 or SDS (later Xerox)
Sigma 7. It is certain, in retro
spect, that if we had succeeded in
acquiring such a machine, UNIX
might have been written but
would have withered away.
Similarly, UNIX owes much to
Multics [5], I have described
[6, 7], it eclipsed its parent as
much because it does not demand
unusual hardware support as
because of any other qualities.

Finally, UNIX enjoyed an
unusually long gestation period.
During much of this time (say
1969-1979), the system was effec
tively under the control of its
designers and being used by
them. It took time to develop
all of the ideas and software, but
even though the system was still
being developed, people were
using it, both inside Bell Labs,
and outside under license. Thus,
we managed to keep the central
ideas in hand, while accumulating
a base of enthusiastic, technically
competent users who contributed
ideas and programs in a calm,
communicative, and noncompeti
tive environment. Some outside
contributions were substantial,
such as those from the University
of California at Berkeley. Our
users were widely, though thinly,
distributed within the company,
at universities, and at some
commercial and government
organizations. The system be
came important in the intellec
tual, if not yet commercial ,
marketplace because of this net
work of early users.

What does industrial compu
ter science research consist of?
Some people have the impression
that the original UNIX work was
a bootleg project, a "skunk
works". This is not so. Research
workers aire supposed to discover
or invent new things , and
although in the early days we
subsisted on meager hardware,

118 UNIX REVIEW JANUARY 1985

we always had management en
couragement. At the same time,
it was certainly nothing like a
development project. Our intent
was to create a pleasant com
puting environment for ourselves,
and our hope was that others
liked it.

The Computing Science
Research Center at Bell Lab
oratories to which Thompson and
I belong studies three broad areas:
theory; numerical analysis; and
system, languages, and software.
Although work for its own sake
resulting, for example, in a paper
in a learned journal, is not only
tolerated but welcomed, there is
strong though wonderfully subtle
pressure to think about problems
somehow relevant to our corpora
tion. This has been so since I join
ed Bell Labs around 15 years ago,
and it should not be surprising,
the old Bell System may have
seemed a sheltered monopoly, but
research has always had to pay its
way. Indeed, researchers love to
find problems to work on; one of
the advantages of doing research
in a large company is the enor
mous range of the puzzles that
turn up. For example, theorists
may contribute to compiler
design, or to LSI algorithms;
numerical analysts study charge
and current distribution in
semiconductors; and, of course,
software types like to design
systems and write programs that
people use. Thus, computer
research at Bell Labs has always
had considerable commitment to
the world, and does not fear edicts
commanding us to be practical.

For some of us, in fact, a prin
cipal frustration has been the
inability to convince others
that our research products can
indeed be useful. Someone may
invent a new application, write an
illustrative program, and put it to
use in our own lab. Many such
demonstrations require further
development and continuing sup

port in order for the company to
make best use of them. In the
past, this use would have been
exclusively inside the Bell System;
more recently, there is the possi
bility of developing a product for
direct sale.

For example, some years ago
Mike Lesk developed an auto
mated directory-assistance
system [3]. The program had an
online Bell Labs phone book, and
was connected to a voice syn
thesizer on a telephone line with
a tone decoder. One dialed the
system, and keyed in a name and
location code on the telephone's
key pad; it spoke back the per
son's telephone number and office
address (it didn't attempt to pro

nounce the name). In spite of the
hashing through 12 buttons
(which, for example, squashed
"A", **B" and "C" together), it was
acceptably accurate: it had to give
up on around 5 percent of the
tries. The program was a local hit
and well-used. Unfortunately, we
couldn't find anyone to take it
over, even as a supported service
within the company, let alone a
public offering, and it was an ex
cessive drain on our resources, so
it was finally scrapped. (I chose
this example not only because it
is old enough not to exacerbate
any current squabbles, but also
because it is timely: the organiza
tion that publishes the company
telephone directory recently asked

...enough said.

Saa us at:
UniForum
Dallas
Jan. 21 to 25
Booth 2959

Fulcrum Technologies Inc.
331 Cooper Street,
Ottawa, Canada
K2PQG5
(6131238-1761

•# m w mj mu wt wi m mm i w mii rj

Circle No. 71 on Inquiry Card

UNIX REVIEW JANUARY 1985 119

* itki RESEARCH ENVIRONMENT

us whether the system could be
revived.)

Of course not every idea is
worth developing or supporting.
In any event, the world is
changing: our ideas and advice are
being sought much more avidly
than before. This increase in
influence has been going on for
several years, partly because of
the success of UNIX, but more
recently, because of the dramatic
alteration of the structure of our
company.

AT&T divested its telephone
operating companies at the be
ginning of 1984. There has been
considerable public speculation
about what this will mean for
fundamental research at Bell

UNICOMP
Technical Type

Typesetting Service

• UNIX*, Troff, Wizard

• Compugraphic 8400 Typesetter

• Quality appearance of books,
proceedings, newsletters.

• Specializing in
technical documents.

• Documents accepted via
magnetic tape,
phone lines, or paper.

• For information, samples,
or estimates, call

505/662-EDIT (3348)

1580 Camino Redondo
Los Alamos, NM 87544

•Unix is a trademark of Bell Laboratories

Laboratories; one report in
Science [2] is typical. One fear
sometimes expressed is that basic
research, in general, may languish
because it yields insufficient short-
term gains to the new, smaller
AT&T. The public position of the
company is reassuring: moreover,
research management at Bell
Labs seems to believe deeply,
and argues persuasively, that the
commitment of support to basic
research is deep and will continue
[1].

Fundamental research at Bell
Labs in physics, chemistry, and
mathematics may, indeed, not be
threatened; nevertheless, the
danger it might face, and the case
against which it must be prepared

UNIX*/ C
$25,000

to
$50,000

APPLICATIONS
and SYSTEMS

National Placement Leader
for UNIX/C PROF'Ls

500 OPENINGS NATIONWIDE

Call or send resume

J. ROGERS ASSOCIATES
Dept. CR

123 Franklin Corner Rd.
Lawrenceville, N.J. 08648

(609) 896-8484
(800) 2220596

Representing
EOE Companies

'UNIX is a trademark of Bell Labs

Circle No. 73 on Inquiry Card

120 UNIX REVIEW JANUARY 1985

Circle No. 74 on Inquiry Card

to argue, is that of irrelevance to
the goals of the company. Com
puter science research is different
from these more traditional
disciplines. Philosophically it
differs from the physical sciences
because it seeks not to discover,
explain, or exploit the natural
world, but instead to study the
properties of machines of human
creation. In this it is analogous to
mathematics, and indeed the
"sc ience" part of computer
science is, for the most part,
mathematical in spirit. But an
inevitable aspect of computer
science is the creation of computer
programs: objects that, though
intangible, are subject to commer
cial exchange.

