
y

@ Bell Laboratories Cover Sheet for Technical Memorandum |

| The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)
J Sd aptagagme LL Sameday A a i —— pp———

Title- Struct - | Date- December 22, 1975

A Program which Structures Fortran
T™™- 75-1271-12

Other Keywords-
Structured Programming
Ratfor

ABSTRACT Toe

Fortran programs are often difficult to read because Fortran lacks good
constructs for describing flow of control. Programs with many goto statements
are sometimes incomprehensible. Struct is a program which rewrites Fortran
programs using Ratfor control constructs, such as while and if else statements.
These constructs are used by Struct to make loops and branching apparent.

The resulting programs appear natural to the reader because Struct follows
| structuring principles based on normal programming practices. Consequently,

the structured programs generated by Struct are dramatically easier to under-
stand than their Fortran counterparts.

Since the structured programs are easier 10 understand, they are easier 10
modify and debug. Therefore, Struct is a useful tool for the maintenance of
existing Fortran programs. New programs can be written in Ratfor, while old
programs can be translated into Ratfor. Thus, all programs can be maintained
in the same structured language. |

oh | Struct is written in C and currently runs on the PDP-11/45 under UNIX.

lda—————————,

| |
Pages Text 10 Other 3 Total 13 TM=75=1274-12

No. Figures 0 No. Tables 0 No. Refs. 20
MC ILROY,M DOUGLAS cM

E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION List MH2C526 81/12/75
AUTHOR NAMED ORGANIZATION

December 22, 1975

Bell Laboratories

Subject: Struct - A Program which Structures Fortran date: December 22, 1975
Case- 39199 -- File- 39199-11 Wi

iy from: B. S. Baker

™: 75-1271-12

-_ MEMORANDUM FOR FILE

1. Introduction

Structured programming emphasizes the use of programming language constructs such as
while loops and if else statements, which enable flow of control to be specified clearly. Unfor-

- tunately, Fortran lacks these constructs. Yet, Fortran is still heavily used today, for reasons
which include efficiency of object code and ease of portability. This paper describes Struct, a
program which rewrites Fortran programs in terms of these constructs. The output programs
satisfy certain principles of good structuring chosen to ensure that the programs appear natural
to the human reader.

Struct is an implementation of the structuring algorithm described in [BAK]. The algo-
rithm itself is not restricted to Fortran as its input language or lo any particular output
language. It requires only that the flow of control of the input programs be describable by a
static flow graph and that all input language statements occur in the output language.

The constructs implemented in Struct include whiie loops, repeat (i.e. do forever) loops,
if, if else, next (which causes a jump to the next iteration of the smallest enclosing loop), and
break (which causes a jump to the statement following the smallest enclosing loop). The form
of the constructs implemented in Struct is based on the Fortran preprocessor language Ratfor
[KER].

Struct improves the readability of Fortran programs, often dramatically. Since the struc-
tured programs are easier to understand, they are easier to modify, extend, and debug than the
original Fortran. Therefore, Struct provides a useful tool for the maintenance of existing For-
tran programs. By applying Struct to existing Fortran programs, and writing new programs in
Ratfor, all programs may be maintained in the same structured language.

2. Previous approaches to structuring programs

The main goal of Struct is to rewrite existing Fortran programs 0 make them more read-
able. Previous approaches to structuring programs have generally concentrated on eliminating
goto statements, since "structured programming" is often equated with "programming without
goto statements." However, the known ways of eliminating all goto statements can cause pro-

- grams to become less readable [KN].
One way of eliminating goto statements is to add extra variables [AM,BJ,BS,COO,KOS].

The extra variables are used to record information about which statements were executed pre-
viously, and the variables are tested to decide what to execule nexL. Unfortunately, artificial
variable names have little mnemonic value and may be confusing when assignments (0 them
are mingled with the main computation of the program. |

|

i———-—————— a i ———— TR NT I or ui ——

“3.

