
RFC 9242
Intermediate Exchange in the Internet Key Exchange
Protocol Version 2 (IKEv2)

Abstract
This document defines a new exchange, called "Intermediate Exchange", for the Internet Key
Exchange Protocol Version 2 (IKEv2). This exchange can be used for transferring large amounts of
data in the process of IKEv2 Security Association (SA) establishment. An example of the need to
do this is using key exchange methods resistant to Quantum Computers (QCs) for IKE SA
establishment. The Intermediate Exchange makes it possible to use the existing IKE
fragmentation mechanism (which cannot be used in the initial IKEv2 exchange), helping to avoid
IP fragmentation of large IKE messages if they need to be sent before IKEv2 SA is established.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9242
Standards Track
May 2022
2070-1721

 V. Smyslov
ELVIS-PLUS

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9242

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Smyslov Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9242
https://www.rfc-editor.org/info/rfc9242
https://trustee.ietf.org/license-info

1. Introduction
The Internet Key Exchange Protocol Version 2 (IKEv2) defined in uses UDP as a
transport for its messages. If the size of a message is larger than the Path MTU (PMTU), IP
fragmentation takes place, which has been shown to cause operational challenges in certain
network configurations and devices. The problem is described in more detail in , which
also defines an extension to IKEv2 called "IKE fragmentation". This extension allows IKE
messages to be fragmented at the IKE level, eliminating possible issues caused by IP

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

2. Terminology and Notation

3. Intermediate Exchange Details

3.1. Support for Intermediate Exchange Negotiation

3.2. Using Intermediate Exchange

3.3. The IKE_INTERMEDIATE Exchange Protection and Authentication

3.3.1. Protection of IKE_INTERMEDIATE Messages

3.3.2. Authentication of IKE_INTERMEDIATE Exchanges

3.4. Error Handling in the IKE_INTERMEDIATE Exchange

4. Interaction with Other IKEv2 Extensions

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Example of IKE_INTERMEDIATE Exchange

Acknowledgements

Author's Address

[RFC7296]

[RFC7383]

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 2

fragmentation. However, IKE fragmentation cannot be used in the initial IKEv2 exchange
(IKE_SA_INIT). In most cases, this limitation is not a problem, since the IKE_SA_INIT messages are
usually small enough not to cause IP fragmentation.

However, the situation has been changing recently. One example of the need to transfer large
amounts of data before an IKE SA is created is using the QC-resistant key exchange methods in
IKEv2. Recent progress in quantum computing has led to concern that classical Diffie-Hellman
key exchange methods will become insecure in the relatively near future and should be replaced
with QC-resistant ones. Currently, most QC-resistant key exchange methods have large public
keys. If these keys are exchanged in the IKE_SA_INIT exchange, then IP fragmentation will
probably take place; therefore, all the problems caused by it will become inevitable.

A possible solution to this problem would be to use TCP as a transport for IKEv2, as defined in
. However, this approach has significant drawbacks and is intended to be a last resort

when UDP transport is completely blocked by intermediate network devices.

This specification describes a way to transfer a large amount of data in IKEv2 using UDP
transport. For this purpose, the document defines a new exchange for IKEv2 called "Intermediate
Exchange" or "IKE_INTERMEDIATE". One or more of these exchanges may take place right after
the IKE_SA_INIT exchange and prior to the IKE_AUTH exchange. The IKE_INTERMEDIATE
exchange messages can be fragmented using the IKE fragmentation mechanism, so these
exchanges may be used to transfer large amounts of data that don't fit into the IKE_SA_INIT
exchange without causing IP fragmentation.

The Intermediate Exchange can be used to transfer large public keys of QC-resistant key
exchange methods, but its application is not limited to this use case. This exchange can also be
used whenever some data needs to be transferred before the IKE_AUTH exchange and for some
reason the IKE_SA_INIT exchange is not suited for this purpose. This document defines the
IKE_INTERMEDIATE exchange without tying it to any specific use case. It is expected that
separate specifications will define for which purposes and how the IKE_INTERMEDIATE exchange
is used in IKEv2. Some considerations must be taken into account when designing such
specifications:

The IKE_INTERMEDIATE exchange is not intended for bulk transfer. This document doesn't
set a hard cap on the amount of data that can be safely transferred using this mechanism, as
it depends on its application. However, in most cases, it is anticipated that the amount of
data will be limited to tens of kilobytes (a few hundred kilobytes in extreme cases), which is
believed to cause no network problems (see as an example of experiments with
sending similar amounts of data in the first TCP flight). See also Section 5 for the discussion of
possible DoS attack vectors when the amount of data sent in the IKE_INTERMEDIATE
exchange is too large.
It is expected that the IKE_INTERMEDIATE exchange will only be used for transferring data
that is needed to establish IKE SA and not for data that can be sent later when this SA is
established.

[RFC8229]

•

[RFC6928]

•

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 3

3. Intermediate Exchange Details

3.1. Support for Intermediate Exchange Negotiation
The initiator indicates its support for Intermediate Exchange by including a notification of type
INTERMEDIATE_EXCHANGE_SUPPORTED in the IKE_SA_INIT request message. If the responder
also supports this exchange, it includes this notification in the response message.

The INTERMEDIATE_EXCHANGE_SUPPORTED is a Status Type IKEv2 notification with Notify
Message Type 16438. When it is sent, the Protocol ID and SPI Size fields in the Notify payload are
both set to 0. This specification doesn't define any data that this notification may contain, so the
Notification Data is left empty. However, future enhancements to this specification may override
this. Implementations ignore non-empty Notification Data if they don't understand its
purpose.

3.2. Using Intermediate Exchange
If both peers indicated their support for the Intermediate Exchange, the initiator may use one or
more these exchanges to transfer additional data. Using the Intermediate Exchange is optional;
the initiator may find it unnecessary even when support for this exchange has been negotiated.

The Intermediate Exchange is denoted as IKE_INTERMEDIATE; its Exchange Type is 43.

2. Terminology and Notation
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

It is expected that readers are familiar with the terms used in the IKEv2 specification .
Notation for the payloads contained in IKEv2 messages is defined in .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC7296]
Section 1.2 of [RFC7296]

Initiator Responder
----------- -----------
HDR, SAi1, KEi, Ni,
[N(INTERMEDIATE_EXCHANGE_SUPPORTED)] -->
 <-- HDR, SAr1, KEr, Nr, [CERTREQ],
 [N(INTERMEDIATE_EXCHANGE_SUPPORTED)]

MUST

Initiator Responder
----------- -----------
HDR, ..., SK {...} -->
 <-- HDR, ..., SK {...}

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc7296#section-1.2

The initiator may use several IKE_INTERMEDIATE exchanges if necessary. Since window size is
initially set to 1 for both peers (), these exchanges be sequential and

 all be completed before the IKE_AUTH exchange is initiated. The IKE SA be
considered as established until the IKE_AUTH exchange is successfully completed.

The Message IDs for IKE_INTERMEDIATE exchanges be chosen according to the standard
IKEv2 rule, described in , i.e., it is set to 1 for the first IKE_INTERMEDIATE
exchange, 2 for the next (if any), and so on. Implementations verify that Message IDs in the
IKE_INTERMEDIATE messages they receive actually follow this rule. The Message ID for the first
pair of IKE_AUTH messages is one more than the value used in the last IKE_INTERMEDIATE
exchange.

If the presence of NAT is detected in the IKE_SA_INIT exchange via NAT_DETECTION_SOURCE_IP
and NAT_DETECTION_DESTINATION_IP notifications, then the peers switch to port 4500 in the
first IKE_INTERMEDIATE exchange and use this port for all subsequent exchanges, as described in

.