More than anything else, the
greatest danger to good computer
science research today may be
excessive relevance. Evidence for
the worldwide fascination with
computers is everywhere, from
the articles on the financial, and
even the front pages of the news
papers, to the difficulties that even
the most prestigious universities
experience in finding and keeping
faculty in computer science. The
best professors, instead of
teaching bright students, join
start-up companies, and often
discover that their brightest
students have preceded them.
Computer science is in the
limelight, especially those aspects,
such as systems, languages, and
machine architecture, that may
have immediate commercial appli
cations. The attention is flattering,
but it can work to the detriment of
good research.

As the intensity of research in
a particular area increases, so does
the impulse to keep its results
secret. This is true even in the
university (Watson's account [12]
of the discovery of the structure
of DNA provides a well-known ex
ample), although in academia
there is a strong counterpressure:
unless one publishes, one never

tfttei
becomes known at all. In industry,
a natural impulse of the establish
ment is to guard proprietary infor
mation. Researchers understand
reasonable restrictions on what
and when they publish, but many
will become irritated and flee
elsewhere, or start working in less
delicate areas, if prevented from
communicating their discoveries
and inventions in suitable fashion.
Research management at Bell Labs
has traditionally been sensitive to
maintaining a careful balance be
tween company interest and the
industrial equivalent of academic
freedom. The entrance of AT&T
into the computer industry will
test, and perhaps strain, this
balance.

Another danger is that com
mercial pressure of one sort or
another will divert the attention of
the best thinkers from real innova
tion to exploitation of the current
fad, from prospecting to mining a
known lode. These pressures mani
fest themselves not only in
the disappearance of faculty into
industry, but also in the con
servatism that overtakes those
with well-paying investments —
intellectual or financial — in a
given idea. Perhaps this effect
explains why so few interesting
software systems have come from
the large computer companies:
they are locked into the existing
world. Even IBM, which supports
a well-regarded and productive
research establishment, has in
recent years produced little to
cause even a minor revolution in
the way people think about
computers. The working ex
amples of important new systems
seem to have come either from
entrepreneurial efforts (VisiCalc is
a good example) or from large
companies, like Bell Labs and
most especially Xerox, that were
much involved with computers
and could afford research into
them, but did not regard them as
their primary business.

122 UNIX REVIEW JANUARY 1985

ENVIRONMENT

On the other hand, in smaller
companies , even the most
vigorous research support is
highly dependent on market con
ditions. The New York Times, in
an article describing Alan Kay's
passage from Atari to Apple, notes
the problem: "Mr. Kay...said that
Atari's laboratories had lost some
of the atmosphere of innovation
that once attracted some of the
finest talent in the industry.
"When I left last month it was
clear that they would be putting
their efforts in the short term,"
he said..."I guess the tree of
research must from time to time
be refreshed with the blood of
bean counters."[9]

Partly because they are new
and still immature, and partly
because they are a creation of the
intellect, the arts and sciences
of software abridge the chain,
usually in physics and engineer
ing, between fundamental dis
coveries, advanced development,
and application. The inventors of
ideas about how software should
work usually find it necessary to
build demonstration systems. For
large systems, and for revolu
tionary ideas, much time is
required. It can be said that UNIX
was written in the '70s to distill
the best systems ideas of the '60s,
and became the commonplace of
the '80s. The work at Xerox PARC
on personal computers, bitmap
graphics, and programming en
vironments [10] shows a similar
progression, starting and coming
to fruition a few years later.
Time, and a commitment to the
long-term value of the research,
are needed on the part of both
the researchers and their
management.

Bell Labs has provided this
commitment and more: a rare
and uniquely stimulating research
environment for my colleagues
and me. As it enters what com
pany publications call "the new
competitive era", its managers

and workers will do well to
keep in mind how, and under
what conditions, the UNIX system
succeeded. If we can keep alive
enough openness to new ideas,
enough freedom of communica
tion, enough patience to cdlow
the novel to prosper, it will remain
possible for a future Ken Thomp
son to find a little-used CRAY/I
computer and fashion a system as
creative, and as influential, as
UNIX.

REFERENCES
1. Bell Labs: New order augurs well.
Nature 305, 5933 (Sept. 29, 1983).
2. Bell Labs on the brink. Science 221
(Sept. 23, 1983).
3. Lesk, M.E. User-activated BTL direc
tory assistance. Bell Laboratories inter
nal memorandum (1972).
4. Norman, D.A. The truth about UNIX.
Datamation 27(1981).
5. Organick, E.I. The Multics System MIT
Press Cambridge. M.A. (1972)
6. Ritchie, D. M. UNIX time-sharing
system: A Restrospective. Bell Syst.
Tech. J. 57.6 (1978) (1947-1969.
7. Ritchie, D. M. The Evolution of the
UNIX time-sharing system. In Language
Design and Programming Methodology.
Jeffrey M. Tobias, Ed. Springer-Verlag,
New York. (1980).
8. Ritchie, D. M. and Thompson, K. The
UNIX time-sharing system. Commun.
ACM 17.7 (July 1974) 365-375.
9. Sanger, D. E. Key Atari scientist swit
ches to Apple. The New York Times
133,46,033 (May 3, 1984).
10. Thacker, C. P. et al. Alto, a personal
computer. Xerox PARC Technical Report
CSL-79-11.
11. Thompson, K. UNIX time-sharing
system: UNIX implementation. Bell Syst.
Tech J. 57,6 (1978). 1931-1946.
12. Watson. J. D. The Double Helix: A
Personal Account of the Discovery of the
Structure of DNA. Atheneum Publishers.
New York (1968).

