
The tikz-nfold package

Jonathan Schulz

July 2023

Abstract

This package provides an alternative to TikZ’ /tikz/double option, avoiding
some shortcomings of the original approach. Further features include options to
draw triple, quadruple, and n-fold paths as well as macros to offset arbitrary paths.

Compatibility

This package has been tested with pdflatex, lualatex, xelatex, and plain pdftex.

1 Quick start

Add

\usetikzlibrary{nfold}

to your preamble. Now you can add /tikz/nfold to any path that uses /tikz/double.
Be sure to specify /tikz/double distance before /tikz/nfold, as otherwise the latter
will not be applied.

double:

nfold:

\begin{tikzpicture}

\draw[double distance=3pt]

(0,2) to[out=0, in=180] (3,3);

\draw[double distance=3pt, nfold]

(0,0) to[out=0, in=180] (3,1);

\node[right] at (0,3) {double:};

\node[right] at (0,1) {nfold:};

\end{tikzpicture}

While it appears that adding nfold does not do much here, it avoids some rendering issues
of /tikz/double, hence I recommend using it in most cases (see Section 2 for details).
Specify a number for n-fold lines:

\begin{tikzpicture}

\draw[double distance=7pt, nfold=5]

(0,0) to[out=0, in=180] (3,1) -- (3,0);

\end{tikzpicture}

All arrow tips are supported, and there is special treatment for the Implies tip:

1

\begin{tikzpicture}

\draw[double distance=7pt, nfold=5,

arrows={Bar[width=18pt]-Implies[red]}]

(0,1.5) to[bend left] (3,1.5);

\draw[double distance=7pt, nfold=5, arrows=Implies-Implies]

(0,0) to[bend left] (3,0);

\end{tikzpicture}

Use /tikz/scaling nfold to preserve the distance between component lines instead of
the overall width of the arrow:

\begin{tikzpicture}

\draw[double equal sign distance, nfold,

arrows=-Implies] (0,.75) -- (3,.75);

\draw[double equal sign distance, scaling nfold=4,

arrows=-Implies] (0,0) -- (3,0);

\draw[double equal sign distance, scaling nfold=6,

arrows=-Implies] (0,-1) -- (3,-1);

\end{tikzpicture}

Different line joins are supported:

\begin{tikzpicture}[line join=bevel]

\draw[line join=miter, double distance=7pt, nfold=4]

(0,2) -- (1, 2) -- (1,2.5);

\draw[double distance=7pt, nfold=4]

(0,1) -- (1, 1) -- (1,1.5);

\draw[line join=round, double distance=7pt, nfold=4]

(0,0) -- (1, 0) -- (1,.5);

\end{tikzpicture}

There is also support for tikz-cd with custom label positions for scaling nfold:

a b

c d

αβ

γ

\begin{tikzcd}

a \ar[r, Mapsto, bend left, scaling nfold=3] &

b \ar[d, Rightarrow, nfold, "\alpha", "\beta"’] \\

c \ar[r, Mapsfrom, scaling nfold=4, "\gamma" near end] &

d

\end{tikzcd}

2 Comparison to /tikz/double

This package does not aim to supersede /tikz/double, as both the original and the
nfold approach have their own strengths and weaknesses. The main difference is that
/tikz/double achieves its goal by drawing the original path twice, once very thick with
the foreground colour and then slightly less thick with the background colour. By contrast,
nfold offsets the path:

/tikz/double: + =

/tikz/nfold: + =

(1)

2

While the approach of /tikz/double is very robust and efficient, it does have a few
pitfalls:

• Different types of visual glitches can occur in PDF renderers:

– One common issue is that the white foreground piece completely covers the
black background piece at certain zoom levels, leading to the top or bottom
part of the doubled path missing (depending on your PDF viewer and zoom
level, this issue might be visible in Eq. (1)).

– Another common glitch is the appearance of a thin horizontal line at the start
and end of the doubled path (visible in most examples of curved paths if your
viewer has this problem). The reason is that the larger black path in the
background is not perfectly covered by the smaller white foreground piece,
most likely due to rounding errors.