Another method of eliminating goto statements is to modify the program so that goto
statements may be replaced by other kinds of statements [KOS,PKT]. For example, a break(i)

statement may be available to cause a jump to the statement following the i smallest loops en-
closing the break(i) statement. By creating dummy loops (i.e. loops where no iteration occurs),
the goto statements can be replaced by break(i) statements. This method makes it difficult to ;
determine where looping really occurs in the program, and it only disguises the goto statements
as break statements in any case. 3

Another method of avoiding goto statements is to copy code which can be reached from
several places [AM,BJ,BS,COO,KOS,PKT]. This technique may cause programs to become un-
duly long, and makes it difficult to observe the identity of the copied statements. An alterna-
tive to copying code is to create subroutines out of code segments which can be reached from
several places. However, the code segments would not necessarily be semantic entities which
deserved to be called subroutines. |

Each of the above techniques may be appropriate for some programs. Rather than make a

value judgment for each program, Struct does not apply these techniques. Instead, Struct ap-
plies structuring principles based on normal programming practice to ensure that the resulting
programs appear natural to the reader.

~ Another approach to structuring Fortran has been taken by de Balbine [BAL74,BAL75].
Like Struct, his "structuring engine" attempts to produce structured programs acceptable (0 hu-
man readers. The "structuring engine" does not create extra variables but sometimes creates

subroutines or copies code to guarantee that each block of code has a single entry and single
exit. The "structuring engine" is proprietary and no explicit description of the structuring prin-
ciples or algorithm has been published.

3. Fortran and Ratfor control constructs

Struct accepts a large dialect of Fortran which includes American National Standard For-
tran [ANS66, ANS69, ANS71]. It assumes that its input is a syntactically valid Fortran rou-
tine. It does not check the program for errors, except for those which make the flow of con-

trol impossible to determine, such as a goto to a non-existent statement label. It looks for la-
beled statements and for the following statements which contain labels or affect flow of con-
trol (braces enclose optional strings, /abel* denotes a list of labels, and ... denotes omitted parts
of statements):

assign /abel to ...
continue

do /abel ... = ...

end Sie.

entry ...
format (...)

... function ...

goto (/abel™), ... "computed goto"
goto ..., (/abel™) "assigned goto"
goto label
if (...) label, label, label "arithmetic if"

if (...) statement "logical if" =

print /abel {,...)
punch /abel La)
read (...{,/abel}{,opt1}{,0pt2}) ...

where opt! and opi2 are end=/abel or err=/abel
return<

stop :

« 3

subroutine ...

write (...{,/abel}{ err=label}) ... y |

: Any statement not recognized as one of the above is treated as straight line code, since it does
not affect the structuring process.

Struct rewrites Fortran programs using the following additional Ratfor constructs, where
S, S1, and S2 are Ratfor statements and p is a Fortran logical expression:

1) if(@S :

Fortran equivalent:]

if (.not.p) goto 10
S ‘

10...

2) if (p) S1 else S2

Fortran equivalent:

if (.not.p) goto 10
Si

goto 20
10 S2

20 ...

3) while(p) S

Fortran equivalent: :

10 if (.not.p) goto 20
S

goto 10
20 uu

4) repeat S

Fortran equivalent:

10 S-

. goto 10

5) do control-sequence S

Fortran equivalent:

oy -

do 10 control-sequence

S |

10 continue

6) break

meaning: go to the statement following the smallest enclosing loop,

7) next a
meaning: goto lo the next iteration of the smallest enclosing loop (to the predicate in a
while loop)

8) braces {} may be used to group multiple Ratfor statements into single Ratfor statements.

Struct applies structuring principles to rewrite a Fortran input program using these Ratfor Bh

constructs.

4. Struct and principles of proper structuring

Proper use of control constructs such as while loops and if else statements should make

the flow of control of a program evident from its form. The following eight principles are fol-
lowed by Struct in order to produce structured programs with clear flow of control.

Principle 1.

Unreachable statements in a Fortran program are deleted during structuring. Structuring

preserves the number of occurrences of reachable predicates and segments of straight
line code. Their execution order is also preserved to ensure that the structured program

is equivalent to the orginal program. No new predicates or straight line code are added.

Principle 2.

Looping constructs reflect iteration in the program. Each statement enclosed by a loop-
ing construct such as while or repeat is reachable from the head of the loop and can lead
to an iteration of the loop. ¢

For example, Struct generates

repeat {
n = f(n)

if (n > 0) break

code segment
return

rather than

rT a — | _ re reerersee er rete ermemmmrrg Sassi ini

< Sw

repeat {
n = f(n) ;
if (m > 0) { ?

code segment 3
return |

}
} 3

since the latter code violates Principle 2. In this example, this principle prevents the whole
program from appearing inside the repeat when only two statements are iterated.

Principle 3.

Loops are created only by means of while or repeat. Each goto statement must jump to a
statement after it on the page, so that the target of the goto is easy to locate.

