
A Universal Client for Taskflow-Oriented Programming with
Distributed Components: an XML/TclTk Implementation ∗

Hemang Lavana
†

Cisco Systems, Inc.
7025 Kit Creek Road, P.O. Box 14987

Research Triangle Park, NC 27709, USA

hlavana@cisco.com

Franc Brglez
Dept. of Computer Science

NC State University
Raleigh, NC 27695, USA

brglez@cbl.ncsu.edu

ABSTRACT
This paper presents an XML/TclTk implementation of a
universal, user-configurable client that (1) reads user-pro-
grammed interconnections of distributed component pro-
grams as task instances, (2) dynamically renders an interac-
tive GUI of all interconnected components as a hierarchical
taskflow, and (3) dynamically creates a schedule to execute
component programs concurrently, serially, or not at all, de-
pending on the user-defined runtime configuration of the
taskflow topology. The client creates a taskflow-oriented
programming environment, conceptually introduced in the
companion paper and demonstrated in this paper.

The recursive schema of component instances is conve-
niently captured as an extension of XML in a collaborative
distributed taskflow mark-up language (cdtML) and con-
sists of mainly two layers: (1) an encapsulated blackbox
(single-task) or a whitebox (multi-task) layer, and (2) a task
instance layer. The encapsulated task layer contains two
parts: a definition layer and a body layer, with the defini-
tion layer serving as a readily accessible API for the task. A
generic Tcl-XML parser reads both the cdtML schema and
the user-created cdtML taskflow description and outputs a
taskflow description in TclTk. This in turn generates the in-
teractive GUI as the hierarchical taskflow, waiting for user
inputs. User may choose to interact in any of the follow-
ing ways: reconfigure the taskflow interconnections, view or
edit data, descend/ascend the taskflow hierarchy, select the
mode of execution, invoke the taskflow, abort the taskflow
(if already executing), reset the state of the taskflow, etc.

1. INTRODUCTION
The concepts of taskflow-oriented programming with dis-
tributed components, introduced in [1] and the focus of the
companion paper [2], provide the basis for the implementa-
tion of a universal, user-configurable client presented in this
paper. In principle, the client may be implemented in any
number of popular programming languages – and the user
may not particularly care about this choice. What the user
does care about is the choice of the language in which he

∗This work has in part been supported by the contract from
DARPA/ARO (DAAG55-97-1-0345).
†Hemang Lavana performed this work while affiliated with
NC State University.

is to specify the interconnection and the interfaces of the
distributed components.

There are three main reasons why we represent the in-
terconnections and the interfaces of the distributed compo-
nents as an extension of XML in a collaborative distributed
taskflow mark-up language (cdtML): (1) a cdtML schema
can be readily created using XML [3, 4], (2) an increas-
ing number of XML parsers and validating XML editors are
available on the Internet [5], (3) user acceptance and famil-
iarity with XML will continue to grow with time.

Based on our own experience, there are a number of rea-
sons to choose TclTk [6] as the programming language to
implement the universal client (OmniFlow), including: (1)
prior implementation experiences [7, 8, 9], (2) extensions
to render the TclTk-created GUI in the web-browser [10,
11], (3) extensions to render the TclTk-created GUI collab-
orative [12], (4) availability of an XML-Tcl parser [13], (5)
availability of general purpose TclTk resources, e.g. [14],
and (6) last but not least, the ability to readily write TclTk
applications such that they are cross-platform compatible
by design. If we do not access components via telnet or
ssh (when the implementation also requires expect [15]), the
OmniFlow client described in this paper executes without
modifications under unix, linux, MacOS, and WindowsNT
operating systems.

Implementation Architecture. As described in [1, 2],
taskflow-oriented programming relies on a recursive schema
of encapsulated blackbox (whitebox) component instances.
Each stand-alone component is represented as a blackbox
component; a whitebox is simply a composition of blackbox
and whitebox components. Each encapsulated component
instance is an arrangement of exactly five primitive tasks: a
blackbox (whitebox) component, an eight-state finite-state-
machine with a datapath (FSMD), a ControlJoin, a Control-
Fork, and a DataMux. User-programmed interconnections
of distributed component programs are captured in the Con-
trolJoin and ControlFork associated with each component
instance. The taskflow schedule is derived from the under-
lying TaskGraph, a directed polar graph of asynchronously
interacting FSMDs, each supporting a simple hand-shaking
protocol with the attached blackbox (whitebox) component.

Such a schema is central to the architecture that imple-
ments the taskflow GUI, scheduling, and execution; both
the schema and the architecture are outlined in Figure 1.

The taskflow schema is based
on the task instance ar-
chitecture. The MainTask
layer serves to invoke any
TaskGraph of task instances.
The TaskInstance layer is al-
ways an arrangement of an
EncapsulatedTask with Con-
trolJoin, DataMux and Con-
trolFork primitives, and op-
tionally, RepeatCondition.

The encapsulated task layer

assigns, via FSMD, states to

blackbox (whitebox) compo-

nents. There are two sublay-

ers: a single-task definition

(multi-task definition) and a

single-task body (multi-task

body). The definition layer

contains I/O port lists, and

in case of a whitebox, a Task-

Graph of task instances. This

layer also serves as an API for

the task.

MainTask

• TaskInstanceList
• TaskGraph
• BeginFork
• TaskInstance1
• TaskInstance2
• . . .
• EndJoin

TaskInstance

• ControlJoin
• DataMux
• EncapsulatedTask
• RepeatCondition
• ControlFork

Encapsulated blackbox component (FSMD
←→ BBC)

SingleTaskDefn (STD)

• InputPortList
• InOutPortList
• OutInPortList
• OutputPortList

SingleTaskBody

• BeginFork
• BlackBoxComponent
• EndJoin

Encapsulated whitebox component (FSMD
←→ WBC)

MultiTaskDefn (MTD)

• InputPortList
• InOutPortList
• OutInPortList
• OutputPortList
• TaskInstanceList
• TaskGraph

MultiTaskBody

• BeginFork
• TaskInstance1
• TaskInstance2
• . . .
• EndJoin
• DataGraph

The generic taskflow schema above has
been implemented as an extension of XML
(cdtML). The implementation of the taskflow
GUI and its execution engine is divided into
two parts: (1) initial loading of the generic
cdtML schema and user-configured taskflow
files in cdtML, and (2) scheduling task in-
stances for execution during runtime. The
taskflow loader parses taskflow configuration
in cdtML, verifies the taskflow syntax against
the cdtML schema and outputs the taskflow
configurations as tcl files, loads the tcl task-
flow configurations and renders an interactive
GUI of the taskflow tree and graph views.

In the initial phase, only the top-level config-

uration is loaded and rendered as GUI; sub-

sequent loading, rendering, scheduling, and

executing is dynamic as described in the pa-

per.

Figure 1: Implementation architecture of the taskflow GUI, scheduling, and execution engine.

While the schema, as introduced in [1, 2], does not imply a
specific implementation, such a schema can also be readily
implemented in XML and is presented in subsequent sec-
tions, including examples of taskflow descriptions in cdtML.

The implementation of the taskflow GUI and its execu-
tion engine is divided into two parts: (1) initial loading of
the generic cdtML schema and user-configured taskflow files
in cdtML, and (2) scheduling task instances for execution
during runtime. The taskflow loader must (1) parse task-
flow configuration specified in cdtML, (2) verify the taskflow
syntax against the cdtML schema and output the taskflow
configurations as Tcl files1, (3) load the Tcl taskflow configu-
rations and render a interactive GUI of the taskflow tree and
graph views. In the initial phase, only the top-level config-
uration is loaded and rendered as GUI; subsequent loading,

1The current Tcl-XML parser [13] does not yet support the
validation against an XML schema.

rendering, scheduling, and executing is dynamic and subject
to selective user-interactions with the taskflow GUI.

The recursive algorithm that implements the taskflow sched-
uler calls itself whenever it encounters a whitebox instance.
Initially, all instances are in a Waiting state. When a task
instance is invoked, the taskflow scheduler first evaluates its
ControlJoin and accordingly changes the state of the task
to Enabled state. Once enabled, and if the instance is a
whitebox, it immediately changes to Executing state. The
scheduler expands the whitebox instance into another level
of hierarchy and schedules the (BEGIN) node for execution.
On the other hand, if it the instance is a blackbox, it is
scheduled for execution only after the designated host be-
comes idle.

Upon completion of first task execution, scheduler eval-
uates the RepeatCondition for the task instance, if any, to
re-invoke the task until the condition is satisfied. After that,

it evaluates the ControlFork to validate the status of each of
its output InvocationEdges. The process repeats for each of
the successor task of the task instance.

