
RFC 9182
A YANG Network Data Model for Layer 3 VPNs

Abstract
As a complement to the Layer 3 Virtual Private Network Service Model (L3SM), which is used for
communication between customers and service providers, this document defines an L3VPN
Network Model (L3NM) that can be used for the provisioning of Layer 3 Virtual Private Network
(L3VPN) services within a service provider network. The model provides a network-centric view
of L3VPN services.

The L3NM is meant to be used by a network controller to derive the configuration information
that will be sent to relevant network devices. The model can also facilitate communication
between a service orchestrator and a network controller/orchestrator.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9182
Standards Track
February 2022
2070-1721

S. Barguil
Telefonica

O. Gonzalez de Dios, Ed.
Telefonica

M. Boucadair, Ed.
Orange

L. Munoz
Vodafone

A. Aguado
Nokia

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9182

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Barguil, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9182
https://www.rfc-editor.org/info/rfc9182

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Acronyms and Abbreviations

4. L3NM Reference Architecture

5. Relationship to Other YANG Data Models

6. Sample Uses of the L3NM Data Model

6.1. Enterprise Layer 3 VPN Services

6.2. Multi-Domain Resource Management

6.3. Management of Multicast Services

7. Description of the L3NM YANG Module

7.1. Overall Structure of the Module

7.2. VPN Profiles

7.3. VPN Services

7.4. VPN Instance Profiles

7.5. VPN Nodes

7.6. VPN Network Accesses

7.6.1. Connection

7.6.2. IP Connection

7.6.3. CE-PE Routing Protocols

7.6.3.1. Static Routing

7.6.3.2. BGP

7.6.3.3. OSPF

7.6.3.4. IS-IS

7.6.3.5. RIP

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

1. Introduction
 defines a YANG Layer 3 Virtual Private Network Service Model (L3SM) that can be used

for communication between customers and service providers. Such a model focuses on
describing the customer view of the Virtual Private Network (VPN) services and provides an
abstracted view of the customer's requested services. That approach limits the usage of the L3SM
to the role of a customer service model (as per).

7.6.3.6. VRRP

7.6.4. OAM

7.6.5. Security

7.6.6. Services

7.6.6.1. Overview

7.6.6.2. QoS

7.7. Multicast

8. L3NM YANG Module

9. Security Considerations

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. L3VPN Examples

A.1. 4G VPN Provisioning Example

A.2. Loopback Interface

A.3. Overriding VPN Instance Profile Parameters

A.4. Multicast VPN Provisioning Example

Acknowledgements

Contributors

Authors' Addresses

[RFC8299]

[RFC8309]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 3

This document defines a YANG module called the "L3VPN Network Model" (L3NM). The L3NM is
aimed at providing a network-centric view of Layer 3 (L3) VPN services. This data model can be
used to facilitate communication between the service orchestrator and the network controller/
orchestrator by allowing more network-centric information to be included. It enables such
additional capabilities as resource management, or it serves as a multi-domain orchestration
interface where logical resources (such as route targets or route distinguishers) must be
coordinated.

This document uses the common VPN YANG module defined in .

This document does not obsolete . These two modules are used for similar objectives but
with different scopes and views.

The L3NM YANG module was initially built with a "prune and extend" approach, taking as a
starting point the YANG module described in . Nevertheless, the L3NM is not defined as
an augment to the L3SM, because a specific structure is required to meet network-oriented L3
needs.

Some information captured in the L3SM can be passed by the orchestrator in the L3NM (e.g.,
customer) or be used to feed some L3NM attributes (e.g., actual forwarding policies). Also, some
information captured in the L3SM may be maintained locally within the orchestrator, which is in
charge of maintaining the correlation between a customer view and its network instantiation.
Likewise, some information captured and exposed using the L3NM can feed the service layer (e.g.,
capabilities) to drive VPN service order handling and thus the L3SM.

 illustrates how the L3NM can be used within the network management
automation architecture.

The L3NM does not attempt to address all deployment cases, especially those where L3VPN
connectivity is supported through the coordination of different VPNs in different underlying
networks. More complex deployment scenarios involving the coordination of different VPN
instances and different technologies to provide end-to-end VPN connectivity are addressed by
complementary YANG modules, e.g., .

The L3NM focuses on Layer 3 VPNs based on BGP Provider Edges (PEs) as described in ,
, and ; and Multicast VPNs as described in and .

The YANG data model in this document conforms to the Network Management Datastore
Architecture (NMDA) defined in .

[RFC9181]

[RFC8299]

[RFC8299]

Section 5.1 of [RFC8969]

[YANG-Composed-VPN]

[RFC4026]
[RFC4110] [RFC4364] [RFC6037] [RFC6513]

[RFC8342]

2. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8969#section-5.1

Layer 3 VPN Service Model (L3SM):

Layer 3 VPN Network Model (L3NM):

Service orchestrator:

Network orchestrator:

Network controller:

VPN node:

VPN network access:

VPN site:

VPN service provider:

This document assumes that the reader is familiar with the contents of , ,
, , and and uses the terminology defined in those documents.

This document uses the term "network model" as defined in .

The meanings of the symbols in the tree diagrams are defined in .

This document makes use of the following terms:

A YANG data model that describes the service requirements
of an L3VPN that interconnects a set of sites from the point of view of the customer. The
customer service model does not provide details on the service provider network. The L3VPN
customer service model is defined in .

A YANG data model that describes a VPN service in the
service provider network. It contains information on the service provider network and might
include allocated resources. It can be used by network controllers to manage and control the
VPN service configuration in the service provider network. The corresponding YANG module
can be used by a service orchestrator to request a VPN service to a network controller.

A functional entity that interacts with the customer of an L3VPN. The
service orchestrator interacts with the customer using the L3SM. The service orchestrator is
responsible for the Customer Edge to Provider Edge (CE-PE) attachment circuits, the PE
selection, and requesting the VPN service to the network controller.

A functional entity that is hierarchically intermediate between a service
orchestrator and network controllers. A network orchestrator can manage one or several
network controllers.

A functional entity responsible for the control and management of the
service provider network.

An abstraction that represents a set of policies applied on a PE and belonging to a
single VPN service. A VPN service involves one or more VPN nodes. As it is an abstraction, the
network controller will decide how to implement a VPN node. For example, in a BGP-based
VPN, a VPN node could typically be mapped to a Virtual Routing and Forwarding (VRF)
instance.

An abstraction that represents the network interfaces that are associated
with a given VPN node. Traffic coming from the VPN network access belongs to the VPN. The
attachment circuits (bearers) between CEs and PEs are terminated in the VPN network access.
A reference to the bearer is maintained to allow keeping the link between the L3SM and L3NM
when both models are used in a given deployment.

A VPN customer's location that is connected to the service provider network via a CE-
PE link, which can access at least one VPN .

A service provider that offers VPN-related services .

[RFC6241] [RFC7950]
[RFC8299] [RFC8309] [RFC8453]

Section 2.1 of [RFC8969]

[RFC8340]

[RFC8299]

[RFC4176]

[RFC4176]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8969#section-2.1

ACL
AS
ASM
ASN
BFD
BGP
BSR
CE
CsC
IGMP
L3NM
L3SM
L3VPN
MLD
MSDP
MVPN
NAT
OAM
OSPF
PE
PIM
QoS
RD
RP
RT
SA
SSM
VPN
VRF

3. Acronyms and Abbreviations
The following acronyms and abbreviations are used in this document:

Access Control List
Autonomous System
Any-Source Multicast
AS Number
Bidirectional Forwarding Detection
Border Gateway Protocol
Bootstrap Router
Customer Edge
Carriers' Carriers
Internet Group Management Protocol
L3VPN Network Model
L3VPN Service Model
Layer 3 Virtual Private Network
Multicast Listener Discovery
Multicast Source Discovery Protocol
Multicast VPN
Network Address Translation
Operations, Administration, and Maintenance
Open Shortest Path First
Provider Edge
Protocol Independent Multicast
Quality of Service
Route Distinguisher
Rendezvous Point
Route Target
Security Association
Source-Specific Multicast
Virtual Private Network
Virtual Routing and Forwarding

Service provider network: A network that is able to provide VPN-related services.

This document is aimed at modeling BGP PE-based VPNs in a service provider network, so the
terms defined in and are used in this document as well.[RFC4026] [RFC4176]

4. L3NM Reference Architecture
Figure 1 depicts the reference architecture for the L3NM. The figure is an expansion of the
architecture presented in ; it decomposes the box marked "orchestration" in
that section into three separate functional components: service orchestration, network
orchestration, and domain orchestration.

Section 5 of [RFC8299]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8299#section-5

Although some deployments may choose to construct a monolithic orchestration component
(covering both service and network matters), this document advocates for a clear separation
between service and network orchestration components for the sake of better flexibility. Such a
design adheres to the L3VPN reference architecture defined in . This
separation relies upon a dedicated communication interface between these components and
appropriate YANG modules that reflect network-related information. Such information is hidden
from customers.

The intelligence for translating customer-facing information into network-centric information
(and vice versa) is implementation specific.

The terminology from is used here to show the distinction between the customer
service model, the service delivery model, the network configuration model, and the device
configuration model. In that context, the "domain orchestration" and "config manager" roles may
be performed by "controllers".

Section 1.3 of [RFC4176]

[RFC8309]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc4176#section-1.3

The customer may use a variety of means to request a service that may trigger the instantiation
of an L3NM. The customer may use the L3SM or more abstract models to request a service that
relies upon an L3VPN service. For example, the customer may supply an IP Connectivity
Provisioning Profile (CPP) that characterizes the requested service , an enhanced VPN
(VPN+) service , or an IETF network slice service

.

Note also that both the L3SM and the L3NM may be used in the context of the Abstraction and
Control of TE Networks (ACTN) framework . Figure 2 shows the Customer Network
Controller (CNC), the Multi-Domain Service Coordinator (MDSC), the Provisioning Network
Controller (PNC) components, and the interfaces where the L3SM and L3NM are used.

Figure 1: L3NM Reference Architecture

 +---------------+
 | Customer |
 +-------+-------+
 Customer Service Model |
 (e.g., 'l3vpn-svc') |
 +-------+-------+
 | Service |
 | Orchestration |
 +-------+-------+
 Service Delivery Model |
 'l3vpn-ntw' |
 +-------+-------+
 | Network |
 | Orchestration |
 +-------+-------+
 Network Configuration Model |
 +-----------+-----------+
 | |
 +--------+------+ +--------+------+
 | Domain | | Domain |
 | Orchestration | | Orchestration |
 +---+-----------+ +--------+------+
Device | | |
Configuration | | |
Model | | |
 +----+----+ | |
 | Config | | |
 | Manager | | |
 +----+----+ | |
 | | |
 | NETCONF/CLI..................
 | | |
 +--+
 Network

NETCONF: Network Configuration Protocol
CLI: Command-Line Interface

[RFC7297]
[Enhanced-VPN-Framework] [Network-Slices-

Framework]

[RFC8453]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 8

Figure 2: L3SM and L3NM in the Context of the ACTN

 +----------------------------------+
 | Customer |
 | +-----------------------------+ |
 | | CNC | |
 | +-----------------------------+ |
 +----+-----------------------+-----+
 | |
 | L3SM | L3SM
 | |
 +---------+---------+ +---------+---------+
 | MDSC | | MDSC |
 | +---------------+ | | (parent) |
 | | Service | | +---------+---------+
 | | Orchestration | | |
 | +-------+-------+ | | L3NM
 | | | |
 | | L3NM | +---------+---------+
 | | | | MDSC |
 | +-------+-------+ | | (child) |
 | | Network | | +---------+---------+
 | | Orchestration | | |
 | +---------------+ | |
 +---------+---------+ |
 | |
 | Network Configuration |
 | |
+------------+-------+ +---------+------------+
Domain		Domain				
Controller		Controller				
+---------+		+---------+				
	PNC				PNC	
+---------+		+---------+				
+------------+-------+ +---------+------------+
 | |
 | Device Configuration |
 | |
 +----+---+ +----+---+
 | Device | | Device |
 +--------+ +--------+

5. Relationship to Other YANG Data Models
The "ietf-vpn-common" module includes a set of identities, types, and groupings that
are meant to be reused by VPN-related YANG modules independently of the layer (e.g., Layer 2,
Layer 3) and the type of the module (e.g., network model, service model), including future
revisions of existing models (e.g., or). The L3NM reuses these common types
and groupings.

In order to avoid data duplication and to ease passing data between layers when required
(service layer to network layer and vice versa), early versions of the L3NM reused many of the
data nodes that are defined in . Nevertheless, that approach was abandoned in favor of

[RFC9181]

[RFC8299] [RFC8466]

[RFC8299]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 9

L3SM:

Network Topology Modules:

Device Modules:

the "ietf-vpn-common" module because that initial design was interpreted as if the deployment of
the L3NM depends on the L3SM, while this is not the case. For example, a service provider may
decide to use the L3NM to build its L3VPN services without exposing the L3SM.

As discussed in Section 4, the L3NM is meant to manage L3VPN services within a service provider
network. The module provides a network view of the service. Such a view is only visible within the
service provider and is not exposed outside (to customers, for example). The items below discuss
how the L3NM interfaces with other YANG modules:

The L3NM is not a customer service model.

The internal view of the service (i.e., the L3NM) may be mapped to an external view that is
visible to customers: the L3VPN Service Model (L3SM) .

The L3NM can be fed with inputs that are requested by customers. Such requests typically rely
upon an L3SM template. Concretely, some parts of the L3SM module can be directly mapped to
the L3NM, while other parts are generated as a function of the requested service and local
guidelines. Some other parts are local to the service provider and do not map directly to the
L3SM.

Note that using the L3NM within a service provider does not assume, nor does it preclude,
exposing the VPN service via the L3SM. This is deployment specific. Nevertheless, the design of
the L3NM tries to align as much as possible with the features supported by the L3SM to ease the
grafting of both the L3NM and the L3SM for the sake of highly automated VPN service
provisioning and delivery.

An L3VPN involves nodes that are part of a topology managed by
the service provider network. The topology can be represented using the network topology
YANG module defined in or its extension, such as a network YANG module for
Service Attachment Points (SAPs) .

The L3NM is not a device model.

Once a global VPN service is captured by means of the L3NM, the actual activation and
provisioning of the VPN service will involve a variety of device modules to tweak the required
functions for the delivery of the service. These functions are supported by the VPN nodes and
can be managed using device YANG modules. A non-comprehensive list of such device YANG
modules is provided below:

Routing management .
BGP .
PIM .
NAT management .
QoS management .
ACLs .

How the L3NM is used to derive device-specific actions is implementation specific.

[RFC8299]

[RFC8345]
[YANG-SAPs]

• [RFC8349]
• [BGP-YANG]
• [PIM-YANG]
• [RFC8512]
• [QoS-YANG]
• [RFC8519]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 10

6. Sample Uses of the L3NM Data Model
This section provides a non-exhaustive list of examples that illustrate contexts where the L3NM
can be used.

6.1. Enterprise Layer 3 VPN Services
Enterprise L3VPNs are one of the most demanded services for carriers; therefore, L3NM can be
useful for automating the provisioning and maintenance of these VPNs. Templates and batch
processes can be built, and as a result many parameters are needed for the creation from scratch
of a VPN that can be abstracted to the upper Software-Defined Networking (SDN) layer

, but some manual intervention will still be required.

A common function that is supported by VPNs is the addition or removal of VPN nodes.
Workflows can use the L3NM in these scenarios to add or prune nodes from the network data
model as required.

[RFC7149]
[RFC7426]

6.2. Multi-Domain Resource Management
The implementation of L3VPN services that span administratively separated domains (i.e., that
are under the administration of different management systems or controllers) requires some
network resources to be synchronized between systems. Particularly, resources must be
adequately managed in each domain to avoid broken configurations.

For example, route targets (RTs) shall be synchronized between PEs. When all PEs are controlled
by the same management system, RT allocation can be performed by that management system.
In cases where the service spans multiple management systems, the task of allocating RTs has to
be aligned across the domains; therefore, the network model must provide a way to specify RTs.
In addition, route distinguishers (RDs) must also be synchronized to avoid collisions of RD
allocations between separate management systems. An incorrect allocation might lead to the
same RD and IP prefixes being exported by different PEs.

6.3. Management of Multicast Services
Multicast services over L3VPNs can be implemented using dual PIM MVPNs (also known as the
draft-rosen model) or MVPNs based on Multiprotocol BGP (MP-BGP)

. Both methods are supported and equally effective, but the main difference is that MP-
BGP-based MVPNs do not require multicast configuration on the service provider network. MP-
BGP MVPNs employ the intra-AS BGP control plane and PIM Sparse Mode as the data
plane. The PIM state information is maintained between PEs using the same architecture that is
used for unicast VPNs.

On the other hand, has limitations, such as reduced options for transport, control plane
scalability, availability, operational inconsistency, and the need to maintain state in the
backbone. Because of these limitations, MP-BGP MVPNs provide the architectural model that has
been taken as the base for implementing multicast services in L3VPNs. In this scenario, BGP is

[RFC6037] [RFC6513]
[RFC6514]

[RFC7761]

[RFC6037]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 11

used to autodiscover MVPN PE members and the customer PIM signaling is sent across the
provider's core through MP-BGP. The multicast traffic is transported on MPLS Point-to-Multipoint
(P2MP) Label Switched Paths (LSPs).

7. Description of the L3NM YANG Module
The L3NM ("ietf-l3vpn-ntw") is defined to manage L3VPNs in a service provider network. In
particular, the "ietf-l3vpn-ntw" module can be used to create, modify, and retrieve L3VPN services
of a network.

The full tree diagram of the module can be generated using the "pyang" tool . That tree is
not included here because it is too long (). Instead, subtrees are provided
for the reader's convenience.

[PYANG]
Section 3.3 of [RFC8340]

7.1. Overall Structure of the Module
The "ietf-l3vpn-ntw" module uses two main containers: 'vpn-profiles' and 'vpn-services' (see
Figure 3).

The 'vpn-profiles' container is used by the provider to maintain a set of common VPN profiles
that apply to one or several VPN services (Section 7.2).

The 'vpn-services' container maintains the set of VPN services managed within the service
provider network. The 'vpn-service' is the data structure that abstracts a VPN service (Section 7.3).

Some of the data nodes are keyed by the address family. For the sake of data representation
compactness, it is to use the dual-stack address family for data nodes that have
the same value for both IPv4 and IPv6. If, for some reason, a data node is present for both dual-
stack and IPv4 (or IPv6), the value that is indicated under dual-stack takes precedence over the
value that is indicated under IPv4 (or IPv6).

Figure 3: Overall L3NM Tree Structure

module: ietf-l3vpn-ntw
 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...

RECOMMENDED

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc8340#section-3.3

'external-connectivity-identifier':

'encryption-profile-identifier':

'qos-profile-identifier':

'bfd-profile-identifier':

'forwarding-profile-identifier':

7.2. VPN Profiles
The 'vpn-profiles' container (Figure 4) allows the VPN service provider to define and maintain a
set of VPN profiles that apply to one or several VPN services.

This document does not make any assumption about the exact definition of these profiles. The
exact definition of the profiles is local to each VPN service provider. The model only includes an
identifier for these profiles in order to facilitate identifying and binding local policies when
building a VPN service. As shown in Figure 4, the following identifiers can be included:

This identifier refers to a profile that defines the external
connectivity provided to a VPN service (or a subset of VPN sites). External connectivity may
be access to the Internet or restricted connectivity, such as access to a public/private cloud.

An encryption profile refers to a set of policies related to the
encryption schemes and setup that can be applied when building and offering a VPN service.

A Quality of Service (QoS) profile refers to a set of policies, such as
classification, marking, and actions (e.g.,).

A Bidirectional Forwarding Detection (BFD) profile refers to a set of BFD
policies that can be invoked when building a VPN service.

A forwarding profile refers to the policies that apply to the
forwarding of packets conveyed within a VPN. Such policies may consist, for example, of
applying Access Control Lists (ACLs).

[RFC9181]

Figure 4: VPN Profiles Subtree Structure

 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | +--rw valid-provider-identifiers
 | +--rw external-connectivity-identifier* [id]
 | | {external-connectivity}?
 | | +--rw id string
 | +--rw encryption-profile-identifier* [id]
 | | +--rw id string
 | +--rw qos-profile-identifier* [id]
 | | +--rw id string
 | +--rw bfd-profile-identifier* [id]
 | | +--rw id string
 | +--rw forwarding-profile-identifier* [id]
 | | +--rw id string
 | +--rw routing-profile-identifier* [id]
 | +--rw id string
 +--rw vpn-services
 ...

[RFC3644]

[RFC5880]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 13

'routing-profile-identifier': A routing profile refers to a set of routing policies that will be invoked
(e.g., BGP policies) when delivering the VPN service.

'vpn-id':

7.3. VPN Services
The 'vpn-service' is the data structure that abstracts a VPN service in the service provider
network. Each 'vpn-service' is uniquely identified by an identifier: 'vpn-id'. Such a 'vpn-id' is only
meaningful locally (e.g., the network controller). The subtree of the 'vpn-services' is shown in
Figure 5.

The descriptions of the VPN service data nodes that are depicted in Figure 5 are as follows:

An identifier that is used to uniquely identify the L3VPN service within the L3NM scope.

Figure 5: VPN Services Subtree Structure

 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 +--rw vpn-id vpn-common:vpn-id
 +--rw vpn-name? string
 +--rw vpn-description? string
 +--rw customer-name? string
 +--rw parent-service-id? vpn-common:vpn-id
 +--rw vpn-type? identityref
 +--rw vpn-service-topology? identityref
 +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw vpn-instance-profiles
 | ...
 +--rw underlay-transport
 | +-- (type)?
 | +--:(abstract)
 | | +--rw transport-instance-id? string
 | | +--rw instance-type? identityref
 | +--:(protocol)
 | +--rw protocol* identityref
 +--rw external-connectivity
 | {vpn-common:external-connectivity}?
 | +--rw (profile)?
 | +--:(profile)
 | +--rw profile-name? leafref
 +--rw vpn-nodes
 ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 14

'vpn-name':

'vpn-description':

'customer-name':

'parent-service-id':

'vpn-type':

'vpn-service-topology':

'status':

'vpn-instance-profiles':

'underlay-transport':

'external-connectivity':

Associates a name with the service in order to facilitate the identification of the
service.

Includes a textual description of the service.

The internal structure of a VPN description is local to each VPN service provider.

Indicates the name of the customer who ordered the service.

Refers to an identifier of the parent service (e.g., L3SM, IETF network slice,
VPN+) that triggered the creation of the VPN service. This identifier is used to easily correlate
the (network) service as built in the network with a service order. A controller can use that
correlation to enrich or populate some fields (e.g., description fields) as a function of local
deployments.

Indicates the VPN type. The values are taken from . For the L3NM, this is
typically set to "BGP/MPLS L3VPN", but other values may be defined to support specific Layer 3
VPN capabilities (e.g.,).

Indicates the network topology for the service: 'hub-spoke', 'any-to-any',
or 'custom'. The network implementation of this attribute is defined by the correct usage of
import and export targets ().

Used to track the service status of a given VPN service. Both operational status and
administrative status are maintained together with a timestamp. For example, a service can
be created but not put into effect.

Administrative status and operational status can be used as a trigger to detect service
anomalies. For example, a service that is declared active at the service layer but is still inactive
at the network layer may be an indication that network provision actions are needed to align
the observed service status with the expected service status.

Defines reusable parameters for the same 'vpn-service'.

More details are provided in Section 7.4.

Describes the preference for the transport technology to carry the traffic
of the VPN service. This preference is especially useful in networks with multiple domains and
Network-to-Network Interface (NNI) types. The underlay transport can be expressed as an
abstract transport instance (e.g., an identifier of a VPN+ instance, a virtual network identifier,
or a network slice name) or as an ordered list of the actual protocols to be enabled in the
network.

A rich set of protocol identifiers that can be used to refer to an underlay transport are defined
in .

Indicates whether/how external connectivity is provided to the VPN
service. For example, a service provider may provide external connectivity to a VPN customer
(e.g., to a public cloud). Such a service may involve tweaking both filtering and NAT rules (e.g.,
binding a Virtual Routing and Forwarding (VRF) interface with a NAT instance as discussed in

[RFC9181]

[RFC9136]

Section 4.3.5 of [RFC4364]

[RFC9181]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc4364#section-4.3.5

'vpn-node':

). These value-added features may be bound to all, or a subset of,
network accesses. Some of these value-added features may be implemented in a PE or in nodes
other than PEs (e.g., a P node or even a dedicated node that hosts the NAT function).

Only a pointer to a local profile that defines the external-connectivity feature is supported in
this document.

An abstraction that represents a set of policies applied to a network node and
belonging to a single 'vpn-service'. A VPN service is typically built by adding instances of 'vpn-
node' to the 'vpn-nodes' container.