The content of the IKE_INTERMEDIATE exchange messages depends on the data being
transferred and will be defined by specifications utilizing this exchange. However, since the main
motivation for the IKE_INTERMEDIATE exchange is to avoid IP fragmentation when large
amounts of data need to be transferred prior to the IKE_AUTH exchange, the Encrypted payload

 be present in the IKE_INTERMEDIATE exchange messages, and payloads containing large
amounts of data be placed inside it. This will allow IKE fragmentation to take
place, provided it is supported by the peers and negotiated in the initial exchange.

Appendix A contains an example of using an IKE_INTERMEDIATE exchange in creating an IKE
SA.

3.3. The IKE_INTERMEDIATE Exchange Protection and Authentication

Section 2.3 of [RFC7296] MUST
MUST MUST NOT

MUST
Section 2.2 of [RFC7296]

MUST

Section 2.23 of [RFC7296]

MUST
MUST [RFC7383]

3.3.1. Protection of IKE_INTERMEDIATE Messages

The keys SK_e[i/r] and SK_a[i/r] for the protection of IKE_INTERMEDIATE exchanges are
computed in the standard fashion, as defined in .

Every subsequent IKE_INTERMEDIATE exchange uses the most recently calculated IKE SA keys
before this exchange is started. So, the first IKE_INTERMEDIATE exchange always uses SK_e[i/r]
and SK_a[i/r] keys that were computed as a result of the IKE_SA_INIT exchange. If additional key
exchange is performed in the first IKE_INTERMEDIATE exchange, resulting in the update of
SK_e[i/r] and SK_a[i/r], then these updated keys are used for protection of the second
IKE_INTERMEDIATE exchange. Otherwise, the original SK_e[i/r] and SK_a[i/r] keys are used again,
and so on.

Once all the IKE_INTERMEDIATE exchanges are completed, the most recently calculated SK_e[i/r]
and SK_a[i/r] keys are used for protection of the IKE_AUTH exchange and all subsequent
exchanges.

Section 2.14 of [RFC7296]

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc7296#section-2.3
https://www.rfc-editor.org/rfc/rfc7296#section-2.2
https://www.rfc-editor.org/rfc/rfc7296#section-2.23
https://www.rfc-editor.org/rfc/rfc7296#section-2.14

3.3.2. Authentication of IKE_INTERMEDIATE Exchanges

The IKE_INTERMEDIATE messages must be authenticated in the IKE_AUTH exchange, which is
performed by adding their content into the AUTH payload calculation. It is anticipated that in
many use cases, IKE_INTERMEDIATE messages will be fragmented using the IKE fragmentation

 mechanism. According to , when IKE fragmentation is negotiated, the
initiator may first send a request message in unfragmented form, but later turn on IKE
fragmentation and resend it fragmented if no response is received after a few retransmissions. In
addition, peers may resend a fragmented message using different fragment sizes to perform
simple PMTU discovery.

The requirement to support this behavior makes authentication challenging: it is not appropriate
to add on-the-wire content of the IKE_INTERMEDIATE messages into the AUTH payload
calculation, because implementations are generally unaware of which form these messages are
received by peers. Instead, a more complex scheme is used; authentication is performed by
adding the content of these messages before their encryption and possible fragmentation, so that
the data to be authenticated doesn't depend on the form the messages are delivered in.

If one or more IKE_INTERMEDIATE exchanges took place, the definition of the blob to be signed
(or MACed) from is modified as follows:

The essence of this modification is that a new chunk called "IntAuth" is appended to the string of
octets that is signed (or MACed) by the peers. IntAuth consists of three parts: IntAuth_iN,
IntAuth_rN, and IKE_AUTH_MID.

The IKE_AUTH_MID chunk is a value of the Message ID field from the IKE Header of the first
round of the IKE_AUTH exchange. It is represented as a four-octet integer in network byte order
(in other words, exactly as it appears on the wire).

The IntAuth_iN and IntAuth_rN chunks represent the cumulative result of applying the negotiated
Pseudorandom Function (PRF) to all IKE_INTERMEDIATE exchange messages sent during IKE SA
establishment by the initiator and the responder, respectively. After the first IKE_INTERMEDIATE

[RFC7383] [RFC7383]

Section 2.15 of [RFC7296]

InitiatorSignedOctets = RealMsg1 | NonceRData | MACedIDForI | IntAuth
ResponderSignedOctets = RealMsg2 | NonceIData | MACedIDForR | IntAuth

IntAuth = IntAuth_iN | IntAuth_rN | IKE_AUTH_MID

IntAuth_i1 = prf(SK_pi1, IntAuth_i1A [| IntAuth_i1P])
IntAuth_i2 = prf(SK_pi2, IntAuth_i1 | IntAuth_i2A [| IntAuth_i2P])
IntAuth_i3 = prf(SK_pi3, IntAuth_i2 | IntAuth_i3A [| IntAuth_i3P])
...
IntAuth_iN = prf(SK_piN, IntAuth_iN-1 | IntAuth_iNA [| IntAuth_iNP])

IntAuth_r1 = prf(SK_pr1, IntAuth_r1A [| IntAuth_r1P])
IntAuth_r2 = prf(SK_pr2, IntAuth_r1 | IntAuth_r2A [| IntAuth_r2P])
IntAuth_r3 = prf(SK_pr3, IntAuth_r2 | IntAuth_r3A [| IntAuth_r3P])
...
IntAuth_rN = prf(SK_prN, IntAuth_rN-1 | IntAuth_rNA [| IntAuth_rNP])

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc7296#section-2.15

exchange is complete, peers calculate the IntAuth_i1 value by applying the negotiated PRF to the
content of the request message from this exchange and calculate the IntAuth_r1 value by
applying the negotiated PRF to the content of the response message. For every subsequent
IKE_INTERMEDIATE exchange (if any), peers recalculate these values as follows: after the nth
exchange is complete, they compute IntAuth_[i/r]n by applying the negotiated PRF to the
concatenation of IntAuth_[i/r](n-1) (computed for the previous IKE_INTERMEDIATE exchange)
and the content of the request (for IntAuth_in) or response (for IntAuth_rn) messages from this
exchange. After all IKE_INTERMEDIATE exchanges are over, the resulted IntAuth_[i/r]N values
(assuming N exchanges took place) are used in computing the AUTH payload.

For the purpose of calculating the IntAuth_[i/r]* values, the content of the IKE_INTERMEDIATE
messages is represented as two chunks of data: mandatory IntAuth_[i/r]*A, optionally followed
by IntAuth_[i/r]*P.

The IntAuth_[i/r]*A chunk consists of the sequence of octets from the first octet of the IKE Header
(not including the prepended four octets of zeros, if UDP encapsulation or TCP encapsulation of
ESP packets is used) to the last octet of the generic header of the Encrypted payload. The scope of
IntAuth_[i/r]*A is identical to the scope of Associated Data defined for the use of AEAD algorithms
in IKEv2 (see), which is stressed by using the "A" suffix in its name. Note
that calculation of IntAuth_[i/r]*A doesn't depend on whether an AEAD algorithm or a plain
cipher is used in IKE SA.

The IntAuth_[i/r]*P chunk is present if the Encrypted payload is not empty. It consists of the
content of the Encrypted payload that is fully formed but not yet encrypted. The Initialization
Vector, Padding, Pad Length, and Integrity Checksum Data fields (see)
are not included into the calculation. In other words, the IntAuth_[i/r]*P chunk is the inner
payloads of the Encrypted payload in plaintext form, which is stressed by using the "P" suffix in its
name.

Section 5.1 of [RFC5282]

Section 3.14 of [RFC7296]

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc5282#section-5.1
https://www.rfc-editor.org/rfc/rfc7296#section-3.14

Figure 1 illustrates the layout of the IntAuth_[i/r]*A (denoted as A) and the IntAuth_[i/r]*P
(denoted as P) chunks in case the Encrypted payload is not empty.