Illustrative Example. Throughout the paper, we use seg-
ments of the taskflow example ‘parabola’. In Figure 2, we
illustrate the two key phases of taskflow-oriented program-
ming using OmniFlow: (1) an entry of a representative task-
flow description in cdtML, and (2) a rendering of the task-
flow GUI in a state determined by the user interactivity.

We first note how the entry of the taskflow description
is facilitated by using a validating XML editor, i.e. an edi-
tor that not only reads the cdtML schema in XML but also
uses it to validate user entries of the cdtML taskflow descrip-
tions2. In the example shown, the editor has been configured
by the cdtML schema in XML to validate elements of the
generic multi-task definition schema introduced in Figure 1
such as the InputList, the OutputList, the TaskList, and the
TaskGraph, and to support user entries of specific instances
of I/O ports, task instances, and task dependencies.

Once the cdtML descriptions of the related taskflows are
completed, a ‘main’ taskflow instance is read by the Om-
niFlow client, which in turn parses the cdtML description,
writes a corresponding description in TclTk, and loads this
description to render the top-level of the taskflow GUI. At
this point, it is up to the user to interact with the taskflow:
to invoke it at the top level or to descend the hierarchy
and invoke one or more taskflows at any of the lower lev-
els. Only at this point are the additional cdtML descriptions
parsed, converted to TclTk, and loaded for rendering as new
taskflows by the OmniFlow client. In Figure 2, the taskflow
parabola main.cdt is linked to a number of underlying cdtML
taskflow descriptions. Upon invocation of parabola main.cdt
and some user interaction with its initial rendering, user can
expand a representation of the entire taskflow, including the
taskflow instance (C) as shown.

The rendering of the taskflow in Figure 2 represents a
hierarchical graph view of the taskflow, in contrast to the
hierarchical tree view that is implicitly represented by the
taskflow schema and the taskflow capture in cdtML. Clearly,
the graph view significantly complements the more tradi-
tional tree view. For example, the invocation edges from
task instance (BEGIN) to task instances (InitA), (InitB),
(InitC), signify the possibility of concurrent invocation and
execution of these tasks. Similarly, the repeat invocation
edges associated with the hierarchical task instances (A),
(B), and (C) signify a repeated invocation of these tasks
until some terminating condition is satisfied. An entire sec-
tion in the paper is devoted to presenting details about these
views and about user interaction that can reconfigure the
taskflow and its scheduled execution dynamically.

Paper Organization. As illustrated in the preceding ex-
amples, there are two main components that we bring to-
gether in the implementation of the universal client as de-
fined in the companion paper [2]: (1) parsing taskflow cdtML
descriptions in accordance with a well-defined schema in
XML and creating executable TclTk programs, and (2) ren-
dering an interactive GUI such that the hierarchy of of task-
flow instances and the respective GUIs can be invoked, sched-
uled, and executed dynamically in response to user inter-

2The screenshot of the validating XML editor in Figure 2 is
based on the demo version of the XMLSpy editor [16].

actions. The next two sections, (2) Taskflow Schema and
User Descriptions in cdtML, and (3) Taskflow GUI and In-
teractions, describe the proposed approach in some detail.
The effectiveness of the implementation is subject of Perfor-
mance Experiments in Section 4. The paper concludes with
Section 5, Summary and Conclusions.

2. TASKFLOW SCHEMA AND TASKFLOW
DESCRIPTIONS IN CDTML

The taskflow schema, illustrated in Figure 1 and described
in detail in [2], supports a specific task instance architecture
but does not imply a particular implementation language.
Our choice of XML to implement this schema as an exten-
sion of XML in a collaborative distributed taskflow mark-up
language (cdtML) has been articulated in Section 1. In this
section, we describe

• a cdtML taskflow schema using XML, and

• taskflow descriptions in cdtML.

To illustrate representative taskflow descriptions, we will
continue to use segments of the taskflow example ‘parabola’,
introduced in Figure 2.

2.1 A cdtML Taskflow Schema Using XML
As illustrated in Figure 1, the schema to construct a task-
flow consists of mainly two layers: an encapsulated blackbox
(single-task) or whitebox (multi-task) layer, and a task in-
stance layer. The schema for the encapsulated task layer
contains two distinct layers: (1) a blackbox or whitebox
definition layer, and (2) a blackbox or whitebox body layer.
This distinction helps in separating the task API from its
body declaration, which can be very detailed.

Consider elements of the whitebox definition layer (Multi-
TaskDefn) in Figure 1, starting with InputPortList and end-
ing with TaskGraph. In Figure 3, we show a corresponding
cdtML schema, implemented in XML. The whitebox defini-
tion layer is now declared as an element of complex type with
name MultiTaskDefn. This type is shown as a sequence of
seven elements within it, including Title, Description, Input-

<!-- type declaration of whitebox (multi-task) definition -->

<xsd:complexType name="MultiTaskDefn" content="elementOnly">
<xsd:sequence minOccurs="0" maxOccurs="1">

<xsd:element name="Title" type="Title"/>
<xsd:element name="Description" type="Description"/>
<xsd:element name="InputList" type="InputList"/>
<xsd:element name="InOutList" type="InOutList"/>
<xsd:element name="OutInList" type="OutInList"/>
<xsd:element name="OutputList" type="OutputList"/>
<xsd:element name="TaskList" type="TaskList"/>
<xsd:element name="TaskGraph">

<xsd:complexType content="textOnly">
</xsd:complexType>

</xsd:element>
</xsd:sequence>
<xsd:attribute name="name">

<xsd:simpleType base="xsd:string"/>
</xsd:attribute>

</xsd:complexType>

Figure 3: A section of cdtML schema using XML.

************** cdtml schema.xml ***************

<!-- type declaration of whitebox (multi-task) definition -->
<xsd:complexType name="MultiTaskDefn" content="elementOnly">

<xsd:sequence minOccurs="0" maxOccurs="1">
<xsd:element name="Title" type="Title"/>
<xsd:element name="Description" type="Description"/>
<xsd:element name="InputList" type="InputList"/>
<xsd:element name="InOutList" type="InOutList"/>
<xsd:element name="OutInList" type="OutInList"/>
<xsd:element name="OutputList" type="OutputList"/>
<xsd:element name="TaskList" type="TaskList"/>
<xsd:element name="TaskGraph">

<xsd:complexType content="textOnly">
</xsd:complexType>

</xsd:element>
</xsd:sequence>

.................

************** parabola main.cdt ***************

<!-- parabola_main.cdt -->
<Cdtml>
<MainTask>

<TaskList>
<Begin/>
<Task instance="(parabola)"

taskRef="parabola_defn.cdt#parabola"/>
<End/>

</TaskList>
<TaskGraph>

(BEGIN) => (parabola) => (END)
</TaskGraph>
<TaskInstance instance="(parabola)">

<SetInput port="emailaddr">
<LocalValue> lavana@cbl.ncsu.edu </LocalValue>

.................

While a cdtML description of a
taskflow such as parabola main.cdt
above right can be entered di-
rectly, the preferred choice is to
enter the description via an XML
editor that also reads the XML
description of the cdtML schema
above left and can thus validate
the syntax of the user taskflow de-
scription in cdtML.

Note how the structure of
the user-instantiated schema dis-
played in the editor tracks closely
the structure of the generic multi-
task definition schema described
in Figure 1. User entries, from
the InputList, the OutputList, the
TaskList, and the TaskGraph, in-
clude specific instances of I/O
ports, task instances, and task de-
pendencies.

Taskflow description
of parabola main.cdt
above right is linked
to a number of
underlying cdtML
taskflow descriptions.
Upon invocation of
parabola main.cdt
and some user inter-
action with its initial
rendering, user can
expand a represen-
tation of the entire
taskflow, including
the taskflow instance
(C) as shown.

Figure 2: Taskflow configuration entry in a validating XML editor and its rendering via OmniFlow.

List, InOutList, OutInList, OutputList, TaskList and Task-
Graph. However, each of these elements is optional and is
specified using the ‘minOccurs’ and ‘maxOccurs’ attributes
for the ‘xsd:sequence’ tag. The first six elements are of type
defined elsewhere in the schema specification, whereas the
seventh element, TaskGraph, is of type textOnly. The Task-
Graph is described with task instance names as nodes, where
the nodes are connected by up to three types of directed
control edges: InvocationEdge, RepeatInvocationEdge, and
AbortInvocationEdge. Full details about task graph repre-
sentation are given in [2], example descriptions are shown in
Figure 5, and discussed later.