Principle 4.

A goto may not jump into a then or else clause except from outside a loop containing the
clause (see Principle 6 below).

Principle J.

A then or else clause must contain as much code as it can without violating Principle 2 or

Principle 4.

For example, consider the following code segment.

if (p)
j= f(i)

else

i=]

Placing the statement i = j inside either the then or else clause would require a goto into the
clause. Therefore, this code segment must be written as is to obey Principle 3.

Principle 6.

When a loop is entered in several places, one entry point is selected as the "head" of the
loop, and the inside of the loop is structured as if the loop were entered only at its head.
The other entry points are then reached by goto statements from outside the loop.

It has been shown that jumps into the middle of loops cannot always be avoided without copy-
ing code [HU72]. Principle 6 prevents a jump into a loop from destroying the structure of the
inside of the loop. For example, consider the following code segment.

-6 -

if (p) goto 10

while(q) { . |
, if (r)

while(s) { Yad re
10 j=j+l

} "
i=i+l :

.

This example contains a jump into an inner loop, and obeys Principle 6. The while statements
are structured as they would be if both the true and false branches of the if (p) went to the
outer while. As a result, the code contains a jump into the if (r) statement from outside the

outer while (see Principle 4). However, the flow of control within the while (q) is clear, and
the jump into the inner loop is obvious.

Principle 7.

Every loop construct may be entered at its head, and not just through labeled statements
in its body.

Principle 8.

Each statement or predicate may be the head of at most one loop, i.e. the first statement
inside a repeat statement cannot be another loop construct.

This principle is motivated by the desire to avoid unnecessary complexity in the output. for
example, the following code segment violates Principle 8.

repeat {
repeat {

x = f(x)

if (p) break
}

if (q) break
}

This segment may be rewritten with only one repeat to satisfy Principle 8.

repeat {
x = f(x)

if (p)
if (q) break

}

Every well-formed Fortran program (i.e. with no loops containing only goto and continue
statements) has at least one corresponding structured program which satisfies these principles.

Mdreover, if each loop can be entered only at its head, the organization of the structured pro-
gram into loops and if else statements iS unique (a more precise version of this statement is

Gi

-

proved in [BAK]). Given a well-formed Fortran program, Struct applies a structuring algorithm
based on the above principles to produce a structured program. The algorithm is described
briefly in the next section. Struct treats specific Fortran constructs as follows.

cl Struct transforms all logical and arithmetic if statements into statements of the form if (p)
S or if (p) S1 else S2. Predicates are negated when necessary to achieve the if (p) S form.
Fortran do loops are retained as do loops. Other loops identified according to the structuring
principles are turned into either while loops or repeat loops according to the following criterion.
If a loop begins with a test, and one branch of the‘test exits from the loop, Struct generates a
while loop. Otherwise, it generates a repeat loop.)

Labels occurring in the original program are discarded. New labels are generated as need-
ed, in increasing order on the page to make them easy to locate. |

| ~ Struct assumes that each comment applies to the line of code following the comment.
Comments occurring before a goto or continue statement are deleted, because goto and contin-
ue statements are not preserved in the output program. Other comments are kept with the fol-
lowing code. Format statements are placed at the end of the routine.

Two statements in Fortran which make control flow difficult to follow are the assigned
goto and the computed goto. Other peculiar forms of goto in Fortran are the err= and end=
conditions on read and write statements. These statements are left unchanged except for the
substitution of new labels for the original labels.

Struct indents its output to make the scope and nesting of loops and then or else clauses
evident. Struct also replaces Hollerith strings (e.g. Shhello) by quoted strings (e.g."hello"), and
comparison operators (e.g. .gt.) by symbols (e.g. >). It applies certain logical identities (e.g.
.not.(c.le.b) is changed to ¢ > b). These cosmetic changes improve the readability of the pro-
grams.

The Appendix contains an example of a Fortran program and the structured program
generated from it by Struct.

5. The algorithm

This secticn describes the basic ideas of the structuring algorithm. A full description of
the algorithm is given in [BAK].