• The approach assumes that the background has a uniform colour, and it is the user’s
responsibility to correctly set the background colour:

double:

nfold:

\begin{tikzpicture}

\draw[red, line width=1pt] (2.5, 3.3) -- (2.5, 0);

\draw[line width=2pt, double distance=3pt]

(0,2) to[out=0, in=180] (3,3);

\node[right] at (0,3) {double:};

\draw[line width=2pt, double distance=3pt, nfold]

(0,0) to[out=0, in=180] (3,1);

\node[right] at (0,1) {nfold:};

\end{tikzpicture}

• Transparency does not work correctly:

double:

nfold:

\begin{tikzpicture}[line width=1pt]

\draw[double distance=3pt, opacity=.5]

(0,2) to[out=0, in=180] (3,3);

\draw[double distance=3pt, opacity=.5, nfold]

(0,0) to[out=0, in=180] (3,1);

\node[right] at (0,3) {double:};

\node[right] at (0,1) {nfold:};

\end{tikzpicture}

• Triple and n-fold paths are not supported (although this could be implemented in
principle).

However, there are still situations where /tikz/nfold struggles and /tikz/double is the
only viable option, which will be discussed in the next section.

3 Known issues

This package is by no means perfect, and even if it were, there would still be some cases
where the approach of /tikz/double is better suited. The known issues are roughly
sorted into those that can be fixed in principle and the fundamental limitations of this
approach. If you find any bugs not listed here, please report them here.

3

https://github.com/jonschz/tikz-nfold/issues/

3.1 Fixable / wish list

• nfold is significantly slower than /tikz/double. Part of the reason is that the
construction is far more complex, but the code is also far from fully optimised.

• Some rare cases of curves are not offset correctly. The reasons for that are discussed
below in Appendix A.4. Usually, slightly changing the control points or values of
the curve will fix the problem. If you find any, please open an issue.

• Closed paths can glitch slightly when the final segment is very short and has non-
zero angles on both ends.

3.2 Impossible or very hard to fix

• Self-intersecting paths do not have the expected intersections:

double:

nfold:

\begin{tikzpicture}

\draw[double distance=5pt, line width=1pt]

(0,2.5) -- (1,2.5) (1,3) -- (1,2)

(2,2) -- (3,2) rectangle (4,3);

\node[right] at (0,3.5) {double:};

\draw[double distance=5pt, line width=1pt, nfold]

(0,.5) -- (1,.5) (1,1) -- (1,0)

(2,0) -- (3,0) rectangle (4,1);

\node[right] at (0,1.5) {nfold:};

\end{tikzpicture}

• nfold struggles with high curvatures and wide paths: Let κ(t) be the curvature of
the path in a given point, and let double distance = α. If κ(t) > 2

α
(i.e. the

radius of the osculating circle is smaller than half the width of the path) for some
0 ≤ t ≤ 1, the output of nfold will not be correct:

double:

nfold:

\begin{tikzpicture}

\draw[double distance=5pt, line width=1pt]

(0,2) .. controls (4,2) and (0,3) .. (3,2.5);

\node[right] at (0,3) {double:};

\draw[double distance=5pt, line width=1pt, nfold]

(0,0) .. controls (4,0) and (0,1) .. (3,.5);

\node[right] at (0,1) {nfold:};

\end{tikzpicture}

Some, but not all of these cases raise warnings (this feature is on the wish list). This
is one of the cases where using /tikz/double is the only viable option.

• Dashed paths with significant curvature will desynchronise:

\begin{tikzpicture}

\draw[arrows=-Implies, double equal sign distance, dashed,

scaling nfold=4] (0,0) to[out=30, in=150] (2,0);

\end{tikzpicture}

• Curves of nfold slightly deviate from the curves of /tikz/double near joins with
a non-zero angle:

4

double nfold
\begin{tikzpicture}[line width=1pt]

\draw[red, double distance=20pt]

(0,2) -- (2,2) to [out=-90, in=0] (.5,.5);

\draw[blue, double distance=20pt, opacity=.5, nfold]

(0,2) -- (2,2) to [out=-90, in=0] (.5,.5);

\node[right, red] at (0,3) {double};

\node[left, blue] at (3, 3) {nfold};

\end{tikzpicture}

This cannot be fixed without extensive use of the intersections library, hurting
the performance, and the result might still not look great for orders ≥ 3.