A 'vpn-node' contains 'vpn-network-accesses', which are the interfaces attached to the VPN by
which the customer traffic is received. Therefore, the customer sites are connected to the 'vpn-
network-accesses'.

Note that because this is a network data model, information about customers' sites is not
required in the model. Rather, such information is relevant in the L3SM. Whether that
information is included in the L3NM, e.g., to populate the various 'description' data nodes, is
implementation specific.

More details are provided in Section 7.5.

Section 2.10 of [RFC8512]

7.4. VPN Instance Profiles
VPN instance profiles are meant to factorize data nodes that are used at many levels of the
model. Generic VPN instance profiles are defined at the VPN service level and then called at the
VPN node and VPN network access levels. Each VPN instance profile is identified by 'profile-id'.
This identifier is then referenced for one or multiple VPN nodes (Section 7.5) so that the controller
can identify generic resources (e.g., RTs and RDs) to be configured for a given VRF instance.

The subtree of the 'vpn-instance-profiles' is shown in Figure 6.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc8512#section-2.10

 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 +--rw vpn-id vpn-common:vpn-id
 ...
 +--rw vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | +--rw profile-id string
 | +--rw role? identityref
 | +--rw local-as? inet:as-number
 | | {vpn-common:rtg-bgp}?
 | +--rw (rd-choice)?
 | | +--:(directly-assigned)
 | | | +--rw rd?
 | | | rt-types:route-distinguisher
 | | +--:(directly-assigned-suffix)
 | | | +--rw rd-suffix? uint16
 | | +--:(auto-assigned)
 | | | +--rw rd-auto
 | | | +--rw (auto-mode)?
 | | | | +--:(from-pool)
 | | | | | +--rw rd-pool-name? string
 | | | | +--:(full-auto)
 | | | | +--rw auto? empty
 | | | +--ro auto-assigned-rd?
 | | | rt-types:route-distinguisher
 | | +--:(auto-assigned-suffix)
 | | | +--rw rd-auto-suffix
 | | | +--rw (auto-mode)?
 | | | | +--:(from-pool)
 | | | | | +--rw rd-pool-name? string
 | | | | +--:(full-auto)
 | | | | +--rw auto? empty
 | | | +--ro auto-assigned-rd-suffix? uint16
 | | +--:(no-rd)
 | | +--rw no-rd? empty
 | +--rw address-family* [address-family]
 | | +--rw address-family identityref
 | | +--rw vpn-targets
 | | | +--rw vpn-target* [id]
 | | | | +--rw id uint8
 | | | | +--rw route-targets* [route-target]
 | | | | | +--rw route-target
 | | | | | rt-types:route-target
 | | | | +--rw route-target-type
 | | | | rt-types:route-target-type
 | | | +--rw vpn-policies
 | | | +--rw import-policy? string
 | | | +--rw export-policy? string
 | | +--rw maximum-routes* [protocol]
 | | +--rw protocol identityref
 | | +--rw maximum-routes? uint32
 | +--rw multicast {vpn-common:multicast}?
 | ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 17

'profile-id':

'role':

'local-as':

'rd':

'directly-assigned':

'full-auto':

'no-rd':

'address-family':

'address-family':

'vpn-targets':

'maximum-routes':

'multicast':

The descriptions of the listed data nodes are as follows:

Used to uniquely identify a VPN instance profile.

Indicates the role of the VPN instance profile in the VPN. Role values are defined in
 (e.g., 'any-to-any-role', 'spoke-role', 'hub-role').

Indicates the Autonomous System Number (ASN) that is configured for the VPN node.

As defined in , the following RD assignment modes are supported: direct
assignment, full automatic assignment, automatic assignment from a given pool, and no
assignment. For illustration purposes, the following modes can be used in the deployment
cases:

The VPN service provider (service orchestrator) assigns RDs explicitly.
This case will fit with a brownfield scenario where some existing services need to be
updated by the VPN service provider.

The network controller auto-assigns RDs. This can apply for the deployment of
new services.

The VPN service provider (service orchestrator) explicitly wants no RD to be
assigned. This case can be used for CE testing within the network or for troubleshooting
proposes.

Also, the module accommodates deployments where only the Assigned Number subfield of
RDs () is assigned from a pool while the Administrator subfield is set to,
for example, the Router ID that is assigned to a VPN node. The module supports these modes
for managing the Assigned Number subfield: explicit assignment, auto-assignment from a
pool, and full auto-assignment.

Includes a set of data nodes per address family:

Identifies the address family. It can be set to 'ipv4', 'ipv6', or 'dual-stack'.

Specifies RT import/export rules for the VPN service ().

Indicates the maximum number of prefixes that the VPN node can
accept for a given routing protocol. If 'protocol' is set to 'any', this means that the
maximum value applies to each active routing protocol.

Enables multicast traffic in the VPN service. Refer to Section 7.7.

Figure 6: Subtree Structure of VPN Instance Profiles

[RFC9181]

[RFC9181]

Section 4.2 of [RFC4364]

Section 4.3 of [RFC4364]

7.5. VPN Nodes
The 'vpn-node' is an abstraction that represents a set of common policies applied on a given
network node (typically, a PE) and belonging to one L3VPN service. The 'vpn-node' includes a
parameter to indicate the network node on which it is applied. In the case that the 'ne-id' points to

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc4364#section-4.2
https://www.rfc-editor.org/rfc/rfc4364#section-4.3

a specific PE, the 'vpn-node' will likely be mapped to a VRF instance in the node. However, the
model also allows pointing to an abstract node. In this case, the network controller will decide
how to split the 'vpn-node' into VRF instances.

The VPN node subtree structure is shown in Figure 7.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 19

 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 +--rw vpn-node-id vpn-common:vpn-id
 +--rw description? string
 +--rw ne-id? string
 +--rw local-as? inet:as-number
 | {vpn-common:rtg-bgp}?
 +--rw router-id? rt-types:router-id
 +--rw active-vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | +--rw profile-id leafref
 | +--rw router-id* [address-family]
 | | +--rw address-family identityref
 | | +--rw router-id? inet:ip-address
 | +--rw local-as? inet:as-number
 | | {vpn-common:rtg-bgp}?
 | +--rw (rd-choice)?
 | |
 | +--rw address-family* [address-family]
 | | +--rw address-family identityref
 | | | ...
 | | +--rw vpn-targets
 | | | ...
 | | +--rw maximum-routes* [protocol]
 | | ...
 | +--rw multicast {vpn-common:multicast}?
 | ...
 +--rw msdp {msdp}?
 | +--rw peer? inet:ipv4-address
 | +--rw local-address? inet:ipv4-address
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw groups
 | +--rw group* [group-id]
 | +--rw group-id string
 +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw vpn-network-accesses
 ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 20

'vpn-node-id':

'description':

'ne-id':

'local-as':

'router-id':

'active-vpn-instance-profiles':

'msdp':

'groups':

'status':

'vpn-network-accesses':

The descriptions of the 'vpn-node' data nodes (Figure 7) are as follows:

An identifier that uniquely identifies a node that enables a VPN network access.

Provides a textual description of the VPN node.

Includes a unique identifier of the network element where the VPN node is deployed.

Indicates the ASN that is configured for the VPN node.

Indicates a 32-bit number that is used to uniquely identify a router within an AS.

Lists the set of active VPN instance profiles for this VPN node.
Concretely, one or more VPN instance profiles that are defined at the VPN service level can be
enabled at the VPN node level; each of these profiles is uniquely identified by means of 'profile-
id'. The structure of 'active-vpn-instance-profiles' is the same as the structure discussed in
Section 7.4, except that the structure of 'active-vpn-instance-profiles' includes 'router-id' but
does not include the 'role' leaf. The value of 'router-id' indicated under 'active-vpn-instance-
profiles' takes precedence over the 'router-id' under the 'vpn-node' for the indicated address
family. For example, Router IDs can be configured per address family. This capability can be
used, for example, to configure an IPv6 address as a Router ID when such a capability is
supported by involved routers.

Values defined in 'active-vpn-instance-profiles' override the values defined at the VPN service
level. An example is shown in Appendix A.3.

For redundancy purposes, the Multicast Source Discovery Protocol (MSDP)
may be enabled and used to share state information about sources between multiple
Rendezvous Points (RPs). The purpose of MSDP in this context is to enhance the robustness of
the multicast service. MSDP may be configured on non-RP routers; this is useful in a domain
that does not support multicast sources but does support multicast transit.

Lists the groups to which a VPN node belongs . For example, the 'group-id' is
used to associate redundancy or protection constraints with VPN nodes.

Tracks the status of a node involved in a VPN service. Both operational status and
administrative status are maintained. A mismatch between the administrative status vs. the
operational status can be used as a trigger to detect anomalies.

Represents the point to which sites are connected.

Note that unlike the L3SM, the L3NM does not need to model the customer site -- only the
points that receive traffic from the site (i.e., the PE side of Provider Edge to Customer Edge (PE-
CE) connections). Hence, the VPN network access contains the connectivity information
between the provider's network and the customer premises. The VPN profiles ('vpn-profiles')
have a set of routing policies that can be applied during the service creation.

See Section 7.6 for more details.

Figure 7: VPN Node Subtree Structure

[RFC3618]

[RFC9181]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 21

'id':

'interface-id':

'description':

'vpn-network-access-type':

'point-to-point':

7.6. VPN Network Accesses
The 'vpn-network-access' includes a set of data nodes that describe the access information for the
traffic that belongs to a particular L3VPN (Figure 8).

A 'vpn-network-access' (Figure 8) includes the following data nodes:

An identifier of the VPN network access.

Indicates the physical or logical interface on which the VPN network access is
bound.

Includes a textual description of the VPN network access.

Used to select the type of network interface to be deployed in the
devices. The available defined values are as follows:

Figure 8: VPN Network Access Subtree Structure

...
+--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 +--rw id vpn-common:vpn-id
 +--rw interface-id? string
 +--rw description? string
 +--rw vpn-network-access-type? identityref
 +--rw vpn-instance-profile? leafref
 +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw connection
 | ...
 +--rw ip-connection
 | ...
 +--rw routing-protocols
 | ...
 +--rw oam
 | ...
 +--rw security
 | ...
 +--rw service
 ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 22

'multipoint':

'irb':

'loopback':

'vpn-instance-profile':

'status':

'connection':

'ip-connection':

'routing-protocols':

'oam':

'security':

'service':

Represents a direct connection between the endpoints. The controller must keep the
association between a logical or physical interface on the device with the 'id' of the 'vpn-
network-access'.

Represents a multipoint connection between the customer site and the PEs. The
controller must keep the association between a logical or physical interface on the device
with the 'id' of the 'vpn-network-access'.

Represents a connection coming from an L2VPN service. An identifier of such a service
('l2vpn-id') may be included in the 'connection' container, as depicted in Figure 9 (Section
7.6.1). The controller must keep the relationship between the logical tunnels or bridges on
the devices with the 'id' of the 'vpn-network-access'.

Represents the creation of a logical interface on a device. An example that
illustrates how a loopback interface can be used in the L3NM is provided in Appendix A.2.

Provides a pointer to an active VPN instance profile at the VPN node
level. Referencing an active VPN instance profile implies that all associated data nodes will be
inherited by the VPN network access. However, some inherited data nodes (e.g., multicast) can
be overridden at the VPN network access level. In such a case, adjusted values take precedence
over inherited values.

Indicates both operational status and administrative status of a VPN network access.

Represents and groups the set of Layer 2 connectivity from where the traffic of the
L3VPN in a particular VPN network access is coming. See Section 7.6.1.

Contains Layer 3 connectivity information on a VPN network access (e.g., IP
addressing). See Section 7.6.2.

Includes the CE-PE routing configuration information. See Section 7.6.3.

Specifies the Operations, Administration, and Maintenance (OAM) mechanisms used for
a VPN network access. See Section 7.6.4.

Specifies the authentication and the encryption to be applied for a given VPN network
access. See Section 7.6.5.

Specifies the service parameters (e.g., QoS, multicast) to apply for a given VPN network
access. See Section 7.6.6.

7.6.1. Connection

The 'connection' container represents the Layer 2 connectivity to the L3VPN for a particular VPN
network access. As shown in the tree depicted in Figure 9, the 'connection' container defines
protocols and parameters to enable such connectivity at Layer 2.

The traffic can enter the VPN with or without encapsulation (e.g., VLAN, QinQ). The
'encapsulation' container specifies the Layer 2 encapsulation to use (if any) and allows the
configuration of the relevant tags.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 23

The interface that is attached to the L3VPN is identified by the 'interface-id' at the 'vpn-network-
access' level. From a network model perspective, it is expected that the 'interface-id' is sufficient
to identify the interface. However, specific Layer 2 sub-interfaces may be required to be
configured in some implementations/deployments. Such a Layer-2-specific interface can be
included in 'l2-termination-point'.

If a Layer 2 tunnel is needed to terminate the service in the CE-PE connection, the 'l2-tunnel-
service' container is used to specify the required parameters to set such a tunneling service (e.g., a
Virtual Private LAN Service (VPLS) or a Virtual eXtensible Local Area Network (VXLAN)). An
identity called 'l2-tunnel-type' is defined for Layer 2 tunnel selection. The container can also
identify the pseudowire ().

As discussed in Section 7.6, 'l2vpn-id' is used to identify the L2VPN service that is associated with
an Integrated Routing and Bridging (IRB) interface.

To accommodate implementations that require internal bridging, a local bridge reference can be
specified in 'local-bridge-reference'. Such a reference may be a local bridge domain.

A site, as per , represents a VPN customer's location that is connected to the service
provider network via a CE-PE link, which can access at least one VPN. The connection from the
site to the service provider network is the bearer. Every site is associated with a list of bearers. A
bearer is the Layer 2 connection with the site. In the L3NM, it is assumed that the bearer has been
allocated by the service provider at the service orchestration stage. The bearer is associated with
a network element and a port. Hence, a bearer is just a 'bearer-reference' to allow the association
between a service request (e.g., the L3SM) and the L3NM.

The L3NM can be used to create a Link Aggregation Group (LAG) interface for a given L3VPN
service ('lag-interface') . Such a LAG interface can be referenced under 'interface-id'
(Section 7.6).

Section 6.1 of [RFC8077]

[RFC4176]

[IEEE802.1AX]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc8077#section-6.1

Figure 9: Connection Subtree Structure

...
+--rw connection
| +--rw encapsulation
| | +--rw type? identityref
| | +--rw dot1q
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id? uint16
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id uint16
| | +--rw cvlan-id uint16
| +--rw (l2-service)?
| | +--:(l2-tunnel-service)
| | | +--rw l2-tunnel-service
| | | +--rw type? identityref
| | | +--rw pseudowire
| | | | +--rw vcid? uint32
| | | | +--rw far-end? union
| | | +--rw vpls
| | | | +--rw vcid? uint32
| | | | +--rw far-end* union
| | | +--rw vxlan
| | | +--rw vni-id uint32
| | | +--rw peer-mode? identityref
| | | +--rw peer-ip-address* inet:ip-address
| | +--:(l2vpn)
| | +--rw l2vpn-id? vpn-common:vpn-id
| +--rw l2-termination-point? string
| +--rw local-bridge-reference? string
| +--rw bearer-reference? string
| | {vpn-common:bearer-reference}?
| +--rw lag-interface {vpn-common:lag-interface}?
| +--rw lag-interface-id? string
| +--rw member-link-list
| +--rw member-link* [name]
| +--rw name string
...

7.6.2. IP Connection

This container is used to group Layer 3 connectivity information, particularly the IP addressing
information, of a VPN network access. The allocated address represents the PE interface address
configuration. Note that a distinct Layer 3 interface other than the interface indicated under the
'connection' container may be needed to terminate the Layer 3 service. The identifier of such an
interface is included in 'l3-termination-point'. For example, this data node can be used to carry
the identifier of a bridge domain interface.

As shown in Figure 10, the 'ip-connection' container can include IPv4, IPv6, or both if dual-stack is
enabled.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 25

For both IPv4 and IPv6, the IP connection supports three IP address assignment modes for
customer addresses: provider DHCP, DHCP relay, and static addressing. Note that for the IPv6 case,
Stateless Address Autoconfiguration (SLAAC) can be used. For both IPv4 and IPv6,
'address-allocation-type' is used to indicate the IP address allocation mode to activate for a given
VPN network access.

When 'address-allocation-type' is set to 'provider-dhcp', DHCP assignments can be made locally
or by an external DHCP server. Such behavior is controlled by setting 'dhcp-service-type'.

Figure 11 shows the structure of the dynamic IPv4 address assignment (i.e., by means of DHCP).

Figure 10: IP Connection Subtree Structure

...
+--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw ip-connection
 | +--rw l3-termination-point? string
 | +--rw ipv4 {vpn-common:ipv4}?
 | | ...
 | +--rw ipv6 {vpn-common:ipv6}?
 | ...
 ...

[RFC4862]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 26

Figure 12 shows the structure of the dynamic IPv6 address assignment (i.e., DHCPv6 and/or
SLAAC). Note that if 'address-allocation-type' is set to 'slaac', the Prefix Information option of
Router Advertisements that will be issued for SLAAC purposes will carry the IPv6 prefix that is
determined by 'local-address' and 'prefix-length'. For example, if 'local-address' is set to
'2001:db8:0:1::1' and 'prefix-length' is set to '64', the IPv6 prefix that will be used is
'2001:db8:0:1::/64'.

Figure 11: IP Connection Subtree Structure (IPv4)

...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw local-address? inet:ipv4-address
| | +--rw prefix-length? uint8
| | +--rw address-allocation-type? identityref
| | +--rw (allocation-type)?
| | +--:(provider-dhcp)
| | | +--rw dhcp-service-type? enumeration
| | | +--rw (service-type)?
| | | +--:(relay)
| | | | +--rw server-ip-address*
| | | | inet:ipv4-address
| | | +--:(server)
| | | +--rw (address-assign)?
| | | +--:(number)
| | | | +--rw number-of-dynamic-address?
| | | | uint16
| | | +--:(explicit)
| | | +--rw customer-addresses
| | | +--rw address-pool* [pool-id]
| | | +--rw pool-id string
| | | +--rw start-address
| | | | inet:ipv4-address
| | | +--rw end-address?
| | | inet:ipv4-address
| | +--:(dhcp-relay)
| | | +--rw customer-dhcp-servers
| | | +--rw server-ip-address* inet:ipv4-address
| | +--:(static-addresses)
| | ...
...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 27

In the case of static addressing (Figure 13), the model supports the assignment of several IP
addresses in the same 'vpn-network-access'. To identify which of the addresses is the primary
address of a connection, the 'primary-address' reference be set with the corresponding
'address-id'.

Figure 12: IP Connection Subtree Structure (IPv6)

...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | ...
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw local-address? inet:ipv6-address
| +--rw prefix-length? uint8
| +--rw address-allocation-type? identityref
| +--rw (allocation-type)?
| +--:(provider-dhcp)
| | +--rw provider-dhcp
| | +--rw dhcp-service-type?
| | | enumeration
| | +--rw (service-type)?
| | +--:(relay)
| | | +--rw server-ip-address*
| | | inet:ipv6-address
| | +--:(server)
| | +--rw (address-assign)?
| | +--:(number)
| | | +--rw number-of-dynamic-address?
| | | uint16
| | +--:(explicit)
| | +--rw customer-addresses
| | +--rw address-pool* [pool-id]
| | +--rw pool-id string
| | +--rw start-address
| | | inet:ipv6-address
| | +--rw end-address?
| | inet:ipv6-address
| +--:(dhcp-relay)
| | +--rw customer-dhcp-servers
| | +--rw server-ip-address*
| | inet:ipv6-address
| +--:(static-addresses)
| ...

MUST

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 28

Figure 13: IP Connection Subtree Structure (Static Mode)

...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw address-allocation-type? identityref
| | +--rw (allocation-type)?
| | ...
| | +--:(static-addresses)
| | +--rw primary-address? -> ../address/address-id
| | +--rw address* [address-id]
| | +--rw address-id string
| | +--rw customer-address? inet:ipv4-address
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw address-allocation-type? identityref
| +--rw (allocation-type)?
| ...
| +--:(static-addresses)
| +--rw primary-address? -> ../address/address-id
| +--rw address* [address-id]
| +--rw address-id string
| +--rw customer-address? inet:ipv6-address
...

7.6.3. CE-PE Routing Protocols

A VPN service provider can configure one or more routing protocols associated with a particular
'vpn-network-access'. Such routing protocols are enabled between the PE and the CE. Each
instance is uniquely identified to accommodate scenarios where multiple instances of the same
routing protocol have to be configured on the same link.

The subtree of the 'routing-protocols' is shown in Figure 14.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 29

Multiple routing instances can be defined, each uniquely identified by an 'id'. The type of routing
instance is indicated in 'type'. The values of these attributes are those defined in (the
'routing-protocol-type' identity).

Configuring multiple instances of the same routing protocol does not automatically imply that,
from a device configuration perspective, there will be parallel instances (e.g., multiple processes)
running on the PE-CE link. It is up to each implementation (typically, network orchestration, as
shown in Figure 1) to decide on the appropriate configuration as a function of underlying
capabilities and service provider operational guidelines. As an example, when multiple BGP peers
need to be implemented, multiple instances of BGP must be configured as part of this model.
However, from a device configuration point of view, this could be implemented as:

Multiple BGP processes with a single neighbor running in each process.
A single BGP process with multiple neighbors running.
A combination thereof.

Routing configuration does not include low-level policies. Such policies are handled at the device
configuration level. Local policies of a service provider (e.g., filtering) are implemented as part of
the device configuration; these are not captured in the L3NM, but the model allows local profiles
to be associated with routing instances ('routing-profiles'). Note that these routing profiles can be
scoped to capture parameters that are globally applied to all L3VPN services within a service

Figure 14: Routing Subtree Structure

 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw routing-protocols
 | +--rw routing-protocol* [id]
 | +--rw id string
 | +--rw type? identityref
 | +--rw routing-profiles* [id]
 | | +--rw id leafref
 | | +--rw type? identityref
 | +--rw static
 | | ...
 | +--rw bgp
 | | ...
 | +--rw ospf
 | | ...
 | +--rw isis
 | | ...
 | +--rw rip
 | | ...
 | +--rw vrrp
 | ...
 +--rw security
 ...

[RFC9181]

•
•
•

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 30

provider network, while customized L3VPN parameters are captured by means of the L3NM. The
provisioning of an L3VPN service will thus rely upon the instantiation of these global routing
profiles and the customized L3NM.

7.6.3.1. Static Routing
The L3NM supports the configuration of one or more IPv4/IPv6 static routes. Since the same
structure is used for both IPv4 and IPv6, using one single container to group both static entries
independently of their address family was considered at one time, but that design was
abandoned to ease the mapping, using the structure provided in .

The static routing subtree structure is shown in Figure 15.

[RFC8299]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 31

'lan-tag':

'next-hop':

'bfd-enable':

'metric':

As depicted in Figure 15, the following data nodes can be defined for a given IP prefix:

Indicates a local tag (e.g., "myfavorite-lan") that is used to enforce local policies.

Indicates the next hop to be used for the static route. It can be identified by an IP
address, a predefined next-hop type (e.g., 'discard' or 'local-link'), etc.

Indicates whether BFD is enabled or disabled for this static route entry.

Indicates the metric associated with the static route entry. This metric is used when the
route is exported into an IGP.

Figure 15: Static Routing Subtree Structure

...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw static
| | +--rw cascaded-lan-prefixes
| | +--rw ipv4-lan-prefixes*
| | | [lan next-hop]
| | | {vpn-common:ipv4}?
| | | +--rw lan inet:ipv4-prefix
| | | +--rw lan-tag? string
| | | +--rw next-hop union
| | | +--rw bfd-enable? boolean
| | | +--rw metric? uint32
| | | +--rw preference? uint32
| | | +--rw status
| | | +--rw admin-status
| | | | +--rw status? identityref
| | | | +--rw last-change? yang:date-and-time
| | | +--ro oper-status
| | | +--ro status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--rw ipv6-lan-prefixes*
| | [lan next-hop]
| | {vpn-common:ipv6}?
| | +--rw lan inet:ipv6-prefix
| | +--rw lan-tag? string
| | +--rw next-hop union
| | +--rw bfd-enable? boolean
| | +--rw metric? uint32
| | +--rw preference? uint32
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 32

'preference':

'status':

Indicates the preference associated with the static route entry. This preference is
used to select a preferred route among routes to the same destination prefix.

Used to convey the status of a static route entry. This data node can also be used to
control the (de)activation of individual static route entries.

7.6.3.2. BGP
The L3NM allows the configuration of a BGP neighbor, including a set of parameters that are
pertinent to be tweaked at the network level for service customization purposes. The 'bgp'
container does not aim to include every BGP parameter; a comprehensive set of parameters
belongs more to the BGP device model.