In addition to these elements, the MultiTaskDefn layer has
an attribute ‘name’ which consists of a string of type sim-
pleType. This name is used to refer to the MultiTaskDefn.

A complete cdtML taskflow schema in XML is listed in
the Appendix of [1]. For more details about XML, see [3].

2.2 Taskflow Descriptions In cdtML
In Figure 2 we used segments of the taskflow ‘parabola’ to
illustrate the two key phases of taskflow-oriented program-
ming using OmniFlow client: (1) an entry of a representa-
tive taskflow description in cdtML, and (2) a rendering of the
taskflow GUI in a state determined by the user interactivity.
In this section, we give two views of the ‘parabola’ example:
(1) as a case of project decomposition into tasks that are
to be implemented by distributed components, and (2) as a
case of structured taskflow descriptions using cdtML. In the
section that follows, we use the same example to describe
views of the taskflow GUI and a range of user interactions
with it.

Parabola – Project Decomposition. This project has
been devised to quickly illustrate (1) main features of dis-
tributed component-based computation, (2) concurrent ex-
ecution of some such components, (3) synchronization is-
sues that arise when executing components concurrently.
Its structure is similar to the realistic example in Figure
1 of [2], however the implementation of each component is
much simpler. We have tested three distinct taskflow imple-
mentations: (1) with all components residing on the same
host (with some components executing concurrently), (2)
with distributed components, accessed by way of telnet/ssh-
based clients, and (3) with distributed components accessed
by way of http-based clients [1]. In this paper, we present
the ‘parabola’ taskflow where some components are accessed
by way of a http-based client.

Consider the goal of computing an approximate minimum
of a simple quadratic function by an iterative method. The
approximation method we use is crude intentionally so that
both, the number of iterations and the approximate mini-
mum reported by the solver, depend critically on the start-
ing point. Rather than analyze the problem by serially exe-
cuting the solver from different starting points, we perform
the analysis by executing multiple instances of the solver
concurrently. The blackbox components at our disposal are:

(1) pInitSolver, a program on a local host. It initializes
all data required by subsequent programs.

(2) pSolverWeb, a program accessible as a cgi script on a
host specified by a URL. It finds an approximate min-
imum of a single variable function. It can be invoked
repeatedly, using the solution from the previous iter-
ation as a new starting point. User can ‘control’ the

number of expected iterations before finding an ap-
proximate minimum by choosing a starting point far
from the optimum value.

(3) download, a program on a local host. It downloads
data from a directory on another host, referenced by
a URL.

(4) pEvaluator, a program on a local host. The program
finds the average of the n solutions and related statis-
tics.

(5) pReport, a program on a local host. The program
writes the solution report to a file.

Given these five blackbox components, we now aggregate
them into whitebox (multi-task) component instances such
that the computational tasks can be invoked and executed
in the desired sequence. What we want is to invoke three
instances of pSolverWeb, and in turn, also invoke three in-
stances of pInitSolver and download. The hierarchical
organization of the computational task instances we pro-
pose is shown in the TaskTree of Figure 4. The instances
of pInitSolver are assigned names (InitA), (InitB), and
(InitC). The new whitebox component pSolverFlow is a
composition two instances: (pSolverWeb) and (download)
and we use three instances of this component, (A), (B), and
(C). Here we also introduce the convention where ‘()’ serve
as the first and the last character of each task instance; this

TaskTree (parabolaMain)

+ (parabolaMain)

+ (parabola) # parabola (whitebox)
- (InitA) # pInitSolver (blackbox)
+ (A) # pSolverFlow (whitebox)

- (pSolverWeb) # pSolverWeb (blackbox)
- (download) # download (blackbox)

- (InitB) # pInitSolver (blackbox)
+ (B) # pSolverFlow (whitebox)

- (pSolverWeb) # pSolverWeb (blackbox)
- (download) # download (blackbox)

- (InitC) # pInitSolver (blackbox)
+ (C) # pSolverFlow (whitebox)

- (pSolverWeb) # pSolverWeb (blackbox)
- (download) # download (blackbox)

- (D) # pEvaluator (blackbox)
- (E) # pReport (blackbox)

TaskGraph (parabolaMain)

(BEGIN) => (parabola) => (END)

TaskGraph (parabola)

(BEGIN) => (InitA) => (A) => (D) => (E) => (END)
(A) => (A) (D) +> (A)

(BEGIN) => (InitB) => (B) => (D) => (E) => (END)
(B) => (B) (D) +> (B)

(BEGIN) => (InitC) => (C) => (D) => (E) => (END)
(C) => (C) (D) +> (C)

TaskGraph (A) or (B) or (C)

(BEGIN) => (pSolverWeb) => (download) => (END)

Figure 4: Conceptual composition of ‘parabola’.

convention is also an integral part of the more formal cdtML
descriptions presented in the next subsection. There are a
total of 15 task instances of single and multi-tasks defined
under the root instance (parabolaMain).

However, the tree organization of tasks gives no infor-
mation as to how any of these tasks may be scheduled for
invocation. To complement the view of the relations be-
tween the task instances, we also introduce a TaskGraph
at each level of the tree hierarchy. Examples of three such
graphs are also shown in Figure 4. In each taskgraph we
connect task instances with directed edges that can be of
three types: InvocationEdge, RepeatInvocationEdge, and
AbortInvocationEdge. Since the RepeatInvocationEdge can
only imply a task instance with a self-loop, the symbols
for the InvocationEdge and RepeatInvocationEdge are the
same: => represents the ‘closed state’ and == represents the
‘open state’ of the edge. We rely on the context of use to
decide whether the edge is an InvocationEdge or a Repeat-
InvocationEdge. The symbols for the AbortInvocationEdge
are +> for the ‘closed state’ and ++ for the ‘open state’. In
the taskgraph (parabola), task instances (A), (B), and (C)
have self-loops, and each one of them may potentially be
aborted by a valid pulse on the AbortInvocationEdge from
task (D). It is relatively easy to parse the directed graph
descriptions as shown in Figure 4; the syntax we use is a
derivative of the ‘dot’ syntax introduced in [17].

The user-defined taskgraph (parabola) implies a number
of sequences in which task instances may be executed. If we
suppress the AbortInvocationEdges, the task graph is always
a polar DAG3. When analyzing a polar DAG in terms of its
potential schedule, we may assume three defaults:

• a single task may invoke a number of tasks concur-
rently, given that the states of the outgoing Invoca-
tionEdges are valid.

• a single task, driven by a number of InvocationEdges
is not invoked until the states of all incoming Invoca-
tionEdges are valid.

• given the RepeatInvocationEdge in a valid state, a sin-
gle task may repeatedly re-invoke itself after the first
invocation by another task.

The taskgraph of the (parabola) instance, as conceptually
defined in Figure 4, is also part of the cdtML description in
Figure 5. This description is read by the OmniFlow client
which renders its tree and graph views as shown in Fig-
ure 6. Clearly, task instances (InitA), (InitB), and (InitC),
may be invoked concurrently, and so may task instances (A),
(B), and (C) that follow. The BeginFork primitive within
the task instance (D) has to decide the status of the three
incoming InvocationEdges before invoking the instance (D)
itself. If the task (D) is to be invoked after only two of the in-
coming InvocationEdges are valid, BeginFork must not only
invoke task (D) but also assign a valid abort pulse to one
of the Invocation AbortEdges incident at tasks (A), (B), or
(C) that still may be executing. It is up to the user to refine
the description of each task instance which in turn, will in-
duce such a schedule, different from the defaults described

3DAG stands for an abbreviation of a directed acyclic graph.
A graph is polar since the task instances (BEGIN) and
(END) are always present. Nodes in such a graph may also
contain self-loops, indicating a repeating task, subject to
some termination conditions.

above. Clearly, such schedule will also follow the directives
implied by the user-placed AbortInvocationEdges.

Parabola – Taskflow cdtML Description. We continue
to use the taskflow ‘parabola’ as the example to illustrate
representative aspects of the cdtML syntax. Ideally, each
cdtML description of a taskflow has been validated against
the cdtML schema such as the XML segment shown in Fig-
ure 3. While not mandatory, the recommended file orga-
nization of a taskflow description for any major project is
to divide the description into three files that capture the
‘project main’, ‘project definition’, and ‘project body’.