• Very short curves with large angles at the ends result in a glitched output:

\begin{tikzpicture}[line join=round]

\draw[black] (1,0) -- (3,0) -- (1.5,1.2) -- (3.8,0.85);

\draw[red, line width=1pt, double distance=.7cm, nfold]

(1,0) -- (3,0) -- (1.5, 1.2) -- (3.8,0.85);

\draw[blue, double distance=.7cm, nfold] (1,0) -- (3,0)

to[relative, out=1, in=179] (1.5, 1.2) -- (3.8,0.85);

\end{tikzpicture}

This issue has been fixed for straight lines in version 0.1.0 (note how the red line
is offset correctly), but it is much harder to fix for curves.

• Changing joins in \pgfsys@beginscope without an accompanying TEX group may
cause inconsistent behaviour in the joins:

\makeatletter

\begin{tikzpicture}[line join=miter, line width=2pt]

\pgfsys@beginscope

\pgfsetroundjoin

\pgfsys@endscope

\draw[double distance=5pt, nfold] (0,0) -- (.5,2) -- (1,0);

\end{tikzpicture}

\makeatother

This example has round joins on the large path but miter joins on the constituent
paths. This problem does not occur with \pgfscope.

4 The basic layer pgf commands

This package contains three pgf libraries building upon one another: bezieroffset,
offsetpath, and nfold. All of these are contained in the TikZ library nfold.

4.1 Offsetting curves

This library provides some basic layer commands for offsetting curves and straight lines.
Use

\usepgflibrary{bezieroffset}

5

to only import this base layer library. The following commands are provided:

• \pgfoffsetcurve{pt1}{pt2}{pt3}{pt4}{distance}

This macro draws the parallel of a Bézier curve. The first four parameters are the
control points of the Bézier curve (e.g. in the form of \pgfpoint{}{}), the fifth pa-
rameter is the distance by which the curve should be offset. A negative value offsets
the curve in the opposite direction. This macro begins with a \pgfpointmoveto to
the offset of pt1.

• \pgfoffsetcurvenomove{pt1}{pt2}{pt3}{pt4}{distance}

The only difference to the previous macro is that this version does not move to the
offset of pt1. This is useful if one wants to offset an uninterrupted path consisting
of several curves. The output will only be correct if the previous \pgfpath... call
ends on the offset of pt1.

• \pgfoffsetline{pt1}{pt2}{distance}

This macro offsets a straight line. It takes two points and the distance as parameters,
and starts by moving to the offset of the first point.

• \pgfoffsetlinenomove{pt1}{pt2}{distance}

This macro is analogous to \pgfoffsetcurvenomove.

4.2 Offsetting paths

The following macros are part of the pgf library offsetpath and offset the whole softpath.

• \pgfoffsetpath{softpath}{distance}

This macro offsets softpath by distance. The latter may be negative.

• \pgfoffsetpathfraction{softpath}{hwidth}{fraction}

This macro offsets softpath by fraction*hwidth. Note that this is not equivalent
to the previous macro with length=fraction*hwidth because the joins are treated
differently, as can be seen in the examples below. Further note that hwidth must
not be negative, and that fraction=0 does not reproduce the input path.

• \pgfoffsetpathqfraction{softpath}{hwidth}{fraction}

This macro is a quicker version of the previous macro does not parse the input values
using the pgfmath-engine.

• \pgfoffsetpathindex{softpath}{width}{i}{n}

In this convenience method, i and n are integers with 1 ≤ i ≤ n. It calls the
previous macro with fraction=-1.0 for i=1 and with fraction=1.0 for i=n, hence
it is capable of reproducing the output of /tikz/nfold=n (albeit in a less efficient
way).

In the following example we see how \pgfoffsetpath{..}{0pt} reproduces the input
path (rendered in black) and how \pgfoffsetpathfraction{..}{8pt}{0} differs.

