Java Distributed Components for Numerical Visualization in VisAD

William Hibbard1, Curtis Rueden1, Steve Emmerson2, Tom Rink1, David Glowacki1, Tom Whittaker1, Don Murray2, David Fulker2 and John Anderson1

1Space Science and Engineering Center

University of Wisconsin - Madison

2Unidata Program Center

University Corp. for Atmospheric Research

The World Wide Web is the killer application for the Internet because it enables widespread information sharing. The future numerical computing environment will enhance sharing among scientists by evolving a structure like the Web. It will consist of a persistent, active network of numerical data, computational, display and user interface components distributed across the Internet. As with the Web, users and even application programs will be largely unaware of physical computers, but will instead see a large, shared network of logical components. Users will explore this network via browsers and insert new components into the network. For example, an atmospheric chemist may use a browser to locate a weather simulation data set or even a running weather model, connect it as input to her chemistry model, and connect a display component to them in order to visualize the computations of both models. Her weather-modeling colleague may then clone her display in his own browser, and they may both connect user interface components so they can collaborate on experiments with the coupled models.

Making this vision into a reality will challenge long-held assumptions about the way we write numerical software, including:

1.
That software runs on and data resides on a single machine known to the user, or that software and data are designed to be distributed across a specific set of processors. These assumptions are being challenged by development of grid computing [Getov, von Laszewski, Philippsen and Foster, 2001; Colwell, 2003] and distributed object technology [Wollrath, Riggs and Waldo, 1996].

2.
That the structure and properties of data are known ahead of time by programmers who write software for accessing that data. This assumption is being challenged by development of abstract numerical data models [Treinish, 1991; Haber, Lucas and Collins, 1991; Hibbard, Dyer and Paul, 1992].

3.
That the uses of software are known ahead of time by programmers who write the software. This assumption is being challenged by development of reusable components [Meyer, 1999].

Distributed Components

We are developing the VisAD library of Java components to relax these assumptions for numerical visualization. The library defines four types of components:

1. Data components – these implement an abstract data model that defines a schema grammar for organizing numerical and text values, and defines associated metadata such as units, coordinate systems, sampling geometries and topologies, missing data indicators and error estimates. The schema grammar and metadata can express images, 3‑D grids, time series, map boundaries, simple real numbers, etc. The data component application programming interface (API) hides interfaces to a wide variety of file and server data formats, movement of data between disk and memory, movement of data across the network, and partition of large data components across processor clusters.

2.
Display components – these implement an abstract display model that enables applications to define data depictions descriptively, by mappings from primitive data values to primitive display values, rather than procedurally. The display component API hides the graphics library (e.g., Java3D and Java2D) used to render depictions, as well as whether depictions are rendered in windows on workstation screens, in browsers, or in immersive virtual reality displays.

3.
Computational components – these compute values for data components or manipulate display components, based on the values of other data components and using code supplied by applications. The computational component API hides the programming language used for application-supplied code.

4.
User interface components – these are the familiar screen icons such as buttons and sliders. They link user actions like mouse clicks to values of data components or to library calls.

Networks of these components span multiple computers via the use of Java Remote Method Invocation (RMI) distributed object technology. These component networks using RMI can express various forms of distributed computing, such as client-server, cluster processing, remote collaboration, or whatever programmers and users care to define. Display and computational components may be linked to data components, with their actions (i.e., updating data depictions or executing application-supplied code) triggered whenever linked data values change. A data component may be linked to multiple display components with a different depiction in each, and multiple data components may be linked to one display component for visual comparison. Display components may be linked to other display components, creating collaborative networks of displays that synchronize their appearances (i.e., any user or application change to one is reflected in all). User interface components may be linked to data components enabling users to manipulate data values. Display components can also be used as user interface components, enabling users to manipulate data values by redrawing their depictions. All of these connections between components may be either local or remote.

Abstract Data and Display Models

The key to reusability is abstraction. VisAD achieves this for its data components via a schema grammar for expressing data organizations, and for its display components via expression of data depictions as mappings from primitive data values to primitive display values. Figure 1 shows a VisAD user interface component that enables users to define display mappings. The top MathType window shows an expression in the schema grammar for a time sequence of 2-D earth images – a data component to be displayed. This expression includes names for primitive numerical and text values, groupings of values into vectors, and functional dependencies among values. Below that, the CoordinateSystem references window shows that the data component includes an invertible transform between image coordinates and earth coordinates. All the numerical values occurring in data components may have associated units and error estimates, and there will be samplings for the domains of any functional dependencies. Unit conversions, coordinate transforms, resampling, and propagation of missing data and error estimates are all done implicitly as necessary in mathematical and display operations on data components.