As we illustrate in the next section, it is sufficient that
only the ‘project main’ and ‘project definition’ files are avail-
able; OmniFlow client can render the entire hierarchy of the
taskflow project on basis of these two files only. Moreover,
user can interact with edges and execute any segment of
the taskflow in the ‘simulation mode’, also described in the
next section. This gives us the benefit of adjusting the com-
position and the sequencing of tasks before we commit to
encapsulation of particular blackboxes. It also allows us to
postpone the creation of any DataGraphs, i.e. specific as-
signments of data to task instances.

Now, proceeding with the cdtML description of the task-
flow ’parabola’, we illustrate the taskflow in three files:

• parabola main.cdt (shown in its entirety in Figure 5),

• parabola defn.cdt (two representative segments are
shown in Figure 5, more in the Appendix, Figure 7),

• parabola body.cdt (several representative segments are
shown in the Appendix, Figure 8).

Due to space limitation, we present only selected highlights
of cdtML descriptions. For more details, see the Appendix
in [1] and the updated version in [18].

parabola main.cdt in Figure 5 is a cdtML example of a
MainTask layer introduced in Figure 1. The instance of
(parabola) is referenced as ”parabola defn.cdt#parabola”,
i.e. pointing to its anchor in the file parabola defn.cdt.
Variable value ‘lavana@cbl.ncsu.edu’, file names ‘pbInDe-
scrA.d’,..., ‘parabola.rpt’ are entered as data in this file.

parabola defn.cdt in Figures 5 and 7 contain a number of

cdtML examples of Single (Multi) -Task Definition layers
introduced in Figure 1. Specifically, parabola represents a
multi-task definition layer, supported as an element of com-
plex type with name MultiTaskDefn in the cdtML schema
in Figure 3. The correspondence between the elements of
the cdtML schema and the user-entered description of the
multi-task definition can be readily ascertained. Note also
that the task graph, described conceptually in Figure 4 is
now a formal part of the task graph description delimited
by <TaskGraph> and </TaskGraph>.

As mentioned earlier, the descriptions of the MainTask
and all TaskDefinition layers is sufficient to invoke the Om-
niFlow client and render the entire hierarchy of the taskflow
project. When we are ready to include descriptions of cor-
responding TaskBody layer for each of the defined tasks, we
reference the corresponding body description as follows:

<MultiTaskDefn name="parabola"

bodyRef="parabola body.cdt#parabola">

parabola body.cdt in Figure 8 contains a number of cdtML

examples of Single (Multi) -Task Body and TaskInstance lay-
ers introduced in Figure 1. These two layers are clearly the

************** parabola defn.cdt ***************

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CDTML SYSTEM

"http://www.cbl.ncsu.edu/OpenCdt/cdtml_schema.xml">
<!-- parabola_defn.cdt -->
<Cdtml>
<MultiTaskDefn name="parabola"

bodyRef="parabola_body.cdt#parabola">
<Title> Taskflow parabola </Title>
<InputList>

<Input port="emailaddr" type="temporary">
<Title> Email address </Title>

</Input>
<Input port="mInDescrA" type="persistent">

<Title> Input description for task A </Title>
</Input>
<Input port="mInDescrB" type="persistent">

<Title> Input description for task B </Title>
</Input>
<Input port="mInDescrC" type="persistent">

<Title> Input description for task C </Title>
</Input>
<Input port="mInitCost" type="temporary">

<Title> Initial cost (should be large) </Title>
</Input>

</InputList>
<OutputList>

<Output port="mOutReport" type="persistent">
<Title> Report of parabola evaluation </Title>

</Output>
</OutputList>
<TaskList>

<Begin/>
<Task instance="(InitA)"

taskRef="parabola_defn.cdt#pInitSolver"/>
<Task instance="(InitB)"

taskRef="parabola_defn.cdt#pInitSolver"/>
<Task instance="(InitC)"

taskRef="parabola_defn.cdt#pInitSolver"/>
<Task instance="(A)"

taskRef="parabola_defn.cdt#pSolverFlow"/>
<Task instance="(B)"

taskRef="parabola_defn.cdt#pSolverFlow"/>
<Task instance="(C)"

taskRef="parabola_defn.cdt#pSolverFlow"/>
<Task instance="(D)"

taskRef="parabola_defn.cdt#pEvaluator"/>
<Task instance="(E)"

taskRef="parabola_defn.cdt#pReport"/>
<End/>

</TaskList>
<TaskGraph>

(BEGIN) => (InitA) => (A) => (D) => (E) => (END)
(A) => (A) (D) +> (A)

(BEGIN) => (InitB) => (B) => (D) => (E) => (END)
(B) => (B) (D) +> (B)

(BEGIN) => (InitC) => (C) => (D) => (E) => (END)
(C) => (C) (D) +> (C)

</TaskGraph>
</MultiTaskDefn>

...

...
<SingleTaskDefn name="pReport"

bodyRef="parabola_body.cdt#pReport">
<Title> Parabola Report Generator </Title>
<Description>

...
</Description>
<InputList>

<Input port="totalCost" type="persistent">
<Title> Total cost </Title>

...

...
</Output>

</OutputList>
</SingleTaskDefn>
</Cdtml>
<!-- parabola_defn.cdt -->

************** parabola main.cdt ***************

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CDTML SYSTEM

"http://www.cbl.ncsu.edu/OpenCdt/cdtml_schema.xml">
<!-- parabola_main.cdt -->
<Cdtml>

<MainTask>
<TaskList>

<Begin/>
<Task instance="(parabola)"

taskRef="parabola_defn.cdt#parabola"/>
<End/>

</TaskList>

<TaskGraph>
(BEGIN) => (parabola) => (END)

</TaskGraph>

<TaskInstance instance="(parabola)">
<SetInput port="emailaddr">

<LocalValue> lavana@cbl.ncsu.edu </LocalValue>
</SetInput>
<SetInput port="mInDescrA">

<LocalValue> pbInDescrA.d </LocalValue>
</SetInput>
<SetInput port="mInDescrB">

<LocalValue> pbInDescrB.d </LocalValue>
</SetInput>
<SetInput port="mInDescrC">

<LocalValue> pbInDescrC.d </LocalValue>
</SetInput>
<SetInput port="mInitCost">

<LocalValue> 1e6 </LocalValue>
</SetInput>
<SetOutput port="mOutReport">

<LocalValue> parabola.rpt </LocalValue>
</SetOutput>

</TaskInstance>
</MainTask>

</Cdtml>
<!-- parabola_main.cdt -->

This example illustrates the recommended file organization of
a taskflow description named ‘parabola’. There are a total of
three files:

• parabola main.cdt (shown in its entirety above),
• parabola defn.cdt (two representative segments are

shown on the left, more in the Appendix, Figure 7), and
• parabola body.cdt (several representative segments are

shown in the Appendix, Figure 8).

Here, parabola main.cdt invokes a task instance (parabola)
referenced as ”parabola defn.cdt#parabola”. Data entries
such as variable value ‘lavana@cbl.ncsu.edu’, input file
name ‘pbInDescrA.d’,..., output file name ‘parabola.rpt’ are
passed on to the corresponding meta ports declared in
”parabola defn.cdt#parabola”.

Note that in parabola defn.cdt, parabola represents a multi-
task definition layer, supported as an element of complex type
with name MultiTaskDefn in the cdtML schema in Figure 3.
The correspondence between the elements of the cdtML schema
and the user-entered description of the multi-task definition is
clear. A simple syntax describes the task graph, the symbol =>
represents the closed state of an InvocationEdge or RepeatIn-
vocationEdge, the symbol +> represents the closed state of an
AbortInvocationEdge.

Each task definition also references its body description: e.g.

<MultiTaskDefn name="parabola"

bodyRef="parabola body.cdt#parabola">

Figure 5: Example of taskflow ‘definition’ and ‘main’ files written in cdtML.

most elaborate. Only a representative segment of the multi-
task body layer for ”parabola” is shown here, whereas a
complete description of the corresponding definition layer
is shown Figure 5. However, Figure 8 does contain com-
plete descriptions of single-task body layers for the encap-
sulated blackbox components pSolverWeb, download, and
pEvaluator. We highlight some of the features of these de-
scriptions next.

MultiTaskBody name=”parabola”. The structure of this
description follows the MultiTaskBody schema shown
in Figure 1: full description of task instances delim-
ited by <BeginFork/> and <EndJoin/>, followed by a
data graph description delimited by <DataGraph> and
</DataGraph>.