For the purpose of prf calculation, the Length field in the IKE Header and the Payload Length field
in the Encrypted payload header are adjusted so that they don't count the lengths of Initialization
Vector, Integrity Checksum Data, Padding, and Pad Length fields. In other words, the Length field
in the IKE Header (denoted as Adjusted Length in Figure 1) is set to the sum of the lengths of
IntAuth_[i/r]*A and IntAuth_[i/r]*P, and the Payload Length field in the Encrypted payload header
(denoted as Adjusted Payload Length in Figure 1) is set to the length of IntAuth_[i/r]*P plus the size
of the Encrypted payload header (four octets).

The prf calculations be applied to whole messages only, before possible IKE fragmentation.
This ensures that the IntAuth will be the same regardless of whether or not IKE fragmentation
takes place. If the message was received in fragmented form, it be reconstructed before
calculating the prf as if it were received unfragmented. While reconstructing, the RESERVED field

Figure 1: Data to Authenticate in the IKE_INTERMEDIATE Exchange Messages

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+ ^ ^
| IKE SA Initiator's SPI | | |
| | | |
+-+ I |
| IKE SA Responder's SPI | K |
| | E |
+-+ |
| Next Payload | MjVer | MnVer | Exchange Type | Flags | H |
+-+ d |
| Message ID | r A
+-+ | |
| Adjusted Length | | |
+-+ v |
| | |
~ Unencrypted payloads (if any) ~ |
| | |
+-+ ^ |
| Next Payload |C| RESERVED | Adjusted Payload Length | | |
+-+ | v
| | |
~ Initialization Vector ~ E
| | E
+-+ c ^
| | r |
~ Inner payloads (not yet encrypted) ~ P
| | P |
+-+ l v
| Padding (0-255 octets) | Pad Length | d
+-+ |
| | |
~ Integrity Checksum Data ~ |
| | |
+-+ v

MUST

MUST

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 8

in the reconstructed Encrypted payload header be set to the value of the RESERVED field in
the Encrypted Fragment payload header from the first fragment (with the Fragment Number field
set to 1).

Note that it is possible to avoid actual reconstruction of the message by incrementally calculating
prf on decrypted (or ready to be encrypted) fragments. However, care must be taken to properly
replace the content of the Next Header and the Length fields so that the result of computing the
prf is the same as if it were computed on the reconstructed message.

Each calculation of IntAuth_[i/r]* uses its own keys SK_p[i/r]*, which are the most recently
updated SK_p[i/r] keys available before the corresponded IKE_INTERMEDIATE exchange is
started. The first IKE_INTERMEDIATE exchange always uses the SK_p[i/r] keys that were
computed in the IKE_SA_INIT exchange as SK_p[i/r]1. If the first IKE_INTERMEDIATE exchange
performs additional key exchange resulting in an SK_p[i/r] update, then these updated SK_p[i/r]
keys are used as SK_p[i/r]2; otherwise, the original SK_p[i/r] keys are used, and so on. Note that if
keys are updated, then for any given IKE_INTERMEDIATE exchange, the keys SK_e[i/r] and SK_a[i/
r] used for protection of its messages (see Section 3.3.1) and the key SK_p[i/r] for its authentication
are always from the same generation.

3.4. Error Handling in the IKE_INTERMEDIATE Exchange
Since messages of the IKE_INTERMEDIATE exchange are not authenticated until the IKE_AUTH
exchange successfully completes, possible errors need to be handled with care. There is a trade-off
between providing better diagnostics of the problem and risk of becoming part of a DoS attack.
Sections 2.21.1 and 2.21.2 of describe how errors are handled in initial IKEv2 exchanges;
these considerations are also applied to the IKE_INTERMEDIATE exchange with the qualification
that not all error notifications may appear in the IKE_INTERMEDIATE exchange (for example,
errors concerning authentication are generally only applicable to the IKE_AUTH exchange).

MUST

[RFC7296]

4. Interaction with Other IKEv2 Extensions
The IKE_INTERMEDIATE exchanges be used during the IKEv2 Session Resumption
between the IKE_SESSION_RESUME and the IKE_AUTH exchanges. To be able to use it, peers
negotiate support for Intermediate Exchange by including
INTERMEDIATE_EXCHANGE_SUPPORTED notifications in the IKE_SESSION_RESUME messages.
Note that a flag denoting whether peers supported the IKE_INTERMEDIATE exchange is not stored
in the resumption ticket and is determined each time from the IKE_SESSION_RESUME exchange.

MAY [RFC5723]
MUST

5. Security Considerations
The data that is transferred by means of the IKE_INTERMEDIATE exchanges is not authenticated
until the subsequent IKE_AUTH exchange is complete. However, if the data is placed inside the
Encrypted payload, then it is protected from passive eavesdroppers. In addition, the peers can be
certain that they receive messages from the party they performed the IKE_SA_INIT exchange with
if they can successfully verify the Integrity Checksum Data of the Encrypted payload.

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc7296#section-2.21.1
https://www.rfc-editor.org/rfc/rfc7296#section-2.21.2

The main application for the Intermediate Exchange is to transfer large amounts of data before
an IKE SA is set up, without causing IP fragmentation. For that reason, it is expected that IKE
fragmentation will be employed in IKE_INTERMEDIATE exchanges in most cases.

 contains security considerations for IKE fragmentation.

Since authentication of peers occurs only in the IKE_AUTH exchange, a malicious initiator may
use the Intermediate Exchange to mount a DoS attack on the responder. In this case, it starts
creating an IKE SA, negotiates using the Intermediate Exchanges, and transfers a lot of data to the
responder that may also require computationally expensive processing. Then, it aborts the SA
establishment before the IKE_AUTH exchange. Specifications utilizing the Intermediate Exchange

 allow an unlimited number of these exchanges to take place at the initiator's
discretion. It is recommended that these specifications be defined in such a way that the
responder would know (possibly via negotiation with the initiator) the exact number of these
exchanges that need to take place. In other words, after the IKE_SA_INIT exchange is complete, it
is preferred that both the initiator and the responder know the exact number of
IKE_INTERMEDIATE exchanges they have to perform; it is possible that some IKE_INTERMEDIATE
exchanges are optional and are performed at the initiator's discretion, but if a specification
defines optional use of IKE_INTERMEDIATE, then the maximum number of these exchanges must
be hard capped by the corresponding specification. In addition, provides guidelines for
the responder of how to deal with DoS attacks during IKE SA establishment.

Note that if an attacker was able to break the key exchange in real time (e.g., by means of a
quantum computer), then the security of the IKE_INTERMEDIATE exchange would degrade. In
particular, such an attacker would be able to both read data contained in the Encrypted payload
and forge it. The forgery would become evident in the IKE_AUTH exchange (provided the attacker
cannot break the employed authentication mechanism), but the ability to inject forged
IKE_INTERMEDIATE exchange messages with a valid Integrity Check Value (ICV) would allow the
attacker to mount a DoS attack. Moreover, in this situation, if the negotiated PRF was not secure
against a second preimage attack with known key, then the attacker could forge the
IKE_INTERMEDIATE exchange messages without later being detected in the IKE_AUTH exchange.
To do this, the attacker would find the same IntAuth_[i/r]* value for the forged message as for the
original.

Section 5 of
[RFC7383]

MUST NOT

[RFC8019]

6. IANA Considerations
This document defines a new Exchange Type in the "IKEv2 Exchange Types" registry:

This document also defines a new Notify Message Type in the "IKEv2 Notify Message Types -
Status Types" registry:

Value Exchange Type Reference

43 IKE_INTERMEDIATE RFC 9242

Table 1: IKEv2 Exchange Types

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc7383#section-5

[RFC2119]

[RFC7296]

[RFC7383]

[RFC8174]

[RFC5282]

[RFC5723]

[RFC6928]

[RFC8019]

[RFC8229]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

, , , , and ,
, , , ,

October 2014, .