The first step in analyzing a Fortran program is (0 obtain a flow graph for the program.
Nodes in a flow graph correspond to statements and if predicates, while arcs indicate flow of
control between statements and predicates. The node corresponding to the first statement in
the program is distinguished as the "start" node of the graph.

re A loop in a program corresponds to a cycle in the flow graph, i.e. a path which begins and
ends at the same node. A node at which the loop may be entered from outside the loop is re-
ferred to as an entry point. One entry point of each cycle may be located by means of a depth
first search [HU74] starting at the start node of the graph. A depth first search scans the graph
by searching arcs from the most recently searched node before arcs from previously searched
nodes. The entry point selected by the depth first search becomes the "head" of the loop when
the program is written out.

In the structured program a statement should not appear inside a loop unless it can lead
gre to an iteration of the loop. Therefore, for each node, Struct finds the smallest loop in which

the node can lead to an iteration, and uses this information to determine what should be writ-
ten inside each loop. A statement is made to follow any non-enclosing loops from which it can
be reached, so that if goto’s are needed they will flow downward on the page.

The next step in the analysis is to decide what statements should be written in the then
“or else clauses of each if statement. Consider the following fragment of code.

a

if (x.gt.0) goto 10

5 y= -X :
goto 20 x

10 y=x E
20 z= sqri(y) |

One might like this. fragment to be rewritten as :

if (x > 0)

Y=X

else

y=-X

z = sqri(y)

In order to produce the above structuring, it must be ascertained that no other statements

jump to § or 10, and that control passes to 20 from both 5 and 10. That is, statements must be

classified according to whether they can be reached only from the "true" ("false") arc of an if
node, or whether they can be reached from both the "true" and "false" arcs.

This information can be obtained by applying techniques usually used in code optimiza-

tion. A node b dominates node c if every path from the start node to node c¢ passes through
node b [AU]. Node b is the immediate dominator of node ¢ if node b is the closest dominator

to ¢ in the flow graph. Dominators are used in structuring a program as follows. If a statement
can be reached through both the "true" and "false" links of an if node, the statement is made
to follow the if statement which is its immediate dominator. This ensures that any goto’s to

this node flow downward on the page.

At this point, the basic form of the structured program is determined. Next, Struct deter-
mines how each arc in the flowgraph should be written - as a next, break, goto, or with no ex-

plicit statement. Finally, labels are added where necessary.

6. Implementation of Struct

Struct is written in the programming language C. It consists of about 3000 lines of code,
and runs on a PDP-11/45 with 32K 16-bit words of memory. The space and time used are pro-

portional to the square of the length of the input. With 32K words of memory, it is able to |
structure Fortran programs several hundred lines in length.

7. Evaluation of Struct

The readability of most Fortran programs is improved by Struct, often dramatically. The

structured programs usually appear quite natural to the reader. In fact, if a typical Ratfor pro-
gram is translated into Fortran by the Ratfor preprocessor, and Struct is applied to the resulting
program, the output from Struct is usually very similar to the original Ratfor program, except
where the original Ratfor program contains Ratfor control structures not implemented in Struct
(such as for and until statements). If each loop can be entered only at its head and the origi-
nal Ratfor program follows the structuring principles, the structured program generated by
Struct is guaranteed to have the same basic form as the original [BAK].

Struct makes the structure of Fortran programs clear, but does not improve the structure

of, badly-written programs. However, the structure of a Fortran program may be reasonable
even when the program looks like a tangled mess of gote’s; in such a case, Struct untangles the

STALRON 10 SOE JOE. TORReS. RNCR So ee -Sal A

ww

program to produce a nice Ratfor program. When the structure of the Fortran program is not
good, peculiar flow of control stands out in,the Ratfor version and may indicate sections of the

: program which could be improved by rewriting.

oii The structured version of a well-written Fortran program generally has few goto state-
ments. Many of the goto statements which do occur could be replaced by multi-level break
statements or multi-level next statements if these statements were implemented in Struct.

Since all goto statements generated by Struct flow downward on the page, and labels increase
from top to bottom of the page, it is not difficult to determine the target of goto statements.

The structured versions of Fortran programs frequently contain many repeat statements

rather than while statements. The reason is that Fortran programmers frequently place tests

for exit conditions in the middle or at the end of the loop rather than at the beginning.

Certain types of control flow do not become substantially clearer as a result of structuring.

A goto statement must be used to enter a loop at a point other than the topof the loop. Ratfor
does not have a control construct capable of describing complex ways of merging flow of con-

trol. For example, the following code segment cannot be written in a nicer way using the same
number of occurrences of the predicates and assignments.

if (p1) { |
if (p2) goto 20
}

else if (p3)
goto 20

10 i=1

goto 30
20 i=2

30 y=f(i)

In some cases, copying code or creating subroutines would improve the Ratfor output from
Struct. In other cases, improvement would be obtained only by modifying the actual code exe-
cuted.