TaskInstance instance=”(A)”. The structure of this de-
scription follows the TaskInstance schema shown in
Figure 1: local data input and data output ports
for this task instance are delimited by <DataMux> and
<DataMux/>. Neither ControlJoin (<JoinConditions>
nor ControlFork (<ForkConditions> are entered, hence
default conditions apply. Note however the explicit
entry of the <RepeatCondition>. The reference to
the encapsulated task is implicit in the instance name
”(A)”; looking back to the definition file in Figure 5,
we find

<Task instance="(A)"
taskRef="parabola_defn.cdt#pSolverFlow"/>

which points to

<Task instance="(pSolverWeb)"
taskRef="parabola_defn.cdt#pSolverWeb"/>

which points to

<SingleTaskDefn name="pSolverWeb"
bodyRef="parabola_body.cdt#pSolverWeb">

which is described later in this column. Another fea-
ture of interest in the description of this task instance
is the use and the syntax of the taskflow-defined com-
mands evalRepeatCondition and cdtReadData:

<RepeatCondition>
<UserRepeat>

evalRepeatCondition \
"[cdtReadData newCost]"

IsLessThan "[cdtReadData oldCost]"
</UserRepeat>

</RepeatCondition>

TaskInstance instance=”(D)”. The interesting feature of
this task instance description is the use and the syntax
of the taskflow-defined procedure evalJoinCondition:

<JoinCondition>
<UserInvoke>

evalJoinCondition OR \
.....

[evalJoinCondition AND {(A) Valid} {(B) Valid}
{(C) Skipped}] \

[evalJoinCondition AND {(A) Valid} {(B) Skipped}
{(C) Valid}] \

.....
</UserInvoke>

</JoinCondition>

The syntax shown above, while completely general,
may not be suitable to express conveniently all con-
ditions under which to invoke a task. An example of
a synchronizing condition where a shorter syntax is
preferred is shown below:

<JoinCondition>
<UserInvoke>

evalJoinCondition MINIMUM 2 \
{(A) Valid} {(B) Valid} {(C) Valid}

</UserInvoke>
</JoinCondition>

<DataGraph>. The DataGraph associated with the Mul-
tiTaskBody name=”parabola” in in Figure 8 has a sim-
ple syntax, similar to the one described for the Task-
Graph in Figure 4. It consist of data port pairs, con-
nected by a directed DataEdge represented with a sym-
bol ->, e.g.

<DataGraph>
emailaddr -> (InitA).emailaddr
emailaddr -> (InitB).emailaddr
emailaddr -> (InitC).emailaddr
.........
(D).costAvg -> (E).costAvg
(D).count -> (E).count
(E).outReport -> mOutReport

</DataGraph>

To appreciate the simplicity of this syntax, consider
the description of parabola main.cdt in Figure 5. Here,
the value assigned to emailaddr is lavana@cbl.ncsu.edu.
According to DataGraph, this value is passed to data
ports of three task instances: (InitA).emailaddr, (InitB).
emailaddr, (InitC).emailaddr. Similarly, data values
computed by task instance (D) are passed to data
ports of task instance (E), i.e. to (E).costAvg and
(E).costAvg. The report file generated by task instance
E is passed on to the data port of parabola main and
is accessible by the name of the variable, assigned to
mOutReport: parabola.rpt in this case.

SingleTaskBody name=”pSolverWeb”. This blackbox com-
ponent uses the exec command of type ”HttpCmd”
where the program cdtHttpSubmit is invoked with a
number of parameters, ranging from URL (parabo-
laurl) to problem-specific variable values and files. Note
also the use of the command cdtGetData to access val-
ues of respective data ports.

SingleTaskBody name=”download”. This blackbox compo-
nent also uses the exec command of type ”HttpCmd”
where the program cdtHttpGet is invoked with a num-
ber of parameters, including URL, to download data
from a web-based directory to a designated directory
on the local host.

SingleTaskBody name=”pEvaluator”. This blackbox com-
ponent uses the exec command of type ”TclCmd” where
the program pEvaluator.tcl is invoked with a num-
ber of parameters.

3. TASKFLOW GUI AND INTERACTIONS
A generic schema and the specific architecture that imple-
ments the taskflow GUI, scheduling, and execution are out-
lined in Section 1 and illustrated in Figure 1. The XML-
based implementation of the cdtML taskflow schema and

detailed examples of taskflow descriptions in cdtML are pre-
sented in Section 2. Notably, we argue that the entire list
of 10 taskflow GUI features, formulated as requirements to
support a taskflow-oriented programming paradigm in [2],
is covered by the implementations as presented in this and
the preceding sections of this paper.

In this section, we expand on the implementation of the
taskflow GUI environment and the number of ways user can
interact with such an environment, first shown in Figure 2.

3.1 Taskflow GUI
When organizing computational tasks in a number of projects
with distributed software components, two generic views
about such organizations emerged already in the conceptual
phase [1, 2]. One is a tree view, where the computational
project is organized as a hierarchy of tasks in a rooted tree.
The second one is a graph view that intuitively depicts the
choices of sequences in which tasks may be invoked and ex-
ecuted at each level of hierarchy. This organization is im-
plemented by the taskflow architecture in Figure 1; we now
expand on the ’parabola’ taskflow example introduced in
Figure 2 and described, in cdtML, in Section 2.

Our current implementation of the taskflow GUI has four
main views: a selector view, tree view, a graph view, and a
status view. These views are briefly described in Figure 6; a
more detailed description is given below.

Selector View. There are three modes in which user can
execute the taskflow: simulation, execution with local data,
execution with flow data.

The simulation mode allows the user to execute the entire
taskflow structure without specifying any data dependencies
between tasks, with each task assigned a random variable to
‘sleep’ for a few seconds. Alternatively, user can enter, in
the field labeled as ‘Sleep’, an integer number to indicate
the number of seconds a task is to stay in the sleep state.
This mode is useful to set-up and test the taskflow control
structure as specified in user-defined TaskGraph description,
including the verification for concurrent execution.

The execution with local data is useful when verifying the
performance of each task in the taskflow in a stand-alone
context, with originally archived test data for each task.

The execution with flow data implies that each task relies
on data that may be generated dynamically by other tasks,
as specified in user-defined DataGraph description.

The View/Edit buttons provide selections to either view
or edit data nodes associated with each task. Data may
be viewed or edited when clicking on data nodes that are
displayed with each task instance in the graph view.

The selector view in Figure 6 displays the choice of a ‘sim-
ulation mode’ with an integer assignment of 2 seconds for
each task to stay in the ‘sleep mode’ during the taskflow
simulation.

Tree view. Initially, the tree view consists solely of the
main task instance displayed as the root of the tree view.
The children of the main task instance can be opened or
closed by the user by clicking on a ‘+’ or a ‘-’ symbol located
near the task instance node.

On opening the main task instance, it displays the data
I/O port lists, if any, of the main task, such as InputList,
InOutList, OutInList and OutputList and also its TaskList.
Each TaskList can be expanded similarly until we reach the
task represented by the blackbox component. Only after

clicking on the displayed task instance is the cdtML data
parsed and translated to TclTk which renders the expanded
display of the tree.

Each task instance is a button widget that user clicks to
invoke and execute. There are additional control buttons
in the row defined by the task instance button: Skip, Exec,
Abort, and Clean. If the task instance represents a whitebox,
i.e. it contains other task instances, there is also a Load-
Graph-View button. Clicking this button renders the graph
view of the task instance. We provide more details about
these button when presenting the graph view.

In general, the tree view provides a simple, compact user-
interface for browsing the hierarchy of the task instances as
well as for its interactive execution.

The tree view in Figure 6 displays a partial expansion of
the taskflow tree representation. Tasks instances that are
displayed as shaded, e.g. (BEGIN), indicate the completion
state of the task after taskflow execution; i.e. they cannot
be re-invoked until user resets them.

Graph View. The graph view presents a dynamically gen-
erated and a highly interactive interface that depicts task-to-
task, data-to-task and task-to-data dependencies at a given
level of taskflow hierarchy. Elements of each task instance
are encapsulated in a shaded box as shown; a thin edge rep-
resents an instance of a blackbox component, a thick edge
represents an instance of a whitebox component. Each task
instance contains the following elements with which user can
interact:

• a task button that user can click to invoke the task in-
stance directly (rather than wait for the task to be in-
voked and executed by other tasks in accordance with
a schedule).

• a skip checkbox that can be selected if the user wants
to skip the execution of the task instance.

• an exec checkbox that can be selected if the user wants
to force the execution of the task instance without
checking for the timestamps of the input/output data
dependencies.

• an Abort button which becomes active only when the
corresponding task instance is executing.