The BGP routing subtree structure is shown in Figure 16.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 33

Figure 16: BGP Routing Subtree Structure

...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw bgp
| | +--rw description? string
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw local-address? union
| | +--rw neighbor* inet:ip-address
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin? rt-types:route-origin
| | +--rw ipv6-site-of-origin? rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enable? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | | +--rw keepalive? uint16
| | | +--rw hold-time? uint16
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain? key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain? key-chain:key-chain-ref
| | | +--:(explicit)
| | | | +--rw key-id? uint32
| | | | +--rw key? string
| | | | +--rw crypto-algorithm? identityref
| | | +--:(ipsec)
| | | +--rw sa? string
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 34

'description':

'local-as':

'peer-as':

'address-family':

'local-address':

'neighbor':

'multihop':

'as-override':

'allow-own-as':

'prepend-global-as':

'send-default-route':

'site-of-origin':

'ipv6-site-of-origin':

'redistribute-connected':

The following data nodes are captured in Figure 16. It is up to the implementation (e.g., network
orchestrator) to derive the corresponding BGP device configuration:

Includes a description of the BGP session.

Indicates a local AS Number (ASN), if a distinct ASN is required other than the ASN
configured at the VPN node level.

Conveys the customer's ASN.

Indicates the address family of the peer. It can be set to 'ipv4', 'ipv6', or 'dual-
stack'.

This address family will be used together with the 'vpn-type' to derive the appropriate Address
Family Identifiers (AFIs) / Subsequent Address Family Identifiers (SAFIs) that will be part of the
derived device configurations (e.g., unicast IPv4 MPLS L3VPN (AFI,SAFI = 1,128) as defined in

).

Specifies an address or a reference to an interface to use when establishing the
BGP transport session.

Can indicate two neighbors (each for a given address family) or one neighbor (if the
'address-family' attribute is set to 'dual-stack'). A list of IP address(es) of the BGP neighbor(s)
can then be conveyed in this data node.

Indicates the number of allowed IP hops between a PE and its BGP peer.

If set, this parameter indicates whether ASN override is enabled, i.e., replacing the
ASN of the customer specified in the AS_PATH BGP attribute with the ASN identified in the
'local-as' attribute.

Used in some topologies (e.g., hub-and-spoke) to allow the provider's ASN to be
included in the AS_PATH BGP attribute received from a CE. Loops are prevented by setting
'allow-own-as' to a maximum number of the provider's ASN occurrences. By default, this
parameter is set to '0' (that is, reject any AS_PATH attribute that includes the provider's ASN).

When distinct ASNs are configured at the VPN node and network access
levels, this parameter controls whether the ASN provided at the VPN node level is prepended to
the AS_PATH attribute.

Controls whether default routes can be advertised to the peer.

Meant to uniquely identify the set of routes learned from a site via a particular
CE-PE connection. It is used to prevent routing loops (). The Site of Origin
attribute is encoded as a Route Origin Extended Community.

Carries an IPv6 Address Specific BGP Extended Community that is used to
indicate the Site of Origin for VRF information . It is used to prevent routing loops.

Controls whether the PE-CE link is advertised to other PEs.

Section 4.3.4 of [RFC4364]

Section 7 of [RFC4364]

[RFC5701]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 35

https://www.rfc-editor.org/rfc/rfc4364#section-4.3.4
https://www.rfc-editor.org/rfc/rfc4364#section-7

'bgp-max-prefix':

'max-prefix':

'warning-threshold':

'violate-action':

'restart-timer':

'bgp-timers':

'authentication':

'status':

Controls the behavior when a prefix maximum is reached.

Indicates the maximum number of BGP prefixes allowed in the BGP session. If
the limit is reached, the action indicated in 'violate-action' will be followed.

A warning notification is triggered when this limit is reached.

Indicates which action to execute when the maximum number of BGP
prefixes is reached. Examples of such actions include sending a warning message,
discarding extra paths from the peer, or restarting the session.

Indicates, in seconds, the time interval after which the BGP session will be
reestablished.

Two timers can be captured in this container: (1) 'hold-time', which is the time
interval that will be used for the Hold Timer () when establishing a BGP
session and (2) 'keepalive', which is the time interval for the KeepaliveTimer between a PE and
a BGP peer (). Both timers are expressed in seconds.

The module adheres to the recommendations in , as it
allows enabling the TCP Authentication Option (TCP-AO) and accommodates the
installed base that makes use of MD5. In addition, the module includes a provision for using
IPsec.

This version of the L3NM assumes that parameters specific to the TCP-AO are preconfigured as
part of the key chain that is referenced in the L3NM. No assumption is made about how such a
key chain is preconfigured. However, the structure of the key chain should cover data nodes
beyond those in , mainly SendID and RecvID ().

Indicates the status of the BGP routing instance.

7.6.3.3. OSPF
OSPF can be configured to run as a routing protocol on the 'vpn-network-access'.

The OSPF routing subtree structure is shown in Figure 17.

Section 4.2 of [RFC4271]

Section 4.4 of [RFC4271]

Section 13.2 of [RFC4364]
[RFC5925]

[RFC8177] Section 3.1 of [RFC5925]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 36

https://www.rfc-editor.org/rfc/rfc4271#section-4.2
https://www.rfc-editor.org/rfc/rfc4271#section-4.4
https://www.rfc-editor.org/rfc/rfc4364#section-13.2
https://www.rfc-editor.org/rfc/rfc5925#section-3.1

'address-family':

'area-id':

'metric':

'sham-links':

The following data nodes are captured in Figure 17:

Indicates whether IPv4, IPv6, or both address families are to be activated.

When the IPv4 or dual-stack address family is requested, it is up to the implementation (e.g.,
network orchestrator) to decide whether OSPFv2 or OSPFv3 is used to
announce IPv4 routes. Such a decision will typically be reflected in the device configurations
that will be derived to implement the L3VPN.

Indicates the OSPF Area ID.

Associates a metric with OSPF routes.

Used to create OSPF sham links between two VPN network accesses sharing the
same area and having a backdoor link (and).

Figure 17: OSPF Routing Subtree Structure

...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw ospf
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw sham-links {vpn-common:rtg-ospf-sham-link}?
| | | +--rw sham-link* [target-site]
| | | +--rw target-site string
| | | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | | +--rw key-id? uint32
| | | | +--rw key? string
| | | | +--rw crypto-algorithm?
| | | | identityref
| | | +--:(ipsec)
| | | +--rw sa? string
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

[RFC4577] [RFC6565]

Section 4.2.7 of [RFC4577] Section 5 of [RFC6565]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 37

https://www.rfc-editor.org/rfc/rfc4577#section-4.2.7
https://www.rfc-editor.org/rfc/rfc6565#section-5

'max-lsa':

'authentication':

'status':

'address-family':

'area-address':

'level':

Sets the maximum number of Link State Advertisements (LSAs) that the OSPF
instance will accept.

Controls the authentication schemes to be enabled for the OSPF instance. The
following options are supported: IPsec for OSPFv3 authentication , and the
Authentication Trailer for OSPFv2 and OSPFv3 .

Indicates the status of the OSPF routing instance.

7.6.3.4. IS-IS
The model allows the user to configure IS-IS to run on the 'vpn-
network-access' interface. See Figure 18.

The following IS-IS data nodes are supported:

Indicates whether IPv4, IPv6, or both address families are to be activated.

Indicates the IS-IS area address.

Indicates the IS-IS level: Level 1, Level 2, or both.

[RFC4552]
[RFC5709] [RFC7474] [RFC7166]

[ISO10589] [RFC1195] [RFC5308]

Figure 18: IS-IS Routing Subtree Structure

...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw isis
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint16
| | +--rw mode? enumeration
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 38

'metric':

'mode':

'authentication':

'status':

'address-family':

Associates a metric with IS-IS routes.

Indicates the IS-IS interface mode type. It can be set to 'active' (that is, send or receive IS-
IS protocol control packets) or 'passive' (that is, suppress the sending of IS-IS updates through
the interface).

Controls the authentication schemes to be enabled for the IS-IS instance. Both
the specification of a key chain and the direct specification of key and
authentication algorithms are supported.

Indicates the status of the IS-IS routing instance.

7.6.3.5. RIP
The model allows the user to configure RIP to run on the 'vpn-network-access' interface. See
Figure 19.

As shown in Figure 19, the following RIP data nodes are supported:

[RFC8177]

Figure 19: RIP Subtree Structure

...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw rip
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 39

'timers':

'update-interval':

'invalid-interval':

'holddown-interval':

'flush-interval':

'default-metric':

'authentication':

'status':

'address-family':

Indicates whether IPv4, IPv6, or both address families are to be activated. This parameter is
used to determine whether RIPv2 , RIP Next Generation (RIPng), or both are to be
enabled .

Indicates the following timers:

The interval at which RIP updates are sent.

The interval before a RIP route is declared invalid.

The interval before better RIP routes are released.

The interval before a route is removed from the routing table.

These timers are expressed in seconds.

Sets the default RIP metric.

Controls the authentication schemes to be enabled for the RIP instance.

Indicates the status of the RIP routing instance.

7.6.3.6. VRRP
The model allows enabling the Virtual Router Redundancy Protocol (VRRP) on the 'vpn-network-
access' interface. See Figure 20.

The following data nodes are supported:

Indicates whether IPv4, IPv6, or both address families are to be activated. Note
that VRRP version 3 supports both IPv4 and IPv6.

[RFC2453]
[RFC2080]

Figure 20: VRRP Subtree Structure

...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw vrrp
| +--rw address-family* identityref
| +--rw vrrp-group? uint8
| +--rw backup-peer? inet:ip-address
| +--rw virtual-ip-address* inet:ip-address
| +--rw priority? uint8
| +--rw ping-reply? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
...

[RFC5798]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 40

'vrrp-group':

'backup-peer':

'virtual-ip-address':

'priority':

'ping-reply':

'status':

Used to identify the VRRP group.

Carries the IP address of the peer.

Includes virtual IP addresses for a single VRRP group.

Assigns the VRRP election priority for the backup virtual router.

Controls whether the VRRP speaker should reply to ping requests.

Indicates the status of the VRRP instance.

Note that no authentication data node is included for VRRP, as there isn't any type of VRRP
authentication at this time (see).Section 9 of [RFC5798]

'session-type':

'desired-min-tx-interval':

7.6.4. OAM

This container (Figure 21) defines the Operations, Administration, and Maintenance (OAM)
mechanisms used for a VPN network access. In the current version of the L3NM, only BFD is
supported.

The following OAM data nodes can be specified:

Indicates which BFD flavor is used to set up the session (e.g., classic BFD
, Seamless BFD). By default, it is assumed that the BFD session will follow

the behavior specified in .

The minimum interval, in microseconds, that a PE would like to use
when transmitting BFD Control packets, less any jitter applied.

Figure 21: IP Connection Subtree Structure (OAM)

...
+--rw oam
| +--rw bfd {vpn-common:bfd}?
| +--rw session-type? identityref
| +--rw desired-min-tx-interval? uint32
| +--rw required-min-rx-interval? uint32
| +--rw local-multiplier? uint8
| +--rw holdtime? uint32
| +--rw profile? leafref
| +--rw authentication!
| | +--rw key-chain? key-chain:key-chain-ref
| | +--rw meticulous? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
...

[RFC5880] [RFC7880]
[RFC5880]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 41

https://www.rfc-editor.org/rfc/rfc5798#section-9

'required-min-rx-interval':

'local-multiplier':

'holdtime':

'profile':

'authentication':

'status':

The minimum interval, in microseconds, between received BFD
Control packets that a PE is capable of supporting, less any jitter applied by the sender.

The negotiated transmit interval, multiplied by this value, provides the
detection time for the peer.

Used to indicate the expected BFD holddown time, in milliseconds. This value may be
inherited from the service request (see).

Refers to a BFD profile (Section 7.2). Such a profile can be set by the provider or
inherited from the service request (see).

Includes the required information to enable the BFD authentication modes
discussed in . In particular, 'meticulous' controls the activation of
meticulous mode as discussed in Sections 6.7.3 and 6.7.4 of .

Indicates the status of BFD.

Section 6.3.2.2.2 of [RFC8299]

Section 6.3.2.2.2 of [RFC8299]

Section 6.7 of [RFC5880]
[RFC5880]

7.6.5. Security

The 'security' container specifies the authentication and the encryption to be applied to traffic for
a given VPN network access. As depicted in the subtree shown in Figure 22, the L3NM can be used
to directly control the encryption to be applied (e.g., Layer 2 or Layer 3 encryption) or invoke a
local encryption profile.

Figure 22: Security Subtree Structure

 ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw security
 | +--rw encryption {vpn-common:encryption}?
 | | +--rw enabled? boolean
 | | +--rw layer? enumeration
 | +--rw encryption-profile
 | +--rw (profile)?
 | +--:(provider-profile)
 | | +--rw profile-name? leafref
 | +--:(customer-profile)
 | +--rw customer-key-chain?
 | key-chain:key-chain-ref
 +--rw service
 ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 42

https://www.rfc-editor.org/rfc/rfc8299#section-6.3.2.2.2
https://www.rfc-editor.org/rfc/rfc8299#section-6.3.2.2.2
https://www.rfc-editor.org/rfc/rfc5880#section-6.7
https://www.rfc-editor.org/rfc/rfc5880#section-6.7.3
https://www.rfc-editor.org/rfc/rfc5880#section-6.7.4

'pe-to-ce-bandwidth':

'ce-to-pe-bandwidth':

'mtu':

'qos':

'carriers-carrier':

7.6.6. Services

7.6.6.1. Overview
The 'service' container specifies the service parameters to apply for a given VPN network access
(Figure 23).

The following data nodes are defined:

Indicates, in bits per second (bps), the inbound bandwidth of the
connection (i.e., the download bandwidth from the service provider to the site).

Indicates, in bps, the outbound bandwidth of the connection (i.e., the
upload bandwidth from the site to the service provider).

Indicates the MTU at the service level.

Used to define a set of QoS policies to apply on a given connection (refer to Section 7.6.6.2
for more details).

Groups a set of parameters that are used when Carriers' Carriers (CsC) is
enabled, such as using BGP for signaling purposes .

Figure 23: Services Subtree Structure

...
+--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw service
 +--rw pe-to-ce-bandwidth? uint64 {vpn-common:inbound-bw}?
 +--rw ce-to-pe-bandwidth? uint64 {vpn-common:outbound-bw}?
 +--rw mtu? uint32
 +--rw qos {vpn-common:qos}?
 | ...
 +--rw carriers-carrier
 | {vpn-common:carriers-carrier}?
 | +--rw signaling-type? enumeration
 +--rw ntp
 | +--rw broadcast? enumeration
 | +--rw auth-profile
 | | +--rw profile-id? string
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw multicast {vpn-common:multicast}?
 ...

[RFC8277]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 43

'ntp':

'multicast':

Time synchronization may be needed in some VPNs, such as infrastructure and
management VPNs. This container is used to enable the NTP service .

Specifies the multicast mode and other data nodes, such as the address family. Refer
to Section 7.7.

[RFC5905]

Layer 3:

7.6.6.2. QoS
The 'qos' container is used to define a set of QoS policies to apply on a given connection (Figure
24). A QoS policy may be a classification or an action policy. For example, a QoS action can be
defined to rate-limit inbound/outbound traffic of a given class of service.

QoS classification can be based on many criteria, such as the following:

As shown in Figure 25, classification can be based on any IP header field or a
combination thereof. Both IPv4 and IPv6 are supported.

Figure 24: Overall QoS Subtree Structure

...
+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | +--:(ipv4)
| | | | | | ...
| | | | | +--:(ipv6)
| | | | | ...
| | | | +--rw (l4)?
| | | | +--:(tcp)
| | | | | ...
| | | | +--:(udp)
| | | | ...
| | | +--:(match-application)
| | | +--rw match-application?
| | | identityref
| | +--rw target-class-id? string
| +--rw qos-action
| | +--rw rule* [id]
| | +--rw id string
| | +--rw target-class-id? string
| | +--rw inbound-rate-limit? decimal64
| | +--rw outbound-rate-limit? decimal64
| +--rw qos-profile
| +--rw qos-profile* [profile]
| +--rw profile leafref
| +--rw direction? identityref
...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 44

Layer 4: As discussed in , any Layer 4 protocol can be indicated in the 'protocol' data
node under 'l3' (Figure 25), but only TCP- and UDP-specific match criteria are elaborated in this
version, as these protocols are widely used in the context of VPN services. Augmentations can
be considered in the future to add other Layer-4-specific data nodes, if needed.

TCP- or UDP-related match criteria can be specified in the L3NM, as shown in Figure 26.

Figure 25: QoS Subtree Structure (L3)

+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | +--:(ipv4)
| | | | | | +--rw ipv4
| | | | | | +--rw dscp? inet:dscp
| | | | | | +--rw ecn? uint8
| | | | | | +--rw length? uint16
| | | | | | +--rw ttl? uint8
| | | | | | +--rw protocol? uint8
| | | | | | +--rw ihl? uint8
| | | | | | +--rw flags? bits
| | | | | | +--rw offset? uint16
| | | | | | +--rw identification? uint16
| | | | | | +--rw (destination-network)?
| | | | | | | +--:(destination-ipv4-network)
| | | | | | | +--rw destination-ipv4-network?
| | | | | | | inet:ipv4-prefix
| | | | | | +--rw (source-network)?
| | | | | | +--:(source-ipv4-network)
| | | | | | +--rw source-ipv4-network?
| | | | | | inet:ipv4-prefix
| | | | | +--:(ipv6)
| | | | | +--rw ipv6
| | | | | +--rw dscp? inet:dscp
| | | | | +--rw ecn? uint8
| | | | | +--rw length? uint16
| | | | | +--rw ttl? uint8
| | | | | +--rw protocol? uint8
| | | | | +--rw (destination-network)?
| | | | | | +--:(destination-ipv6-network)
| | | | | | +--rw destination-ipv6-network?
| | | | | | inet:ipv6-prefix
| | | | | +--rw (source-network)?
| | | | | | +--:(source-ipv6-network)
| | | | | | +--rw source-ipv6-network?
| | | | | | inet:ipv6-prefix
| | | | | +--rw flow-label?
| | | | | inet:ipv6-flow-label
...

[RFC9181]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 45

As discussed in , some transport protocols use existing protocols (e.g., TCP or UDP) as
the substrate. The match criteria for such protocols may rely upon the 'protocol' setting under
'l3', TCP/UDP match criteria as shown in Figure 26, part of the TCP/UDP payload, or a
combination thereof. This version of the module does not support such advanced match
criteria. Future revisions of the VPN common module or augmentations to the L3NM may
consider adding match criteria based on the transport protocol payload (e.g., by means of a
bitmask match).

[RFC9181]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 46

+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | ...
| | | | +--rw (l4)?
| | | | +--:(tcp)
| | | | | +--rw tcp
| | | | | +--rw sequence-number? uint32
| | | | | +--rw acknowledgement-number? uint32
| | | | | +--rw data-offset? uint8
| | | | | +--rw reserved? uint8
| | | | | +--rw flags? bits
| | | | | +--rw window-size? uint16
| | | | | +--rw urgent-pointer? uint16
| | | | | +--rw options? binary
| | | | | +--rw (source-port)?
| | | | | | +--:(source-port-range-or-operator)
| | | | | | +--rw source-port-range-or-operator
| | | | | | +--rw (port-range-or-operator)?
| | | | | | +--:(range)
| | | | | | | +--rw lower-port
| | | | | | | | inet:port-number
| | | | | | | +--rw upper-port
| | | | | | | inet:port-number
| | | | | | +--:(operator)
| | | | | | +--rw operator? operator
| | | | | | +--rw port
| | | | | | inet:port-number
| | | | | +--rw (destination-port)?
| | | | | +--:(destination-port-range-or-operator)
| | | | | +--rw destination-port-range-or-operator
| | | | | +--rw (port-range-or-operator)?
| | | | | +--:(range)
| | | | | | +--rw lower-port
| | | | | | | inet:port-number
| | | | | | +--rw upper-port
| | | | | | inet:port-number
| | | | | +--:(operator)
| | | | | +--rw operator? operator
| | | | | +--rw port
| | | | | inet:port-number
| | | | +--:(udp)
| | | | +--rw udp
| | | | +--rw length? uint16
| | | | +--rw (source-port)?
| | | | | +--:(source-port-range-or-operator)
| | | | | +--rw source-port-range-or-operator
| | | | | +--rw (port-range-or-operator)?
| | | | | +--:(range)
| | | | | | +--rw lower-port
| | | | | | | inet:port-number
| | | | | | +--rw upper-port
| | | | | | inet:port-number

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 47

Application match: Relies upon application-specific classification (Figure 24).

Figure 26: QoS Subtree Structure (L4)

| | | | | +--:(operator)
| | | | | +--rw operator? operator
| | | | | +--rw port
| | | | | inet:port-number
| | | | +--rw (destination-port)?
| | | | +--:(destination-port-range-or-operator)
| | | | +--rw destination-port-range-or-operator
| | | | +--rw (port-range-or-operator)?
| | | | +--:(range)
| | | | | +--rw lower-port
| | | | | | inet:port-number
| | | | | +--rw upper-port
| | | | | inet:port-number
| | | | +--:(operator)
| | | | +--rw operator? operator
| | | | +--rw port
| | | | inet:port-number
...

7.7. Multicast
Multicast may be enabled for a particular VPN at the VPN node and VPN network access levels
(see Figure 27). Some data nodes (e.g., max-groups (Figure 28)) can be controlled at various levels:
VPN service, VPN node level, or VPN network access.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 48

Multicast-related data nodes at the VPN instance profile level have the structure shown in Figure
28.

Figure 27: Overall Multicast Subtree Structure

 ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 |
 | +--rw multicast {vpn-common:multicast}?
 | ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw active-vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | ...
 | +--rw multicast {vpn-common:multicast}?
 | ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw service
 ...
 +--rw multicast {vpn-common:multicast}?
 ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 49

...
+--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 |
 | +--rw multicast {vpn-common:multicast}?
 | +--rw tree-flavor? identityref
 | +--rw rp
 | | +--rw rp-group-mappings
 | | | +--rw rp-group-mapping* [id]
 | | | +--rw id uint16
 | | | +--rw provider-managed
 | | | | +--rw enabled? boolean
 | | | | +--rw rp-redundancy? boolean
 | | | | +--rw optimal-traffic-delivery? boolean
 | | | | +--rw anycast
 | | | | +--rw local-address? inet:ip-address
 | | | | +--rw rp-set-address* inet:ip-address
 | | | +--rw rp-address inet:ip-address
 | | | +--rw groups
 | | | +--rw group* [id]
 | | | +--rw id uint16
 | | | +--rw (group-format)
 | | | +--:(group-prefix)
 | | | | +--rw group-address?
 | | | | inet:ip-prefix
 | | | +--:(startend)
 | | | +--rw group-start?
 | | | | inet:ip-address
 | | | +--rw group-end?
 | | | | inet:ip-address
 | | +--rw rp-discovery
 | | +--rw rp-discovery-type? identityref
 | | +--rw bsr-candidates
 | | +--rw bsr-candidate-address*
 | | | inet:ip-address
 | +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
 | | +--rw static-group* [group-addr]
 | | | +--rw group-addr
 | | | | rt-types:ipv4-multicast-group-address
 | | | +--rw source-addr?
 | | | rt-types:ipv4-multicast-source-address
 | | +--rw max-groups? uint32
 | | +--rw max-entries? uint32
 | | +--rw version? identityref
 | +--rw mld {vpn-common:mld and vpn-common:ipv6}?
 | | +--rw static-group* [group-addr]
 | | | +--rw group-addr
 | | | | rt-types:ipv6-multicast-group-address
 | | | +--rw source-addr?
 | | | rt-types:ipv6-multicast-source-address
 | | +--rw max-groups? uint32
 | | +--rw max-entries? uint32
 | | +--rw version? identityref
 | +--rw pim {vpn-common:pim}?

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 50

The model supports a single type of tree per VPN access ('tree-flavor'): Any-Source Multicast
(ASM), Source-Specific Multicast (SSM), or bidirectional.

When ASM is used, the model supports the configuration of Rendezvous Points (RPs). RP
discovery may be 'static', 'bsr-rp', or 'auto-rp'. When set to 'static', RP-to-multicast-group mappings

 be configured as part of the 'rp-group-mappings' container. The RP be a provider node
or a customer node. When the RP is a customer node, the RP address must be configured using the
'rp-address' leaf.

The model supports RP redundancy through the 'rp-redundancy' leaf. How the redundancy is
achieved is out of scope.

When a particular VPN using ASM requires traffic delivery that is more optimal (e.g., requested
per the guidance in), 'optimal-traffic-delivery' can be set. When set to 'true', the
implementation must use any mechanism to provide traffic delivery that is more optimal for the
customer. For example, anycast is one of the mechanisms for enhancing RP redundancy,
providing resilience against failures, and recovering from failures quickly.