Copyright 1984 by Association
for Computing Machinery, reprinted
with permission of Communications
of the ACM, August 1984, Volume
27, Number 8M

UNIX UNLEASHED
The university role of research in maintaining system vitality

by Marshall Kirk McKusick

S Fince the AT&T divestiture,
UNIX has become the focus of a
massive marketing effort. To suc
ceed, this effort must convince
potential customers that the
product is supported, that future
versions will continue to be devel
oped, and that these versions will
be upwardly compatible with all
past applications.

AT&T's size alone ensures that
it will be around in years to come.
The fact that the company has
allocated a growing number of
research, development, and sup
port resources to UNIX over the
past 10 years provides an assur
ance of its commitment. Mean
while, its massive advertising
campaign for System V, its pres
ence on the /usr/group UNIX
standards committee, and the
publication of the System V In
terface Definition testify to the
company's intention to remain
compatible with past systems.

Although repeal of the law of
entropy is a necessary step along
the road to a viable commercial
product, this runs counter to

orderly system evolution. Be that
as it may, AT&T's major UNIX
commercialization effort has
succeeded in making the system
available to a much broader
audience than was previously
possible.

The freezing of what previously
had been an ever-changing UNIX
interface represented a major de
parture from the pat tern that the
small but highly skilled UNIX
community had come to expect.
Most early users had accounts at
sites that had the source to the
programs they ran. Thus, as the
system interface evolved to reflect
more current technology, soft
ware could be changed to keep
pace. Users simply updated their
programs to account for the new
interface, recompiled them, and
continued to use them as before.
Although this required a large
effort, it allowed the system—
and the tools that ran on it—
to reflect changes in software
technology.

At the forefront of the techno
logical wave was AT&T's own Bell

28 UNIX REVIEW OCTOBER 1985 Illustration by M. Kathryn Thompson

:**£&«
v* v-

^ ^ f e ^ | p j p ^ ^ ^ ^ v ^ . ' - - •••:
£* • * . ; ^ ; * * *

IS^MI l l t^-^

.->.^«i .-*-: •

!f'$&:&'l~- -'-^ 5Ŝ *-4

St

UNIVERSITY ROLE

Laboratories. It was there that
the UNIX system was born and
nurtured, and it was there that
its evolution was controlled—up
through the release of the 7th
Edition. Universities also were
involved with the system almost
from its inception. The University
of California at Berkeley was one
of the first participants, playing
host to several researchers on
sabbatical from the Labs. This
cooperation typified the harmony
that was characteristic of the
early UNIX community. Work that
was contributed to the Labs
by different members of the
community helped produce a rap
idly expanding set of tools and
facilities.

With the release of the 7th
Edition, though, the usefulness of
UNIX already had been clearly
established, and other organiza
tions within AT&T began to han
dle the public releases of the
system. These groups took far
less input from the community as
they began to freeze the system
interface in preparation for entry
into the commercial marketplace.

As the research community
continued to modify the UNIX
system, it found that it needed
an organization that could pro
duce releases. Berkeley quickly
stepped into the role. Prior to the
final public release of UNIX from
the Labs, Berkeley's work had
been focused on the development
of tools designed to be added to
existing UNIX systems. After the
AT&T freeze, though, a group of
researchers at the university
found that they could easily ex
pand their role to include the
coalescing function previously
provided by the Labs. Out of this
came the first full Berkeley distri
bution of UNIX (3.0BSD), com
plete with virtual memory—a
first for UNIX users. The idea was
so successful that System V even
tually adopted it six years later.

At the same time that AT&T

was beginning to put the brakes
on further change in UNIX, local
area networks and bitmapped
workstations were just beginning
to emerge from Xerox PARC and
other research centers. Users in
the academic and research com
munity realized that there were
no production-quality operating
systems capable of making use of
such hardware. They also saw
that networking unquestionably
would be an indispensable facili
ty in future systems research.
Though it was not clear that UNIX
was the correct base on which to
build a networked system, it was
clear that UNIX offered the most
expedient means by which to
build such a system.

This posed the Berkeley group
with an interesting challenge:
how to meet the needs of the
community of users without add
ing needless complexity to exist
ing applications. Their efforts
were aided by the presence of a

Although repeal of the
law of entropy is a

necessary step along
the road to a viable
commercial product,
this runs counter to

orderly system
evolution.

large and diverse local group of
users who were teaching intro
ductory programming, typeset
ting documents, developing soft
ware systems, and trying to build
huge Lisp-based systems capable
of solving differential equations.

In addition, they were able to
discuss current problems and
hash out potential solutions
at semi-annual technical confer
ences run by the Usenix or
ganization.

The assistance of a steering
committee composed of academ
ics, commercial vendors, DARPA
researchers, and people from the
Labs made it possible for the
architecture of a networking-
based UNIX system to be devel
oped. By keeping with the UNIX
tradition of integrating work done
by others in preference to writing
everything from scratch, 4.2BSD
was released less than two years
later.

MECHANISMS FOR
PRODUCING ORDERLY
E V O L U T I O N

Software systems have often
been compared to biological or
ganisms. They are born and go
through a period of innocence
akin to childhood. They then go
through another burst of growth
that takes them into the adult
world where they are expected to
give up their childish ways. As
people come to rely on these
systems, crashes and the loss of
data cease to be considered ac
ceptable behavior. As the soft
ware grows into middle age,
it gains a wider exposure that
allows it to be used in more criti
cal and demanding applications.
During this period, a system
reaches the most productive part
of its life. As it ages, though, it
becomes less able to adapt to
changing times. Eventually, it
must retire so that younger, more
agile systems can move in to take
its place.

UNIX was born in a lean and
mean era; it was designed for
processors that ran at fractional
MIPS, with memories smaller
than 65 kilobytes, and 10-char-
acter-per-second printing termi
nals that made interaction ago-

30 UNIX REVIEW OCTOBER 1985

nizingly slow. Given such a
start ing point, it is a tribute to the
designers of UNIX that the system
can now be found running on
multi-MIP processors, with mega
bytes of memory, and multiwin-
dow bitmapped displays. There
are several reasons why UNIX
has managed to stretch its bio
logical limits to this degree.