,
, , , November 2014,

.

, , ,
, , May 2017,
.

7.2. Informative References

 and ,
,

, , August 2008,
.

 and ,
, , , January 2010,

.

, , , and , ,
, , April 2013,
.

 and ,
, ,

, November 2016, .

, , and , ,
, , August 2017,
.

Value NOTIFY MESSAGES - STATUS TYPES Reference

16438 INTERMEDIATE_EXCHANGE_SUPPORTED RFC 9242

Table 2: IKEv2 Notify Message Types - Status Types

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Kaufman, C. Hoffman, P. Nir, Y. Eronen, P. T. Kivinen "Internet Key
Exchange Protocol Version 2 (IKEv2)" STD 79 RFC 7296 DOI 10.17487/RFC7296

<https://www.rfc-editor.org/info/rfc7296>

Smyslov, V. "Internet Key Exchange Protocol Version 2 (IKEv2) Message
Fragmentation" RFC 7383 DOI 10.17487/RFC7383 <https://
www.rfc-editor.org/info/rfc7383>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Black, D. D. McGrew "Using Authenticated Encryption Algorithms with the
Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol" RFC
5282 DOI 10.17487/RFC5282 <https://www.rfc-editor.org/info/
rfc5282>

Sheffer, Y. H. Tschofenig "Internet Key Exchange Protocol Version 2 (IKEv2)
Session Resumption" RFC 5723 DOI 10.17487/RFC5723 <https://
www.rfc-editor.org/info/rfc5723>

Chu, J. Dukkipati, N. Cheng, Y. M. Mathis "Increasing TCP's Initial Window"
RFC 6928 DOI 10.17487/RFC6928 <https://www.rfc-editor.org/info/
rfc6928>

Nir, Y. V. Smyslov "Protecting Internet Key Exchange Protocol Version 2
(IKEv2) Implementations from Distributed Denial-of-Service Attacks" RFC 8019
DOI 10.17487/RFC8019 <https://www.rfc-editor.org/info/rfc8019>

Pauly, T. Touati, S. R. Mantha "TCP Encapsulation of IKE and IPsec Packets"
RFC 8229 DOI 10.17487/RFC8229 <https://www.rfc-editor.org/info/
rfc8229>

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 11

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc5282
https://www.rfc-editor.org/info/rfc5282
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc8019
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8229

Appendix A. Example of IKE_INTERMEDIATE Exchange
This appendix contains an example of the messages using IKE_INTERMEDIATE exchanges. This
appendix is purely informative; if it disagrees with the body of this document, the other text is
considered correct.

In this example, there is one IKE_SA_INIT exchange and two IKE_INTERMEDIATE exchanges,
followed by the IKE_AUTH exchange to authenticate all initial exchanges. The xxx in the
HDR(xxx,MID=yyy) indicates the Exchange Type, and yyy indicates the Message ID used for that
exchange. The keys used for each SK {} payload are indicated in the parenthesis after the SK.
Otherwise, the payload notation is the same as is used in .

At this point, peers calculate SK_* and store them as SK_*1. SK_e[i/r]1 and SK_a[i/r]1 will be used to
protect the first IKE_INTERMEDIATE exchange, and SK_p[i/r]1 will be used for its authentication.

If the SK_*1 keys are updated (e.g., as a result of a new key exchange) after completing this
IKE_INTERMEDIATE exchange, then the peers store the updated keys as SK_*2; otherwise, they use
SK_*1 as SK_*2. SK_e[i/r]2 and SK_a[i/r]2 will be used to protect the second IKE_INTERMEDIATE
exchange, and SK_p[i/r]2 will be used for its authentication.

[RFC7296]

Initiator Responder
----------- -----------
HDR(IKE_SA_INIT,MID=0),
SAi1, KEi, Ni,
N(INTERMEDIATE_EXCHANGE_SUPPORTED) -->

 <-- HDR(IKE_SA_INIT,MID=0),
 SAr1, KEr, Nr, [CERTREQ],
 N(INTERMEDIATE_EXCHANGE_SUPPORTED)

Initiator Responder
----------- -----------
HDR(IKE_INTERMEDIATE,MID=1),
SK(SK_ei1,SK_ai1) {...} -->

 <Calculate IntAuth_i1 = prf(SK_pi1, ...)>

 <-- HDR(IKE_INTERMEDIATE,MID=1),
 SK(SK_er1,SK_ar1) {...}

 <Calculate IntAuth_r1 = prf(SK_pr1, ...)>

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 12

Acknowledgements
The idea to use an Intermediate Exchange between the IKE_SA_INIT and IKE_AUTH exchanges
was first suggested by . He also helped to write the example IKE_INTERMEDIATE
exchange shown in Appendix A. and identified a possible problem
with authentication of the IKE_INTERMEDIATE exchange and helped to resolve it. The author is
grateful to , who raised good questions concerning authentication of the
IKE_INTERMEDIATE exchange and proposed how to make the size of authentication chunks
constant regardless of the number of exchanges. The author is also grateful to and

, who suggested a lot of text improvements for the document.

If the SK_*2 keys are updated (e.g., as a result of a new key exchange) after completing the second
IKE_INTERMEDIATE exchange, then the peers store the updated keys as SK_*3; otherwise, they use
SK_*2 as SK_*3. SK_e[i/r]3 and SK_a[i/r]3 will be used to protect the IKE_AUTH exchange, SK_p[i/r]3
will be used for authentication, and SK_d3 will be used for derivation of other keys (e.g., for Child
SAs).

In this example, two IKE_INTERMEDIATE exchanges took place; therefore, SK_*3 keys would be
used as SK_* keys for further cryptographic operations in the context of the created IKE SA, as
defined in .

Initiator Responder
----------- -----------
HDR(IKE_INTERMEDIATE,MID=2),
SK(SK_ei2,SK_ai2) {...} -->

 <Calculate IntAuth_i2 = prf(SK_pi2, ...)>

 <-- HDR(IKE_INTERMEDIATE,MID=2),
 SK(SK_er2,SK_ar2) {...}

 <Calculate IntAuth_r2 = prf(SK_pr2, ...)>

Initiator Responder
----------- -----------
HDR(IKE_AUTH,MID=3),
SK(SK_ei3,SK_ai3)
{IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, SAi2, TSi, TSr} -->
 <-- HDR(IKE_AUTH,MID=3),
 SK(SK_er3,SK_ar3)
 {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

[RFC7296]

Tero Kivinen
Scott Fluhrer Daniel Van Geest

Tobias Brunner

Paul Wouters
Benjamin Kaduk

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 13

Author's Address
Valery Smyslov
ELVIS-PLUS
PO Box 81
Moscow (Zelenograd)
124460
Russian Federation

 +7 495 276 0211 Phone:
 svan@elvis.ru Email:

RFC 9242 Intermediate IKEv2 Exchange May 2022

Smyslov Standards Track Page 14

tel:+7%20495%20276%200211
mailto:svan@elvis.ru

	RFC 9242
	Intermediate Exchange in the Internet Key Exchange Protocol Version 2 (IKEv2)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology and Notation
	3. Intermediate Exchange Details
	3.1. Support for Intermediate Exchange Negotiation
	3.2. Using Intermediate Exchange
	3.3. The IKE_INTERMEDIATE Exchange Protection and Authentication
	3.3.1. Protection of IKE_INTERMEDIATE Messages
	3.3.2. Authentication of IKE_INTERMEDIATE Exchanges

	3.4. Error Handling in the IKE_INTERMEDIATE Exchange

	4. Interaction with Other IKEv2 Extensions
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Example of IKE_INTERMEDIATE Exchange
	Acknowledgements
	Author's Address

 Intermediate Exchange in the Internet Key Exchange Protocol Version 2 (IKEv2)

 ELVIS-PLUS

 PO Box 81
 Moscow (Zelenograd)
 124460
 Russian Federation

 +7 495 276 0211
 svan@elvis.ru

 sec
 ipsecme
 IKE_INTERMEDIATE
 Quantum Computer resistant key exchange method
 Post-quantum

 This document defines a new exchange, called "Intermediate Exchange", for the Internet Key Exchange Protocol Version 2 (IKEv2). This exchange can be used for transferring large amounts of data in the process of IKEv2
 Security Association (SA) establishment. An example of the need to do this is using key exchange methods resistant to Quantum Computers (QCs) for IKE SA establishment.