When configuring multicast-related parameters at the VPN node level (Figure 29), the same
structure as the structure depicted in Figure 30 is used. When defined at the VPN node level,
Internet Group Management Protocol (IGMP) parameters ,
Multicast Listener Discovery (MLD) parameters , and Protocol Independent
Multicast (PIM) parameters are applicable to all VPN network accesses of that VPN
node unless corresponding nodes are overridden at the VPN network access level.

Figure 28: Multicast Subtree Structure (VPN Instance Profile Level)

 | +--rw hello-interval?
 | | rt-types:timer-value-seconds16
 | +--rw dr-priority? uint32
 ...

MUST MAY

[RFC8299]

[RFC1112] [RFC2236] [RFC3376]
[RFC2710] [RFC3810]

[RFC7761]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 51

Multicast-related data nodes at the VPN network access level are shown in Figure 30. The values
configured at the VPN network access level override the values configured for the corresponding
data nodes at other levels.

Figure 29: Multicast Subtree Structure (VPN Node Level)

...
+--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw active-vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | ...
 | +--rw multicast {vpn-common:multicast}?
 | +--rw tree-flavor* identityref
 | +--rw rp
 | | ...
 | +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
 | | ...
 | +--rw mld {vpn-common:mld and vpn-common:ipv6}?
 | | ...
 | +--rw pim {vpn-common:pim}?
 | ...

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 52

...
+--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw service
 ...
 +--rw multicast {vpn-common:multicast}?
 +--rw access-type? enumeration
 +--rw address-family? identityref
 +--rw protocol-type? enumeration
 +--rw remote-source? boolean
 +--rw igmp {vpn-common:igmp}?
 | +--rw static-group* [group-addr]
 | | +--rw group-addr
 | | rt-types:ipv4-multicast-group-address
 | | +--rw source-addr?
 | | rt-types:ipv4-multicast-source-address
 | +--rw max-groups? uint32
 | +--rw max-entries? uint32
 | +--rw max-group-sources? uint32
 | +--rw version? identityref
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw mld {vpn-common:mld}?
 | +--rw static-group* [group-addr]
 | | +--rw group-addr
 | | rt-types:ipv6-multicast-group-address
 | | +--rw source-addr?
 | | rt-types:ipv6-multicast-source-address
 | +--rw max-groups? uint32
 | +--rw max-entries? uint32
 | +--rw max-group-sources? uint32
 | +--rw version? identityref
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw pim {vpn-common:pim}?
 +--rw hello-interval? rt-types:timer-value-seconds16
 +--rw dr-priority? uint32
 +--rw status
 +--rw admin-status
 | +--rw status? identityref
 | +--rw last-change? yang:date-and-time
 +--ro oper-status
 +--ro status? identityref
 +--ro last-change? yang:date-and-time

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 53

Figure 30: Multicast Subtree Structure (VPN Network Access Level)

8. L3NM YANG Module
This module uses types defined in , , and . It also uses groupings
defined in , , and .

[RFC6991] [RFC8343] [RFC9181]
[RFC8519] [RFC8177] [RFC8294]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 54

<CODE BEGINS> file "ietf-l3vpn-ntw@2022-02-14.yang"

module ietf-l3vpn-ntw {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw";
 prefix l3nm;

 import ietf-vpn-common {
 prefix vpn-common;
 reference
 "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
 VPNs";
 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types, Section 4";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types, Section 3";
 }
 import ietf-key-chain {
 prefix key-chain;
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }

 organization
 "IETF OPSAWG (Operations and Management Area Working Group)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>

 Author: Samier Barguil
 <mailto:samier.barguilgiraldo.ext@telefonica.com>
 Editor: Oscar Gonzalez de Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>
 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>
 Author: Luis Angel Munoz
 <mailto:luis-angel.munoz@vodafone.com>
 Author: Alejandro Aguado
 <mailto:alejandro.aguado_martin@nokia.com>";
 description
 "This YANG module defines a generic network-oriented model

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 55

 for the configuration of Layer 3 Virtual Private Networks.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9182; see the
 RFC itself for full legal notices.";

 revision 2022-02-14 {
 description
 "Initial revision.";
 reference
 "RFC 9182: A YANG Network Data Model for Layer 3 VPNs";
 }

 /* Features */

 feature msdp {
 description
 "This feature indicates that Multicast Source Discovery
 Protocol (MSDP) capabilities are supported by the VPN.";
 reference
 "RFC 3618: Multicast Source Discovery Protocol (MSDP)";
 }

 /* Identities */

 identity address-allocation-type {
 description
 "Base identity for address allocation type in the
 Provider Edge to Customer Edge (PE-CE) link.";
 }

 identity provider-dhcp {
 base address-allocation-type;
 description
 "The provider's network provides a DHCP service to the
 customer.";
 }

 identity provider-dhcp-relay {
 base address-allocation-type;
 description
 "The provider's network provides a DHCP relay service to the
 customer.";
 }

 identity provider-dhcp-slaac {
 if-feature "vpn-common:ipv6";
 base address-allocation-type;
 description

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 56

 "The provider's network provides a DHCP service to the
 customer as well as IPv6 Stateless Address
 Autoconfiguration (SLAAC).";
 reference
 "RFC 4862: IPv6 Stateless Address Autoconfiguration";
 }

 identity static-address {
 base address-allocation-type;
 description
 "The provider's network provides static IP addressing to the
 customer.";
 }

 identity slaac {
 if-feature "vpn-common:ipv6";
 base address-allocation-type;
 description
 "The provider's network uses IPv6 SLAAC to provide
 addressing to the customer.";
 reference
 "RFC 4862: IPv6 Stateless Address Autoconfiguration";
 }

 identity local-defined-next-hop {
 description
 "Base identity of local defined next hops.";
 }

 identity discard {
 base local-defined-next-hop;
 description
 "Indicates an action to discard traffic for the
 corresponding destination.
 For example, this can be used to black-hole traffic.";
 }

 identity local-link {
 base local-defined-next-hop;
 description
 "Treat traffic towards addresses within the specified
 next-hop prefix as though they are connected to a local
 link.";
 }

 identity l2-tunnel-type {
 description
 "Base identity for Layer 2 tunnel selection under the VPN
 network access.";
 }

 identity pseudowire {
 base l2-tunnel-type;
 description
 "Pseudowire tunnel termination in the VPN network access.";
 }

 identity vpls {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 57

 base l2-tunnel-type;
 description
 "Virtual Private LAN Service (VPLS) tunnel termination in
 the VPN network access.";
 }

 identity vxlan {
 base l2-tunnel-type;
 description
 "Virtual eXtensible Local Area Network (VXLAN) tunnel
 termination in the VPN network access.";
 }

 /* Typedefs */

 typedef predefined-next-hop {
 type identityref {
 base local-defined-next-hop;
 }
 description
 "Predefined next-hop designation for locally generated
 routes.";
 }

 typedef area-address {
 type string {
 pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}';
 }
 description
 "This type defines the area address format.";
 }

 /* Groupings */

 grouping vpn-instance-profile {
 description
 "Grouping for data nodes that may be factorized
 among many levels of the model. The grouping can
 be used to define generic profiles at the VPN service
 level and then referenced at the VPN node and VPN
 network access levels.";
 leaf local-as {
 if-feature "vpn-common:rtg-bgp";
 type inet:as-number;
 description
 "Provider's Autonomous System (AS) number. Used if the
 customer requests BGP routing.";
 }
 uses vpn-common:route-distinguisher;
 list address-family {
 key "address-family";
 description
 "Set of parameters per address family.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 58

 "Indicates the address family (IPv4 and/or IPv6).";
 }
 container vpn-targets {
 description
 "Set of route targets to match for import and export
 routes to/from VRF.";
 uses vpn-common:vpn-route-targets;
 }
 list maximum-routes {
 key "protocol";
 description
 "Defines the maximum number of routes for VRF.";
 leaf protocol {
 type identityref {
 base vpn-common:routing-protocol-type;
 }
 description
 "Indicates the routing protocol. A value of 'any'
 can be used to identify a limit that will apply for
 each active routing protocol.";
 }
 leaf maximum-routes {
 type uint32;
 description
 "Indicates the maximum number of prefixes that VRF can
 accept for this address family and protocol.";
 }
 }
 }
 container multicast {
 if-feature "vpn-common:multicast";
 description
 "Global multicast parameters.";
 leaf tree-flavor {
 type identityref {
 base vpn-common:multicast-tree-type;
 }
 description
 "Type of the multicast tree to be used.";
 }
 container rp {
 description
 "Rendezvous Point (RP) parameters.";
 container rp-group-mappings {
 description
 "RP-to-group mapping parameters.";
 list rp-group-mapping {
 key "id";
 description
 "List of RP-to-group mappings.";
 leaf id {
 type uint16;
 description
 "Unique identifier for the mapping.";
 }
 container provider-managed {
 description
 "Parameters for a provider-managed RP.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 59

 leaf enabled {
 type boolean;
 default "false";
 description
 "Set to 'true' if the RP must be a
 provider-managed node. Set to 'false' if it is
 a customer-managed node.";
 }
 leaf rp-redundancy {
 type boolean;
 default "false";
 description
 "If set to 'true', it indicates that a
 redundancy mechanism for the RP is required.";
 }
 leaf optimal-traffic-delivery {
 type boolean;
 default "false";
 description
 "If set to 'true', the service provider (SP)
 must ensure that the traffic uses an optimal
 path. An SP may use Anycast RP or
 RP-tree-to-SPT ('SPT' is 'shortest path tree')
 switchover architectures.";
 }
 container anycast {
 when "../rp-redundancy = 'true' and
 ../optimal-traffic-delivery = 'true'" {
 description
 "Only applicable if both RP redundancy and
 delivery through an optimal path are
 activated.";
 }
 description
 "PIM Anycast-RP parameters.";
 leaf local-address {
 type inet:ip-address;
 description
 "IP local address for the PIM RP. Usually
 corresponds to the Router ID or the
 primary address.";
 }
 leaf-list rp-set-address {
 type inet:ip-address;
 description
 "Specifies the IP address of other RP routers
 that share the same RP IP address.";
 }
 }
 }
 leaf rp-address {
 when "../provider-managed/enabled = 'false'" {
 description
 "Relevant when the RP is not managed by the
 provider.";
 }
 type inet:ip-address;
 mandatory true;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 60

 description
 "Defines the address of the RP.
 Used if the RP is managed by the customer.";
 }
 container groups {
 description
 "Multicast groups associated with the RP.";
 list group {
 key "id";
 description
 "List of multicast groups.";
 leaf id {
 type uint16;
 description
 "Identifier for the group.";
 }
 choice group-format {
 mandatory true;
 description
 "Choice for multicast group format.";
 case group-prefix {
 leaf group-address {
 type inet:ip-prefix;
 description
 "A single multicast group prefix.";
 }
 }
 case startend {
 leaf group-start {
 type inet:ip-address;
 description
 "The first multicast group address in
 the multicast group address range.";
 }
 leaf group-end {
 type inet:ip-address;
 description
 "The last multicast group address in
 the multicast group address range.";
 }
 }
 }
 }
 }
 }
 }
 container rp-discovery {
 description
 "RP discovery parameters.";
 leaf rp-discovery-type {
 type identityref {
 base vpn-common:multicast-rp-discovery-type;
 }
 default "vpn-common:static-rp";
 description
 "Type of RP discovery used.";
 }
 container bsr-candidates {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 61

 when "derived-from-or-self(../rp-discovery-type, "
 + "'vpn-common:bsr-rp')" {
 description
 "Only applicable if the discovery type
 is 'bsr-rp'.";
 }
 description
 "Container for the customer Bootstrap Router (BSR)
 candidate's addresses.";
 leaf-list bsr-candidate-address {
 type inet:ip-address;
 description
 "Specifies the address of the candidate BSR.";
 }
 }
 }
 }
 container igmp {
 if-feature "vpn-common:igmp and vpn-common:ipv4";
 description
 "Includes IGMP-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group associated with the
 IGMP session.";
 leaf group-addr {
 type rt-types:ipv4-multicast-group-address;
 description
 "Multicast group IPv4 address.";
 }
 leaf source-addr {
 type rt-types:ipv4-multicast-source-address;
 description
 "Multicast source IPv4 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of IGMP entries.";
 }
 leaf version {
 type identityref {
 base vpn-common:igmp-version;
 }
 default "vpn-common:igmpv2";
 description
 "Indicates the IGMP version.";
 reference
 "RFC 1112: Host Extensions for IP Multicasting
 RFC 2236: Internet Group Management Protocol,
 Version 2

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 62

 RFC 3376: Internet Group Management Protocol,
 Version 3";
 }
 }
 container mld {
 if-feature "vpn-common:mld and vpn-common:ipv6";
 description
 "Includes MLD-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group associated with the
 MLD session.";
 leaf group-addr {
 type rt-types:ipv6-multicast-group-address;
 description
 "Multicast group IPv6 address.";
 }
 leaf source-addr {
 type rt-types:ipv6-multicast-source-address;
 description
 "Multicast source IPv6 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of MLD entries.";
 }
 leaf version {
 type identityref {
 base vpn-common:mld-version;
 }
 default "vpn-common:mldv2";
 description
 "Indicates the MLD protocol version.";
 reference
 "RFC 2710: Multicast Listener Discovery (MLD) for IPv6
 RFC 3810: Multicast Listener Discovery Version 2
 (MLDv2) for IPv6";
 }
 }
 container pim {
 if-feature "vpn-common:pim";
 description
 "Only applies when the protocol type is 'pim'.";
 leaf hello-interval {
 type rt-types:timer-value-seconds16;
 default "30";
 description
 "Interval between PIM Hello messages. If set to
 'infinity' or 'not-set', no periodic Hello messages
 are sent.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 63

 reference
 "RFC 7761: Protocol Independent Multicast - Sparse
 Mode (PIM-SM): Protocol Specification
 (Revised), Section 4.11
 RFC 8294: Common YANG Data Types for the Routing
 Area";
 }
 leaf dr-priority {
 type uint32;
 default "1";
 description
 "Indicates the preference associated with the
 Designated Router (DR) election process. A larger
 value has a higher priority over a smaller value.";
 reference
 "RFC 7761: Protocol Independent Multicast - Sparse
 Mode (PIM-SM): Protocol Specification
 (Revised), Section 4.3.2";
 }
 }
 }
 }

 /* Main Blocks */
 /* Main l3vpn-ntw */

 container l3vpn-ntw {
 description
 "Main container for management of Layer 3 Virtual Private
 Network (L3VPN) services.";
 container vpn-profiles {
 description
 "Contains a set of valid VPN profiles to reference
 in the VPN service.";
 uses vpn-common:vpn-profile-cfg;
 }
 container vpn-services {
 description
 "Container for the VPN services.";
 list vpn-service {
 key "vpn-id";
 description
 "List of VPN services.";
 uses vpn-common:vpn-description;
 leaf parent-service-id {
 type vpn-common:vpn-id;
 description
 "Pointer to the parent service, if any.
 A parent service can be an L3SM, a slice request,
 a VPN+ service, etc.";
 }
 leaf vpn-type {
 type identityref {
 base vpn-common:service-type;
 }
 description
 "Indicates the service type.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 64

 leaf vpn-service-topology {
 type identityref {
 base vpn-common:vpn-topology;
 }
 default "vpn-common:any-to-any";
 description
 "VPN service topology.";
 }
 uses vpn-common:service-status;
 container vpn-instance-profiles {
 description
 "Container for a list of VPN instance profiles.";
 list vpn-instance-profile {
 key "profile-id";
 description
 "List of VPN instance profiles.";
 leaf profile-id {
 type string;
 description
 "VPN instance profile identifier.";
 }
 leaf role {
 type identityref {
 base vpn-common:role;
 }
 default "vpn-common:any-to-any-role";
 description
 "Role of the VPN node in the VPN.";
 }
 uses vpn-instance-profile;
 }
 }
 container underlay-transport {
 description
 "Container for the underlay transport.";
 uses vpn-common:underlay-transport;
 }
 container external-connectivity {
 if-feature "vpn-common:external-connectivity";
 description
 "Container for external connectivity.";
 choice profile {
 description
 "Choice for the external connectivity profile.";
 case profile {
 leaf profile-name {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/external-connectivity-identifier/id";
 }
 description
 "Name of the service provider's profile to be
 applied at the VPN service level.";
 }
 }
 }
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 65

 container vpn-nodes {
 description
 "Container for VPN nodes.";
 list vpn-node {
 key "vpn-node-id";
 description
 "Includes a list of VPN nodes.";
 leaf vpn-node-id {
 type vpn-common:vpn-id;
 description
 "An identifier of the VPN node.";
 }
 leaf description {
 type string;
 description
 "Textual description of the VPN node.";
 }
 leaf ne-id {
 type string;
 description
 "Unique identifier of the network element where
 the VPN node is deployed.";
 }
 leaf local-as {
 if-feature "vpn-common:rtg-bgp";
 type inet:as-number;
 description
 "Provider's AS number. Used if the customer
 requests BGP routing.";
 }
 leaf router-id {
 type rt-types:router-id;
 description
 "A 32-bit number in the dotted-quad format that is
 used to uniquely identify a node within an AS.
 This identifier is used for both IPv4 and IPv6.";
 }
 container active-vpn-instance-profiles {
 description
 "Container for active VPN instance profiles.";
 list vpn-instance-profile {
 key "profile-id";
 description
 "Includes a list of active VPN instance
 profiles.";
 leaf profile-id {
 type leafref {
 path "/l3vpn-ntw/vpn-services/vpn-service"
 + "/vpn-instance-profiles"
 + "/vpn-instance-profile/profile-id";
 }
 description
 "Node's active VPN instance profile.";
 }
 list router-id {
 key "address-family";
 description
 "Router ID per address family.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 66

 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family for which the
 Router ID applies.";
 }
 leaf router-id {
 type inet:ip-address;
 description
 "The 'router-id' information can be an IPv4
 or IPv6 address. This can be used,
 for example, to configure an IPv6 address
 as a Router ID when such a capability is
 supported by underlay routers. In such a
 case, the configured value overrides the
 generic value defined at the VPN node
 level.";
 }
 }
 uses vpn-instance-profile;
 }
 }
 container msdp {
 if-feature "msdp";
 description
 "Includes MSDP-related parameters.";
 leaf peer {
 type inet:ipv4-address;
 description
 "Indicates the IPv4 address of the MSDP peer.";
 }
 leaf local-address {
 type inet:ipv4-address;
 description
 "Indicates the IPv4 address of the local end.
 This local address must be configured on
 the node.";
 }
 uses vpn-common:service-status;
 }
 uses vpn-common:vpn-components-group;
 uses vpn-common:service-status;
 container vpn-network-accesses {
 description
 "List of network accesses.";
 list vpn-network-access {
 key "id";
 description
 "List of network accesses.";
 leaf id {
 type vpn-common:vpn-id;
 description
 "Identifier for the network access.";
 }
 leaf interface-id {
 type string;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 67

 description
 "Identifier for the physical or logical
 interface.
 The identification of the sub-interface
 is provided at the connection level and/or
 the IP connection level.";
 }
 leaf description {
 type string;
 description
 "Textual description of the network access.";
 }
 leaf vpn-network-access-type {
 type identityref {
 base vpn-common:site-network-access-type;
 }
 default "vpn-common:point-to-point";
 description
 "Describes the type of connection, e.g.,
 point to point.";
 }
 leaf vpn-instance-profile {
 type leafref {
 path "/l3vpn-ntw/vpn-services/vpn-service"
 + "/vpn-nodes/vpn-node"
 + "/active-vpn-instance-profiles"
 + "/vpn-instance-profile/profile-id";
 }
 description
 "An identifier of an active VPN instance
 profile.";
 }
 uses vpn-common:service-status;
 container connection {
 description
 "Defines Layer 2 protocols and parameters that
 are required to enable connectivity between
 the PE and the CE.";
 container encapsulation {
 description
 "Container for Layer 2 encapsulation.";
 leaf type {
 type identityref {
 base vpn-common:encapsulation-type;
 }
 default "vpn-common:priority-tagged";
 description
 "Encapsulation type. By default, the type
 of the tagged interface is
 'priority-tagged'.";
 }
 container dot1q {
 when "derived-from-or-self(../type, "
 + "'vpn-common:dot1q')" {
 description
 "Only applies when the type of the
 tagged interface is 'dot1q'.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 68

 description
 "Tagged interface.";
 leaf tag-type {
 type identityref {
 base vpn-common:tag-type;
 }
 default "vpn-common:c-vlan";
 description
 "Tag type. By default, the tag type is
 'c-vlan'.";
 }
 leaf cvlan-id {
 type uint16 {
 range "1..4094";
 }
 description
 "VLAN identifier.";
 }
 }
 container priority-tagged {
 when "derived-from-or-self(../type, "
 + "'vpn-common:priority-tagged')" {
 description
 "Only applies when the type of
 the tagged interface is
 'priority-tagged'.";
 }
 description
 "Priority tagged.";
 leaf tag-type {
 type identityref {
 base vpn-common:tag-type;
 }
 default "vpn-common:c-vlan";
 description
 "Tag type. By default, the tag type is
 'c-vlan'.";
 }
 }
 container qinq {
 when "derived-from-or-self(../type, "
 + "'vpn-common:qinq')" {
 description
 "Only applies when the type of the
 tagged interface is 'qinq'.";
 }
 description
 "Includes QinQ parameters.";
 leaf tag-type {
 type identityref {
 base vpn-common:tag-type;
 }
 default "vpn-common:s-c-vlan";
 description
 "Tag type.";
 }
 leaf svlan-id {
 type uint16;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 69

 mandatory true;
 description
 "Service VLAN (S-VLAN) identifier.";
 }
 leaf cvlan-id {
 type uint16;
 mandatory true;
 description
 "Customer VLAN (C-VLAN) identifier.";
 }
 }
 }
 choice l2-service {
 description
 "The Layer 2 connectivity service can be
 provided by indicating a pointer to an
 L2VPN or by specifying a Layer 2 tunnel
 service.";
 container l2-tunnel-service {
 description
 "Defines a Layer 2 tunnel termination.
 It is only applicable when a tunnel is
 required. The supported values are
 'pseudowire', 'vpls', and 'vxlan'. Other
 values may be defined, if needed.";
 leaf type {
 type identityref {
 base l2-tunnel-type;
 }
 description
 "Selects the tunnel termination option
 for each VPN network access.";
 }
 container pseudowire {
 when "derived-from-or-self(../type, "
 + "'pseudowire')" {
 description
 "Only applies when the Layer 2 service
 type is 'pseudowire'.";
 }
 description
 "Includes pseudowire termination
 parameters.";
 leaf vcid {
 type uint32;
 description
 "Indicates a pseudowire (PW) or
 virtual circuit (VC) identifier.";
 }
 leaf far-end {
 type union {
 type uint32;
 type inet:ip-address;
 }
 description
 "Neighbor reference.";
 reference
 "RFC 8077: Pseudowire Setup and

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 70

 Maintenance Using the Label
 Distribution Protocol
 (LDP), Section 6.1";
 }
 }
 container vpls {
 when "derived-from-or-self(../type, "
 + "'vpls')" {
 description
 "Only applies when the Layer 2 service
 type is 'vpls'.";
 }
 description
 "VPLS termination parameters.";
 leaf vcid {
 type uint32;
 description
 "VC identifier.";
 }
 leaf-list far-end {
 type union {
 type uint32;
 type inet:ip-address;
 }
 description
 "Neighbor reference.";
 }
 }
 container vxlan {
 when "derived-from-or-self(../type, "
 + "'vxlan')" {
 description
 "Only applies when the Layer 2 service
 type is 'vxlan'.";
 }
 description
 "VXLAN termination parameters.";
 leaf vni-id {
 type uint32;
 mandatory true;
 description
 "VXLAN Network Identifier (VNI).";
 }
 leaf peer-mode {
 type identityref {
 base vpn-common:vxlan-peer-mode;
 }
 default "vpn-common:static-mode";
 description
 "Specifies the VXLAN access mode. By
 default, the peer mode is set to
 'static-mode'.";
 }
 leaf-list peer-ip-address {
 type inet:ip-address;
 description
 "List of a peer's IP addresses.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 71

 }
 }
 case l2vpn {
 leaf l2vpn-id {
 type vpn-common:vpn-id;
 description
 "Indicates the L2VPN service associated
 with an Integrated Routing and Bridging
 (IRB) interface.";
 }
 }
 }
 leaf l2-termination-point {
 type string;
 description
 "Specifies a reference to a local Layer 2
 termination point, such as a Layer 2
 sub-interface.";
 }
 leaf local-bridge-reference {
 type string;
 description
 "Specifies a local bridge reference to
 accommodate, for example, implementations
 that require internal bridging.
 A reference may be a local bridge domain.";
 }
 leaf bearer-reference {
 if-feature "vpn-common:bearer-reference";
 type string;
 description
 "This is an internal reference for the
 service provider to identify the bearer
 associated with this VPN.";
 }
 container lag-interface {
 if-feature "vpn-common:lag-interface";
 description
 "Container for configuration of Link
 Aggregation Group (LAG) interface
 attributes.";
 leaf lag-interface-id {
 type string;
 description
 "LAG interface identifier.";
 }
 container member-link-list {
 description
 "Container for the member link list.";
 list member-link {
 key "name";
 description
 "Member link.";
 leaf name {
 type string;
 description
 "Member link name.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 72

 }
 }
 }
 }
 container ip-connection {
 description
 "Defines IP connection parameters.";
 leaf l3-termination-point {
 type string;
 description
 "Specifies a reference to a local Layer 3
 termination point, such as a bridge domain
 interface.";
 }
 container ipv4 {
 if-feature "vpn-common:ipv4";
 description
 "IPv4-specific parameters.";
 leaf local-address {
 type inet:ipv4-address;
 description
 "The IP address used at the provider's
 interface.";
 }
 leaf prefix-length {
 type uint8 {
 range "0..32";
 }
 description
 "Subnet prefix length expressed in bits.
 It is applied to both local and customer
 addresses.";
 }
 leaf address-allocation-type {
 type identityref {
 base address-allocation-type;
 }
 must "not(derived-from-or-self(current(), "
 + "'slaac') or "
 + "derived-from-or-self(current(), "
 + "'provider-dhcp-slaac'))" {
 error-message "SLAAC is only applicable "
 + "to IPv6.";
 }
 description
 "Defines how addresses are allocated to
 the peer site.