6

\begin{tikzpicture}[line join=bevel]

\path[save path=\savedpath] (0,0) -- (1,0)

to[out=0, in=-80] (1,3) -- (3,2);

\draw[color=lightgray,line width=16pt,use path=\savedpath];

\pgfoffsetpathfraction{\savedpath}{8pt}{0}

\pgfsetlinewidth{1pt} \color{red} \pgfusepathqstroke

\pgfoffsetpath{\savedpath}{8pt}

\color{blue} \pgfusepathqstroke

\pgfoffsetpath{\savedpath}{-8pt}

\color{green} \pgfusepathqstroke

\pgfoffsetpath{\savedpath}{0pt}

\pgfsetlinewidth{.4pt} \color{black} \pgfusepathqstroke

\end{tikzpicture}

Here we see how the commands can be used to customise n-fold paths:

\begin{tikzpicture}

\path[save path=\mypath] (0,0) -- (2,0) arc(-90:90:1)

to[out=180, in=0] (0,1) -- (0,2);

\foreach \mycolor [count=\i] in {red,green,blue,violet}

\pgfoffsetpathindex{\mypath}{6pt}{\i}{4}

\color{\mycolor} \pgfusepathqstroke;

\end{tikzpicture}

7

5 Version history

• v1.0.0: Restructure and bug fixes

• v0.1.3: Bug fixes

• v0.1.2: Bug fixes

• v0.1.1: Closing paths and structural changes

– Support for closed paths (cycle and \pgfpathclose)

– Significant performance improvements due to structural changes

– Minor bug fixes and optimisations

• v0.1.0: Major overhaul

– Support for arbitrary arrow tips

– Support for directly offsetting soft paths

– New key /tikz/scaling nfold

– The decorations library was dropped

– Various performance improvements in bezieroffset (thanks to Qrrbrbirlbel)

– Very short lines with large angles were fixed (e.g. in tikzcd with squiggly)

– Numerous bugs fixed

• v0.0.1: First public version

8

A The Bézier offsetting algorithm

This algorithm is based on an algorithm by Pomax. See A Primer on Bézier curves, the
source code can be found here.

A.1 Simple and fully simple Bézier curves

Throughout this section the term “Bézier curve” refers to a cubic Bézier curve, which is
defined by four points (A1, A2, A3, A4).

As explained in the aforementioned source, in almost all cases the parallel of a Bézier
curve is not exactly a Bézier curve itself. To approximate the parallel using Bézier curves,
we therefore first divide the given curve into “simple” segments which can be offset with
reasonable accuracy. The following defines a simple segment:

Definition A.1. A Bézier curve (A1, A2, A3, A4) is simple if

1. the points A2 and A3 lie on the same side of the line A1A4,

2. the absolute angle between the tangents in A1 and A4 is at most π/3 (i.e. the cosine
is no smaller than 0.5), and

3. the distances fulfil A1A2 + A3A4 ≤ A1A4.
1

Definition A.2. A Bézier curve (A1, A2, A3, A4) is fully simple2 if all of its segments are
simple in the sense of Definition A.1.

In order to offset an arbitrary Bézier curve we split it into fully simple segments.

A.2 Subdivision

It is well known that at every point 0 < t < 1, de Casteljau’s algorithm can subdivide a
Bézier curve A = (A1, A2, A3, A4) into two Bézier curves B and C (which naturally fulfil
A1 = B1 and A4 = C4). A more or less heuristic fact is that B and C are “more likely”
to be simple than A (if you can prove any of the statements here, please contact me).
Hence, if one wants to offset a non-simple curve A, one could try to subdivide A until all
of its segments are simple, then offset each segment.

1The reference only uses the first two conditions.
2This terminology is not used in the source.