• a Clean button that can be used to delete the output
files for the task instance before invocation. This but-
ton becomes a Reset button after a valid completion
of the task.

• a LGV button for descending the taskflow hierarchy,
i.e. loading another graph view if the task instance
represents a whitebox.

• data nodes, represented as circles and connected with
data-edges to the input, inout, outin and output ports
of the respective task instance. Data may be viewed
or edited when clicking on any data node.

• an optional RepeatInvocationEdge whose state can be
toggled between open/closed with a user click. This
edge is displayed only if user specified it in the cdtML
description of the taskgraph.

A taskgraph is formed by connecting the task instances with
InvocationEdges or AbortInvocationEdges as described in the
earlier section. User can click on any of these edges to se-
lect or de-select task instances for invocation by other task
instances, thereby controlling the invocation schedule, gen-
erated dynamically at the runtime.

There are four main views of the taskflow GUI:

Selector View: The Invocation Mode buttons provide three
choices: simulation, execution with local data, execution
with flow data. The View/Edit buttons provide selections
to view/edit data nodes of each task. In the simulation
mode, the Sleep entry assigns a random/fixed sleep in-
terval for each task.

Tree View: The tree view provides an intuitive, dynamically
generated interface to browse the hierarchy of task in-
stances, including data I/O definitions. Each task in-
stance is a button that user may click to invoke and exe-
cute. Clicking the Load-Graph-View button next to each
instance of a whitebox renders its graph view.

Graph View: The graph view is a dynamically generated
and a highly interactive interface that depicts task-to-
task, data-to-task and task-to-data dependencies. User
clicks on Invocation, RepeatInvocation, or AbortInvoca-
tion edges to select or de-select task instances which in
turn control the execution schedule, generated dynami-
cally at the runtime. User click on the task button also
invokes the task instance. Using a color scheme, cur-
rent state of each task is displayed in the tail box of the
Invocation/AbortInvocation edge. See text for more de-
scriptions of these views.

Status View: Messages generated during user interactions
and taskflow executions are captured in the status view.
The simulation log on the right illustrates that the se-
lected task instances are indeed executing concurrently.

== parabola-web ==
UserInvokeTask: (main..) (p..) (BEGIN)
1 BeginForkTask = (main..) (p..) (BEGIN)
2 EnabledTask = (main..) (p..) (InitB)
3 EnabledTask = (main..) (p..) (InitC)
4 ExecutingTask = (main..) (p..) (InitB)
5 Sleep 2000 ms = (main..) (p..) (InitB)
6 ExecutingTask = (main..) (p..) (InitC)
7 Sleep 2000 ms = (main..) (p..) (InitC)
8 CompletedTask = (main..) (p..) (InitB)
9 CompletedTask = (main..) (p..) (InitC)

10 DoneTask = (main..) (p..) (InitB) .. 2078 ms
11 DoneTask = (main..) (p..) (InitC) .. 2089 ms
12 EnabledTask = (main..) (p..) (B)
13 ExecutingTask = (main..) (p..) (B)
14 EnabledTask = (main..) (p..) (C)
15 ExecutingTask = (main..) (p..) (C)
16 BeginForkTask = (main..) (p..) (B) (BEGIN)
17 BeginForkTask = (main..) (p..) (C) (BEGIN)
18 EnabledTask = (main..) (p..) (B) (pSolverWeb)
19 EnabledTask = (main..) (p..) (C) (pSolverWeb)
20 ExecutingTask = (main..) (p..) (B) (pSolverWeb)
21 Sleep 2000 ms = (main..) (p..) (B) (pSolverWeb)
22 ExecutingTask = (main..) (p..) (C) (pSolverWeb)
23 Sleep 2000 ms = (main..) (p..) (C) (pSolverWeb)
24 CompletedTask = (main..) (p..) (B) (pSolverWeb)
25 DoneTask = (main..) (p..) (B) (pSolverWeb) .. 2020 ms
26 CompletedTask = (main..) (p..) (C) (pSolverWeb)
27 DoneTask = (main..) (p..) (C) (pSolverWeb) .. 2035 ms
28 EnabledTask = (main..) (p..) (B) (download)
29 EnabledTask = (main..) (p..) (C) (download)
.................

Figure 6: Key elements of the taskflow GUI design: a tree view and a graph view.

Using a color scheme, current state of each task instance is
displayed in the square between the task instance boundary
and the head of the Invocation/AbortInvocation edge:

• white, to indicate the task waiting state;

• wheat, to indicate the task enabled/executing state;

• green, to indicate the task ForkCondition valid state;

• violet, to indicate the task ForkCondition not-valid
state;

• yellow, to indicate the task skipped state.

• pink, to indicate the task timed-out state;

• red, to indicate the task aborted state.

A graph view is useful in providing a visual representation
of the various dependency relationships in a taskflow. How-
ever, it is limited to displaying only one level of the task
instance hierarchy in a single view. Thus, rather than open-
ing multiple graph views for each level of hierarchy, it may
sometimes be more convenient to use a tree view to browse
the taskflow hierarchy and selectively load the graph views
of only few task instances that are of interest to the user.

The graph view in Figure 6 displays task instances that
have not been invoked and are in waiting states (tasks (InitA),
(A), (D)), tasks that have been invoked and completed exe-
cution as valid (tasks (BEGIN), (InitB), (InitC), (B)), and
tasks that have been invoked and are still in executing state
(task (C)). In the current implementation, the AbortInvo-
cationEdges from task (D) overlap with the incoming Invo-
cationEdges from tasks (A), (B), and (C).

Status View. Messages generated during user interactions
and taskflow executions are captured in the status view.
User can scroll through the entire set of such messages dur-
ing the session. This view can also assist in debugging and
restructuring a taskflow composition.

The status view in Figure 6 displays the last few states of
the taskflow before its execution came to a halt. A textbox
below this view display the first 29 states of the taskflow
when executing in the simulation mode. The trace clearly
illustrates that the selected task instances are indeed exe-
cuting concurrently.

3.2 Taskflow Interactive Environment
The basic premise of taskflow-oriented programming with
OmniFlow is that user directly interacts with an environ-
ment in which he controls the linking, scheduling, and exe-
cution of its components. The underlying cdtML configura-
tion is composed with a text editor or more conveniently, a
validating XML editor. The environment itself is created by
OmniFlow that parses and renders the cdtML configurations
as the interactive taskflow environment. As anticipated in
[2], the list of point-and-click features includes:

• open, close, ascent, and descent of the tree and the
graph hierarchy.

• reconfiguration of a invocation, repeat invocation, and
abort invocation edge into a ‘closed’ or ‘open’ state.

• invocation of the taskflow and its schedule by clicking
on any of its task nodes, including the Begin task node.

• abort of the taskflow by clicking on one or more of
the executing task nodes, propagated in a descending
order of taskflow hierarchy.

• reset of the taskflow state, propagated in a descending
order of taskflow hierarchy.

• access to view and edit data associated with each task,
represented as input (output) data nodes associated
with each task.

To illustrate but a small fraction of such interactivity, con-
sider the steps to reach the state of the taskflow in Figure 6
after its initial rendering:

• in the selector view, choose the simulation mode and
enter the value of 2;

• in the tree view, expand the task instance parabola main,
find task instance parabola and click on the Load-Graph-
View button in the same row;

• in the tree view, change the states of two edges from
‘closed’ to ‘open’: the edge from (BEGIN) to (InitA),
and the edge that forms a self-loop with task (C);

• in the tree view, click on task instance (BEGIN) and
observe the flow of execution: tasks (InitA) and (InitB)
invoke concurrently, and after about 2 seconds, tasks
(InitB) and (InitC) invoke concurrently, each invoking
(B) and (C) respectively, i.e. the different instances
of tasks (pSolverWeb) and (download), each taking 2
seconds to ‘sleep’ for a nominal total of 4 seconds for
(B), and 4 seconds for (C).

• in the status view, the ‘halted’ taskflow state (#75)
reports a total of 13.379 seconds execution time for
instance (B). Nominally, this task repeated 3 times
and would have reported 3 × (2 + 2) = 12 seconds –
if there were no overhead in scheduling and executing
the tasks.

The section that follows, reports a number of performance
experiments that reveal a consistent and efficient perfor-
mance of the taskflow scheduler.