 If there is no value for the address
 allocation type, then IPv4 addressing
 is not enabled.";
 }
 choice allocation-type {
 description
 "Choice of the IPv4 address allocation.";
 case provider-dhcp {
 description
 "Parameters related to DHCP-allocated

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 73

 addresses. IP addresses are allocated
 by DHCP, which is provided by the
 operator.";
 leaf dhcp-service-type {
 type enumeration {
 enum server {
 description
 "Local DHCP server.";
 }
 enum relay {
 description
 "Local DHCP relay. DHCP requests
 are relayed to a provider's
 server.";
 }
 }
 description
 "Indicates the type of DHCP service to
 be enabled on this access.";
 }
 choice service-type {
 description
 "Choice based on the DHCP service
 type.";
 case relay {
 description
 "Container for a list of the
 provider's DHCP servers (i.e.,
 'dhcp-service-type' is set to
 'relay').";
 leaf-list server-ip-address {
 type inet:ipv4-address;
 description
 "IPv4 addresses of the provider's
 DHCP server, for use by the local
 DHCP relay.";
 }
 }
 case server {
 description
 "A choice for how addresses are
 assigned when a local DHCP server
 is enabled.";
 choice address-assign {
 default "number";
 description
 "A choice for how IPv4 addresses
 are assigned.";
 case number {
 leaf number-of-dynamic-address {
 type uint16;
 default "1";
 description
 "Specifies the number of IP
 addresses to be assigned to
 the customer on this
 access.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 74

 }
 case explicit {
 container customer-addresses {
 description
 "Container for customer
 addresses to be allocated
 using DHCP.";
 list address-pool {
 key "pool-id";
 description
 "Describes IP addresses to
 be allocated by DHCP.

 When only 'start-address'
 is present, it represents a
 single address.

 When both 'start-address'
 and 'end-address' are
 specified, it implies a
 range inclusive of both
 addresses.";
 leaf pool-id {
 type string;
 description
 "A pool identifier for the
 address range from
 'start-address' to
 'end-address'.";
 }
 leaf start-address {
 type inet:ipv4-address;
 mandatory true;
 description
 "Indicates the first
 address in the pool.";
 }
 leaf end-address {
 type inet:ipv4-address;
 description
 "Indicates the last
 address in the pool.";
 }
 }
 }
 }
 }
 }
 }
 }
 case dhcp-relay {
 description
 "The DHCP relay is provided by the
 operator.";
 container customer-dhcp-servers {
 description
 "Container for a list of the
 customer's DHCP servers.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 75

 leaf-list server-ip-address {
 type inet:ipv4-address;
 description
 "IPv4 addresses of the customer's
 DHCP server.";
 }
 }
 }
 case static-addresses {
 description
 "Lists the IPv4 addresses that are
 used.";
 leaf primary-address {
 type leafref {
 path "../address/address-id";
 }
 description
 "Primary address of the connection.";
 }
 list address {
 key "address-id";
 description
 "Lists the IPv4 addresses that are
 used.";
 leaf address-id {
 type string;
 description
 "An identifier of the static IPv4
 address.";
 }
 leaf customer-address {
 type inet:ipv4-address;
 description
 "IPv4 address of the customer
 side.";
 }
 }
 }
 }
 }
 container ipv6 {
 if-feature "vpn-common:ipv6";
 description
 "IPv6-specific parameters.";
 leaf local-address {
 type inet:ipv6-address;
 description
 "IPv6 address of the provider side.";
 }
 leaf prefix-length {
 type uint8 {
 range "0..128";
 }
 description
 "Subnet prefix length expressed in bits.
 It is applied to both local and customer
 addresses.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 76

 leaf address-allocation-type {
 type identityref {
 base address-allocation-type;
 }
 description
 "Defines how addresses are allocated.
 If there is no value for the address
 allocation type, then IPv6 addressing is
 disabled.";
 }
 choice allocation-type {
 description
 "A choice based on the IPv6 allocation
 type.";
 container provider-dhcp {
 when "derived-from-or-self(../address-allo"
 + "cation-type, 'provider-dhcp') or "
 + "derived-from-or-self(../address-allo"
 + "cation-type, 'provider-dhcp-slaac')" {
 description
 "Only applies when addresses are
 allocated by DHCPv6 as provided by
 the operator.";
 }
 description
 "Parameters related to DHCP-allocated
 addresses.";
 leaf dhcp-service-type {
 type enumeration {
 enum server {
 description
 "Local DHCPv6 server.";
 }
 enum relay {
 description
 "DHCPv6 relay.";
 }
 }
 description
 "Indicates the type of the DHCPv6
 service to be enabled on this
 access.";
 }
 choice service-type {
 description
 "Choice based on the DHCPv6 service
 type.";
 case relay {
 leaf-list server-ip-address {
 type inet:ipv6-address;
 description
 "IPv6 addresses of the provider's
 DHCPv6 server.";
 }
 }
 case server {
 choice address-assign {
 default "number";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 77

 description
 "Choice for how IPv6 prefixes are
 assigned by the DHCPv6 server.";
 case number {
 leaf number-of-dynamic-address {
 type uint16;
 default "1";
 description
 "Describes the number of IPv6
 prefixes that are allocated
 to the customer on this
 access.";
 }
 }
 case explicit {
 container customer-addresses {
 description
 "Container for customer IPv6
 addresses allocated by
 DHCPv6.";
 list address-pool {
 key "pool-id";
 description
 "Describes IPv6 addresses
 allocated by DHCPv6.

 When only 'start-address'
 is present, it represents a
 single address.

 When both 'start-address'
 and 'end-address' are
 specified, it implies a
 range inclusive of both
 addresses.";
 leaf pool-id {
 type string;
 description
 "A pool identifier for the
 address range from
 'start-address' to
 'end-address'.";
 }
 leaf start-address {
 type inet:ipv6-address;
 mandatory true;
 description
 "Indicates the first
 address.";
 }
 leaf end-address {
 type inet:ipv6-address;
 description
 "Indicates the last
 address.";
 }
 }
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 78

 }
 }
 }
 }
 }
 case dhcp-relay {
 description
 "DHCPv6 relay provided by the
 operator.";
 container customer-dhcp-servers {
 description
 "Container for a list of the
 customer's DHCP servers.";
 leaf-list server-ip-address {
 type inet:ipv6-address;
 description
 "Contains the IP addresses of the
 customer's DHCPv6 server.";
 }
 }
 }
 case static-addresses {
 description
 "IPv6-specific parameters for static
 allocation.";
 leaf primary-address {
 type leafref {
 path "../address/address-id";
 }
 description
 "Principal address of the
 connection.";
 }
 list address {
 key "address-id";
 description
 "Describes IPv6 addresses that are
 used.";
 leaf address-id {
 type string;
 description
 "An identifier of an IPv6 address.";
 }
 leaf customer-address {
 type inet:ipv6-address;
 description
 "An IPv6 address of the customer
 side.";
 }
 }
 }
 }
 }
 }
 container routing-protocols {
 description
 "Defines routing protocols.";
 list routing-protocol {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 79

 key "id";
 description
 "List of routing protocols used on the
 CE-PE link. This list can be augmented.";
 leaf id {
 type string;
 description
 "Unique identifier for the routing
 protocol.";
 }
 leaf type {
 type identityref {
 base vpn-common:routing-protocol-type;
 }
 description
 "Type of routing protocol.";
 }
 list routing-profiles {
 key "id";
 description
 "Routing profiles.";
 leaf id {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/routing-profile-identifier/id";
 }
 description
 "Routing profile to be used.";
 }
 leaf type {
 type identityref {
 base vpn-common:ie-type;
 }
 description
 "Import, export, or both.";
 }
 }
 container static {
 when "derived-from-or-self(../type, "
 + "'vpn-common:static-routing')" {
 description
 "Only applies when the protocol is a
 static routing protocol.";
 }
 description
 "Configuration specific to static
 routing.";
 container cascaded-lan-prefixes {
 description
 "LAN prefixes from the customer.";
 list ipv4-lan-prefixes {
 if-feature "vpn-common:ipv4";
 key "lan next-hop";
 description
 "List of LAN prefixes for the site.";
 leaf lan {
 type inet:ipv4-prefix;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 80

 description
 "LAN prefixes.";
 }
 leaf lan-tag {
 type string;
 description
 "Internal tag to be used in VPN
 policies.";
 }
 leaf next-hop {
 type union {
 type inet:ip-address;
 type predefined-next-hop;
 }
 description
 "The next hop that is to be used
 for the static route. This may be
 specified as an IP address or a
 predefined next-hop type (e.g.,
 'discard' or 'local-link').";
 }
 leaf bfd-enable {
 if-feature "vpn-common:bfd";
 type boolean;
 description
 "Enables Bidirectional Forwarding
 Detection (BFD).";
 }
 leaf metric {
 type uint32;
 description
 "Indicates the metric associated
 with the static route.";
 }
 leaf preference {
 type uint32;
 description
 "Indicates the preference associated
 with the static route.";
 }
 uses vpn-common:service-status;
 }
 list ipv6-lan-prefixes {
 if-feature "vpn-common:ipv6";
 key "lan next-hop";
 description
 "List of LAN prefixes for the site.";
 leaf lan {
 type inet:ipv6-prefix;
 description
 "LAN prefixes.";
 }
 leaf lan-tag {
 type string;
 description
 "Internal tag to be used in VPN
 policies.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 81

 leaf next-hop {
 type union {
 type inet:ip-address;
 type predefined-next-hop;
 }
 description
 "The next hop that is to be used for
 the static route. This may be
 specified as an IP address or a
 predefined next-hop type (e.g.,
 'discard' or 'local-link').";
 }
 leaf bfd-enable {
 if-feature "vpn-common:bfd";
 type boolean;
 description
 "Enables BFD.";
 }
 leaf metric {
 type uint32;
 description
 "Indicates the metric associated
 with the static route.";
 }
 leaf preference {
 type uint32;
 description
 "Indicates the preference associated
 with the static route.";
 }
 uses vpn-common:service-status;
 }
 }
 }
 container bgp {
 when "derived-from-or-self(../type, "
 + "'vpn-common:bgp-routing')" {
 description
 "Only applies when the protocol is
 BGP.";
 }
 description
 "Configuration specific to BGP.";
 leaf description {
 type string;
 description
 "Includes a description of the BGP
 session.

 This description is meant to be used
 for diagnostic purposes. The semantic
 of the description is local to an
 implementation.";
 }
 leaf local-as {
 type inet:as-number;
 description
 "Indicates a local AS Number (ASN), if

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 82

 an ASN distinct from the ASN configured
 at the VPN node level is needed.";
 }
 leaf peer-as {
 type inet:as-number;
 mandatory true;
 description
 "Indicates the customer's ASN when
 the customer requests BGP routing.";
 }
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "This node contains the address families
 to be activated. 'dual-stack' means
 that both IPv4 and IPv6 will be
 activated.";
 }
 leaf local-address {
 type union {
 type inet:ip-address;
 type if:interface-ref;
 }
 description
 "Sets the local IP address to use for
 the BGP transport session. This may be
 expressed as either an IP address or a
 reference to an interface.";
 }
 leaf-list neighbor {
 type inet:ip-address;
 description
 "IP address(es) of the BGP neighbor.
 IPv4 and IPv6 neighbors may be
 indicated if two sessions will be used
 for IPv4 and IPv6.";
 }
 leaf multihop {
 type uint8;
 description
 "Describes the number of IP hops allowed
 between a given BGP neighbor and
 the PE.";
 }
 leaf as-override {
 type boolean;
 default "false";
 description
 "Defines whether ASN override is
 enabled, i.e., replacing the ASN of
 the customer specified in the AS_PATH
 attribute with the local ASN.";
 }
 leaf allow-own-as {
 type uint8;
 default "0";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 83

 description
 "If set, specifies the maximum number of
 occurrences of the provider's ASN that
 are permitted within the AS_PATH
 before it is rejected.";
 }
 leaf prepend-global-as {
 type boolean;
 default "false";
 description
 "In some situations, the ASN that is
 provided at the VPN node level may be
 distinct from the ASN configured at the
 VPN network access level. When such
 ASNs are provided, they are both
 prepended to the BGP route updates
 for this access. To disable that
 behavior, 'prepend-global-as'
 must be set to 'false'. In such a
 case, the ASN that is provided at
 the VPN node level is not prepended
 to the BGP route updates for
 this access.";
 }
 leaf send-default-route {
 type boolean;
 default "false";
 description
 "Defines whether default routes can be
 advertised to a peer. If set, the
 default routes are advertised to a
 peer.";
 }
 leaf site-of-origin {
 when "../address-family = 'vpn-common:ipv4' "
 + "or 'vpn-common:dual-stack'" {
 description
 "Only applies if IPv4 is activated.";
 }
 type rt-types:route-origin;
 description
 "The Site of Origin attribute is encoded
 as a Route Origin Extended Community.
 It is meant to uniquely identify the
 set of routes learned from a site via a
 particular CE-PE connection and is used
 to prevent routing loops.";
 reference
 "RFC 4364: BGP/MPLS IP Virtual Private
 Networks (VPNs), Section 7";
 }
 leaf ipv6-site-of-origin {
 when "../address-family = 'vpn-common:ipv6' "
 + "or 'vpn-common:dual-stack'" {
 description
 "Only applies if IPv6 is activated.";
 }
 type rt-types:ipv6-route-origin;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 84

 description
 "The IPv6 Site of Origin attribute is
 encoded as an IPv6 Route Origin
 Extended Community. It is meant to
 uniquely identify the set of routes
 learned from a site via VRF
 information.";
 reference
 "RFC 5701: IPv6 Address Specific BGP
 Extended Community
 Attribute";
 }
 list redistribute-connected {
 key "address-family";
 description
 "Indicates, per address family, the
 policy to follow for connected
 routes.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family.";
 }
 leaf enable {
 type boolean;
 description
 "Enables the redistribution of
 connected routes.";
 }
 }
 container bgp-max-prefix {
 description
 "Controls the behavior when a prefix
 maximum is reached.";
 leaf max-prefix {
 type uint32;
 default "5000";
 description
 "Indicates the maximum number of BGP
 prefixes allowed in the BGP session.

 It allows control of how many
 prefixes can be received from a
 neighbor.

 If the limit is exceeded, the action
 indicated in 'violate-action' will be
 followed.";
 reference
 "RFC 4271: A Border Gateway Protocol 4
 (BGP-4), Section 8.2.2";
 }
 leaf warning-threshold {
 type decimal64 {
 fraction-digits 5;
 range "0..100";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 85

 }
 units "percent";
 default "75";
 description
 "When this value is reached, a warning
 notification will be triggered.";
 }
 leaf violate-action {
 type enumeration {
 enum warning {
 description
 "Only a warning message is sent to
 the peer when the limit is
 exceeded.";
 }
 enum discard-extra-paths {
 description
 "Discards extra paths when the
 limit is exceeded.";
 }
 enum restart {
 description
 "The BGP session restarts after
 the indicated time interval.";
 }
 }
 description
 "If the BGP neighbor 'max-prefix'
 limit is reached, the action
 indicated in 'violate-action'
 will be followed.";
 }
 leaf restart-timer {
 type uint32;
 units "seconds";
 description
 "Time interval after which the BGP
 session will be reestablished.";
 }
 }
 container bgp-timers {
 description
 "Includes two BGP timers that can be
 customized when building a VPN service
 with BGP used as the CE-PE routing
 protocol.";
 leaf keepalive {
 type uint16 {
 range "0..21845";
 }
 units "seconds";
 default "30";
 description
 "This timer indicates the KEEPALIVE
 messages' frequency between a PE
 and a BGP peer.

 If set to '0', it indicates that

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 86

 KEEPALIVE messages are disabled.

 It is suggested that the maximum
 time between KEEPALIVE messages be
 one-third of the Hold Time
 interval.";
 reference
 "RFC 4271: A Border Gateway Protocol 4
 (BGP-4), Section 4.4";
 }
 leaf hold-time {
 type uint16 {
 range "0 | 3..65535";
 }
 units "seconds";
 default "90";
 description
 "Indicates the maximum number of
 seconds that may elapse between the
 receipt of successive KEEPALIVE
 and/or UPDATE messages from the peer.

 The Hold Time must be either zero or
 at least three seconds.";
 reference
 "RFC 4271: A Border Gateway Protocol 4
 (BGP-4), Section 4.2";
 }
 }
 container authentication {
 description
 "Container for BGP authentication
 parameters between a PE and a CE.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how a BGP
 routing session is to be secured
 between a PE and a CE.";
 choice option {
 description
 "Choice of authentication options.";
 case ao {
 description
 "Uses the TCP Authentication
 Option (TCP-AO).";
 reference
 "RFC 5925: The TCP Authentication
 Option";
 leaf enable-ao {
 type boolean;
 description

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 87

 "Enables the TCP-AO.";
 }
 leaf ao-keychain {
 type key-chain:key-chain-ref;
 description
 "Reference to the TCP-AO key
 chain.";
 reference
 "RFC 8177: YANG Data Model for
 Key Chains";
 }
 }
 case md5 {
 description
 "Uses MD5 to secure the session.";
 reference
 "RFC 4364: BGP/MPLS IP Virtual
 Private Networks
 (VPNs), Section 13.2";
 leaf md5-keychain {
 type key-chain:key-chain-ref;
 description
 "Reference to the MD5 key
 chain.";
 reference
 "RFC 8177: YANG Data Model for
 Key Chains";
 }
 }
 case explicit {
 leaf key-id {
 type uint32;
 description
 "Key identifier.";
 }
 leaf key {
 type string;
 description
 "BGP authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 case ipsec {
 description
 "Specifies a reference to an
 Internet Key Exchange Protocol

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 88

 (IKE) Security Association
 (SA).";
 leaf sa {
 type string;
 description
 "Indicates the
 administrator-assigned name
 of the SA.";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;
 }
 container ospf {
 when "derived-from-or-self(../type, "
 + "'vpn-common:ospf-routing')" {
 description
 "Only applies when the protocol is
 OSPF.";
 }
 description
 "Configuration specific to OSPF.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or
 both are to be activated.";
 }
 leaf area-id {
 type yang:dotted-quad;
 mandatory true;
 description
 "Area ID.";
 reference
 "RFC 4577: OSPF as the Provider/Customer
 Edge Protocol for BGP/MPLS IP
 Virtual Private Networks
 (VPNs), Section 4.2.3
 RFC 6565: OSPFv3 as a Provider Edge to
 Customer Edge (PE-CE) Routing
 Protocol, Section 4.2";
 }
 leaf metric {
 type uint16;
 default "1";
 description
 "Metric of the PE-CE link. It is used
 in the routing state calculation and
 path selection.";
 }
 container sham-links {
 if-feature "vpn-common:rtg-ospf-sham-link";
 description
 "List of sham links.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 89

 reference
 "RFC 4577: OSPF as the Provider/Customer
 Edge Protocol for BGP/MPLS IP
 Virtual Private Networks
 (VPNs), Section 4.2.7
 RFC 6565: OSPFv3 as a Provider Edge to
 Customer Edge (PE-CE) Routing
 Protocol, Section 5";
 list sham-link {
 key "target-site";
 description
 "Creates a sham link with another
 site.";
 leaf target-site {
 type string;
 description
 "Target site for the sham link
 connection. The site is referred
 to by its identifier.";
 }
 leaf metric {
 type uint16;
 default "1";
 description
 "Metric of the sham link. It is
 used in the routing state
 calculation and path selection.
 The default value is set to '1'.";
 reference
 "RFC 4577: OSPF as the
 Provider/Customer Edge
 Protocol for BGP/MPLS IP
 Virtual Private Networks
 (VPNs), Section 4.2.7.3
 RFC 6565: OSPFv3 as a Provider Edge
 to Customer Edge (PE-CE)
 Routing Protocol,
 Section 5.2";
 }
 }
 }
 leaf max-lsa {
 type uint32 {
 range "1..4294967294";
 }
 description
 "Maximum number of allowed Link State
 Advertisements (LSAs) that the OSPF
 instance will accept.";
 }
 container authentication {
 description
 "Authentication configuration.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 90

 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how an OSPF
 session is to be secured between a CE
 and a PE.";
 choice option {
 description
 "Options for OSPF authentication.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 }
 case auth-key-explicit {
 leaf key-id {
 type uint32;
 description
 "Key identifier.";
 }
 leaf key {
 type string;
 description
 "OSPF authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 case ipsec {
 leaf sa {
 type string;
 description
 "Indicates the
 administrator-assigned name
 of the SA.";
 reference
 "RFC 4552: Authentication/
 Confidentiality for
 OSPFv3";
 }
 }
 }
 }
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 91

 uses vpn-common:service-status;
 }
 container isis {
 when "derived-from-or-self(../type, "
 + "'vpn-common:isis-routing')" {
 description
 "Only applies when the protocol is
 IS-IS.";
 }
 description
 "Configuration specific to IS-IS.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or both
 are to be activated.";
 }
 leaf area-address {
 type area-address;
 mandatory true;
 description
 "Area address.";
 }
 leaf level {
 type identityref {
 base vpn-common:isis-level;
 }
 description
 "Can be 'level-1', 'level-2', or
 'level-1-2'.";
 reference
 "RFC 9181: A Common YANG Data Model for
 Layer 2 and Layer 3 VPNs";
 }
 leaf metric {
 type uint16;
 default "1";
 description
 "Metric of the PE-CE link. It is used
 in the routing state calculation and
 path selection.";
 }
 leaf mode {
 type enumeration {
 enum active {
 description
 "The interface sends or receives
 IS-IS protocol control packets.";
 }
 enum passive {
 description
 "Suppresses the sending of IS-IS
 updates through the specified
 interface.";
 }
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 92

 default "active";
 description
 "IS-IS interface mode type.";
 }
 container authentication {
 description
 "Authentication configuration.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how an IS-IS
 session is to be secured between a CE
 and a PE.";
 choice option {
 description
 "Options for IS-IS authentication.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 }
 case auth-key-explicit {
 leaf key-id {
 type uint32;
 description
 "Key identifier.";
 }
 leaf key {
 type string;
 description
 "IS-IS authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 93

 }
 container rip {
 when "derived-from-or-self(../type, "
 + "'vpn-common:rip-routing')" {
 description
 "Only applies when the protocol is RIP.
 For IPv4, the model assumes that RIP
 version 2 is used.";
 }
 description
 "Configuration specific to RIP routing.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or both
 address families are to be activated.";
 }
 container timers {
 description
 "Indicates the RIP timers.";
 reference
 "RFC 2453: RIP Version 2";
 leaf update-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "30";
 description
 "Indicates the RIP update time, i.e.,
 the amount of time for which RIP
 updates are sent.";
 }
 leaf invalid-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "180";
 description
 "The interval before a route is
 declared invalid after no updates are
 received. This value is at least
 three times the value for the
 'update-interval' argument.";
 }
 leaf holddown-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "180";
 description
 "Specifies the interval before better
 routes are released.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 94

 leaf flush-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "240";
 description
 "Indicates the RIP flush timer, i.e.,
 the amount of time that must elapse
 before a route is removed from the
 routing table.";
 }
 }
 leaf default-metric {
 type uint8 {
 range "0..16";
 }
 default "1";
 description
 "Sets the default metric.";
 }
 container authentication {
 description
 "Authentication configuration.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how a RIP
 session is to be secured between a CE
 and a PE.";
 choice option {
 description
 "Specifies the authentication
 scheme.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 }
 case auth-key-explicit {
 leaf key {
 type string;
 description
 "RIP authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 95

 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;
 }
 container vrrp {
 when "derived-from-or-self(../type, "
 + "'vpn-common:vrrp-routing')" {
 description
 "Only applies when the protocol is the
 Virtual Router Redundancy Protocol
 (VRRP).";
 }
 description
 "Configuration specific to VRRP.";
 reference
 "RFC 5798: Virtual Router Redundancy
 Protocol (VRRP) Version 3 for
 IPv4 and IPv6";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or both
 address families are to be enabled.";
 }
 leaf vrrp-group {
 type uint8 {
 range "1..255";
 }
 description
 "Includes the VRRP group identifier.";
 }
 leaf backup-peer {
 type inet:ip-address;
 description
 "Indicates the IP address of the peer.";
 }
 leaf-list virtual-ip-address {
 type inet:ip-address;
 description
 "Virtual IP addresses for a single VRRP
 group.";
 reference
 "RFC 5798: Virtual Router Redundancy
 Protocol (VRRP) Version 3 for
 IPv4 and IPv6,
 Sections 1.2 and 1.3";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 96

 }
 leaf priority {
 type uint8 {
 range "1..254";
 }
 default "100";
 description
 "Sets the local priority of the VRRP
 speaker.";
 }
 leaf ping-reply {
 type boolean;
 default "false";
 description
 "Controls whether the VRRP speaker
 should reply to ping requests.";
 }
 uses vpn-common:service-status;
 }
 }
 }
 container oam {
 description
 "Defines the Operations, Administration,
 and Maintenance (OAM) mechanisms used.