The single most important
structural reason is that UNIX
was not written in assembly lan
guage. Equally important is the
fact that it was not written in a
complex high-level language that
could be compiled only on a large
computer system. UNIX has suc
ceeded largely because the C
language itself was just high-level
enough to allow it to be easily
compiled for a wide range of
computer hardware, without be
ing so complex or restrictive that
systems programmers had to re
vert to assembly language to get
reasonable efficiency or function
ality. Although the success of
UNIX does not stem solely from
the fact that it was written in a
high-level language, the use of C
was a critical first step.

The second decision essential
to the extended evolution of UNIX
resulted in the system's early
release from Bell Labs to other
research environments in source
form. By providing source, the
system's founders ensured that
other organizations would not
only be able to use the system, but
also tinker with its inner work
ings. The ease with which new
ideas could be adapted into UNIX
always has been key to the
changes that have been made to
it. Whenever a new system would
come along that tried to upstage
UNIX, someone would dissect the
newcomer and clone its central
ideas into UNIX. The unique abili
ty to use a small, comprehensible
system, written in a high-level
language, in an environment
swimming in new ideas led to a

UNIX system that evolved far
beyond its humble beginnings.

Note, though, that the path of
evolution is littered with broken
carcasses. While gene mutation is
critical to the advance of the
species, only one in 100 produces
a useful feature; the rest result
in needless or detrimental
changes. The mere existence of
an environment for mutation is
not enough—some organization
must bear responsibility for bru
tally pruning the weak or useless
ideas. Here again UNIX was
unique. Unlike other projects be
set by competing groups jealously
guarding their work from one
another, UNIX thrived in an open
and cooperative community will
ing to channel its ideas through

a central clearinghouse, in spite
of the reputation that clearing
house had for selective technical
scrutiny.

Here one must distinguish
between the selection process
provided by research and com
mercial organizations. Research
organizations can base pruning
considerations strictly on the co
herence of a system. They need
not concern themselves with how
changes might affect past var
iants of the system. Commercial
organizations, though, must en
sure that changes will not affect
programs built to tie in with an
old interface. Thus, paging might
be a great idea, but it could cause
problems for old software that
depends on the execution predic-

WHEN SERIOUS PROGRAMMING
IS YOUR BUSINESS...
The Concurrent Euclid language
for systems programming provides
the best in efficiency, portability,
reliability, and maintainability
Compilers running on UNIX/VAX,
UNIX/11, VMS/VAX, with code
generated for MC68000,
MC6809, NS32000, 8086/8088
PDP-11, and soon running
on IBM-PC

CONCURRENT EUCLID
Compiler: CSRI Distribution Mgr.
Sandford Fleming Bldg 2002
10 King's College Road
Toronto, Canada M5S 1A4
Tel: (416) 978-6985

Book:
CONCURRENT EUCLID,
THE UNIX SYSTEM AND TUNIS
Available from:
Addison-Wesley Publishing
Company, Reading, MA. 01867
Tel: (617) 944-3700

CONCURRENT
fT u c L I _Dj

Circle No. 23 on Inquiry Card

UNIX REVIEW OCTOBER 1985 31

^UNIVERSITY ROLE

tability of a swap-based system,
making it impossible for paging to
replace swapping; as a result, the
complexity of supporting both
schemes must be maintained. As
the system becomes more com
plex, its evolutionary paths will
become increasingly restricted.

This is not surprising. No soft
ware system can last forever;
revolution is as necessary in the
software world as storms are in
the physical world. The old guard
must eventually give way to new
blood. The fact that UNIX was
provided with a less restrictive
growth path in the research
environment during its critical
adolescent period has probably
doubled its life expectancy. Ulti
mately, the commercial system
will have to get beyond its slow-
printing terminal orientation and
adopt the new technology, lest it
be superseded by an onslaught of
systems capable of supporting
bitmapped displays.

Evolutionary restrictions are
such that the facilities of the
commercial system lag anywhere
from five years to an infinite
amount of time behind the re
search systems. In an effort to
provide more modern facilities,
many manufacturers have start
ed marketing the 4.2BSD re
search system in order to sell
into more sophisticated technical
markets. Over the long term, it is
reasonable to expect that the
most useful functionality of the
research systems will be grafted
into the commercial version,
while the research version will be
extended to provide as much of
the commercial version's inter
face as possible.

THE FUTURE OF UNIX
UNIX is currently in its middle

age. The commercial version of
UNIX has been widely adopted
because it provides better func
tionality than any other PC oper
ating system on the market.

However, users have already dis
covered that isolated PCs are far
less useful than PCs networked
together in a way allowing for
remote logins, file transfer, distri
bution of a pipeline across multi
ple machines, and other distrib
uted computing applications. The
research version of UNIX demon
strated in 1982 that UNIX could

UNIX thrived in an
open and cooperative
community willing to

channel its ideas
through a central

clearinghouse.

evolve to accommodate network
ing. But the commercial version
continues to offer little more in
the way of network functionality
than file transfer and batch-style
remote execution. This probably
will be remedied, despite the
commercial constraints, within
the next couple of years.

The current trend in systems
research is to provide a variety of
environments. One example is
the text processing environment
offered by Apple's Macintosh.
The UNIX user must learn an
extensive toolset used in conjunc
tion with an unforgiving shell
before diving into document pro
duction. The user brave enough
to tackle this task needs first to
learn how to visualize the output
that the system's baroque type
setting language will produce. By
contrast, the Macintosh provides
a menu-driven toolset interface
and a text-processing interface
that allow the user to see exactly

how the output will appear.
Similarly, the trend in the pro

gram development arena is to
ward object-based environments
in which the system can main
tain object dependencies, thus
keeping the project's binaries,
libraries, and documentation up
to date as program development
proceeds.

Another major research topic
is how to build systems using
several tightly coupled proces
sors. Ideally, processors can be
used together to provide the illu
sion of a single larger machine.
True multiprocessor support re
quires that the UNIX kernel run
simultaneously on all processors.
The system depends on only one
kernel being in operation, syn
chronizing through a large global
memory and the selective block
ing of interrupts. This synchroni
zation structure does not lend
itself to running the kernel simul
taneously on more than one
processor. A message-based syn
chronization structure lends It
self much more readily to a kernel
running in a distributed environ
ment. Though several groups
have modified the existing kernel
to run in a multiprocessor envi
ronment, the added complexity
makes further evolution difficult.