4. PERFORMANCE EXPERIMENTS
Comprehensive experiments with a variety of taskflows have
already demonstrated the efficiency of the GUI implemen-
tation and the scheduler [1]. Rendering a taskflow such
as shown in Figure 6 is less than 2 seconds (under So-
laris/Linux/ WindowsNT/MacOS) and user interactions such
as changing the state of any invocation edges from open to
closed (and vice versa) is instantaneous. Large-scale experi-
ments with taskflow configurations ranging from 15 to 9150
task instances, with longest path delay of 1600 tasks, reveal
a near constant overhead of processing each task, indepen-
dent of time to execute the task and also independent of
the structure of the taskflow. For example, the overhead
per task in a taskflow of 2400 instances where most task are
executed sequentially (longest path delay is 1600 tasks) and
a taskflow of 2400 instances where most task are executed
concurrently (longest path delay is 100 tasks) is as follows:

taskflow(2400/1600): 922.8/2400 = 0.384 seconds/task
taskflow(2400/100): 979.5/2400 = 0.408 seconds/task

For taskflows with 300 instances, the overhead amounts to:

taskflow(300/200): 123.6/200 = 0.412 seconds/task
taskflow(300/100): 118.8/300 = 0.396 seconds/task

Given that most tasks may require a number of seconds to
complete, the taskflow overhead is negligible.

An entire chapter in [1] is devoted to descriptions of task-
flow implementations of collaborative and distributed com-
puting projects, bringing together a number of university-

based as well as commercial stand-alone programs. Experi-
ments also include records of traces for a number of distinc-
tive scheduling patterns: from simple sequencing of tasks,
to splits, concurrency, joins, iterations, and cycles. A de-
scription of these patterns is summarized in [2].

5. SUMMARY AND CONCLUSIONS
This paper presents an XML/TclTk implementation of a
universal, user-configurable and highly interactive client (Om-
niFlow) that creates a taskflow-oriented programming envi-
ronment, conceptually introduced in the companion paper
[2]. In the taskflow-oriented programming paradigm, task
instances represent distributed stand-alone component pro-
grams that user composes into interactive, executable pro-
grams. User alone can now (1) write a hierarchical taskflow
configuration, (2) invoke the universal client (OmniFlow)
that reads the configuration and renders its GUI, and (3)
interact with the taskflow in a number of ways.

The recursive schema of component instances is conve-
niently captured as an extension of XML in a collaborative
distributed task mark-up language cdtML. A generic Tcl-
XML parser reads both the cdtML schema and the user-
created cdtML taskflow description and outputs a taskflow
description in TclTk. This in turn generates the interactive
GUI as the hierarchical taskflow, waiting for user inputs.
User may choose to interact in any of the following ways:
reconfigure the taskflow interconnections, view or edit data,
descend/ascend the taskflow hierarchy, select the mode of
execution, invoke the taskflow, abort the taskflow (if already
executing), reset the state of the taskflow, etc.

Experimental evaluations of the client prototype on a num-
ber of networked design and computing projects, including
taskflow descriptions with up to 9150 tasks executing serially
and concurrently on the longest path of 1600 tasks, demon-
strate the scalability of the environment and the overall ef-
fectiveness of the proposed architecture. A user guide and a
cross-platform software prototype of the client described in
this paper will be posted by June 2001 under

http://www.cbl.ncsu.edu/OpenProjects/OmniFlow/.

Acknowledgment. The implementation of OmniFlow ben-
efited from the on-going cross-platform support for TclTk by
the Tcl core team and other contributors [14]. In particular,
we acknowledge the use of the following cross-platform li-
braries and packages: tcllib0.8, tclxml2.0, bwidget1.3. Also,
the use of demo version of XMLSpy, a validating XML editor
[16], has been most productive.

6. REFERENCES
[1] H. Lavana. A Universally Configurable Architecture

for Taskflow-Oriented Design of a Distributed
Collaborative Computing Environment. PhD thesis,
Electrical and Computer Engineering, North Carolina
State University, Raleigh, N.C., December 2000. Also
available at http://www.cbl.ncsu.edu/-

publications/#2000-Thesis-PhD-Lavana.

[2] F. Brglez and H. Lavana. A Universal Client for
Taskflow-Oriented Programming with Distributed
Components: Concepts. In The 8th Tcl/Tk Conference
at the O’Reilly Open Source Convention. O’Reilly,
July 2001. See also http://www.cbl.ncsu.edu/-

publications/#2001-TclTk-Brglez.

[3] W3C Home Page for XML Schema, September 2000.
For more information, see
http://www.w3.org/XML/Schema.html.

[4] D. Hunter et al. Begining XML. Wrox, 2000.

[5] XML Resource Guide, 2000. For more information, see
http://www.xml.com/resourceguide.

[6] J. K. Ousterhout. Tcl and the Tk Toolkit.
Addison-Wesley, 1994.

[7] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski.
Executable Workflows: A Paradigm for Collaborative
Design on the Internet. In Proceedings of the 34th
Design Automation Conference, pages 553–558, June
1997. Also available at http://www.cbl.ncsu.edu/-

publications/#1997-DAC-Lavana.

[8] A. Khetawat, H. Lavana, and F. Brglez. Internet-based
Desktops in Tcl/Tk: Collaborative and Recordable. In
Sixth Annual Tcl/Tk Conference. USENIX, September
1998. Also available at http://www.cbl.ncsu.edu/-

publications/#1998-TclTk-Khetawat.

[9] F. Brglez, H. Lavana, Z. Fu, D. Ghosh, L. I. Moffitt,
S. Nelson, J. M. Smith, and J. Zhou. Collaborative
Client-Server Architectures in Tcl/Tk: A Class
Project Experiment and Experience. In Seventh
Annual Tcl/Tk Conference. USENIX, February 2000.
Also available at http://www.cbl.ncsu.edu/-

publications/#2000-TclTk-Brglez.

[10] Tcl/Tk Web Browser Plug-in, 2001. See
http://tcl.activestate.com/software/plugin/.

[11] H. Lavana and F. Brglez. WebWiseTclTk: A
Safe-Tcl/Tk-based Toolkit Enhanced for the World
Wide Web. In Sixth Annual Tcl/Tk Conference (Best
Student Paper Award). USENIX, September 1998.
Also available at http://www.cbl.ncsu.edu/-

publications/#1998-TclTk-Lavana.

[12] H. Lavana and F. Brglez. CollabWiseTk: A Toolkit
for Rendering Stand-alone Applications Collaborative.
In Seventh Annual Tcl/Tk Conference. USENIX,
February 2000. Also available at
http://www.cbl.ncsu.edu/publications/-

#2000-TclTk-Lavana.

[13] S. Ball. TclXML Parser, 2001. See
http://www.zveno.com/zm.cgi/in-tclxml/.

[14] Home Page of Tcl Developer Xchange, 2001. See
http://tcl.activestate.com.

[15] D. Libes. Exploring Expect. O’Reilly and Associates,
1995.

[16] XML Spy, A Validating XML Editor, 2001. See
http://www.xmlspy.com/.

[17] E.R. Gansner, E. Koutsifios, S.C. North and K.P. Vo.
A Technique for Drawing Directed Graphs. IEEE
Trans. Software Engg., 19:214–230, 1993. See also
http://www.research.att.com/sw/tools/graphviz/.

[18] F. Brglez and H. Lavana. OmniFlow User Guide on
Taskflow-Oriented Programming and Computing with
Distributed Networked Components, July 2001.
Available from http://www.cbl.ncsu.edu/-

publications/#2001-UG@CBL-OmniFlow.

APPENDIX
Figures 7 and 8 in this Appendix extend the cdtML descrip-
tions of the taskflow ‘parabola’, described in Section 2.