 BFD is set as a fault detection mechanism,
 but other mechanisms can be defined in the
 future.";
 container bfd {
 if-feature "vpn-common:bfd";
 description
 "Container for BFD.";
 leaf session-type {
 type identityref {
 base vpn-common:bfd-session-type;
 }
 default "vpn-common:classic-bfd";
 description
 "Specifies the BFD session type.";
 }
 leaf desired-min-tx-interval {
 type uint32;
 units "microseconds";
 default "1000000";
 description
 "The minimum interval between
 transmissions of BFD Control packets, as
 desired by the operator.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.7";
 }
 leaf required-min-rx-interval {
 type uint32;
 units "microseconds";
 default "1000000";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 97

 description
 "The minimum interval between received BFD
 Control packets that the PE should
 support.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.7";
 }
 leaf local-multiplier {
 type uint8 {
 range "1..255";
 }
 default "3";
 description
 "Specifies the detection multiplier that
 is transmitted to a BFD peer.

 The detection interval for the receiving
 BFD peer is calculated by multiplying the
 value of the negotiated transmission
 interval by the received detection
 multiplier value.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.7";
 }
 leaf holdtime {
 type uint32;
 units "milliseconds";
 description
 "Expected BFD holdtime.

 The customer may impose some fixed
 values for the holdtime period if the
 provider allows the customer to use
 this function.

 If the provider doesn't allow the
 customer to use this function,
 fixed values will not be set.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.18";
 }
 leaf profile {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/bfd-profile-identifier/id";
 }
 description
 "Well-known service provider profile name.

 The provider can propose some profiles
 to the customer, depending on the

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 98

 service level the customer wants to
 achieve.";
 }
 container authentication {
 presence "Enables BFD authentication";
 description
 "Parameters for BFD authentication.";
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 leaf meticulous {
 type boolean;
 description
 "Enables meticulous mode.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.7";
 }
 }
 uses vpn-common:service-status;
 }
 }
 container security {
 description
 "Site-specific security parameters.";
 container encryption {
 if-feature "vpn-common:encryption";
 description
 "Container for CE-PE security encryption.";
 leaf enabled {
 type boolean;
 default "false";
 description
 "If set to 'true', traffic encryption on
 the connection is required. Otherwise,
 it is disabled.";
 }
 leaf layer {
 when "../enabled = 'true'" {
 description
 "Included only when encryption
 is enabled.";
 }
 type enumeration {
 enum layer2 {
 description
 "Encryption occurs at Layer 2.";
 }
 enum layer3 {
 description
 "Encryption occurs at Layer 3.
 For example, IPsec may be used when
 a customer requests Layer 3
 encryption.";
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 99

 }
 description
 "Indicates the layer on which encryption
 is applied.";
 }
 }
 container encryption-profile {
 when "../encryption/enabled = 'true'" {
 description
 "Indicates the layer on which encryption
 is enabled.";
 }
 description
 "Container for the encryption profile.";
 choice profile {
 description
 "Choice for the encryption profile.";
 case provider-profile {
 leaf profile-name {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/encryption-profile-identifier/id";
 }
 description
 "Name of the service provider's
 profile to be applied.";
 }
 }
 case customer-profile {
 leaf customer-key-chain {
 type key-chain:key-chain-ref;
 description
 "Customer-supplied key chain.";
 }
 }
 }
 }
 }
 container service {
 description
 "Service parameters of the attachment.";
 leaf pe-to-ce-bandwidth {
 if-feature "vpn-common:inbound-bw";
 type uint64;
 units "bps";
 description
 "From the customer site's perspective, the
 service inbound bandwidth of the connection
 or download bandwidth from the SP to the
 site. Note that the L3SM uses
 'input-bandwidth' to refer to the same
 concept.";
 }
 leaf ce-to-pe-bandwidth {
 if-feature "vpn-common:outbound-bw";
 type uint64;
 units "bps";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 100

 description
 "From the customer site's perspective,
 the service outbound bandwidth of the
 connection or upload bandwidth from
 the site to the SP. Note that the L3SM
 uses 'output-bandwidth' to refer to the
 same concept.";
 }
 leaf mtu {
 type uint32;
 units "bytes";
 description
 "MTU at the service level. If the service
 is IP, it refers to the IP MTU. If
 Carriers' Carriers (CsC) is enabled, the
 requested MTU will refer to the MPLS
 maximum labeled packet size and not to the
 IP MTU.";
 }
 container qos {
 if-feature "vpn-common:qos";
 description
 "QoS configuration.";
 container qos-classification-policy {
 description
 "Configuration of the traffic
 classification policy.";
 uses vpn-common:qos-classification-policy;
 }
 container qos-action {
 description
 "List of QoS action policies.";
 list rule {
 key "id";
 description
 "List of QoS actions.";
 leaf id {
 type string;
 description
 "An identifier of the QoS action
 rule.";
 }
 leaf target-class-id {
 type string;
 description
 "Identification of the class of
 service. This identifier is internal
 to the administration.";
 }
 leaf inbound-rate-limit {
 type decimal64 {
 fraction-digits 5;
 range "0..100";
 }
 units "percent";
 description
 "Specifies whether/how to rate-limit
 the inbound traffic matching this QoS

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 101

 policy. It is expressed as a percent
 of the value that is indicated in
 'input-bandwidth'.";
 }
 leaf outbound-rate-limit {
 type decimal64 {
 fraction-digits 5;
 range "0..100";
 }
 units "percent";
 description
 "Specifies whether/how to rate-limit
 the outbound traffic matching this
 QoS policy. It is expressed as a
 percent of the value that is
 indicated in 'output-bandwidth'.";
 }
 }
 }
 container qos-profile {
 description
 "QoS profile configuration.";
 list qos-profile {
 key "profile";
 description
 "QoS profile.
 Can be a standard profile or
 a customized profile.";
 leaf profile {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/qos-profile-identifier/id";
 }
 description
 "QoS profile to be used.";
 }
 leaf direction {
 type identityref {
 base vpn-common:qos-profile-direction;
 }
 default "vpn-common:both";
 description
 "The direction to which the QoS
 profile is applied.";
 }
 }
 }
 }
 container carriers-carrier {
 if-feature "vpn-common:carriers-carrier";
 description
 "This container is used when the customer
 provides MPLS-based services. This is
 only used in the case of CsC (i.e., a
 customer builds an MPLS service using an
 IP VPN to carry its traffic).";
 leaf signaling-type {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 102

 type enumeration {
 enum ldp {
 description
 "Uses LDP as the signaling protocol
 between the PE and the CE. In this
 case, an IGP routing protocol must
 also be configured.";
 }
 enum bgp {
 description
 "Uses BGP as the signaling protocol
 between the PE and the CE.
 In this case, BGP must also be
 configured as the routing protocol.";
 reference
 "RFC 8277: Using BGP to Bind MPLS
 Labels to Address
 Prefixes";
 }
 }
 default "bgp";
 description
 "MPLS signaling type.";
 }
 }
 container ntp {
 description
 "Time synchronization may be needed in some
 VPNs, such as infrastructure and management
 VPNs. This container includes parameters
 to enable the NTP service.";
 reference
 "RFC 5905: Network Time Protocol Version 4:
 Protocol and Algorithms
 Specification";
 leaf broadcast {
 type enumeration {
 enum client {
 description
 "The VPN node will listen to NTP
 broadcast messages on this VPN
 network access.";
 }
 enum server {
 description
 "The VPN node will behave as a
 broadcast server.";
 }
 }
 description
 "Indicates the NTP broadcast mode to use
 for the VPN network access.";
 }
 container auth-profile {
 description
 "Pointer to a local profile.";
 leaf profile-id {
 type string;

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 103

 description
 "A pointer to a local authentication
 profile on the VPN node is provided.";
 }
 }
 uses vpn-common:service-status;
 }
 container multicast {
 if-feature "vpn-common:multicast";
 description
 "Multicast parameters for the network
 access.";
 leaf access-type {
 type enumeration {
 enum receiver-only {
 description
 "The peer site only has receivers.";
 }
 enum source-only {
 description
 "The peer site only has sources.";
 }
 enum source-receiver {
 description
 "The peer site has both sources and
 receivers.";
 }
 }
 default "source-receiver";
 description
 "Type of multicast site.";
 }
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family.";
 }
 leaf protocol-type {
 type enumeration {
 enum host {
 description
 "Hosts are directly connected to the
 provider network.

 Host protocols, such as IGMP or MLD,
 are required.";
 }
 enum router {
 description
 "Hosts are behind a customer router.
 PIM will be implemented.";
 }
 enum both {
 description
 "Some hosts are behind a customer
 router, and some others are directly

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 104

 connected to the provider network.
 Both host and routing protocols must
 be used.

 Typically, IGMP and PIM will be
 implemented.";
 }
 }
 default "both";
 description
 "Multicast protocol type to be used with
 the customer site.";
 }
 leaf remote-source {
 type boolean;
 default "false";
 description
 "A remote multicast source is a source
 that is not on the same subnet as the
 VPN network access. When set to 'true',
 the multicast traffic from a remote
 source is accepted.";
 }
 container igmp {
 when "../protocol-type = 'host' and "
 + "../address-family = 'vpn-common:ipv4' "
 + "or 'vpn-common:dual-stack'";
 if-feature "vpn-common:igmp";
 description
 "Includes IGMP-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group
 associated with the IGMP session.";
 leaf group-addr {
 type rt-types:ipv4-multicast-group-address;
 description
 "Multicast group IPv4 address.";
 }
 leaf source-addr {
 type
 rt-types:ipv4-multicast-source-address;
 description
 "Multicast source IPv4 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of
 groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of IGMP
 entries.";

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 105

 }
 leaf max-group-sources {
 type uint32;
 description
 "The maximum number of group sources.";
 }
 leaf version {
 type identityref {
 base vpn-common:igmp-version;
 }
 default "vpn-common:igmpv2";
 description
 "Indicates the IGMP version.";
 }
 uses vpn-common:service-status;
 }
 container mld {
 when "../protocol-type = 'host' and "
 + "../address-family = 'vpn-common:ipv6' "
 + "or 'vpn-common:dual-stack'";
 if-feature "vpn-common:mld";
 description
 "Includes MLD-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group associated
 with the MLD session.";
 leaf group-addr {
 type rt-types:ipv6-multicast-group-address;
 description
 "Multicast group IPv6 address.";
 }
 leaf source-addr {
 type
 rt-types:ipv6-multicast-source-address;
 description
 "Multicast source IPv6 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of
 groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of MLD
 entries.";
 }
 leaf max-group-sources {
 type uint32;
 description
 "The maximum number of group sources.";
 }
 leaf version {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 106

 type identityref {
 base vpn-common:mld-version;
 }
 default "vpn-common:mldv2";
 description
 "Indicates the MLD protocol version.";
 }
 uses vpn-common:service-status;
 }
 container pim {
 when "../protocol-type = 'router'";
 if-feature "vpn-common:pim";
 description
 "Only applies when the protocol type is
 'pim'.";
 leaf hello-interval {
 type rt-types:timer-value-seconds16;
 default "30";
 description
 "Interval between PIM Hello messages.
 If set to 'infinity' or 'not-set',
 no periodic Hello messages are sent.";
 reference
 "RFC 7761: Protocol Independent
 Multicast - Sparse Mode
 (PIM-SM): Protocol
 Specification (Revised),
 Section 4.11
 RFC 8294: Common YANG Data Types for
 the Routing Area";
 }
 leaf dr-priority {
 type uint32;
 default "1";
 description
 "Indicates the preference associated
 with the DR election process. A larger
 value has a higher priority over a
 smaller value.";
 reference
 "RFC 7761: Protocol Independent
 Multicast - Sparse Mode
 (PIM-SM): Protocol
 Specification (Revised),
 Section 4.3.2";
 }
 uses vpn-common:service-status;
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 107

<CODE ENDS>

'vpn-profiles':

'vpn-services':

'customer-name' and 'ip-connection':

9. Security Considerations
The YANG module specified in this document defines a schema for data that is designed to be
accessed via network management protocols such as NETCONF or RESTCONF

. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-
implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is HTTPS,
and the mandatory-to-implement secure transport is TLS .

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/
deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or
vulnerable in some network environments. Write operations (e.g., edit-config) and delete
operations to these data nodes without proper protection or authentication can have a negative
effect on network operations. These are the subtrees and data nodes and their sensitivity/
vulnerability in the "ietf-l3vpn-ntw" module:

This container includes a set of sensitive data that influence how the L3VPN
service is delivered. For example, an attacker who has access to these data nodes may be able
to manipulate routing policies, QoS policies, or encryption properties. These data nodes are
defined with "nacm:default-deny-write" tagging .

An attacker who is able to access network nodes can undertake various attacks,
such as deleting a running L3VPN service, interrupting all the traffic of a client. In addition, an
attacker may modify the attributes of a running service (e.g., QoS, bandwidth, routing
protocols, keying material), leading to malfunctioning of the service and therefore to Service
Level Agreement (SLA) violations. In addition, an attacker could attempt to create an L3VPN
service or add a new network access. In addition to using NACM to prevent unauthorized
access, such activity can be detected by adequately monitoring and tracking network
configuration changes.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable
in some network environments. It is thus important to control read access (e.g., via get, get-
config, or notification) to these data nodes. These are the subtrees and data nodes and their
sensitivity/vulnerability:

An attacker can retrieve privacy-related information,
which can be used to track a customer. Disclosing such information may be considered a
violation of the customer-provider trust relationship.

[RFC6241]
[RFC8040]

[RFC6242]
[RFC8446]

[RFC8341]

[RFC9181]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 108

[ISO10589]

11. References

11.1. Normative References

,

,
, 2002, .

'keying-material': An attacker can retrieve the cryptographic keys protecting the underlying
VPN service (CE-PE routing, in particular). These keys could be used to inject spoofed routing
advertisements.

Several data nodes ('bgp', 'ospf', 'isis', 'rip', and 'bfd') rely upon for authentication
purposes. Therefore, this module inherits the security considerations discussed in

. Also, these data nodes support supplying explicit keys as strings in ASCII format. The
use of keys in hexadecimal string format would afford greater key entropy with the same number
of key-string octets. However, such a format is not included in this version of the L3NM, because it
is not supported by the underlying device modules (e.g.,).

As discussed in Section 7.6.3, the module supports MD5 to basically accommodate the installed
BGP base. MD5 suffers from the security weaknesses discussed in and

.

 describes best current practices to be considered in VPNs making use of NTP. Moreover,
a mechanism to provide cryptographic security for NTP is specified in .

[RFC8177]
Section 5 of

[RFC8177]

[RFC8695]

Section 2 of [RFC6151]
Section 2.1 of [RFC6952]

[RFC8633]
[RFC8915]

URI:
Registrant Contact:
XML:

Name:
Maintained by IANA?
Namespace:
Prefix:
Reference:

10. IANA Considerations
IANA has registered the following URI in the "ns" subregistry within the "IETF XML Registry"

:

urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
The IESG.

N/A; the requested URI is an XML namespace.

IANA has registered the following YANG module in the "YANG Module Names" subregistry
 within the "YANG Parameters" registry.

ietf-l3vpn-ntw
N

urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
l3nm

RFC 9182

[RFC3688]

[RFC6020]

ISO "Information technology - Telecommunications and information exchange
between systems - Intermediate System to Intermediate System intra-domain
routeing information exchange protocol for use in conjunction with the protocol
for providing the connectionless-mode network service (ISO 8473)" ISO/IEC
10589:2002 <https://www.iso.org/standard/30932.html>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 109

https://www.rfc-editor.org/rfc/rfc8177#section-5
https://www.rfc-editor.org/rfc/rfc6151#section-2
https://www.rfc-editor.org/rfc/rfc6952#section-2.1
https://www.iso.org/standard/30932.html

[RFC1112]

[RFC1195]

[RFC2080]

[RFC2119]

[RFC2236]

[RFC2453]

[RFC2710]

[RFC3376]

[RFC3688]

[RFC3810]

[RFC4271]

[RFC4364]

[RFC4552]

[RFC4577]

, , , ,
, August 1989, .

, ,
, , December 1990,

.

 and , , , ,
January 1997, .

, , ,
, , March 1997,
.

, , ,
, November 1997, .

, , , , , November
1998, .

, , and ,
, , , October 1999,

.

, , , , and ,
, , , October 2002,

.

, , , , ,
January 2004, .

 and ,
, , , June 2004,

.

, , and , ,
, , January 2006,
.

 and , ,
, , February 2006,

.

 and , , ,
, June 2006, .

, , and ,
, ,

, June 2006, .

Deering, S. "Host extensions for IP multicasting" STD 5 RFC 1112 DOI 10.17487/
RFC1112 <https://www.rfc-editor.org/info/rfc1112>

Callon, R. "Use of OSI IS-IS for routing in TCP/IP and dual environments" RFC
1195 DOI 10.17487/RFC1195 <https://www.rfc-editor.org/info/
rfc1195>

Malkin, G. R. Minnear "RIPng for IPv6" RFC 2080 DOI 10.17487/RFC2080
<https://www.rfc-editor.org/info/rfc2080>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Fenner, W. "Internet Group Management Protocol, Version 2" RFC 2236 DOI
10.17487/RFC2236 <https://www.rfc-editor.org/info/rfc2236>

Malkin, G. "RIP Version 2" STD 56 RFC 2453 DOI 10.17487/RFC2453
<https://www.rfc-editor.org/info/rfc2453>

Deering, S. Fenner, W. B. Haberman "Multicast Listener Discovery (MLD)
for IPv6" RFC 2710 DOI 10.17487/RFC2710 <https://www.rfc-
editor.org/info/rfc2710>

Cain, B. Deering, S. Kouvelas, I. Fenner, B. A. Thyagarajan "Internet Group
Management Protocol, Version 3" RFC 3376 DOI 10.17487/RFC3376
<https://www.rfc-editor.org/info/rfc3376>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Vida, R., Ed. L. Costa, Ed. "Multicast Listener Discovery Version 2 (MLDv2)
for IPv6" RFC 3810 DOI 10.17487/RFC3810 <https://www.rfc-editor.org/
info/rfc3810>

Rekhter, Y., Ed. Li, T., Ed. S. Hares, Ed. "A Border Gateway Protocol 4 (BGP-4)"
RFC 4271 DOI 10.17487/RFC4271 <https://www.rfc-editor.org/info/
rfc4271>

Rosen, E. Y. Rekhter "BGP/MPLS IP Virtual Private Networks (VPNs)" RFC
4364 DOI 10.17487/RFC4364 <https://www.rfc-editor.org/info/
rfc4364>

Gupta, M. N. Melam "Authentication/Confidentiality for OSPFv3" RFC 4552
DOI 10.17487/RFC4552 <https://www.rfc-editor.org/info/rfc4552>

Rosen, E. Psenak, P. P. Pillay-Esnault "OSPF as the Provider/Customer Edge
Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)" RFC 4577 DOI
10.17487/RFC4577 <https://www.rfc-editor.org/info/rfc4577>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 110

https://www.rfc-editor.org/info/rfc1112
https://www.rfc-editor.org/info/rfc1195
https://www.rfc-editor.org/info/rfc1195
https://www.rfc-editor.org/info/rfc2080
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2236
https://www.rfc-editor.org/info/rfc2453
https://www.rfc-editor.org/info/rfc2710
https://www.rfc-editor.org/info/rfc2710
https://www.rfc-editor.org/info/rfc3376
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3810
https://www.rfc-editor.org/info/rfc3810
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4271
https://www.rfc-editor.org/info/rfc4364
https://www.rfc-editor.org/info/rfc4364
https://www.rfc-editor.org/info/rfc4552
https://www.rfc-editor.org/info/rfc4577

[RFC5308]

[RFC5701]

[RFC5709]

[RFC5798]

[RFC5880]

[RFC5905]

[RFC5925]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC6513]

[RFC6514]

[RFC6565]

[RFC6991]

, , , , October
2008, .

, ,
, , November 2009,

.

, , , , , , and ,
, ,

, October 2009, .

,
, , , March 2010,

.

 and , , ,
, June 2010, .

, , , and ,
, ,

, June 2010, .

, , and , , ,
, June 2010, .

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, , ,
, June 2011, .

 and , , ,
, February 2012, .

, , , and ,
, , , February

2012, .

, , , , and ,
, ,

, June 2012, .

, , ,
, July 2013, .

Hopps, C. "Routing IPv6 with IS-IS" RFC 5308 DOI 10.17487/RFC5308
<https://www.rfc-editor.org/info/rfc5308>

Rekhter, Y. "IPv6 Address Specific BGP Extended Community Attribute" RFC
5701 DOI 10.17487/RFC5701 <https://www.rfc-editor.org/info/
rfc5701>

Bhatia, M. Manral, V. Fanto, M. White, R. Barnes, M. Li, T. R. Atkinson
"OSPFv2 HMAC-SHA Cryptographic Authentication" RFC 5709 DOI 10.17487/
RFC5709 <https://www.rfc-editor.org/info/rfc5709>

Nadas, S., Ed. "Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4
and IPv6" RFC 5798 DOI 10.17487/RFC5798 <https://www.rfc-
editor.org/info/rfc5798>

Katz, D. D. Ward "Bidirectional Forwarding Detection (BFD)" RFC 5880 DOI
10.17487/RFC5880 <https://www.rfc-editor.org/info/rfc5880>

Mills, D. Martin, J., Ed. Burbank, J. W. Kasch "Network Time Protocol
Version 4: Protocol and Algorithms Specification" RFC 5905 DOI 10.17487/
RFC5905 <https://www.rfc-editor.org/info/rfc5905>

Touch, J. Mankin, A. R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)" RFC 6242
DOI 10.17487/RFC6242 <https://www.rfc-editor.org/info/rfc6242>

Rosen, E., Ed. R. Aggarwal, Ed. "Multicast in MPLS/BGP IP VPNs" RFC 6513
DOI 10.17487/RFC6513 <https://www.rfc-editor.org/info/rfc6513>

Aggarwal, R. Rosen, E. Morin, T. Y. Rekhter "BGP Encodings and Procedures
for Multicast in MPLS/BGP IP VPNs" RFC 6514 DOI 10.17487/RFC6514

<https://www.rfc-editor.org/info/rfc6514>

Pillay-Esnault, P. Moyer, P. Doyle, J. Ertekin, E. M. Lundberg "OSPFv3 as a
Provider Edge to Customer Edge (PE-CE) Routing Protocol" RFC 6565 DOI
10.17487/RFC6565 <https://www.rfc-editor.org/info/rfc6565>

Schoenwaelder, J., Ed. "Common YANG Data Types" RFC 6991 DOI 10.17487/
RFC6991 <https://www.rfc-editor.org/info/rfc6991>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 111

https://www.rfc-editor.org/info/rfc5308
https://www.rfc-editor.org/info/rfc5701
https://www.rfc-editor.org/info/rfc5701
https://www.rfc-editor.org/info/rfc5709
https://www.rfc-editor.org/info/rfc5798
https://www.rfc-editor.org/info/rfc5798
https://www.rfc-editor.org/info/rfc5880
https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6513
https://www.rfc-editor.org/info/rfc6514
https://www.rfc-editor.org/info/rfc6565
https://www.rfc-editor.org/info/rfc6991

[RFC7166]

[RFC7474]

[RFC7761]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8177]

[RFC8294]

[RFC8341]

[RFC8343]

[RFC8446]

[RFC8466]

[RFC8519]

, , and ,
, , , March 2014,

.

, , , and ,
, , ,

April 2015, .

, , , , , , and
,

, , , , March 2016,
.

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, , ,
, , May 2017,
.