The Intermediate Exchange makes it possible to use the existing IKE
fragmentation mechanism (which cannot be used in the initial IKEv2 exchange),
helping to avoid IP fragmentation of large IKE messages if they need to be
sent before IKEv2 SA is established.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology and Notation

 . Intermediate Exchange Details

 . Support for Intermediate Exchange Negotiation

 . Using Intermediate Exchange

 . The IKE_INTERMEDIATE Exchange Protection and Authentication

 . Protection of IKE_INTERMEDIATE Messages

 . Authentication of IKE_INTERMEDIATE Exchanges

 . Error Handling in the IKE_INTERMEDIATE Exchange

 . Interaction with Other IKEv2 Extensions

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Example of IKE_INTERMEDIATE Exchange

 Acknowledgements

 Author's Address

 Introduction
 The Internet Key Exchange Protocol
Version 2 (IKEv2) defined in
 uses UDP as a transport for its messages. If the size of a message is larger than the Path MTU (PMTU), IP fragmentation
 takes place, which has been shown to cause operational challenges
 in certain network configurations and devices. The problem is described
 in more detail in , which also defines an extension to IKEv2 called "IKE fragmentation".
 This extension allows IKE messages to be fragmented at the IKE level, eliminating possible issues
 caused by IP fragmentation. However, IKE fragmentation cannot be used in the initial IKEv2 exchange
 (IKE_SA_INIT). In most cases, this limitation is not a problem, since the IKE_SA_INIT
 messages are usually small enough not to cause IP fragmentation.

 However, the situation has been changing recently. One example of the need to transfer large amounts
 of data before an IKE SA is created is using the QC-resistant key exchange methods in IKEv2.

	 Recent progress in quantum computing has led to concern that classical Diffie-Hellman key
 exchange methods will become insecure in the relatively near future and should be replaced with
 QC-resistant ones.

	 Currently, most QC-resistant key exchange methods have
 large public keys. If these keys are exchanged in the IKE_SA_INIT exchange, then
 IP fragmentation will probably take place; therefore, all the problems caused by it will become inevitable.

 A possible solution to this problem would be to use TCP as a transport for IKEv2, as defined
 in . However, this approach has significant drawbacks and is
 intended to be a last resort when UDP transport is completely blocked by intermediate
 network devices.

 This specification describes a way to transfer a large amount of data in IKEv2 using UDP transport.
 For this purpose, the document defines a new exchange for IKEv2 called "Intermediate Exchange" or "IKE_INTERMEDIATE".
 One or more of these exchanges may take place right after the IKE_SA_INIT exchange and prior
 to the IKE_AUTH exchange. The IKE_INTERMEDIATE exchange messages can be fragmented using the IKE fragmentation mechanism,
 so these exchanges may be used to transfer large amounts of data that don't fit into the IKE_SA_INIT exchange
 without causing IP fragmentation.

 The Intermediate Exchange can be used to transfer large public keys of QC-resistant key exchange methods,
 but its application is not limited to this use case. This exchange can also be used
 whenever some data needs to be transferred before the IKE_AUTH exchange and for some reason
 the IKE_SA_INIT exchange is not suited for this purpose. This document defines the IKE_INTERMEDIATE
 exchange without tying it to any specific use case. It is expected that separate specifications will define
 for which purposes and how the IKE_INTERMEDIATE exchange is used in IKEv2. Some considerations
 must be taken into account when designing such specifications:

 The IKE_INTERMEDIATE exchange is not intended for
 bulk transfer. This document doesn't set a hard cap on
 the amount of data that can be safely transferred using this mechanism,
 as it depends on its application. However, in most cases, it is anticipated that
 the amount of data will be limited to tens of kilobytes (a few hundred kilobytes
 in extreme cases), which is believed to cause no network problems
 (see as an example of experiments with sending
 similar amounts of data in the first TCP flight). See also
 for the discussion of possible DoS attack vectors
 when the amount of data sent in the IKE_INTERMEDIATE exchange is too large.

 It is expected that the IKE_INTERMEDIATE exchange will
 only be used for transferring data that is needed to establish IKE SA
 and not for data that can be sent later when this SA is established.

 Terminology and Notation

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 It is expected that readers are familiar with the terms used in the
 IKEv2 specification . Notation
 for the payloads contained in IKEv2 messages is defined in .

 Intermediate Exchange Details

 Support for Intermediate Exchange Negotiation
 The initiator indicates its support for Intermediate Exchange by including a
 notification of type INTERMEDIATE_EXCHANGE_SUPPORTED in the IKE_SA_INIT request message.
 If the responder also supports this exchange, it includes this notification
 in the response message.

Initiator Responder
----------- -----------
HDR, SAi1, KEi, Ni,
[N(INTERMEDIATE_EXCHANGE_SUPPORTED)] -->
 <-- HDR, SAr1, KEr, Nr, [CERTREQ],
 [N(INTERMEDIATE_EXCHANGE_SUPPORTED)]

The INTERMEDIATE_EXCHANGE_SUPPORTED is a Status Type IKEv2	
notification with Notify Message Type 16438. When it is sent, the Protocol ID	
and SPI Size fields in the Notify payload are both set to 0.

 This specification doesn't define any data that this notification may contain,
 so the Notification Data is left empty. However, future enhancements to this specification may override this.
 Implementations MUST ignore non-empty Notification Data if they don't understand its purpose.

 Using Intermediate Exchange
 If both peers indicated their support for the Intermediate Exchange, the initiator may
 use one or more these exchanges to transfer additional data. Using the Intermediate Exchange is optional;
 the initiator may find it unnecessary even when support for this exchange has been negotiated.

 The Intermediate Exchange is denoted as IKE_INTERMEDIATE; its Exchange Type is 43.

Initiator Responder
----------- -----------
HDR, ..., SK {...} -->
 <-- HDR, ..., SK {...}

 The initiator may use several IKE_INTERMEDIATE exchanges if necessary.
 Since window size is initially set to 1 for both peers (), these exchanges MUST be sequential
 and MUST all be completed before the IKE_AUTH exchange is initiated.
 The IKE SA MUST NOT be considered as established until the IKE_AUTH
 exchange is successfully completed.

 The Message IDs for IKE_INTERMEDIATE exchanges MUST be chosen according to the standard
 IKEv2 rule, described in , i.e.,
 it is set to 1 for the first IKE_INTERMEDIATE exchange, 2 for the next (if any), and so on.
 Implementations MUST verify that Message IDs in the IKE_INTERMEDIATE messages they receive actually follow this rule.
 The Message ID for the first pair of IKE_AUTH messages is one more
 than the value used in the last IKE_INTERMEDIATE exchange.

 If the presence of NAT is detected in the IKE_SA_INIT exchange via NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP notifications, then the peers switch to port 4500 in the first IKE_INTERMEDIATE exchange
 and use this port for all subsequent exchanges, as described in .