The challenge facing UNIX re
searchers today is the need to
add functionality capable of
supporting environments while
they produce kernel modifica
tions that will allow UNIX to
run in a multiprocessor environ
ment. Since system complexity
increases much faster than the
size of its code, the current struc
ture requiring a monolithic kernel
may become untenable. However,
growing familiarity with the UNIX
interface argues strongly in favor
of maintaining it.

Some researchers now believe
that the revolution will come from
below without end users being
any the wiser. They think that a

32 UNIX REVIEW OCTOBER 1985

new system will be developed that
consists of a small kernel-kernel
providing only the lowest level
of message passing, hardware
scheduling, and virtual memory
management. The current UNIX
kernel will be broken into several
server processes on top of the
kernel-kernel. Sample services
from existing UNIX systems in
clude a file system server, a
TCP/IP network server, and a
terminal line server. New services
might include an Ada develop
ment server or a document prep
aration environment server. Us
ers familiar with existing UNIX
systems could continue to run on
top of the UNIX file system server,
while users wishing to work with
in an Ada environment could
work with an object-based file
system through an object-orient
ed Ada database server. Synchro
nization between the servers
could be offered by the message
interface provided by the kernel-
kernel. By restructuring synchro
nization through messages ra ther
than by using a global-shared
memory, servers could be decou
pled from the particular proces
sor they run on. The servers
would be able to interact equally
well whether they were on the
same processor, two processors
running together, or on two pro
cessors separated by miles of
network cable.

This scheme would reduce the
complexity of the system to a
manageable level. Rather than
having to deal with a single
mountain of interrelated code,
each server could be treated as
a smaller independent module.
This will mean that users will no
longer be required to run a huge
kernel providing many features
they neither need nor wan t—
meaning that the system will
consume fewer of the resources
they do want.

Systems such as this will not
come without a cost. Message-

based synchronization requires
more CPU cycles than the use of
semaphores in a shared memory.
As a result, such systems do not
compete well in shops where
t imesharing computers are used
by so many people that nearly all
the system's services must be
active on the same machine.
However, users are quickly
moving toward having personal
networked workstations in which
CPU cycles are cheap but disk
and memory are expensive. This
will provide a setting in which the
performance problems of a mes
sage-based system become unno-
ticeable and the benefits of rapid
prototyping and new integrated
facilities usher in a new era of
growth.

Dr. McKusick is involved in the
development of Berkeley UNIX as a
Research Computer Scientist for the
Computer Systems Research Group
at the University of California.
While a graduate student, he imple
mented the fast file system distrib
uted on 4.2BSD and worked on the
Berkeley Pascal system. •

The views of the future are gleaned from
discussions with Bill Joy and Rick Rashid.
Acknowledgements to Charles Darwin and
Thomas Jefferson are also in order. I thank
those people whose accomplishments, though
unmentioned. contributed much to the sys
tem's vitality. For the last six years. I have
been supported by the National Science
Foundation under grant MCS80-05144. and
the Defense Advance Research Projects Agen
cy (DoD) under ARPA Order No. 4031 moni
tored by Naval Electronic System Command
under Contract No. N00039-82-C-0235.

UNIX* COMMUNICATIONS
X.25 • HASP • S N A 3 2 7 0 • S N A 3 7 7 0

Drop- in c o m m u n i c a t i o n s y s t e m s f o r M U L T I B U S * b a s e d
c o m p u t e r s . O f f l oad t h e C P U intensive p r o c e s s of c o m
mun ica t ion w i t h t h e HORIZON*™ Ser ies of b o a r d s f r o m
M O R N I N G STAR. C o m p l e t e s y s t e m s include you r cho ice of
h a r d w a r e and s o f t w a r e comb ina t i ons t o c u s t o m f i t you r
d a t a c o m m u n i c a t i o n n e e d s . A v a i l a b l e f o r : S u n
M i c r o s y s t e m s , M a s s c o m p , P y r a m i d , H e u r i k o n , P lexus ,
N C R T o w e r , S p e r r y 5 0 0 0 , Ce le r i ty and m o r e .

Call t o d a y f o r m o r e i n f o r m a t i o n

M o r n i n g S t a r Technologies! Inc.
1 7 6 0 Zoll inger Road , Columbus, Ohio 4 3 2 2 1

In O h i o call [6 1 4] 4 5 1 - 1 8 8 3 T W X - B I O - 6 0 0 - 3 S 7 2

• UNIX is a T r a d e m a r k of A T & T Bell L a b s • M U L T I B U S <s a T r a d e m a r k of Intel C o r p

Circle N o . 22 o n Inquiry Card

UNIX R E V I E W OCTOBER 1985 33

MONTHLY REPORT
[BSD'S BIG ADVENTURE: THE BAD BERKELEY-TO-BOSTON CONNECTION

BY DAVID CHANDLER

The cover of last April's UNIX
REVIEW depicted a garden
labyrinth of tall green hedges

labeled "The Networking Maze". Our
intention was to illustrate the
confusion many UNIX users have
experienced when grappling with
networking. A similar device would
serve well in conjunction with the
tale of bureaucratic intrigue that
follows. This, too, is a story of
networking, but the implications are
much broader—affecting the very
existence of the Berkeley Software
Distribution of UNIX.

in this particular labyrinth, the
principal players are the Defense
Advanced Research Projects
Agency (DARPA) and two of the
major beneficiaries of its budgetary
bounty—Bolt Baranek and Newman
(BBN, the Cambridge, MA-based
communications software house)
and the Computer Systems
Research Group at the University of
California at Berkeley. The three
have generated a fair amount of
drama over the course of an uneasy
five-year relationship that has
spawned the development of 4.2 and
4.3BSD. During recent weeks, the
relationship nearly foundered as
tensions between Berkeley and BBN
staffers built up to the snapping
point.

Christmas came early, though, as
DARPA announced a truce on
December 18 that should maintain
the relationship for a while longer—
long enough, at least, to produce the
much-anticipated release of 4.3BSD
sometime in February.

The details of how things went
sour would do justice by Franz
Kafka, but to sort them out requires
that we go back five years to the
time before the Berkeley-to-Boston
bureaucratic labyrinth had been
erected —back to the time when
DARPA had just decided to bring

both Berkeley and BBN under
contract to develop a networking
scheme for a single operating
system adaptable to the needs of all
DARPA contractors.