************** parabola defn.cdt ***************

..............
<MultiTaskDefn name="pSolverFlow"

bodyRef="parabola_body.cdt#pSolverFlow">
<Title> pSolver Flow </Title>
<Description>

...
</Description>
<InputList>

<Input port="emailaddr" type="temporary">
<Title> Email address </Title>

</Input>
<Input port="root" type="temporary">

<Title> Root name for the task instance </Title>
</Input>
<Input port="inpDescr" type="persistent">

<Title> Description of input points </Title>
</Input>
<Input port="initCost" type="temporary">

<Title> Initial Cost </Title>
</Input>
<Input port="initSoln" type="temporary">

<Title> Initial solution </Title>
</Input>

</InputList>
<OutInList>

<OutIn port="newSoln" type="persistent">
<Title> New Solution </Title>

</OutIn>
<OutIn port="newCost" type="persistent">

<Title> New Cost </Title>
</OutIn>

</OutInList>
<OutputList>

<Output port="nIter" type="persistent">
<Title> Number of Iterations </Title>

</Output>
<Output port="oldCost" type="persistent">

<Title> Old Cost </Title>
</Output>

</OutputList>
<TaskList>

<Begin/>
<Task instance="(pSolverWeb)"

taskRef="parabola_defn.cdt#pSolverWeb"/>
<Task instance="(download)"

taskRef="parabola_defn.cdt#download"/>
<End/>

</TaskList>
<TaskGraph>

(BEGIN) => (pSolverWeb) => (download) => (END)
</TaskGraph>

</MultiTaskDefn>

<SingleTaskDefn name="pSolverWeb"
bodyRef="parabola_body.cdt#pSolverWeb">

<Title> Parabola Solver </Title>
<Description>

...
</Description>
<InputList>

<Input port="emailaddr" type="temporary">
<Title> Email address </Title>

</Input>
<Input port="parabolaurl" type="temporary">

<Title> Url for the parabola cgi-script </Title>
<DefaultValue>

http://www.cbl.ncsu.edu/vela/
coPI-only/cgi-bin/pub/Parabola

</DefaultValue>
</Input>
<Input port="root" type="temporary">

<Title> Root name for the task instance </Title>
</Input>
<Input port="inpDescr" type="persistent">

<Title> Description of input points </Title>
</Input>

<Input port="initCost" type="temporary">
......................

</Input>
</InputList>
<OutInList>

<OutIn port="newSoln" type="persistent">
<Title> New Solution </Title>

</OutIn>
<OutIn port="newCost" type="persistent">

<Title> New Cost </Title>
</OutIn>

</OutInList>
<OutputList>

<Output port="results" type="persistent">
<Title> Save results of the http submit </Title>

</Output>
<Output port="nIter" type="persistent">

<Title> Number of Iterations </Title>
</Output>
<Output port="oldCost" type="persistent">

<Title> Old Cost </Title>
</Output>

</OutputList>
</SingleTaskDefn>

<SingleTaskDefn name="download"
bodyRef="parabola_body.cdt#download">

<Title> Download Files </Title>
<Description>

...
</Description>
<InputList>

<Input port="emailaddr" type="temporary">
<Title> Email address </Title>

</Input>
<Input port="resultsurl" type="temporary">

<Title> Url for the saved location of
the results </Title>

<DefaultValue>
http://www.cbl.ncsu.edu/vela/SavedData/

[cdtGetData emailaddr]/Parabola
</DefaultValue>

</Input>
<Input port="newSolnWeb" type="persistent">

<Title> New Solution </Title>
</Input>
<Input port="newCostWeb" type="persistent">

<Title> New Cost </Title>
</Input>
<Input port="nIterWeb" type="persistent">

<Title> Number of Iterations </Title>
</Input>
<Input port="oldCostWeb" type="persistent">

<Title> Old Cost </Title>
</Input>

</InputList>
<OutputList>

<Output port="newSolnLcl" type="persistent">
<Title> New Solution </Title>

</Output>
<Output port="newCostLcl" type="persistent">

<Title> New Cost </Title>
</Output>
<Output port="nIterLcl" type="persistent">

<Title> Number of Iterations </Title>
</Output>
<Output port="oldCostLcl" type="persistent">

<Title> Old Cost </Title>
</Output>

</OutputList>
</SingleTaskDefn>

</Cdtml>
<!-- parabola_defn.cdt -->

Figure 7: Example of a taskflow ‘definition’ file written in cdtML.

************** parabola body.cdt ***************

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CDTML SYSTEM

"http://www.cbl.ncsu.edu/OpenCdt/cdtml_schema.xml">
<!-- parabola_body.cdt -->
<Cdtml>

<MultiTaskBody name="parabola" sleep="">
<BeginFork/>
<TaskInstance instance="(InitA)" host="h1">

<DataMux>
<SetInput port="root">

<LocalValue> taskA </LocalValue>
</SetInput>

</DataMux>
</TaskInstance>
...............
<TaskInstance instance="(A)" maxIterate="3" host="h1">

<JoinCondition>
<UserAbort>

evalAbortCondition OR {(D) Enabled}
{(D) Executing}

</UserAbort>
</JoinCondition>
<DataMux>

<SetInput port="root">
<LocalValue> taskA </LocalValue>

</SetInput>
<SetInput port="inpDescr">

<LocalValue> taskA_inpDescr.d </LocalValue>
</SetInput>
<SetInput port="initCost">

<LocalValue> 1.e6 </LocalValue>
</SetInput>
<SetInput port="initSoln">

<LocalValue> 5 </LocalValue>
</SetInput>
<SetOutIn port="newCost">

<LocalValue> taskA_newCost.d </LocalValue>
</SetOutIn>
<SetOutIn port="newSoln">

<LocalValue> taskA_newSoln.d </LocalValue>
</SetOutIn>
<SetOutput port="nIter">

<LocalValue> taskA_nIter.d </LocalValue>
</SetOutput>
<SetOutput port="oldCost">

......................
</DataMux>
<RepeatCondition>

<UserRepeat>
evalRepeatCondition \

"[cdtReadData newCost]"
IsLessThan "[cdtReadData oldCost]"

</UserRepeat>
</RepeatCondition>

</TaskInstance>
...............
<TaskInstance instance="(D)">

<JoinCondition>
<UserInvoke>

evalJoinCondition OR \
[evalJoinCondition AND {(A) Valid} {(B) Valid}

{(C) Valid}] \
[evalJoinCondition AND {(A) Valid} {(B) Valid}

{(C) Skipped}] \
[evalJoinCondition AND {(A) Valid} {(B) Skipped}
................................... \

[evalJoinCondition AND {(A) Skipped} {(B) Valid}
{(C) Skipped}] \

[evalJoinCondition AND {(A) Skipped}
{(B) Skipped} {(C) Valid}] ;

</UserInvoke>
</JoinCondition>
<DataMux>
..........
</DataMux>

</TaskInstance>
<EndJoin/>

<DataGraph>
emailaddr -> (InitA).emailaddr
emailaddr -> (InitB).emailaddr
emailaddr -> (InitC).emailaddr
mInDescrA -> (InitA).inpDescr
mInDescrB -> (InitB).inpDescr
mInDescrC -> (InitC).inpDescr
(InitA).emailaddr -> (A).emailaddr
(InitB).emailaddr -> (B).emailaddr
(InitC).emailaddr -> (C).emailaddr
mInDescrA -> (A).inpDescr
mInDescrB -> (B).inpDescr
mInDescrC -> (C).inpDescr
mInitCost -> (A).initCost
mInitCost -> (B).initCost
mInitCost -> (C).initCost
(A).newCost -> (D).costA
(B).newCost -> (D).costB
(C).newCost -> (D).costC
(D).totalCost -> (E).totalCost
(D).costAvg -> (E).costAvg
(D).count -> (E).count
(E).outReport -> mOutReport

</DataGraph>
</MultiTaskBody>
................
................

<SingleTaskBody name="pSolverWeb" sleep="">
<ExecCommand type="HttpCmd">

<Value>
cdtHttpSubmit "[cdtGetData parabolaurl]" \

"EmailAddr [cdtGetData emailaddr] \
inpDescr [cdtGetData inpDescr] \
initCost [cdtGetData initCost] \
initSoln [cdtGetData initSoln] \
newCost [cdtGetData newCost] \
newSoln [cdtGetData newSoln] \
oldCost [cdtGetData oldCost] \
nIter [cdtGetData nIter]" \

"[cdtGetData results]"
</Value>

</ExecCommand>
</SingleTaskBody>

<SingleTaskBody name="download" sleep="">
<ExecCommand type="HttpCmd">

<Value>
cdtHttpGet

[cdtGetData resultsurl]/[cdtGetData oldCostWeb tail]
cdtHttpGet

[cdtGetData resultsurl]/[cdtGetData newCostWeb tail]
cdtHttpGet

[cdtGetData resultsurl]/[cdtGetData newSolnWeb tail]
cdtHttpGet

[cdtGetData resultsurl]/[cdtGetData nIterWeb tail]
</Value>

</ExecCommand>
</SingleTaskBody>

<SingleTaskBody name="pEvaluator" sleep="" host="h4">
<ExecCommand type="TclCmd">

<Value>
pEvaluator.tcl

"[cdtGetData costA]" "[cdtGetData costB]" \
"[cdtGetData costC]" "[cdtGetData totalCost]" \
"[cdtGetData costAvg]" "[cdtGetData count]"

</Value>
</ExecCommand>

</SingleTaskBody>

</Cdtml>
<!-- parabola_body.cdt -->

Figure 8: Example of a taskflow ‘body’ file written in cdtML.