, , , , and ,
, , , June 2017,

.

, , , , and ,
, , , December 2017,

.

 and , ,
, , , March 2018,

.

, , ,
, March 2018, .

, , ,
, August 2018, .

, , , and ,
, ,

, October 2018, .

, , , and ,
, , , March

2019, .

Bhatia, M. Manral, V. A. Lindem "Supporting Authentication Trailer for
OSPFv3" RFC 7166 DOI 10.17487/RFC7166 <https://www.rfc-
editor.org/info/rfc7166>

Bhatia, M. Hartman, S. Zhang, D. A. Lindem, Ed. "Security Extension for
OSPFv2 When Using Manual Key Management" RFC 7474 DOI 10.17487/RFC7474

<https://www.rfc-editor.org/info/rfc7474>

Fenner, B. Handley, M. Holbrook, H. Kouvelas, I. Parekh, R. Zhang, Z. L.
Zheng "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol
Specification (Revised)" STD 83 RFC 7761 DOI 10.17487/RFC7761
<https://www.rfc-editor.org/info/rfc7761>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Lindem, A., Ed. Qu, Y. Yeung, D. Chen, I. J. Zhang "YANG Data Model for Key
Chains" RFC 8177 DOI 10.17487/RFC8177 <https://www.rfc-editor.org/
info/rfc8177>

Liu, X. Qu, Y. Lindem, A. Hopps, C. L. Berger "Common YANG Data Types for
the Routing Area" RFC 8294 DOI 10.17487/RFC8294 <https://
www.rfc-editor.org/info/rfc8294>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-editor.org/
info/rfc8341>

Bjorklund, M. "A YANG Data Model for Interface Management" RFC 8343 DOI
10.17487/RFC8343 <https://www.rfc-editor.org/info/rfc8343>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Wen, B. Fioccola, G., Ed. Xie, C. L. Jalil "A YANG Data Model for Layer 2
Virtual Private Network (L2VPN) Service Delivery" RFC 8466 DOI 10.17487/
RFC8466 <https://www.rfc-editor.org/info/rfc8466>

Jethanandani, M. Agarwal, S. Huang, L. D. Blair "YANG Data Model for
Network Access Control Lists (ACLs)" RFC 8519 DOI 10.17487/RFC8519

<https://www.rfc-editor.org/info/rfc8519>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 112

https://www.rfc-editor.org/info/rfc7166
https://www.rfc-editor.org/info/rfc7166
https://www.rfc-editor.org/info/rfc7474
https://www.rfc-editor.org/info/rfc7761
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8177
https://www.rfc-editor.org/info/rfc8177
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8294
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8343
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8466
https://www.rfc-editor.org/info/rfc8519

[RFC9181]

[BGP-YANG]

[Enhanced-VPN-Framework]

[IEEE802.1AX]

[Network-Slices-Framework]

[PIM-YANG]

[PYANG]

[QoS-YANG]

[RFC3618]

[RFC3644]

[RFC4026]

, , , and ,
, , ,

February 2022, .

11.2. Informative References

, , , and ,
, ,

, 25 October 2021,
.

, , , , and ,
, ,

, 25 October 2021,
.

,
, ,

.

, , , , ,
, , and , ,

, , 25 October 2021,
.

, , , , , and ,
, ,

, 19 May 2018,
.

, , December 2021, .

, , , and ,
, ,

, 8 November 2021,
.

 and , ,
, , October 2003,
.

, , , , and ,
, , , November

2003, .

 and ,
, , , March 2005,

.

Barguil, S. Gonzalez de Dios, O., Ed. Boucadair, M., Ed. Q. Wu "A Common
YANG Data Model for Layer 2 and Layer 3 VPNs" RFC 9181 DOI 10.17487/RFC9181

<https://www.rfc-editor.org/info/rfc9181>

Jethanandani, M. Patel, K. Hares, S. J. Haas "BGP YANG Model for Service
Provider Networks" Work in Progress Internet-Draft, draft-ietf-idr-bgp-
model-12 <https://datatracker.ietf.org/doc/html/draft-ietf-idr-
bgp-model-12>

Dong, J. Bryant, S. Li, Z. Miyasaka, T. Y. Lee "A Framework
for Enhanced Virtual Private Network (VPN+) Services" Work in Progress
Internet-Draft, draft-ietf-teas-enhanced-vpn-09 <https://
datatracker.ietf.org/doc/html/draft-ietf-teas-enhanced-vpn-09>

IEEE "802.1AX-2020 - IEEE Standard for Local and Metropolitan Area Networks--
Link Aggregation" IEEE Std 802.1AX-2020 <https://ieeexplore.ieee.org/document/
9105034>

Farrel, A., Ed. Gray, E. Drake, J. Rokui, R. Homma, S. Makhijani,
K. Contreras, LM. J. Tantsura "Framework for IETF Network Slices" Work
in Progress Internet-Draft, draft-ietf-teas-ietf-network-slices-05
<https://datatracker.ietf.org/doc/html/draft-ietf-teas-ietf-network-slices-05>

Liu, X. McAllister, P. Peter, A. Sivakumar, M. Liu, Y. F. Hu "A YANG Data
Model for Protocol Independent Multicast (PIM)" Work in Progress Internet-
Draft, draft-ietf-pim-yang-17 <https://datatracker.ietf.org/doc/html/
draft-ietf-pim-yang-17>

"pyang" commit 524cf61 <https://github.com/mbj4668/pyang>

Choudhary, A. Jethanandani, M. Aries, E. I. Chen "A YANG Data Model for
Quality of Service (QoS)" Work in Progress Internet-Draft, draft-ietf-rtgwg-qos-
model-06 <https://datatracker.ietf.org/doc/html/draft-ietf-
rtgwg-qos-model-06>

Fenner, B., Ed. D. Meyer, Ed. "Multicast Source Discovery Protocol (MSDP)"
RFC 3618 DOI 10.17487/RFC3618 <https://www.rfc-editor.org/info/
rfc3618>

Snir, Y. Ramberg, Y. Strassner, J. Cohen, R. B. Moore "Policy Quality of
Service (QoS) Information Model" RFC 3644 DOI 10.17487/RFC3644

<https://www.rfc-editor.org/info/rfc3644>

Andersson, L. T. Madsen "Provider Provisioned Virtual Private Network
(VPN) Terminology" RFC 4026 DOI 10.17487/RFC4026 <https://
www.rfc-editor.org/info/rfc4026>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 113

https://www.rfc-editor.org/info/rfc9181
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-model-12
https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-model-12
https://datatracker.ietf.org/doc/html/draft-ietf-teas-enhanced-vpn-09
https://datatracker.ietf.org/doc/html/draft-ietf-teas-enhanced-vpn-09
https://ieeexplore.ieee.org/document/9105034
https://ieeexplore.ieee.org/document/9105034
https://datatracker.ietf.org/doc/html/draft-ietf-teas-ietf-network-slices-05
https://datatracker.ietf.org/doc/html/draft-ietf-pim-yang-17
https://datatracker.ietf.org/doc/html/draft-ietf-pim-yang-17
https://github.com/mbj4668/pyang
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-qos-model-06
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-qos-model-06
https://www.rfc-editor.org/info/rfc3618
https://www.rfc-editor.org/info/rfc3618
https://www.rfc-editor.org/info/rfc3644
https://www.rfc-editor.org/info/rfc4026
https://www.rfc-editor.org/info/rfc4026

[RFC4110]

[RFC4176]

[RFC4862]

[RFC6037]

[RFC6151]

[RFC6952]

[RFC7149]

[RFC7297]

[RFC7426]

[RFC7880]

[RFC8077]

[RFC8277]

 and ,
, , , July 2005,

.

, , , , and ,

, , , October 2005,
.

, , and , ,
, , September 2007,

.

, , and ,
, , , October 2010,

.

 and ,
, , , March

2011, .

, , and ,

, , , May 2013,
.

 and ,
, , ,

March 2014, .

, , and ,
, , , July 2014,

.

, , , , , and
,
, , , January 2015,

.

, , , , and ,
, , ,

July 2016, .

 and ,
, , , ,

February 2017, .

, , ,
, October 2017, .

Callon, R. M. Suzuki "A Framework for Layer 3 Provider-Provisioned Virtual
Private Networks (PPVPNs)" RFC 4110 DOI 10.17487/RFC4110 <https://
www.rfc-editor.org/info/rfc4110>

El Mghazli, Y., Ed. Nadeau, T. Boucadair, M. Chan, K. A. Gonguet
"Framework for Layer 3 Virtual Private Networks (L3VPN) Operations and
Management" RFC 4176 DOI 10.17487/RFC4176 <https://www.rfc-
editor.org/info/rfc4176>

Thomson, S. Narten, T. T. Jinmei "IPv6 Stateless Address Autoconfiguration"
RFC 4862 DOI 10.17487/RFC4862 <https://www.rfc-editor.org/
info/rfc4862>

Rosen, E., Ed. Cai, Y., Ed. IJ. Wijnands "Cisco Systems' Solution for Multicast
in BGP/MPLS IP VPNs" RFC 6037 DOI 10.17487/RFC6037 <https://
www.rfc-editor.org/info/rfc6037>

Turner, S. L. Chen "Updated Security Considerations for the MD5 Message-
Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Jethanandani, M. Patel, K. L. Zheng "Analysis of BGP, LDP, PCEP, and MSDP
Issues According to the Keying and Authentication for Routing Protocols (KARP)
Design Guide" RFC 6952 DOI 10.17487/RFC6952 <https://www.rfc-
editor.org/info/rfc6952>

Boucadair, M. C. Jacquenet "Software-Defined Networking: A Perspective
from within a Service Provider Environment" RFC 7149 DOI 10.17487/RFC7149

<https://www.rfc-editor.org/info/rfc7149>

Boucadair, M. Jacquenet, C. N. Wang "IP Connectivity Provisioning Profile
(CPP)" RFC 7297 DOI 10.17487/RFC7297 <https://www.rfc-editor.org/
info/rfc7297>

Haleplidis, E., Ed. Pentikousis, K., Ed. Denazis, S. Hadi Salim, J. Meyer, D. O.
Koufopavlou "Software-Defined Networking (SDN): Layers and Architecture
Terminology" RFC 7426 DOI 10.17487/RFC7426 <https://www.rfc-
editor.org/info/rfc7426>

Pignataro, C. Ward, D. Akiya, N. Bhatia, M. S. Pallagatti "Seamless
Bidirectional Forwarding Detection (S-BFD)" RFC 7880 DOI 10.17487/RFC7880

<https://www.rfc-editor.org/info/rfc7880>

Martini, L., Ed. G. Heron, Ed. "Pseudowire Setup and Maintenance Using the
Label Distribution Protocol (LDP)" STD 84 RFC 8077 DOI 10.17487/RFC8077

<https://www.rfc-editor.org/info/rfc8077>

Rosen, E. "Using BGP to Bind MPLS Labels to Address Prefixes" RFC 8277 DOI
10.17487/RFC8277 <https://www.rfc-editor.org/info/rfc8277>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 114

https://www.rfc-editor.org/info/rfc4110
https://www.rfc-editor.org/info/rfc4110
https://www.rfc-editor.org/info/rfc4176
https://www.rfc-editor.org/info/rfc4176
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc4862
https://www.rfc-editor.org/info/rfc6037
https://www.rfc-editor.org/info/rfc6037
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6952
https://www.rfc-editor.org/info/rfc6952
https://www.rfc-editor.org/info/rfc7149
https://www.rfc-editor.org/info/rfc7297
https://www.rfc-editor.org/info/rfc7297
https://www.rfc-editor.org/info/rfc7426
https://www.rfc-editor.org/info/rfc7426
https://www.rfc-editor.org/info/rfc7880
https://www.rfc-editor.org/info/rfc8077
https://www.rfc-editor.org/info/rfc8277

[RFC8299]

[RFC8309]

[RFC8340]

[RFC8342]

[RFC8345]

[RFC8349]

[RFC8453]

[RFC8512]

[RFC8633]

[RFC8695]

[RFC8792]

[RFC8915]

[RFC8969]

, , , and ,
, , , January 2018,

.

, , and , , ,
, January 2018, .

 and , , , ,
, March 2018, .

, , , , and ,
, , ,

March 2018, .

, , , , , and ,
, , ,

March 2018, .

, , and ,
, , , March 2018,

.

 and ,
, , , August 2018,

.

, , , , and ,

, , , January 2019,
.

, , and ,
, , , , July 2019,

.

, , and ,
, , , February 2020,

.

, , , and ,
, , , June 2020,

.

, , , , and ,
, , ,

September 2020, .

, , , , and ,
, ,

, January 2021, .

Wu, Q., Ed. Litkowski, S. Tomotaki, L. K. Ogaki "YANG Data Model for
L3VPN Service Delivery" RFC 8299 DOI 10.17487/RFC8299 <https://
www.rfc-editor.org/info/rfc8299>

Wu, Q. Liu, W. A. Farrel "Service Models Explained" RFC 8309 DOI 10.17487/
RFC8309 <https://www.rfc-editor.org/info/rfc8309>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Clemm, A. Medved, J. Varga, R. Bahadur, N. Ananthakrishnan, H. X. Liu "A
YANG Data Model for Network Topologies" RFC 8345 DOI 10.17487/RFC8345

<https://www.rfc-editor.org/info/rfc8345>

Lhotka, L. Lindem, A. Y. Qu "A YANG Data Model for Routing Management
(NMDA Version)" RFC 8349 DOI 10.17487/RFC8349 <https://www.rfc-
editor.org/info/rfc8349>

Ceccarelli, D., Ed. Y. Lee, Ed. "Framework for Abstraction and Control of TE
Networks (ACTN)" RFC 8453 DOI 10.17487/RFC8453 <https://
www.rfc-editor.org/info/rfc8453>

Boucadair, M., Ed. Sivakumar, S. Jacquenet, C. Vinapamula, S. Q. Wu "A
YANG Module for Network Address Translation (NAT) and Network Prefix
Translation (NPT)" RFC 8512 DOI 10.17487/RFC8512 <https://
www.rfc-editor.org/info/rfc8512>

Reilly, D. Stenn, H. D. Sibold "Network Time Protocol Best Current
Practices" BCP 223 RFC 8633 DOI 10.17487/RFC8633 <https://www.rfc-
editor.org/info/rfc8633>

Liu, X. Sarda, P. V. Choudhary "A YANG Data Model for the Routing
Information Protocol (RIP)" RFC 8695 DOI 10.17487/RFC8695
<https://www.rfc-editor.org/info/rfc8695>

Watsen, K. Auerswald, E. Farrel, A. Q. Wu "Handling Long Lines in Content
of Internet-Drafts and RFCs" RFC 8792 DOI 10.17487/RFC8792 <https://
www.rfc-editor.org/info/rfc8792>

Franke, D. Sibold, D. Teichel, K. Dansarie, M. R. Sundblad "Network Time
Security for the Network Time Protocol" RFC 8915 DOI 10.17487/RFC8915

<https://www.rfc-editor.org/info/rfc8915>

Wu, Q., Ed. Boucadair, M., Ed. Lopez, D. Xie, C. L. Geng "A Framework for
Automating Service and Network Management with YANG" RFC 8969 DOI
10.17487/RFC8969 <https://www.rfc-editor.org/info/rfc8969>

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 115

https://www.rfc-editor.org/info/rfc8299
https://www.rfc-editor.org/info/rfc8299
https://www.rfc-editor.org/info/rfc8309
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8345
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8349
https://www.rfc-editor.org/info/rfc8453
https://www.rfc-editor.org/info/rfc8453
https://www.rfc-editor.org/info/rfc8512
https://www.rfc-editor.org/info/rfc8512
https://www.rfc-editor.org/info/rfc8633
https://www.rfc-editor.org/info/rfc8633
https://www.rfc-editor.org/info/rfc8695
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc8792
https://www.rfc-editor.org/info/rfc8915
https://www.rfc-editor.org/info/rfc8969

[RFC9136]

[YANG-Composed-VPN]

[YANG-SAPs]

, , , , and ,
, , ,

October 2021, .

, , , and ,
, ,

, 8 March 2019,
.

, , , , and ,
, ,

, 25 January 2022,
.

Rabadan, J., Ed. Henderickx, W. Drake, J. Lin, W. A. Sajassi "IP Prefix
Advertisement in Ethernet VPN (EVPN)" RFC 9136 DOI 10.17487/RFC9136

<https://www.rfc-editor.org/info/rfc9136>

Even, R. Wu, B. Wu, Q. Y. Cheng "YANG Data Model for Composed
VPN Service Delivery" Work in Progress Internet-Draft, draft-evenwu-opsawg-
yang-composed-vpn-03 <https://datatracker.ietf.org/doc/html/
draft-evenwu-opsawg-yang-composed-vpn-03>

Gonzalez de Dios, O. Barguil, S. Wu, Q. Boucadair, M. V. Lopez "A Network
YANG Model for Service Attachment Points" Work in Progress Internet-Draft,
draft-ietf-opsawg-sap-00 <https://datatracker.ietf.org/doc/html/
draft-ietf-opsawg-sap-00>

Appendix A. L3VPN Examples

A.1. 4G VPN Provisioning Example
L3VPNs are widely used to deploy 3G/4G, fixed, and enterprise services, mainly because several
traffic discrimination policies can be applied within the network to deliver to the mobile
customers a service that meets the SLA requirements.

Typically, and as shown in Figure 31, an eNodeB (CE) is directly connected to the access routers of
the mobile backhaul and their logical interfaces (one or many, according to the service type) are
configured in a VPN that transports the packets to the mobile core platforms. In this example, a
'vpn-node' is created with two 'vpn-network-accesses'.

To create an L3VPN service using the L3NM, the following steps can be followed.

First, create the 4G VPN service (Figure 32).

Figure 31: Mobile Backhaul Example

+-------------+ +------------------+
		PE		
		198.51.100.1		
eNodeB	>--------/------->		
	vlan 1			
	>--------/------->		
	vlan 2			
	Direct	+-------------+		
+-------------+ Routing | | vpn-node-id | |
 | | 44 | |
 | +-------------+ |
 | |
 +------------------+

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 116

https://www.rfc-editor.org/info/rfc9136
https://datatracker.ietf.org/doc/html/draft-evenwu-opsawg-yang-composed-vpn-03
https://datatracker.ietf.org/doc/html/draft-evenwu-opsawg-yang-composed-vpn-03
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-sap-00
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-sap-00

Second, create a VPN node, as depicted in Figure 33. In this type of service, the VPN node is
equivalent to VRF configured in the physical device ('ne-id'=198.51.100.1). NOTE: '\' line wrapping
in Figures 33 and 34 is implemented per .

Figure 32: Create VPN Service

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/vpn-services
Host: example.com
Content-Type: application/yang-data+json

{
 "ietf-l3vpn-ntw:vpn-services": {
 "vpn-service": [
 {
 "vpn-id": "4G",
 "vpn-description": "VPN to deploy 4G services",
 "customer-name": "mycustomer",
 "vpn-service-topology": "custom",
 "vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "simple-profile",
 "local-as": 65550,
 "rd": "0:65550:1",
 "address-family": [
 {
 "address-family": "ietf-vpn-common:dual-stack",
 "vpn-targets": {
 "vpn-target": [
 {
 "id": 1,
 "route-targets": [
 {
 "route-target": "0:65550:1"
 }
],
 "route-target-type": "both"
 }
]
 }
 }
]
 }
]
 }
 }
]
 }
}

[RFC8792]

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 117

Finally, two VPN network accesses are created using the same physical port ('interface-id'=1/1/1).
Each 'vpn-network-access' has a particular VLAN interface (1,2): "SYNC" and "DATA" (Figure 34).
These interfaces differentiate the traffic between them.

Figure 33: Create VPN Node

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
 vpn-services/vpn-service=4G
Host: example.com
Content-Type: application/yang-data+json

{
 "ietf-l3vpn-ntw:vpn-nodes": {
 "vpn-node": [
 {
 "vpn-node-id": "44",
 "ne-id": "198.51.100.1",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "simple-profile"
 }
]
 }
 }
]
 }
}

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 118

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
 vpn-services/vpn-service=4G/vpn-nodes/vpn-node=44
content-type: application/yang-data+json

{
 "ietf-l3vpn-ntw:vpn-network-accesses": {
 "vpn-network-access": [
 {
 "id": "1/1/1.1",
 "interface-id": "1/1/1",
 "description": "Interface SYNC to eNODE-B",
 "vpn-network-access-type": "ietf-vpn-common:point-to-point",
 "vpn-instance-profile": "simple-profile",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 },
 "connection": {
 "encapsulation": {
 "type": "ietf-vpn-common:dot1q",
 "dot1q": {
 "cvlan-id": 1
 }
 }
 },
 "ip-connection": {
 "ipv4": {
 "local-address": "192.0.2.1",
 "prefix-length": 30,
 "address-allocation-type": "static-address",
 "static-addresses": {
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "192.0.2.2"
 }
]
 }
 },
 "ipv6": {
 "local-address": "2001:db8::1",
 "prefix-length": 64,
 "address-allocation-type": "static-address",
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "2001:db8::2"
 }
]
 }
 },
 "routing-protocols": {
 "routing-protocol": [
 {

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 119

 "id": "1",
 "type": "ietf-vpn-common:direct"
 }
]
 }
 },
 {
 "id": "1/1/1.2",
 "interface-id": "1/1/1",
 "description": "Interface DATA to eNODE-B",
 "vpn-network-access-type": "ietf-vpn-common:point-to-point",
 "vpn-instance-profile": "simple-profile",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 },
 "connection": {
 "encapsulation": {
 "type": "ietf-vpn-common:dot1q",
 "dot1q": {
 "cvlan-id": 2
 }
 }
 },
 "ip-connection": {
 "ipv4": {
 "local-address": "192.0.2.1",
 "prefix-length": 30,
 "address-allocation-type": "static-address",
 "static-addresses": {
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "192.0.2.2"
 }
]
 }
 },
 "ipv6": {
 "local-address": "2001:db8::1",
 "prefix-length": 64,
 "address-allocation-type": "static-address",
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "2001:db8::2"
 }
]
 }
 },
 "routing-protocols": {
 "routing-protocol": [
 {
 "id": "1",
 "type": "ietf-vpn-common:direct"

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 120

Figure 34: Create VPN Network Access

 }
]
 }
 }
]
 }
}

A.2. Loopback Interface
An example of a loopback interface is depicted in Figure 35.

Figure 35: VPN Network Access with a Loopback Interface (Message Body)

{
 "ietf-l3vpn-ntw:vpn-network-accesses": {
 "vpn-network-access": [
 {
 "id": "vpn-access-loopback",
 "interface-id": "Loopback1",
 "description": "An example of a loopback interface.",
 "vpn-network-access-type": "ietf-vpn-common:loopback",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 },
 "ip-connection": {
 "ipv6": {
 "local-address": "2001:db8::4",
 "prefix-length": 128
 }
 }
 }
]
 }
}

A.3. Overriding VPN Instance Profile Parameters
Figure 36 shows a simplified example to illustrate how some information that is provided at the
VPN service level (particularly as part of the 'vpn-instance-profiles') can be overridden by
information configured at the VPN node level. In this example, PE3 and PE4 inherit the 'vpn-
instance-profiles' parameters that are specified at the VPN service level, but PE1 and PE2 are
provided with "maximum-routes" values at the VPN node level that override the values that are
specified at the VPN service level.

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 121

{
 "ietf-l3vpn-ntw:vpn-services": {
 "vpn-service": [
 {
 "vpn-id": "override-example",
 "vpn-service-topology": "ietf-vpn-common:hub-spoke",
 "vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "HUB",
 "role": "ietf-vpn-common:hub-role",
 "local-as": 64510,
 "rd-suffix": 1001,
 "address-family": [
 {
 "address-family": "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 100
 }
]
 }
]
 },
 {
 "profile-id": "SPOKE",
 "role": "ietf-vpn-common:spoke-role",
 "local-as": 64510,
 "address-family": [
 {
 "address-family": "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 1000
 }
]
 }
]
 }
]
 },
 "vpn-nodes": {
 "vpn-node": [
 {
 "vpn-node-id": "PE1",
 "ne-id": "pe1",
 "router-id": "198.51.100.1",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "HUB",
 "rd": "1:198.51.100.1:1001",
 "address-family": [
 {
 "address-family":

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 122

 "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 10
 }
]
 }
]
 }
]
 }
 },
 {
 "vpn-node-id": "PE2",
 "ne-id": "pe2",
 "router-id": "198.51.100.2",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "SPOKE",
 "address-family": [
 {
 "address-family":
 "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 100
 }
]
 }
]
 }
]
 }
 },
 {
 "vpn-node-id": "PE3",
 "ne-id": "pe3",
 "router-id": "198.51.100.3",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "SPOKE"
 }
]
 }
 },
 {
 "vpn-node-id": "PE4",
 "ne-id": "pe4",
 "router-id": "198.51.100.4",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "SPOKE"
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 123

Figure 36: VPN Instance Profile Example (Message Body)

]
 }
 }
]
 }
 }
]
 }
}

A.4. Multicast VPN Provisioning Example
IPTV is mainly distributed through multicast over the LANs. In the following example, PIM -
Sparse Mode (PIM-SM) is enabled and functional between the PE and the CE. The PE receives
multicast traffic from a CE that is directly connected to the multicast source. The signaling
between the PE and the CE is achieved using BGP. Also, the RP is statically configured for a
multicast group.