 The content of the IKE_INTERMEDIATE exchange messages depends on the data being transferred
 and will be defined by specifications utilizing this exchange.
 However, since the main motivation for the IKE_INTERMEDIATE exchange is to avoid
 IP fragmentation when large amounts of data need to be transferred
 prior to the IKE_AUTH exchange, the Encrypted payload MUST be present in the
 IKE_INTERMEDIATE exchange messages, and payloads containing large amounts of data
 MUST be placed inside it. This will allow IKE fragmentation
 to take place, provided it is supported
 by the peers and negotiated in the initial exchange.

 contains an example of using an IKE_INTERMEDIATE exchange
 in creating an IKE SA.

 The IKE_INTERMEDIATE Exchange Protection and Authentication

 Protection of IKE_INTERMEDIATE Messages
 The keys SK_e[i/r] and SK_a[i/r] for the protection of IKE_INTERMEDIATE exchanges
 are computed in the standard fashion, as defined in .

 Every subsequent IKE_INTERMEDIATE exchange uses the most recently calculated IKE SA keys before
 this exchange is started. So, the first IKE_INTERMEDIATE exchange always uses SK_e[i/r] and SK_a[i/r] keys
 that were computed as a result of the IKE_SA_INIT exchange. If additional key exchange is performed
 in the first IKE_INTERMEDIATE exchange, resulting in the update of SK_e[i/r] and SK_a[i/r],
 then these updated keys are used for protection of the second IKE_INTERMEDIATE exchange.
 Otherwise, the original SK_e[i/r] and SK_a[i/r] keys are used again, and so on.

 Once all the IKE_INTERMEDIATE exchanges are completed, the most recently calculated
 SK_e[i/r] and SK_a[i/r] keys are used for protection of the IKE_AUTH exchange and all subsequent exchanges.

 Authentication of IKE_INTERMEDIATE Exchanges
 The IKE_INTERMEDIATE messages must be authenticated in the IKE_AUTH exchange,
 which is performed by adding their content into the AUTH payload calculation. It is anticipated that in many use cases, IKE_INTERMEDIATE
 messages will be fragmented using the IKE fragmentation mechanism. According to ,
 when IKE fragmentation is negotiated, the initiator may first send a request message in unfragmented form,
 but later turn on IKE fragmentation and resend it fragmented if no response is received after a few retransmissions.
 In addition, peers may resend a fragmented message using different fragment sizes to perform simple PMTU discovery.

 The requirement to support this behavior makes authentication challenging: it is not appropriate to add
 on-the-wire content of the IKE_INTERMEDIATE messages into the AUTH payload calculation,
 because implementations are generally unaware of which form these messages are received by peers.
 Instead, a more complex scheme is used; authentication is performed by adding the content of these messages before
 their encryption and possible fragmentation, so that the data to be authenticated doesn't depend on the form
 the messages are delivered in.

If one or more IKE_INTERMEDIATE exchanges took place, the definition of the
blob to be signed (or MACed) from is modified as follows:
	

InitiatorSignedOctets = RealMsg1 | NonceRData | MACedIDForI | IntAuth
ResponderSignedOctets = RealMsg2 | NonceIData | MACedIDForR | IntAuth

IntAuth = IntAuth_iN | IntAuth_rN | IKE_AUTH_MID

IntAuth_i1 = prf(SK_pi1, IntAuth_i1A [| IntAuth_i1P])
IntAuth_i2 = prf(SK_pi2, IntAuth_i1 | IntAuth_i2A [| IntAuth_i2P])
IntAuth_i3 = prf(SK_pi3, IntAuth_i2 | IntAuth_i3A [| IntAuth_i3P])
...
IntAuth_iN = prf(SK_piN, IntAuth_iN-1 | IntAuth_iNA [| IntAuth_iNP])

IntAuth_r1 = prf(SK_pr1, IntAuth_r1A [| IntAuth_r1P])
IntAuth_r2 = prf(SK_pr2, IntAuth_r1 | IntAuth_r2A [| IntAuth_r2P])
IntAuth_r3 = prf(SK_pr3, IntAuth_r2 | IntAuth_r3A [| IntAuth_r3P])
...
IntAuth_rN = prf(SK_prN, IntAuth_rN-1 | IntAuth_rNA [| IntAuth_rNP])

 The essence of this modification is that a new chunk called "IntAuth" is appended to the string of octets that is signed (or MACed) by the peers.
 IntAuth consists of three parts: IntAuth_iN, IntAuth_rN, and IKE_AUTH_MID.

 The IKE_AUTH_MID chunk is a value of the Message ID field from the IKE Header of the first round of the IKE_AUTH exchange.
 It is represented as a four-octet integer in network byte order (in other words, exactly as it appears on the wire).

 The IntAuth_iN and IntAuth_rN chunks represent the cumulative result of applying the negotiated Pseudorandom Function (PRF)
 to all IKE_INTERMEDIATE exchange messages sent during IKE SA establishment by the initiator and the responder, respectively.
 After the first IKE_INTERMEDIATE exchange is complete, peers calculate the IntAuth_i1 value
 by applying the negotiated PRF to the content of the request message from this exchange and
 calculate the IntAuth_r1 value by applying the negotiated PRF to the content of the response message.
 For every subsequent IKE_INTERMEDIATE exchange (if any), peers recalculate these values as follows:
 after the nth exchange is complete, they compute IntAuth_[i/r]n by applying the negotiated
 PRF to the concatenation of IntAuth_[i/r](n-1) (computed for the previous IKE_INTERMEDIATE exchange) and
 the content of the request (for IntAuth_in) or response (for IntAuth_rn) messages from this exchange. After all IKE_INTERMEDIATE exchanges
 are over, the resulted IntAuth_[i/r]N values (assuming N exchanges took place) are used in computing the AUTH payload.

 For the purpose of calculating the IntAuth_[i/r]* values, the content of the IKE_INTERMEDIATE messages
 is represented as two chunks of data: mandatory IntAuth_[i/r]*A, optionally followed by IntAuth_[i/r]*P.

 The IntAuth_[i/r]*A chunk consists of the sequence of octets from the first octet of the IKE Header (not including the prepended four octets of zeros,
 if UDP encapsulation or TCP encapsulation of ESP packets is used) to the last octet of the generic header of the Encrypted payload.
 The scope of IntAuth_[i/r]*A is identical to the scope of Associated Data defined for the use of AEAD algorithms in IKEv2
 (see), which is stressed by using the "A" suffix in its name. Note that calculation of IntAuth_[i/r]*A
 doesn't depend on whether an AEAD algorithm or a plain cipher is used in IKE SA.

 The IntAuth_[i/r]*P chunk is present if the Encrypted payload is not empty. It consists of the content of the Encrypted payload
 that is fully formed but not yet encrypted. The Initialization Vector, Padding, Pad Length, and Integrity Checksum Data fields
 (see) are not included into the calculation.
 In other words, the IntAuth_[i/r]*P chunk is the inner payloads of the Encrypted payload in plaintext form,
 which is stressed by using the "P" suffix in its name.

 Data to Authenticate in the IKE_INTERMEDIATE Exchange Messages

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+ ^ ^
| IKE SA Initiator's SPI | | |
| | | |
+-+ I |
| IKE SA Responder's SPI | K |
| | E |
+-+ |
| Next Payload | MjVer | MnVer | Exchange Type | Flags | H |
+-+ d |
| Message ID | r A
+-+ | |
| Adjusted Length | | |
+-+ v |
| | |
~ Unencrypted payloads (if any) ~ |
| | |
+-+ ^ |
| Next Payload |C| RESERVED | Adjusted Payload Length | | |
+-+ | v
| | |
~ Initialization Vector ~ E
| | E
+-+ c ^
| | r |
~ Inner payloads (not yet encrypted) ~ P
| | P |
+-+ l v
| Padding (0-255 octets) | Pad Length | d
+-+ |
| | |
~ Integrity Checksum Data ~ |
| | |
+-+ v

 illustrates the layout of the IntAuth_[i/r]*A (denoted as A)
 and the IntAuth_[i/r]*P (denoted as P) chunks in case the Encrypted payload is not empty.