Struct is not capable of making semantic decisions. It is not able to identify commonly
occurring code sequences such as

J=1

if (p)j=2

in order to replace them by code such as the following.

ie if(pj=2
else j=1

= 10 =

To do this, Struct would need to examine the semantics of the statements. Similarly, succes-

sive tests such as those occurring in :

if (p) goto 10
if (q) goto 10 .

are not replaced by a combined test such as if (p.or.q) since Struct cannot determine whether it
is safe to evaluate q when p is true (in general this is undecidable). The tests could be com-
bined if Ratfor specified evaluation of logical expressions from left to right.

The structuring algorithm used by Struct is not limited to producing the control con-
structs currently implemented. Other constructs could be added easily. The usefulness of pro-
posed new control structures could be tested by using Struct to demonstrate their application in

existing programs. Different ways of writing the same program could be compared by adding
options to select the control constructs to be generated. In fact, Struct has been used for some
experimentation of this sort.

‘8. Using Struct.

Struct is implemented on UNIX. The command format is

struct [-s] [-in] [en] [-v] [-en]file

where n 1S a nonnegative integer. The Fortran program specified by file is translated into a

structured program, written on the standard output. The optional flags may appear in any ord-
er and are interpreted as follows:

-s If this flag is set, input is expected to be in standard Fortran card format, i.e. comments

are specified by a c, C, or * in column 1, and continuation lines are specified by a
nonzero, nonblank character in column 6. If the flag is not present, input is expected to

be in free format, i.e. comments are specified bya ¢, C, or * in column 1, and continua-
tion lines are specified by an & as the first nonblank character on the line.

-in ~~ Make the nonzero integer # the lowest valued label in the output program. If the flag is
not present, the default value is 10.

-cn Increment successive labels in the output program by the nonzero integer n. If the flag is
not present, the aefault value is 10. |

-v If this flag is set, the then and else parts of if else statements are interchanged and the
predicate is negated.

-en If n is 0, code appears in a loop only if it can lead to an iteration of the loop (Principle 2).
If nis greater than zero, Struct modifies Principle 2 by allowing certain segments of code
to appear within a loop even when they do not lead to an iteration of the loop. The cri-
teria are that the segment must be one of several exits from the iterating code of the
loop, must be reachable directly from only one other statement, and must be "small

enough”. "Small enough" means that the current estimate of the number of statements in

the segment must be at most # (when this flag is used by Struct, the precise number of
statements to be used for the segment hasn’t been determined). Values of n under 10
are suggested. If this flag is not present, the default value is 0.

_ MH-1271-B.S.R. B. S. Baker

Att.

References

Appendlx

oo ari | - 11 _

., References

[AU] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and Compiling, Vol. II
7 - Compiling, Prentice-Hall, Englewood Cliffs, N.J., 1973.

[ANS66] American National Standard Fortran, American National Standards Institute, New,
York, N.Y., 1966. .

[ANS69] Clarifications of Fortran Standards - Initial Progress, Comm. ACM 12 (1969), 289-
294.

[ANS71] Clarifications of Fortran Standards - Second Report, Comm. ACM 14 (1971), 628-642.

[AM] E. Ashcroft and Z. Manna, Translating program schemas to while-schemas, SIAM J.

Comput. 4,2 (1975), 125-146

[BAK] B. S. Baker, An algorithm for structuring programs, to be presented at the ACM
Symposium on Principles of Programming Languages, January, 1976.

[BAL74] G. de Balbine, Better man power utilization using automatic restructuring, Caine,
Farber & Gordon, Inc., 1974.

~ [BAL75] G. de Balbine, Using the Fortran structuring engine, Proc. of Comp. Sci. and Stai.: 8th
Ann. Symp. on the Interface, Los Angeles (1975), 297-305.

[BJ] C. Bohm and G. Jacopini, Flow diagrams, Turing machines and languages with only
two formation rules, Comm. ACM 9 (1966), 366-371.

[BS] J. Bruno and K. Steiglitz, The expression of algorithms by charts, JACM 19 (1972),
517-525.

[COO] D. C. Cooper, Bohm and Jacopini’s reduction of flow charts, Comm. ACM 10
(1967),463.

[DDH] O.-]. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, New York, 1972.