Under the terms of the contract,
BBN was to write the Transmission
Control Protocol/Internet Protocol
(TCP/IP) for the DoD's ARPANET
standard, and Berkeley was to
develop sockets and network
interfaces. This delineation of duties
was in accordance with the
International Standards Organization
Reference Model for Open Systems
Interconnection (ISO-OSI), the
seven-layer specification for network
design. One could apply the analogy
of a sandwich: BBN's work on TCP/
IP was comparable to the filling—
the network and transport layers
(OSI layers three and four); and
Berkeley's work on sockets and
interfaces was the bread—the
surrounding physical, data link,
session, and presentation layers.

In keeping with DARPA's bidding,
BBN developed the original
implementation of TCP/IP, and
provided it to Berkeley. From that
time forward, the two organizations
were supposed to work together to
integrate the protocol into the whole
of BSD's networking code. Upon
reviewing the BBN code, though,

researchers at Berkeley took issue
with certain of its elements. In fact,
they thought so little of BBN's effort
that they took the liberty of making
significant modifications (much as
they already had done with AT&T's
UNIX code). Thus was born a
second version of TCP/IP.

It was at this point, as Holmes
would say, that the plot thickened.
BBN was not, if you will, pleased
that its version had been altered for
purposes other than integration.
Berkeley researchers, of course,
believed that their efforts had yielded
a superior version. Meanwhile,
DARPA, the distressed
matchmaker/general contractor,
attempted to mediate.

Despite heavy lobbying from
BBN, the Berkeley version of TCP/IP
became a de facto standard when it
was included as part o f the official
4.2BSD release in September, 1982.
Prior to this watershed event, the
differences between the two versions
had been significant but not
fundamental. This soon was to
change. Though DARPA continued
to encourage Berkeley to use the
BBN code, splits between the two
implementations became
increasingly evident.

Colonel Robert Baker, R & D
rogram Manager for DARPA's

Distributed Computing Program—
which includes the Berkeley UNIX
networking project—recalled what
happened next: "There were some
things oriented toward local network
performance that were put into the
Berkeley version, and some oriented
toward internetwork performance
that were put into the BBN version.
BBN integrated its version of the
code with 4.2 such that it was
possible for someone who had 4.2 to
replace the Berkeley networking
code in their kernel with the code
from BBN. . . . "

I rr

8 UNIX REVIEW

THE MONTHLY REPORT

As Berkeley UNIX has evolved
over the past two or so years toward
the 4.3 release, both versions of the
TCP/IP code have remained
available. DARPA, though, reached

This is a story of networking,

but the implications affect the

very existence of the Berkeley

Software Distribution of UNIX.

the decision some time ago that it
would allow only one version to be
integrated into 4.3. As Baker
recalled, "We decided that we had
dealt with two versions for long
enough. You know, the situation in
the past has been that a number of

700am
Tom antes eorty to run a compile

at full blast.

people have gotten the distribution
from Berkeley and then have
replaced the networking code with
the code from BBN because it
offered more functionality in the area
of internetwork robustness. Still, we
decided that we didn't want to
continue supporting both versions."

At last June's Usenix meeting in
Portland, Berkeley researchers
announced that 4.3 would be
released officially within two months.
But that was before the networking
controversy came to a head. One
standard TCP/IP implementation
had to be chosen, and the decision
clearly was not going to be easy;
while on the one hand DARPA had
paid several million dollars for the
BBN code and had supported it right
from the start, the Berkeley code
had been run in academic and
commercial use under 4.2 for almost

three years, and—despite DARPA's
assertions—was considered by
many to be superior. More crucial yet
was the fact that patience on all
sides was wearing thin, and the
Berkeley researchers responsible for
BSD itself had intimated that they
would not tolerate the bureaucratic
sojourn much longer.

A compromise of sorts was
reached. "What we did", Baker
recalled, "was send out for beta
testing [last August] with the two
versions of the networking code. . . .
We also had some people [in the
UNIX community] make an
independent evaluation of the two
versions, looking both at
functionality and the software itself.
The conclusion was that the BBN
code offers some functionality that
the Berkeley code doesn't, and that
the reverse is also true. Either

130am
Julie and Dave have the same idea.

- ... -r-fc:

neidea.

-. .

* ' • ; •

1

v 1

1
** 1

\W^:

\ * "

1 -K-

r
I fj^ht

! tk

version could be used as the base
for 4.3 and still provide a
performance advantage over what's
now in 4.2."

Kirk McKusick, a research
computer scientist at Berkeley and
one of the chief developers of 4.3,
lobbied strongly along with his
colleagues for the Berkeley version
of TCP/IP. According to McKusick,
of 35 beta sites testing 4.3BSD, 33
chose to use Berkeley TCP/IP—and
one of the other two was planning to
switch because of repeated system
crashes with the BBN code. Included
among the 4.3 beta test sites
running Berkeley's TCP/IP were a
number of major commercial
vendors who already had begun to
base products on it, and who had
expressed an interest in releasing
those packages.

The DARPA evaluation went on

for a number of months. On
December 18, though—some four
months after the anticipated release
date of 4.3—DARPA sent a formal
letter to Berkeley indicating it had
decided that the 4.3 release should
include Berkeley's version of TCP/
IP. The decision, DARPA said, had
been based both on technical and
political evaluations.

"There's been a much greater
degree of testing and experience
with the Berkeley code", DARPA's
Baker explained. "Of course, it's the
code that's been included in the
past distributions. So, on the basis
of the evaluations we have done, we
decided to use the Berkeley code as
the base for the networking code
distributed in 4.3, and to incorporate
into it whatever additional
functionality we find we need from
the BBN code. . . .

"Actually the Berkeley code in its
current form already has
incorporated a number of things
from the BBN code. That's
happened as part of the process of
putting together 4.3 and running it
through beta testing."

A member of the BBN
development team chose not to
comment on what he called "a long
and involved story". Berkeley
researchers, though, understandably
were pleased—not only because the
Berkeley version of TCP/IP had
been selected, but because the
matter finally had been resolved.
McKusick said the major remaining
hurdle for 4.3 relates to
documentation. In the aftermath of
DARPA's decision, it will be
necessary to comb through some
10,000 pages to ensure that all
TCP/IP references conform. Barring

IsJi^fl^^-^!^^ • • * * • - • • • • - : « .