 For the purpose of prf calculation, the Length field in the IKE Header and the Payload Length
 field in the Encrypted payload header are adjusted so that they don't count the lengths
 of Initialization Vector, Integrity Checksum Data, Padding, and Pad Length fields.
 In other words, the Length field in the IKE Header (denoted as Adjusted Length in)
 is set to the sum of the lengths of IntAuth_[i/r]*A and IntAuth_[i/r]*P, and the Payload Length
 field in the Encrypted payload header (denoted as Adjusted Payload Length in)
 is set to the length of IntAuth_[i/r]*P plus the size of the Encrypted payload header (four octets).

 The prf calculations MUST be applied to whole messages only, before possible IKE fragmentation.
 This ensures that the IntAuth will be the same regardless of whether or not IKE fragmentation takes place.
 If the message was received in fragmented form, it MUST be reconstructed before calculating the prf as if it were received unfragmented.
 While reconstructing, the RESERVED field in the reconstructed Encrypted payload header MUST be set to the value of the RESERVED
 field in the Encrypted Fragment payload header from the first fragment (with the Fragment Number field set to 1).

 Note that it is possible to avoid actual reconstruction of the message by incrementally calculating prf on
 decrypted (or ready to be encrypted) fragments. However, care must be taken to properly replace the content of the Next Header and the Length fields
 so that the result of computing the prf is the same as if it were computed on the reconstructed message.

 Each calculation of IntAuth_[i/r]* uses its own keys SK_p[i/r]*, which are the most recently updated SK_p[i/r] keys
 available before the corresponded IKE_INTERMEDIATE exchange is started. The first IKE_INTERMEDIATE exchange
 always uses the SK_p[i/r] keys that were computed in the IKE_SA_INIT exchange as SK_p[i/r]1. If the first IKE_INTERMEDIATE exchange performs
 additional key exchange resulting in an SK_p[i/r] update, then these updated SK_p[i/r] keys are used as SK_p[i/r]2; otherwise, the original
 SK_p[i/r] keys are used, and so on. Note that if keys are updated, then for any given IKE_INTERMEDIATE exchange, the keys SK_e[i/r] and SK_a[i/r]
 used for protection of its messages (see) and the key SK_p[i/r] for its authentication are always
 from the same generation.

 Error Handling in the IKE_INTERMEDIATE Exchange
 Since messages of the IKE_INTERMEDIATE exchange are not authenticated until the IKE_AUTH exchange successfully
 completes, possible errors need to be handled with care. There is a trade-off between providing
 better diagnostics of the problem and risk of becoming part of a DoS attack.
 Sections and of describe how errors are handled
 in initial IKEv2 exchanges; these considerations are also applied to the IKE_INTERMEDIATE exchange
 with the qualification that not all error notifications may appear in the IKE_INTERMEDIATE
 exchange (for example, errors concerning authentication are generally only applicable to the IKE_AUTH exchange).

 Interaction with Other IKEv2 Extensions
 The IKE_INTERMEDIATE exchanges MAY be used during the IKEv2 Session Resumption
 between the IKE_SESSION_RESUME and the IKE_AUTH exchanges. To be able to use it, peers MUST negotiate
 support for Intermediate Exchange by including INTERMEDIATE_EXCHANGE_SUPPORTED notifications in the
 IKE_SESSION_RESUME messages. Note that a flag denoting whether peers supported the IKE_INTERMEDIATE exchange
 is not stored in the resumption ticket and is determined each time from the IKE_SESSION_RESUME exchange.

 Security Considerations
 The data that is transferred by means of the IKE_INTERMEDIATE exchanges is not authenticated
 until the subsequent IKE_AUTH exchange is complete. However, if the data is placed inside
 the Encrypted payload, then it is protected from passive eavesdroppers. In addition, the peers
 can be certain that they receive messages from the party they performed the IKE_SA_INIT exchange with
 if they can successfully verify the Integrity Checksum Data of the Encrypted payload.

 The main application for the Intermediate Exchange is to transfer
 large amounts of data before an IKE SA is set up, without causing IP
 fragmentation. For that reason, it is expected that IKE fragmentation
 will be employed in IKE_INTERMEDIATE exchanges in most cases.
 contains security considerations for IKE fragmentation.

 Since authentication of peers occurs only in the IKE_AUTH exchange, a malicious initiator
 may use the Intermediate Exchange to mount a DoS attack on the responder. In this case, it
 starts creating an IKE SA, negotiates using the Intermediate Exchanges, and transfers a lot
 of data to the responder that may also require computationally expensive processing.
 Then, it aborts the SA establishment before the IKE_AUTH exchange.
 Specifications utilizing the Intermediate Exchange MUST NOT allow an unlimited number of these exchanges to take
 place at the initiator's discretion. It is recommended that these
 specifications be defined in such a way that the responder would
 know (possibly via negotiation with the initiator) the exact
 number of these exchanges that need to take place.

In other words, after the IKE_SA_INIT exchange is
complete, it is preferred that both the initiator and the responder
know the exact number of IKE_INTERMEDIATE exchanges they have to
perform; it is possible that some IKE_INTERMEDIATE exchanges are
optional and are performed at the initiator's discretion, but if a specification
defines optional use of IKE_INTERMEDIATE, then the maximum number
of these exchanges must be hard capped by the corresponding specification.

	 In addition, provides guidelines for the responder of how to
 deal with DoS attacks during IKE SA establishment.

 Note that if an attacker was able to break the key exchange in real time
 (e.g., by means of a quantum computer), then the security of the IKE_INTERMEDIATE exchange would degrade.
 In particular, such an attacker would be able to both read data contained in the
 Encrypted payload and forge it. The forgery would become evident in the IKE_AUTH
 exchange (provided the attacker cannot break the employed authentication mechanism),
 but the ability to inject forged IKE_INTERMEDIATE exchange messages with a valid Integrity Check Value (ICV) would allow
 the attacker to mount a DoS attack. Moreover, in this situation, if the negotiated
 PRF was not secure against a second preimage attack with known key, then the attacker could
 forge the IKE_INTERMEDIATE exchange messages without later being detected in the IKE_AUTH exchange.
 To do this, the attacker would find the same IntAuth_[i/r]* value for the forged message as for the original.

 IANA Considerations
 This document defines a new Exchange Type in the "IKEv2 Exchange Types" registry:

 IKEv2 Exchange Types

 Value
 Exchange Type
 Reference

 43
 IKE_INTERMEDIATE
 RFC 9242

 This document also defines a new Notify Message Type in the "IKEv2 Notify Message Types - Status Types" registry:

 IKEv2 Notify Message Types - Status Types

 Value
 NOTIFY MESSAGES - STATUS TYPES
 Reference

 16438
 INTERMEDIATE_EXCHANGE_SUPPORTED
 RFC 9242

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Internet Key Exchange Protocol Version 2 (IKEv2)

 This document describes version 2 of the Internet Key Exchange (IKE) protocol. IKE is a component of IPsec used for performing mutual authentication and establishing and maintaining Security Associations (SAs). This document obsoletes RFC 5996, and includes all of the errata for it. It advances IKEv2 to be an Internet Standard.

 Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation

 This document describes a way to avoid IP fragmentation of large Internet Key Exchange Protocol version 2 (IKEv2) messages. This allows IKEv2 messages to traverse network devices that do not allow IP fragments to pass through.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol

 An authenticated encryption algorithm combines encryption and integrity into a single operation; such algorithms may also be referred to as combined modes of an encryption cipher or as combined mode algorithms. This document describes the use of authenticated encryption algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) protocol.
 The use of two specific authenticated encryption algorithms with the IKEv2 Encrypted Payload is also described; these two algorithms are the Advanced Encryption Standard (AES) in Galois/Counter Mode (AES GCM) and AES in Counter with CBC-MAC Mode (AES CCM). Additional documents may describe the use of other authenticated encryption algorithms with the IKEv2 Encrypted Payload. [STANDARDS-TRACK]

 Internet Key Exchange Protocol Version 2 (IKEv2) Session Resumption

 The Internet Key Exchange version 2 (IKEv2) protocol has a certain computational and communication overhead with respect to the number of round trips required and the cryptographic operations involved. In remote access situations, the Extensible Authentication Protocol (EAP) is used for authentication, which adds several more round trips and consequently latency.
 To re-establish security associations (SAs) upon a failure recovery condition is time consuming especially when an IPsec peer (such as a VPN gateway) needs to re-establish a large number of SAs with various endpoints. A high number of concurrent sessions might cause additional problems for an IPsec peer during SA re-establishment.
 In order to avoid the need to re-run the key exchange protocol from scratch, it would be useful to provide an efficient way to resume an IKE/IPsec session. This document proposes an extension to IKEv2 that allows a client to re-establish an IKE SA with a gateway in a highly efficient manner, utilizing a previously established IKE SA.
 A client can reconnect to a gateway from which it was disconnected. The proposed approach encodes partial IKE state into an opaque ticket, which can be stored on the client or in a centralized store, and is later made available to the IKEv2 responder for re-authentication. We use the term ticket to refer to the opaque data that is created by the IKEv2 responder. This document does not specify the format of the ticket but examples are provided. [STANDARDS-TRACK]

 Increasing TCP's Initial Window

 This document proposes an experiment to increase the permitted TCP initial window (IW) from between 2 and 4 segments, as specified in RFC 3390, to 10 segments with a fallback to the existing recommendation when performance issues are detected. It discusses the motivation behind the increase, the advantages and disadvantages of the higher initial window, and presents results from several large-scale experiments showing that the higher initial window improves the overall performance of many web services without resulting in a congestion collapse. The document closes with a discussion of usage and deployment for further experimental purposes recommended by the IETF TCP Maintenance and Minor Extensions (TCPM) working group.

 Protecting Internet Key Exchange Protocol Version 2 (IKEv2) Implementations from Distributed Denial-of-Service Attacks

 This document recommends implementation and configuration best practices for Internet Key Exchange Protocol version 2 (IKEv2) Responders, to allow them to resist Denial-of-Service and Distributed Denial-of-Service attacks. Additionally, the document introduces a new mechanism called "Client Puzzles" that helps accomplish this task.

 TCP Encapsulation of IKE and IPsec Packets

 This document describes a method to transport Internet Key Exchange Protocol (IKE) and IPsec packets over a TCP connection for traversing network middleboxes that may block IKE negotiation over UDP. This method, referred to as "TCP encapsulation", involves sending both IKE packets for Security Association establishment and Encapsulating Security Payload (ESP) packets over a TCP connection. This method is intended to be used as a fallback option when IKE cannot be negotiated over UDP.

 Example of IKE_INTERMEDIATE Exchange
 This appendix contains an example of the messages using IKE_INTERMEDIATE exchanges.
 This appendix is purely informative; if it disagrees with the body of this document,
 the other text is considered correct.

 In this example, there is one IKE_SA_INIT exchange and two IKE_INTERMEDIATE exchanges,
 followed by the IKE_AUTH exchange to authenticate all initial exchanges. The xxx in the HDR(xxx,MID=yyy)
 indicates the Exchange Type, and yyy indicates the Message ID used for that exchange.
 The keys used for each SK {} payload are indicated in the parenthesis after the SK.
 Otherwise, the payload notation is the same as is used in .

Initiator Responder
----------- -----------
HDR(IKE_SA_INIT,MID=0),
SAi1, KEi, Ni,
N(INTERMEDIATE_EXCHANGE_SUPPORTED) -->

 <-- HDR(IKE_SA_INIT,MID=0),
 SAr1, KEr, Nr, [CERTREQ],
 N(INTERMEDIATE_EXCHANGE_SUPPORTED)

 At this point, peers calculate SK_* and store them as SK_*1.
 SK_e[i/r]1 and SK_a[i/r]1 will be used to protect the first IKE_INTERMEDIATE exchange,
 and SK_p[i/r]1 will be used for its authentication.

Initiator Responder
----------- -----------
HDR(IKE_INTERMEDIATE,MID=1),
SK(SK_ei1,SK_ai1) {...} -->

 <Calculate IntAuth_i1 = prf(SK_pi1, ...)>

 <-- HDR(IKE_INTERMEDIATE,MID=1),
 SK(SK_er1,SK_ar1) {...}

 <Calculate IntAuth_r1 = prf(SK_pr1, ...)>

 If the SK_*1 keys are updated (e.g., as a result of a new key exchange) after completing this IKE_INTERMEDIATE exchange,
 then the peers store the updated keys as SK_*2; otherwise, they use SK_*1 as SK_*2.
 SK_e[i/r]2 and SK_a[i/r]2 will be used to protect the second IKE_INTERMEDIATE exchange,
 and SK_p[i/r]2 will be used for its authentication.

Initiator Responder
----------- -----------
HDR(IKE_INTERMEDIATE,MID=2),
SK(SK_ei2,SK_ai2) {...} -->

 <Calculate IntAuth_i2 = prf(SK_pi2, ...)>

 <-- HDR(IKE_INTERMEDIATE,MID=2),
 SK(SK_er2,SK_ar2) {...}

 <Calculate IntAuth_r2 = prf(SK_pr2, ...)>

 If the SK_*2 keys are updated (e.g., as a result of a new key exchange) after completing the second IKE_INTERMEDIATE exchange,
 then the peers store the updated keys as SK_*3; otherwise, they use SK_*2 as SK_*3.
 SK_e[i/r]3 and SK_a[i/r]3 will be used to protect the IKE_AUTH exchange, SK_p[i/r]3 will be used for authentication, and
 SK_d3 will be used for derivation of other keys (e.g., for Child SAs).

Initiator Responder
----------- -----------
HDR(IKE_AUTH,MID=3),
SK(SK_ei3,SK_ai3)
{IDi, [CERT,] [CERTREQ,]
[IDr,] AUTH, SAi2, TSi, TSr} -->
 <-- HDR(IKE_AUTH,MID=3),
 SK(SK_er3,SK_ar3)
 {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

 In this example, two IKE_INTERMEDIATE exchanges took place; therefore, SK_*3 keys would be used as SK_* keys for
 further cryptographic operations in the context of the created IKE SA, as defined in .

 Acknowledgements
 The idea to use an Intermediate Exchange between the IKE_SA_INIT and IKE_AUTH exchanges was first suggested by .
 He also helped to write the example IKE_INTERMEDIATE exchange shown in .
 and identified a possible problem with authentication of the IKE_INTERMEDIATE exchange and helped to resolve it.
 The author is grateful to , who raised good questions concerning authentication of the IKE_INTERMEDIATE exchange
 and proposed how to make the size of authentication chunks constant regardless of the number of exchanges.
 The author is also grateful to and , who suggested a lot of text improvements for the document.

 Author's Address

 ELVIS-PLUS

 PO Box 81
 Moscow (Zelenograd)
 124460
 Russian Federation

 +7 495 276 0211
 svan@elvis.ru