[D1J] E. W. Dijkstra, Goto statement considered. harmful, Comm. ACM 11 (1968), 147-148.

[HU74] M.S. Hecht and J. D. Ullman, Characterizations of reducible flowgraphs, JACM 21,3
(1974), 367-375.

[HU72] M.S. Hecht and J. D. Ullman, Flow graph reducibility, SIAM J. Comput. 1 (1972),
188-202.

[KER] B.W. Kernighan, Ratfor - a preprocessor for a rational Fortran, Software Practice and
Experience 5,4 (1975), 395-406.

[KF] D. E. Knuth and R. W. Floyd, Notes on avoiding "go to" statements, /nfor. Proc.
Letters 1 (1971), 23-31.

[KN] D.E. Knuth, Structured programming with goto statements, ACM Comp. Surveys 6,4
(1974), 261-302.

[KOS] S. R. Kosaraju, Analysis of structured programs, J. Comp. Sys. Sci. 9,3 (1974), 232-
254.

[PKT] W. W. Peterson, T. Kasami, and N. Tokura, On the capabilities of while, repeat and
= exit statements, Comm. ACM 16 (1973), 503-512.

#1 - 12 =

Appendix

A Fortran subroutine (from R. C. Singleton, ‘Algorithm 347, an efficient algorithm for sorting
with minimal storage, Comm. ACM 12,3 (1969), p. 186):

subroutine sort(a,ii,}j) 70 m=m-1
¢ sorts array a into increasing order 1 if(m.eq. 0) return
c¢ from a(ii) to a(jj) i=il(m)

dimension a(1),iu(16),i1(16) j=iu(m)
integer a,t,tt 80 if (j-i .ge. 11) goto 10
m=1 if (i .eq. ii) goto 5
i= ii i=i-1
i=1i 90 i=i+l |

5 if (i..ge.j) goto 70 if (i .eq. j) goto 70
10 k=i t = a(i+1)

ij =-(+i)/2 if (a(i) .le. t) goto 90
t = a(ij) k=i
if (a(i) .le. t) goto 20 100 ak+1) = ak)
a(ij) = a(i) k = k-1
a(i) = t if (t .1t. a(k)) goto 100
t=a(ij) ak+1)=t

20 I= goto 90
if (a(j) .ge. t) goto 40 end
a(ij) = a(j)
a(j) = t
t = a(ij)
if (a(i) .le. t) goto 40

a(ij) = a(i)

a(i) = t
t = a(ij)

goto 40
30 a) = ak)

a(k) = tt

40 1=11

if (a(l) .gt. t) goto 40
tt = a(l)

50 k=k+1

if (a(k) .1t. t) goto S50

if (k .le. D) goto 30

if (1-i .le. j-k) goto 60
il(m) =i

iu(m) = |

m=m+1 |

goto 80

60 illm)=Kk

iu(m)=j

; =i
m=m+1

goto 80

The preceding program as structured by Struct:

subroutine sort(a,ii,jj) | if (I-i<=j-k)
sorts array a into increasing order 3 {ilm) = k

© # from a(ii) to a(jj) iu(m) = j
dimension a(1),iu(16),il(16) | j=1
integer a,t,tt i m = m+1
m=1 \ }
i=ii else

i=l lil(m) = i
repeat | fulm) =1

(lif (i<j) i=Kk

go to 10 m = m+1 .
repeat }
(m= m-1 }
if (m==0) if (i==ii)

return break
i= il(m) i=i-1

j = iu(m) repeat

while (j-i>=11) (i = i+1
| { if (i==j)

10 k=i break

ij = (+i)/2 t = a(i+1)

t = a(ij) if (a(i)>1)
if (a(i)>1) k=i

{a(ij) = a(}) repeat
a(i) = t {a(k+1) = a(k)
t = a(ij) k = k-1
} if (t>=a(k))

1 =j break

if (a@)<t) |
{a(ij) = a()) a(k+1) = t
a(j) = t }
t = a(ij) }
if (a(i)>1) }

(a(ij) = a(i) }
a(i) = t return

t = aij) end |
} ~

}

repeat

1=11
if (a(l)<=t)

{tt = a(l)
repeat

{k = k+1
if (a(k)>=t) ~

| break
if (k>1)

break

" a(l) = a(k)
a(k) = tt | |
| |

|

es cee eee eeeeee eee — i ia—— pn LIC SS SE : A = a a