.*"*.*:.- •*•:'; ^ i f ^ : - ' ^ ^.<?&&•- 'i n «•--:

$00am
c v ^ 3w9ntynx>re users rush to tog on.

MONTHLY REPORT

any unforeseen complications, 4.3 is
expected to be released officially in
February.

New Features

C onsidering what is meant by
the term "new", let's
distinguish between those

things that have been revised from
those that have been created from
scratch. The forthcoming 4.3BSD fits
under the heading "revised".
4.4BSD, however, likely will contain
things that never before have been
released.

In commenting on the general
practice of generating new releases,
McKusick explained that, "We
basically tend to alternate between
making major functional changes
and tune-ups."

"4.0 came out with several

930am
A meeting ends and another

twenty people run for their
terminats.They should hcwe walked.

enhancements—job control, auto-
configuration, and all that—but it
didn't run that fast. It ended up
spending about 20 percent of its
time doing context switching,
whereas VMS, for example, was
spending about 4 percent. . . . But
then 4.1 came out and offered
snappier performance.

"Next was 4.2. We were trying to
put in many new things and we
wanted to do it with the minimal
amount of code. Admittedly, 4.2 ran
about 20 percent slower than 4.1. . .
Many of the internal structures of the
kernel were used much more heavily
in 4.2 than in 4.1, so a facility that
was adequate in 4.1 became less
than adequate in 4.2."

With 4.3, "we started to fix the
things that had turned up. We spent
most of our time analyzing the
system and figuring out where and

why it was slow. That told us what
we needed to tweak."

So what is it that we can expect
of commercial systems bearing a
"4.3" label? The best source of
publicly-available details is a paper
written by McKusick and Mike Karels
of UC Berkeley, and Sam Leffler of
Lucasfilm (late of UCB) for the
Summer '85 Usenix Conference. A
copy is contained in the
conference's proceedings. Those
who seek technical details are
hereby referred to that paper, since
we have space enough here only to
discuss the general distinctions, of
which there are three.

Performance Improvements. This
actually can be broken down into
the two sub-classes of performance
optimization for the general
timesharing environment—changes
to the kernel and changes to the

K>30am
Bob hits RETURN and cleans out
his wallet while he's waiting for

something to happen.

system libraries and utilities. The
changes to the kernel involve—
among other things—name caching,
intelligent auto-siloing, process table
management, scheduling, clock
handling, file system management,
networking, the exec command,
context switching, setjmp and
longjmp calls, and various
compensations for the lagging
compiler technology of the system.
Improvements to libraries and
utilities, meanwhile, have resulted
from work done on hashed
databases, buffered I/O, mail
system software, network servers,
the C runtime library, and the C
shell.

Functional Extensions. As with
the performance improvements
made for the system, functional
extensions have been divided into
extensions to a) the kernel and b)

libraries and utilities. On the kernel
level, as McKusick et al. stated in the
Usenix paper, "A significant effort
went into improving the networking
part of the kernel. The work
consisted of fixing bugs, tuning the
algorithms, and revamping the lowest
levels of the system to better handle
heterogeneous network topologies."
With regard to extensions to libraries
and utilities, the developers wrote,
"Most of the changes to the utilities
and libraries have been made to
allow them to handle a more general
set of problems, or to handle the
same set of problems more quickly."

Tightened Security. Certain
changes also were made to both the
kernel and the system's utilities in
order to enhance security. These
changes have been discussed in
modest detail elsewhere, but as the
Usenix paper noted, "Since we do

not wish to encourage rampant
system cracking", we prefer not to
make the details public here.

Insights with Foresight

C arter George mentions in
this month's feature article
on communications

futuristics that one does well when
discussing the future to avoid
sounding like Jeanne Dixon. There
are, however, certain trends in
computing that lend themselves to
extrapolation, and Berkeley UNIX
not only relates to many of these
trends, but often helps to shape
them. BSD UNIX developer
McKusick holds a seasoned
perspective on what may lie on the
other side of the horizon, and is in a
position to influence decisions at
Berkeley. Hence, we asked him to

HOOam
Witti response time this slow,

everyone may as wen go to lunch.

TOO MANY USERS
CAN SLOW THINGS DOWN

TOATRICKLE
Most UNDHwsed computers

can really pour it on. When you're
the only one togged in.

But as soon as the rest of the
gang shows up, all mat perform
ance goes right ckjwn me drain.

Theirs when you need The
Practical ParaUeT from Sequent.

., Because it's a true parallel com
puter, The Practical Parallel gives
you more consistent response
man any single-processor sys
tem At 8 MIPs, It has enough
performance to keep over a

' ihundred users running full blast.
But unlike other 8-M1P comput-

] er$, you a»n pet airs without get-
\ fing soaked Our systems start at

wel under a hundred grand.
Our ptee/perfbrmonce is four

Times better than a W 8600
and two times better than a

Pyramid 98X And ifs a fraction
of the cost of getting everybody
a workstation.

Naturally, it supports UNIX 4.2,
System V, PC networking, and a
flood of other options. Best of alt
you can add processors quickly,
inexpensively, and easily as your
needs grow.

If you don't want bad response
time to hang you out to dry, call
us at 800/854-0428. Or write
to Sequent 15450 S.W.Koll
Parkway, Beaverton, Oregon
97006-6063 and ask about
The Practical Parallel.

I fs the system that never runs
hot and cold.

Tire Practical PoraHeT
See Us at UniFbrum booth *1562.

1t» faciMftKtt tuiaderaafka^

Circle No. B on inquiry Card

I T H E MONTHLY REPORT

expound on what he sees in BSD's
future:

Remote File Systems. "There are
three major directions in which we
are going", McKusick noted. "The

'Most of the changes have been

made to allow utilities and

libraries to handle a more

general set of problems."

first is remote file systems—
something akin to Sun's NFS. Many
of these systems have been done,
and there is this continuum: the
developer either can get them to run
really fast with terrible semantics, or
can get them semantically correct—

which, for example, AT&T's Remote
File System does—but suffer with
abysmal throughput (like 20 or 30
KB per second) We're not
willing to take that kind of
throughput just because it's remote,
so we might be willing to whittle
away at some of the UNIX
semantics. It's not exactly clear yet
what that's going to mean, but we'll
try to restrict our changes to things
on which we don't think a lot of
programs depend."