9

https://github.com/Pomax/
https://pomax.github.io/bezierinfo/#offsetting
https://github.com/Pomax/bezierinfo/blob/bcfce2149fa5e5540a2a2605986adab3b2a9a3bf/js/graphics-element/lib/bezierjs/bezier.js

A.3 Pomax’ approach

The original approach by Pomax consists of two passes. The first pass subdivides A on
all extrema in x or y. In a second pass, each segment A(i) is made simple in steps of
t 7→ t+ 0.01, roughly using the following pseudocode:

t_1 = t_2 = 0.0

while t_2 < 1.0:

S = segment(A from t_1 to t_2+0.01)

if not isSimple(S):

segments += [segment(A from t_1 to t_2)]

t_1 = t_2

t_2 += 0.01

Essentially, this ensures with great certainty that the segment is fully simple in the sense
of Definition A.2.

The main reason this approach is not used in this library is performance, since the loop is
quite expensive computationally. Other minor reasons include that the original approach
is not invariant under reversals or rotations: Reversing and/or rotating a curve yields a
different subdivision and hence potentially a slightly different-looking curve.

A.4 The approach used here

In this library we instead take a recursive approach:

def makeSimple(A, level):

if isSimple(A):

segments.append(A)

else:

if level < 0:

Display a warning

segments.append(A)

else:

first, second = split(A, t=0.5)

makeSimple(first, level-1)

makeSimple(second, level-1)

The default maximum depth is 5, so the curve is split into at most 25 = 32 segments. This
has the downside that some simple but not fully simple curves may remain undetected and
be offset slightly incorrectly. If you encounter examples of such curves with bad outputs,
or if you have any ideas for additional constraints to add to Definition A.1 that can be
checked with reasonable computational effort, please be in touch.

A.5 Offsetting simple Bézier curves

Disregarding edge cases (which will be discussed later), offsetting the curve works as
follows:

1. Construct lines orthogonal to the tangent in A1 and A4 and find their intersection.
This point is called the origin of the curve, denoted by O.

10

2. The new control points A′
1 and A′

4 are given by A1 and A4 offset orthogonally to
the tangent.

3. Construct a ray from A′
1 parallel to the tangent in A1, and construct another ray

from O through A2. Now A′
2 is defined to be the intersection of those rays.

4. A′
3 can be constructed similarly.

The construction is shown in the following picture:

d d

A1

A2 A3

A4

A′
1

A′
2 A′

3

A′
4

O

A.6 Removing singularities

Clearly, as the angle between
−−−→
A1A2 and

−−−→
A3A4 decreases, the origin approaches infinity.

Computing the control points (A′
i) by computing the coordinates of O is therefore not

numerically stable for almost straight curves. However, we can get around this problem
using elementary geometry. Constructing A′

1 and A′
4 is independent of the location of the

origin, so the only difficult part is computing the distances A′
1A

′
2 and A′

3A
′
4. We find

A′
1A

′
2

A1A2

=
OA′

1

OA1

= 1 +
d

OA1

=⇒ A′
1A

′
2 = A1A2

(
1 + d · 1

OA1

)
(2)

which is regular as O approaches infinity. Now we to determine the inverse of OA1, which
can be computed using the law of sines:

A1

A2 A3

A4

α
π
2
− α

β
π
2
− β

α + β

O

11

sin(π
2
− α)

OA4

=
sin(α + β)

A1A4

=
sin(π

2
− β)

OA1

=⇒ 1

OA1

=
1

A1A4

· sin(α + β)

cos(β)
. (3)

Note that −π
3
≤ β ≤ π

3
(and hence cos(β) ≥ 1

2
) is guaranteed if the curve is simple — in

fact, simplicity guarantees α · β > 0 and |α| + |β| ≤ π
3
. Using the sine addition theorem

we can further rewrite the fraction to

sin(α + β)

cos(β)
= sin(α) + cos(α)

sin(β)

cos(β)
, (4)

and all of these terms can be computed directly from dot and cross products of vectors

between the original control points. To summarise, let v⃗ij :=
−−−→
AiAj, and let v⃗0, v⃗1 be the

normalised tangents at t = 0 and t = 1, respectively (see Appendix A.8 how they are
computed). Then

A′
1A

′
2 = A1A2 +

d

A1A4
2 ·

(
v⃗12 × v⃗14 − v⃗12 · v⃗14

v⃗14 × t⃗1

v⃗14 · t⃗1

)
. (5)

Let furthermore u⃗ij := v⃗ij/|v⃗ij| be the normalised vectors. Then we find

A′
1A

′
2 = A1A2 +

d

A1A4

(
v⃗12 × u⃗14 − v⃗12 · u⃗14

u⃗14 × t⃗1

u⃗14 · t⃗1

)
,

A′
4A

′
3 = A4A3 +

d

A1A4

(
v⃗43 × u⃗14 − v⃗43 · u⃗14

u⃗14 × t⃗0

u⃗14 · t⃗0

)
.