In order to define data depictions, primitive data values, shown in the Map from window, are mapped to primitive display values, shown in the Map to window. The Current maps window shows the system’s first guess at appropriate mappings for the schema in the MathType window. The user can clear these mappings and create new ones by alternately clicking on primitive data value names and display value names. Of course, the user interface component shown in Figure 1 actually defines mappings via library calls, which are available to any application.

The data schema grammar enables data components to be reused for virtually any numerical and text data. Furthermore, the associated metadata enables meaningful comparisons among data from diverse sources, including spatial and temporal alignment in displays. This is important for increased data sharing on the Internet. The system includes a set of classes for interpreting data file and server formats as data components, implicitly transferring data to a memory cache as needed to execute data component API calls. These classes have been applied to over twenty common numerical data formats.

The display mappings enable display components to be reused for virtually any form of data depiction. The fact that the display mappings are a descriptive rather than procedural definition of data depictions enables display components to also be used as user interface components, with users modifying data values by redrawing data depictions. That is, procedures are difficult to invert whereas descriptions can apply just as well in both the data to depiction and depiction to data directions.

Developers can extend the Java classes implementing data components, in order to define their own coordinate systems, sampling topologies, interpolation algorithms, and so on. With Java platform independence, these mathematical algorithms can be transferred with data components between machines. That is, algorithms can be a form of data content. Developers can extend classes implementing display components in order to define their own rendering algorithms, or even to use a different graphics library.

Basic Visualization and Analysis

Because of its high level of abstraction, the VisAD library presents a challenge to new users. Their first step is usually to visualize their data in the VisAD SpreadSheet, which provides access to much of the library via a graphical user interface (GUI). The user interface component shown in Figure 1 is part of that GUI, and helps users learn about the data schema grammar and the display mappings. They can experiment with different data files and different sets of display mappings, and see the resulting visualizations. The SpreadSheet GUI mainly consists of a rectangular array of cells (display component windows), which may each contain depictions of multiple data components. These data components are generated by reading from files or servers, or by simple formulas applied to data components in other cells.

When users are ready to program the library, the easiest way to start is by writing Python scripts. These can be very simple, as for example the single line plot(load(“filename”)) that loads and displays a data file. VisAD supports Python via the Jython implementation, which provides access to Java objects from Python. This means that the entire VisAD library is accessible from Python. We have added support for mathematical operations on data components via Python infix expressions, and for specialized displays (e.g., histograms, scatter plots, contour plots, image animations, etc) without requiring users to understand the system’s display mappings. Or Python scripts can invoke the plot function to depict data components using a SpreadSheet cell, allowing users to control display mappings via the user interface component shown in Figure 1. The Jython implementation makes it easy to write code for computational components in Python. And VisAD includes a user interface component for editing and running Python scripts, enabling developers to easily provide Python scripting as part of their application’s GUI.

Collaborative Simulation

The VisAD library is being used to write large numbers of traditional visualization applications, which assume specific data structures and depictions. These typically require a few hundred to a few thousand lines of Java. The library distribution includes about a dozen such applications as examples to new users.

The Galaxy application, whose GUI is shown in Figure 2, is fairly typical of these applications. It enables groups of astronomers to collaborate on experiments with Robert Benjamin’s simulation of the Milky Way galaxy and see how its H-alpha emission sky map and spectra would look from earth. Simulation parameters are defined by a set of simple real number data components, which users adjust via the slider components on the left side of Figure 2. The actual simulation code is written in Fortran encapsulated in a computational component, and produces data components that are linked to display components generating other windows in Figure 2. The upper center window shows an iso-surface of simulated warm gas density and the lower center window shows the H-alpha sky map as seen from earth. The red point and green line in the upper center window form the depiction of a vector from earth to some point outside the galaxy. Users can drag the red point to manipulate the vector, whose changes trigger a second computational component to produce density and spectra along the vector as depicted in the upper and lower right windows.

The first user who starts the Galaxy application has all these data, computational, display and user interface components. However, other users who start collaborative applications only generate new display and user interface components, which are linked via RMI to the data and computational components in the first copy of the application.