Virtual memory. "The second
thing we're looking at is virtual
memory", McKusick explained. "We
basically feel that the next iteration
of virtual memory needs to address a
whole different set of concerns,
which can be summarized by
observing that memory is getting
cheap and large very quickly
Therefore, what we want to do with

physical memory is significantly
different than what we've done in the
past.

"Our question basically becomes:
how do you design a Virtual
memory' system, given that you
have lots of memory? We'll try to
come up with a design that
accomplishes that. At the same time
we're going to throw in various
things that come along for f r e e -
things like copy-on-write, lightweight
processes, and shared memory."

When asked if Berkeley would
include a shared memory design
similar to the one included in System
V, McKusick responded, "It
depends: if we choose to implement
it in the way AT&T has done in
System V, then we can make it easy
for people to pick up. If we don't, it
will be less easy. Whenever AT&T
has defined a facility before we do,

^ ? : ^ e

A powerful/terminol-
•„.>.-' independent application

: deyelppme||J.systern, Reliant helps you
help yourself. You develop and install new

^applications easily and in a fractionjof the time -
that would be needed without Reliant, Refibnt also makes

you Je?s dependent oh ^pensive application programmers. ;

Reliant consists of four distinct but interrelated parts: a Data Definition
System to rapidly define data to be entered; a General Data Entry Layer
to enter revise and delete data without error; a Report Generator to
quickly specify the data to be retrieved and in what form; and a
Document Generator to create the form of data presentation.

^ v • v 'Tv^ Best pf all, because

yduget UPDATES FREE, 1ofJM{ V̂ : C" ..J^;X\.-,:it-f2^^-,
Jo try Reliant Jiv your own^ironm^nt ; Send us a $100.00 handling fee. VVeli rush you
the latest^driubls and software to try for 30 days! X y o u agfe^Jlt^dlly is the $)swer
j o . ^ yv£ll credit the $100.00.to ifi^purchase pride.

Qfjtourse,th!$ best of software is* worthless J you dohl have the
I • i i 91 • iwm 11^ fi» A iX» If »; 9JICl*Anid9Iiim*\9]kfA~f+WtltZim9]i9]9iL~iiiH

3^!'M'^^ifyli^S9^Pu^^^^ the best power/performance raMa\the ^ cV^^" : ,,-\j
7 ^ $ from a variety of components fb v::'^f^ZV::-'X^ \
**ijtomcohfigure your system, LI k . w .' .•;'. S^r L^VV, \u\^'^i^i^'--:,;'-

X^ibfind piit to*'^ / ;U^x ̂ registered frdafroark qf;AT&f ̂ i Laboratories , r : ^ ^ ^
^£J5^ystr(̂ ^n(t.\ft|1l s|rfej jlplpiir.'foiled cof9l6g.-_• -•".•--'"v-̂ /.;:!."-..-Miigof.%"curreYitly <ftwj$g|or OeciyiiiC^-ll, l̂ r̂â §̂ jjtiprVŝ cĵ n̂wcroiysTenrts-

Circle No. 9 on Inquiry Card

14 UNIX REVIEW

we have tried to implement a
compatible interface or a broader
set of primitives from which the
interface-could be built. We deviate
from this policy only when we feel
that there is a significant technical
advantage to an incompatible
design."

Stackable Line Disciplines. This is
a third likely area for future Berkeley
UNIX development. "System V calls
it streams", McKusick explained.
Does this mean that Berkeley is
planning to adopt AT&T's streams
technology? Conceptually, perhaps,
but literally. . .no. McKusick
elaborated: "There are two parts to
it—the mechanism and the content.
The mechanism is the ability to plug
these things together; the content is
what one puts inside the things that
are plugged together. Streams—or
stackable line disciplines—provides

this connecting ability but says
nothing about what's inside. AT&T
—as far as I can tell— [has it
structured so that] the pieces will go
together just like railroad cars—you
can connect them together, but what
you load inside can differ from
boxcar to boxcar. The things that we
will provide inside the boxcars will be
based on what we currently have in
BSD, while AT&T will load in things
based on its view of how networking
should be. AT&T's base primitives
for networking are virtual circuits,
whereas ours are datagrams."

Would there then be compatibility
between the Berkeley and AT & T
disciplines? "One should be
able to pick boxes up out of System
V and with a very small amount of
work put them into a Berkeley
system, and vice versa. Whether one
would want to do that is another

matter.
The next BSD release, then, may

well develop just in the way that its
4.2 forebear did. It probably will
offer major functional enhancements
over its immediate predecessor, but
only at the expense of performance.
McKusick acknowledged that, "In
4.3, we strove to provide binary
compatibility with 4.2, so that one
would be able to take a 4.2 binary
and run it easily on 4.3. But in 4.4,
one will—at a minimum—need to
recompile certain programs. It may
even be necessary to make textual
changes in a small number of them.
The system will offer vast new
functionality, but it undoubtedly will
have a performance drop. That
always happens."

David Chandler is the Associate
Editor of UNIX REVIEW.

UNIX
SYSTEMS
UTILITY
SOFTWARE
- S O YOU
CAN GET
ON WITH
YOUR JOB.
For more information,
call or write.
(703)734-9844

UBACKUP
BACKUP. RESTORE, AND MEDIA MANAGEMENT

USECURE
SYSTEM SECURITY MANAGEMENT

SPR
PRINT SPOOLING AND BATCH JOB SCHEDULING

SSL
FULL-SCREEN APPLICATION DEVELOPMENT

S-TELEX
TELEX COMMUNICATIONS MANAGEMENT

SSE
FULL-SCREEN TEXT EDITOR

These products are available for most UNIX or UNIX-derivative operating
systems, including System V. 4.2 BSD. 4.1 BSD, Xenix. Version 7. System III
Uniplus. and others.

UNIX is a trademark of AT&T Bell Laboratories

LNITECH Visit us at UniForum Booth No. 1151
8 3 3 0 O L D C O U R T H O U S J E R D S U I T E 8 0 0 V I E N N A . V I R G I N I A

Circle No. 10 on Inquiry Card

JANUARY 1986 15