(6)

A.7 Edge cases

A.7.1 Overlaps: Ai = Ai+1

If there is one overlap A1 = A2, A2 = A3 or A3 = A4, the cubic Bézier curve reduces to a
quadratic one. For two overlaps, we get a linear Bézier curve (i.e. a straight line), and for
three overlaps we get a point. The main problem to watch out for is that the tangents t⃗0
and t⃗1 need to be computed differently:

• If A1 ̸= A2, we find t⃗0 = u⃗12.

• If A1 = A2 ̸= A3, we find t⃗0 = u⃗13.
3

• If A1 = A2 = A3 ̸= A4, we find t⃗0 = u⃗14.

• If A1 = A2 = A3 = A4, the curve is just a point and the tangent is not defined. The
implementation defaults to t⃗0 = (1, 0).

The analogous statement hold for t⃗1. In practice we test for approximate, not exact
equality.

A.7.2 Overlaps A1 = A4

Equation (6) has one remaining singularity, namely for A1 ≈ A4. This singularity is fun-
damental and not an artefact: As A1 approaches A4 while A1A2 and A3A4 stay constant,

3This implicitly assumes a regular reparametrisation of the curve (e.g. a parametrisation over arc
length); the usual parametrisation has a gradient of zero at t = 0.

12

O also approaches A4, hence the angle between
−−−→
A1A2 and

−−→
OA2 approaches zero, sending

the intersection point A′
2 to infinity.

A closer inspection of this special case reveals a number of sub-cases:

• Fully degenerate curves with A1 ≈ A2 ≈ A3 ≈ A4. Offsetting these curves in a
stable manner is impossible, as the gradient and hence the direction in which to
offset is numerically unstable. Rendering such curves will hardly have any output
at all anyway. See below in Appendix A.8 how this case is handled.

• Non-trivial loops with A1A2 ≫ A1A4 and/or A3A4 ≫ A1A4, |α| + |β| ≥ π
3
. Such

curves violate the second and third condition of Definition A.1, for example:

A1

A2 A3

A4

• Curves with A1A2 ≫ A1A4 and/or A3A4 ≫ A1A4, |α|+|β| < π
3
: Such curves violate

the third condition of Definition A.1, for example:

A1

A2A3

A4

A.8 Stabilising the offsetting algorithm for non-simple curves

As seen in Appendix A.4, there are cases where the offsetting algorithm will be called
on non-simple curves. In such cases it is essential that the code does not crash (e.g.
from division by zero), and that the output produced is at least somewhat sensible. The
following measures are taken:

• If A1A4 is very close to zero,4 we set A′
1A

′
2 = A1A2 and A′

3A
′
4 = A3A4, forming

a rather rough approximation of the parallel curve. This causes a warning to be
logged.

• For simple curves we find u⃗14 · u⃗34 ≥ 0.5 in the denominator. Therefore, for non-
simple curves, the denominator is clamped to [0.5, 1.0], preventing division by zero.

4Clamping the fraction d/A1A4 to some maximum value did not work well, as it had a tendency of
producing false positives.

13

	Quick start
	Comparison to /tikz/double
	Known issues
	Fixable / wish list
	Impossible or very hard to fix

	The basic layer pgf commands
	Offsetting curves
	Offsetting paths

	Version history
	The Bézier offsetting algorithm
	Simple and fully simple Bézier curves
	Subdivision
	Pomax' approach
	The approach used here
	Offsetting simple Bézier curves
	Removing singularities
	Edge cases
	Overlaps: A_i = A_(i+1)
	Overlaps A_1 = A_4

	Stabilising the offsetting algorithm for non-simple curves