Exploiting Reusable Components

The VisAD library is being used to support a number of more sophisticated applications, which do not assume specific data structures and depictions. These are continuing projects requiring multiple person-years of development. The SpreadSheet was the first such application. It can deal with any data structure, access data from remote servers, and provides the user interface component shown in Figure 1 to enable users to generate any depiction. It is fully collaborative. Multiple users can link their SpreadSheets together, and actions initiated by any are seen identically in the GUIs of all.

The Unidata Program Center is using VisAD to develop the Integrated Data Viewer (IDV) as part of their NSF-supported mission to supply earth science data and access software to universities. The IDV enables users to browse remote servers and combine their data in a common spatial-temporal frame of reference. Because of the diversity of environmental observing instruments and simulations, earth science data have a wide variety of structures and properties that must be supported by the IDV. In addition to access to standard earth data servers, the IDV provides a Web browsing user interface component that recognizes links to numerical data files. When the user clicks on such links, they are downloaded into the spatial-temporal visualization window rather than the browser window. The IDV is collaborative, enabling teachers and students to share data visualizations and analyses.

The Laboratory for Optical and Computational Instrumentation at the University of Wisconsin is using VisAD to develop the VisBio system for visualizing and analyzing large multi-dimensional microscopy data sets. Figure 3 shows a VisBio volume rendering of a 3‑D microscopy image of a live C. elegans embryo. In addition to various forms of image displays, the system defines custom cursors that users can drag to measure distances in images and movements in time sequences. Various data schemas are appropriate for different microscopy data sets, depending on whether they include depth (i.e., 3‑D versus 2‑D), time sequencing, multiple spectra and multiple optical lifetimes. With up to six independent variables, microscopy data sets can be very large. Thus VisBio employs progressive refinement rendering (i.e., low resolution while the scene is changing, high resolution when change stops) and complex memory management.

The Australian Bureau of Meteorology is using VisAD to develop their AIFS system, consisting of a number of modules for supporting various forecaster tasks. Most of these tasks require overlays of data with diverse structures and properties. They also require user manipulation of data by dragging their depictions, for example to select a spatial region for analysis by drawing its border. The National Center for Atmospheric Research is using VisAD to develop their VMET system for visual meteorology. Like the IDV and AIFS, VMET must display data with diverse structures and properties, and produce a wide variety of different data depictions.

VisAD’s reusable components are also being used for experiments with visualization techniques. Classes implementing data components have been extended to support large data components partitioned across processor clusters, and classes implementing display components have been extended to exploit parallel processing for visualizing these partitioned data components. Classes implementing display components have been extended to depict data in the ImmersaDesk virtual reality system, and for progressive refinement rendering. The VisAD library is a useful tool for visualization research because it:

1.
Enables experiments at any level via class extensions.

2.
Provides the necessary infrastructure for writing practical applications in order to get evaluations of new techniques by real users.

Development Community

The VisAD library is freely available, including source code, documentation and application examples from http://www.ssec.wisc.edu/~billh/visad.html. Ugo Taddei from the University of Jena has contributed a fine on-line general tutorial, and there are several specialized tutorials. Roughly 15 programmers from a half dozen institutions have contributed code to the library. There is a much larger community of programmers who use the library, supported by an active mailing list.

References

Colwell, R. R., 2003; From terabytes to insights. CACM 46(7), 25-27.

Getov, V., G. von Laszewski, M. Philippsen and I. T. Foster, 2001; Multiparadigm communications in Java for grid computing. CACM 44(10), 118-125.

Haber, R. B., B. Lucas and N. Collins, 1991; A data model for scientific visualization with provisions for regular and irregular grids. Proc. Visualization 91. IEEE. 298-305.

Hibbard, W., C. R. Dyer, and B. E. Paul, 1992; Display of scientific data structures for algorithm visualization. Proc. Visualization ‘92. IEEE. 139-146.

Meyer, B., 1999; On to components. IEEE Computer 32(1), 139-140.

Treinish, L. A., 1991; SIGGRAPH ‘90 workshop report: data structure and access software for scientific visualization. Computer Graphics 25(2), 104-118.

Wollrath, A., R. Riggs and J. Waldo, 1996; A distributed object model for Java. 2nd Conf. on Object-Oriented Technologies and Systems (COOTS), 219-231.

Figure Captions:

Figure 1. Display mappings dialog panel.

Figure 2. The Galaxy application.

Figure 3. A VisBio volume rendering of a live C. elegans embryo (imaging performed by Dr. William Mohler).