Figure 38 illustrates how to configure a multicast L3VPN service using the L3NM.

First, the multicast service is created together with a generic VPN instance profile (see the excerpt
of the request message body shown in Figure 38).

Figure 37: Multicast L3VPN Service Example

+-----------+ +------+ +------+ +-----------+
| Multicast |---| CE |--/--| PE |----| Backbone |
| source | +------+ +------+ | IP/MPLS |
+-----------+ +-----------+

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 124

Then, the VPN nodes are created (see the excerpt of the request message body shown in Figure 39).
In this example, the VPN node will represent VRF configured in the physical device.

Figure 38: Create Multicast VPN Service (Excerpt of the Message Request Body)

{
 "ietf-l3vpn-ntw:vpn-services": {
 "vpn-service": [
 {
 "vpn-id": "Multicast-IPTV",
 "vpn-description": "Multicast IPTV VPN service",
 "customer-name": "a-name",
 "vpn-service-topology": "ietf-vpn-common:hub-spoke",
 "vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "multicast",
 "role": "ietf-vpn-common:hub-role",
 "local-as": 65536,
 "multicast": {
 "rp": {
 "rp-group-mappings": {
 "rp-group-mapping": [
 {
 "id": 1,
 "rp-address": "203.0.113.17",
 "groups": {
 "group": [
 {
 "id": 1,
 "group-address": "239.130.0.0/15"
 }
]
 }
 }
]
 },
 "rp-discovery": {
 "rp-discovery-type": "ietf-vpn-common:static-rp"
 }
 }
 }
 }
]
 }
 }
]
 }
}

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 125

Finally, create the VPN network access with multicast enabled (see the excerpt of the request
message body shown in Figure 40).

Figure 39: Create Multicast VPN Node (Excerpt of the Message Request Body)

{
 "ietf-l3vpn-ntw:vpn-node": [
 {
 "vpn-node-id": "500003105",
 "description": "VRF-IPTV-MULTICAST",
 "ne-id": "198.51.100.10",
 "router-id": "198.51.100.10",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "multicast",
 "rd": "65536:31050202"
 }
]
 }
 }
]
}

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 126

{
 "ietf-l3vpn-ntw:vpn-network-access": {
 "id": "1/1/1",
 "description": "Connected-to-source",
 "vpn-network-access-type": "ietf-vpn-common:point-to-point",
 "vpn-instance-profile": "multicast",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 },
 "ip-connection": {
 "ipv4": {
 "local-address": "203.0.113.1",
 "prefix-length": 30,
 "address-allocation-type": "static-address",
 "static-addresses": {
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "203.0.113.2"
 }
]
 }
 }
 },
 "routing-protocols": {
 "routing-protocol": [
 {
 "id": "1",
 "type": "ietf-vpn-common:bgp-routing",
 "bgp": {
 "description": "Connected to CE",
 "peer-as": "65537",
 "address-family": "ietf-vpn-common:ipv4",
 "neighbor": "203.0.113.2"
 }
 }
]
 },
 "service": {
 "pe-to-ce-bandwidth": "100000000",
 "ce-to-pe-bandwidth": "100000000",
 "mtu": 1500,
 "multicast": {
 "access-type": "source-only",
 "address-family": "ietf-vpn-common:ipv4",
 "protocol-type": "router",
 "pim": {
 "hello-interval": 30,
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 }
 }
 }

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 127

Acknowledgements
During the discussions of this work, helpful comments, suggestions, and reviews were received
from (listed alphabetically) , , , ,

, , , , , , and
. Many thanks to them. Thanks to for the review of an early draft

version of the document.

, , , and contributed to early draft versions
of this document. Many thanks to for the AD review. Thanks to for
the routing directorate review, for the security directorate review, for
the opsdir review, and for the genart directorate review. Thanks to
for the discussion on the TCP-AO. Thanks to , , ,

, , , , and for the IESG
review.

This work was supported in part by the European Commission-funded H2020-ICT-2016-2 METRO-
HAUL project (G.A. 761727) and Horizon 2020 Secured autonomic traffic management for a Tera
of SDN flows (Teraflow) project (G.A. 101015857).

Figure 40: Create VPN Network Access (Excerpt of the Message Request Body)

 }
 }
 }
}

Raul Arco Miguel Cros Cecilia Joe Clarke Dhruv Dhody Adrian
Farrel Roque Gagliano Christian Jacquenet Kireeti Kompella Julian Lucek Greg Mirsky
Tom Petch Philip Eardley

Daniel King Daniel Voyer Luay Jalil Stephane Litkowski
Robert Wilton Andrew Malis

Rifaat Shekh-Yusef Qin Wu
Pete Resnick Michael Scharf

Martin Duke Lars Eggert Zaheduzzaman Sarker
Roman Danyliw Erik Kline Benjamin Kaduk Francesca Palombini Éric Vyncke

Contributors
Victor Lopez
Nokia

 Madrid
Spain

 victor.lopez@nokia.com Email:

Qin Wu
Huawei

 bill.wu@huawei.com Email:

Manuel Lopez
Vodafone
Spain

 manuel-julian.lopez@vodafone.com Email:

Lucia Oliva Ballega
Telefonica

 lucia.olivaballega.ext@telefonica.com Email:

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 128

mailto:victor.lopez@nokia.com
mailto:bill.wu@huawei.com
mailto:manuel-julian.lopez@vodafone.com
mailto:lucia.olivaballega.ext@telefonica.com

Erez Segev
Ribbon Communications

 erez.segev@rbbn.com Email:

Paul Sherratt
Gamma Telecom

 paul.sherratt@gamma.co.uk Email:

Authors' Addresses
Samier Barguil
Telefonica

 Madrid
Spain

 samier.barguilgiraldo.ext@telefonica.com Email:

Oscar Gonzalez de Dios ()editor
Telefonica

 Madrid
Spain

 oscar.gonzalezdedios@telefonica.com Email:

Mohamed Boucadair ()editor
Orange

 35000 Rennes
France

 mohamed.boucadair@orange.com Email:

Luis Angel Munoz
Vodafone
Spain

 luis-angel.munoz@vodafone.com Email:

Alejandro Aguado
Nokia

 Madrid
Spain

 alejandro.aguado_martin@nokia.com Email:

RFC 9182 L3NM YANG Data Model February 2022

Barguil, et al. Standards Track Page 129

mailto:erez.segev@rbbn.com
mailto:paul.sherratt@gamma.co.uk
mailto:samier.barguilgiraldo.ext@telefonica.com
mailto:oscar.gonzalezdedios@telefonica.com
mailto:mohamed.boucadair@orange.com
mailto:luis-angel.munoz@vodafone.com
mailto:alejandro.aguado_martin@nokia.com

	RFC 9182
	A YANG Network Data Model for Layer 3 VPNs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Acronyms and Abbreviations
	4. L3NM Reference Architecture
	5. Relationship to Other YANG Data Models
	6. Sample Uses of the L3NM Data Model
	6.1. Enterprise Layer 3 VPN Services
	6.2. Multi-Domain Resource Management
	6.3. Management of Multicast Services

	7. Description of the L3NM YANG Module
	7.1. Overall Structure of the Module
	7.2. VPN Profiles
	7.3. VPN Services
	7.4. VPN Instance Profiles
	7.5. VPN Nodes
	7.6. VPN Network Accesses
	7.6.1. Connection
	7.6.2. IP Connection
	7.6.3. CE-PE Routing Protocols
	7.6.3.1. Static Routing
	7.6.3.2. BGP
	7.6.3.3. OSPF
	7.6.3.4. IS-IS
	7.6.3.5. RIP
	7.6.3.6. VRRP

	7.6.4. OAM
	7.6.5. Security
	7.6.6. Services
	7.6.6.1. Overview
	7.6.6.2. QoS

	7.7. Multicast

	8. L3NM YANG Module
	9. Security Considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. L3VPN Examples
	A.1. 4G VPN Provisioning Example
	A.2. Loopback Interface
	A.3. Overriding VPN Instance Profile Parameters
	A.4. Multicast VPN Provisioning Example

	Acknowledgements
	Contributors
	Authors' Addresses

 A YANG Network Data Model for Layer 3 VPNs

 Telefonica

 Madrid
 Spain

 samier.barguilgiraldo.ext@telefonica.com

 Telefonica

 Madrid
 Spain

 oscar.gonzalezdedios@telefonica.com

 Orange

 Rennes
 35000
 France

 mohamed.boucadair@orange.com

 Vodafone

 Spain

 luis-angel.munoz@vodafone.com

 Nokia

 Madrid
 Spain

 alejandro.aguado_martin@nokia.com

 ops
 OPSAWG
 l3vpn
 Automation
 Service Provisioning
 Network Automation
 Service Orchestration
 Service Delivery
 NETCONF
 RESTCONF
 Slices
 network slicing

 As a complement to the Layer 3 Virtual Private Network Service Model (L3SM), which is used for communication between customers and service
 providers, this document defines an L3VPN Network Model (L3NM) that
 can be used for the provisioning of Layer 3 Virtual Private Network
 (L3VPN) services within a service provider network. The model provides a
 network-centric view of L3VPN services.
 The L3NM is meant to be used by a network controller to derive the
 configuration information that will be sent to relevant network devices.
 The model can also facilitate communication between a service
 orchestrator and a network controller/orchestrator.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Acronyms and Abbreviations

 . L3NM Reference Architecture

 . Relationship to Other YANG Data Models

 . Sample Uses of the L3NM Data Model

 . Enterprise Layer 3 VPN Services

 . Multi-Domain Resource Management

 . Management of Multicast Services

 . Description of the L3NM YANG Module

 . Overall Structure of the Module

 . VPN Profiles

 . VPN Services

 . VPN Instance Profiles

 . VPN Nodes

 . VPN Network Accesses

 . Connection

 . IP Connection

 . CE-PE Routing Protocols

 . Static Routing

 . BGP

 . OSPF

 . IS-IS

 . RIP

 . VRRP

 . OAM

 . Security

 . Services

 . Overview

 . QoS

 . Multicast

 . L3NM YANG Module

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . L3VPN Examples

 . 4G VPN Provisioning Example

 . Loopback Interface

 . Overriding VPN Instance Profile Parameters

 . Multicast VPN Provisioning Example

 Acknowledgements

 Contributors

 Authors' Addresses

 Introduction
 defines a YANG Layer 3 Virtual Private
 Network Service Model (L3SM) that can be used for
 communication between customers and service providers. Such a model
 focuses on describing the customer view of the Virtual Private Network
 (VPN) services and provides an abstracted view of the customer's
 requested services. That approach limits the usage of the L3SM to the
 role of a customer service model (as per).
 This document defines a YANG module called the "L3VPN Network Model"
 (L3NM). The L3NM is aimed at providing a network-centric view of Layer 3
 (L3) VPN services. This data model can be used to facilitate
 communication between the service orchestrator and the network
 controller/orchestrator by allowing more network-centric information
 to be included. It enables such additional capabilities as resource
 management, or it serves as a multi-domain orchestration interface where
 logical resources (such as route targets or route distinguishers) must
 be coordinated.
 This document uses the common VPN YANG module defined in .
 This document does not obsolete . These
 two modules are used for similar objectives but with different scopes
 and views.
 The L3NM YANG module was initially built with a "prune and extend"
 approach, taking as a starting point the YANG module described in . Nevertheless, the L3NM is not defined as an
 augment to the L3SM, because a specific structure is required to meet
 network-oriented L3 needs.
 Some information captured in the L3SM can be passed by the
 orchestrator in the L3NM (e.g., customer) or be used to feed some L3NM
 attributes (e.g., actual forwarding policies). Also, some information
 captured in the L3SM may be maintained locally within the orchestrator,
 which is in charge of maintaining the correlation between a customer
 view and its network instantiation. Likewise, some information captured
 and exposed using the L3NM can feed the service layer (e.g.,
 capabilities) to drive VPN service order handling and thus the
 L3SM.
 illustrates how the
 L3NM can be used within the network management automation
 architecture.
 The L3NM does not attempt to address all deployment cases, especially
 those where L3VPN connectivity is supported through the coordination
 of different VPNs in different underlying networks. More complex
 deployment scenarios involving the coordination of different VPN
 instances and different technologies to provide end-to-end VPN
 connectivity are addressed by complementary YANG modules, e.g., .
 The L3NM focuses on Layer 3 VPNs based on BGP Provider Edges (PEs) as
 described in , , and ; and Multicast
 VPNs as described in and .
 The YANG data model in this document conforms to the Network
 Management Datastore Architecture (NMDA) defined in .

 Terminology
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14
 when, and only
 when, they appear in all capitals, as shown here.
 This document assumes that the reader is familiar with the contents
 of , , , , and and uses the terminology defined in those
 documents.
 This document uses the term "network model" as defined in .
 The meanings of the symbols in the tree diagrams are defined in .
 This document makes use of the following terms:

 Layer 3 VPN Service Model (L3SM):
 A YANG data model that describes the service requirements of an L3VPN that
 interconnects a set of sites from the point of view of the customer.
 The customer service model does not provide details on the service
 provider network. The L3VPN customer service model is defined in
 .
 Layer 3 VPN Network Model (L3NM):
 A YANG data model that describes a VPN service in the service provider network.
 It contains information on the service provider network and might
 include allocated resources. It can be used by network controllers
 to manage and control the VPN service configuration in the service
 provider network. The corresponding YANG module can be used by a service
 orchestrator to request a VPN service to a network controller.
 Service orchestrator:
 A functional entity that
 interacts with the customer of an L3VPN. The service orchestrator
 interacts with the customer using the L3SM. The service orchestrator
 is responsible for the Customer Edge to Provider Edge (CE-PE)
 attachment circuits, the PE selection, and requesting the VPN
 service to the network controller.
 Network orchestrator:
 A functional entity that is
 hierarchically intermediate between a service orchestrator and
 network controllers. A network orchestrator can manage one or
 several network controllers.
 Network controller:
 A functional entity responsible
 for the control and management of the service provider network.
 VPN node:
 An abstraction that represents a set of
 policies applied on a PE and belonging to a single VPN service. A
 VPN service involves one or more VPN nodes. As it is an abstraction,
 the network controller will decide how to implement a VPN node. For
 example, in a BGP-based VPN, a VPN node could typically be mapped
 to a Virtual Routing and Forwarding (VRF) instance.
 VPN network access:
 An abstraction that represents the
 network interfaces that are associated with a given VPN node. Traffic
 coming from the VPN network access belongs to the VPN. The
 attachment circuits (bearers) between CEs and PEs are terminated in
 the VPN network access. A reference to the bearer is maintained to
 allow keeping the link between the L3SM and L3NM when both models are
 used in a given deployment.
 VPN site:
 A VPN customer's location that is connected
 to the service provider network via a CE-PE link, which can access
 at least one VPN .
 VPN service provider:
 A service provider that offers
 VPN-related services .
 Service provider network:
 A network that is able to
 provide VPN-related services.

 This document is aimed at modeling BGP PE-based VPNs in a service
 provider network, so the terms defined in
 and are used in this document as well.

 Acronyms and Abbreviations
 The following acronyms and abbreviations are used in this document:

 ACL
 Access Control List
 AS
 Autonomous System
 ASM
 Any-Source Multicast
 ASN
 AS Number
 BFD
 Bidirectional Forwarding Detection
 BGP
 Border Gateway Protocol
 BSR
 Bootstrap Router
 CE
 Customer Edge
 CsC
 Carriers' Carriers
 IGMP
 Internet Group Management Protocol
 L3NM
 L3VPN Network Model
 L3SM
 L3VPN Service Model
 L3VPN
 Layer 3 Virtual Private Network
 MLD
 Multicast Listener Discovery
 MSDP
 Multicast Source Discovery Protocol
 MVPN
 Multicast VPN
 NAT
 Network Address Translation
 OAM
 Operations, Administration, and Maintenance
 OSPF
 Open Shortest Path First
 PE
 Provider Edge
 PIM
 Protocol Independent Multicast
 QoS
 Quality of Service
 RD
 Route Distinguisher
 RP
 Rendezvous Point
 RT
 Route Target
 SA
 Security Association
 SSM
 Source-Specific Multicast
 VPN
 Virtual Private Network
 VRF
 Virtual Routing and Forwarding

 L3NM Reference Architecture
 depicts the reference architecture
 for the L3NM. The figure is an expansion of the architecture presented
 in ; it decomposes the box
 marked "orchestration" in that section into three separate functional
 components: service orchestration, network orchestration, and domain
 orchestration.
 Although some deployments may choose to construct a monolithic
 orchestration component (covering both service and network matters),
 this document advocates for a clear separation between service and
 network orchestration components for the sake of better flexibility.
 Such a design adheres to the L3VPN reference architecture defined in
 . This separation relies
 upon a dedicated communication interface between these components and
 appropriate YANG modules that reflect network-related information. Such
 information is hidden from customers.
 The intelligence for translating customer-facing information into
 network-centric information (and vice versa) is implementation specific.
 The terminology from is used here to
 show the distinction between the customer service model, the service
 delivery model, the network configuration model, and the device
 configuration model. In that context, the "domain orchestration" and
 "config manager" roles may be performed by "controllers".

 L3NM Reference Architecture

 +---------------+
 | Customer |
 +-------+-------+
 Customer Service Model |
 (e.g., 'l3vpn-svc') |
 +-------+-------+
 | Service |
 | Orchestration |
 +-------+-------+
 Service Delivery Model |
 'l3vpn-ntw' |
 +-------+-------+
 | Network |
 | Orchestration |
 +-------+-------+
 Network Configuration Model |
 +-----------+-----------+
 | |
 +--------+------+ +--------+------+
 | Domain | | Domain |
 | Orchestration | | Orchestration |
 +---+-----------+ +--------+------+
Device | | |
Configuration | | |
Model | | |
 +----+----+ | |
 | Config | | |
 | Manager | | |
 +----+----+ | |
 | | |
 | NETCONF/CLI..................
 | | |
 +--+
 Network

NETCONF: Network Configuration Protocol
CLI: Command-Line Interface

 The customer may use a variety of means to request a service that may
 trigger the instantiation of an L3NM. The customer may use the L3SM or
 more abstract models to request a service that relies upon an L3VPN
 service. For example, the customer may supply an IP Connectivity
 Provisioning Profile (CPP) that characterizes the requested service
 , an enhanced VPN (VPN+) service , or an IETF network slice
 service .
 Note also that both the L3SM and the L3NM may be used in the context
 of the Abstraction and Control of TE Networks (ACTN) framework . shows the
 Customer Network Controller (CNC), the Multi-Domain Service Coordinator
 (MDSC), the Provisioning Network Controller (PNC) components, and the
 interfaces where the L3SM and L3NM are used.

 L3SM and L3NM in the Context of the ACTN

 +----------------------------------+
 | Customer |
 | +-----------------------------+ |
 | | CNC | |
 | +-----------------------------+ |
 +----+-----------------------+-----+
 | |
 | L3SM | L3SM
 | |
 +---------+---------+ +---------+---------+
 | MDSC | | MDSC |
 | +---------------+ | | (parent) |
 | | Service | | +---------+---------+
 | | Orchestration | | |
 | +-------+-------+ | | L3NM
 | | | |
 | | L3NM | +---------+---------+
 | | | | MDSC |
 | +-------+-------+ | | (child) |
 | | Network | | +---------+---------+
 | | Orchestration | | |
 | +---------------+ | |
 +---------+---------+ |
 | |
 | Network Configuration |
 | |
+------------+-------+ +---------+------------+
Domain		Domain				
Controller		Controller				
+---------+		+---------+				
	PNC				PNC	
+---------+		+---------+				
+------------+-------+ +---------+------------+
 | |
 | Device Configuration |
 | |
 +----+---+ +----+---+
 | Device | | Device |
 +--------+ +--------+

 Relationship to Other YANG Data Models
 The "ietf-vpn-common" module includes a set of
 identities, types, and groupings that are meant to be reused by
 VPN-related YANG modules independently of the layer (e.g., Layer 2,
 Layer 3) and the type of the module (e.g., network model, service model),
 including future revisions of existing models (e.g., or). The L3NM
 reuses these common types and groupings.
 In order to avoid data duplication and to ease passing data between
 layers when required (service layer to network layer and vice versa),
 early versions of the L3NM reused many of the data nodes that are
 defined in . Nevertheless, that approach
 was abandoned in favor of the "ietf-vpn-common" module because that
 initial design was interpreted as if the deployment of the L3NM depends on the
 L3SM, while this is not the case. For example, a service provider may
 decide to use the L3NM to build its L3VPN services without exposing the
 L3SM.
 As discussed in , the L3NM is meant to
 manage L3VPN services within a service provider network. The module
 provides a network view of the service. Such a view is only visible
 within the service provider and is not exposed outside (to customers,
 for example). The items below discuss how the L3NM interfaces with other YANG modules:

 L3SM:

 The L3NM is not a customer service model.
 The internal view of the service (i.e., the L3NM) may
 be mapped to an external view that is visible to customers: the L3VPN
 Service Model (L3SM) .

 The L3NM can be fed with inputs that are
 requested by customers. Such requests typically rely upon an L3SM template.
 Concretely, some parts of the L3SM module can be directly mapped
 to the L3NM, while other parts are generated as a function of the
 requested service and local guidelines. Some other parts are local
 to the service provider and do not map directly to the L3SM.
 Note that using the L3NM within a service provider does not
 assume, nor does it preclude, exposing the VPN service via the L3SM.
 This is deployment specific. Nevertheless, the design of the L3NM tries
 to align as much as possible with the features supported by the L3SM
 to ease the grafting of both the L3NM and the L3SM for the sake of highly automated
 VPN service provisioning and delivery.

 Network Topology Modules:
 An L3VPN involves nodes that
 are part of a topology managed by the service provider network. The
 topology can be represented using the network topology YANG module
 defined in or its extension, such as a
 network YANG module for Service Attachment Points (SAPs) .
 Device Modules:

 The L3NM is not a device model.
 Once a global VPN service is captured by means of the
 L3NM, the actual activation and provisioning of the VPN service will
 involve a variety of device modules to tweak the required functions
 for the delivery of the service. These functions are supported by
 the VPN nodes and can be managed using device YANG modules. A
 non-comprehensive list of such device YANG modules is provided
 below:

 Routing management .
 BGP .
 PIM .
 NAT management .
 QoS management .
 ACLs .

 How the L3NM is used to derive
 device-specific actions is implementation specific.

 Sample Uses of the L3NM Data Model
 This section provides a non-exhaustive list of examples that illustrate
 contexts where the L3NM can be used.

 Enterprise Layer 3 VPN Services
 Enterprise L3VPNs are one of the most demanded services for
 carriers; therefore, L3NM can be useful for automating the
 provisioning and maintenance of these VPNs. Templates and batch
 processes can be built, and as a result many parameters are needed for
 the creation from scratch of a VPN that can be abstracted to the upper
 Software-Defined Networking (SDN) layer , but some manual intervention will
 still be required.
 A common function that is supported by VPNs is the addition or
 removal of VPN nodes. Workflows can use the L3NM in these scenarios to
 add or prune nodes from the network data model as required.

 Multi-Domain Resource Management
 The implementation of L3VPN services that span
 administratively separated domains (i.e., that are under the
 administration of different management systems or controllers)
 requires some network resources to be synchronized between systems.
 Particularly, resources must be adequately managed in each domain to
 avoid broken configurations.
 For example, route targets (RTs) shall be synchronized between PEs.
 When all PEs are controlled by the same management system, RT
 allocation can be performed by that management system. In cases where
 the service spans multiple management systems, the task of
 allocating RTs has to be aligned across the domains; therefore, the
 network model must provide a way to specify RTs. In addition, route
 distinguishers (RDs) must also be synchronized to avoid collisions of
 RD allocations between separate management systems. An incorrect
 allocation might lead to the same RD and IP prefixes being exported by
 different PEs.

 Management of Multicast Services
 Multicast services over L3VPNs can be implemented using dual PIM
 MVPNs (also known as the draft-rosen model)
 or MVPNs based on Multiprotocol BGP (MP-BGP)
 . Both
 methods are supported and equally effective, but the main difference
 is that MP-BGP-based MVPNs do not require multicast configuration on
 the service provider network. MP-BGP MVPNs employ the intra-AS BGP control plane and PIM Sparse Mode as the data plane. The
 PIM state information is maintained between PEs using the same
 architecture that is used for unicast VPNs.
 On the other hand, has limitations,
 such as reduced options for transport, control plane scalability,
 availability, operational inconsistency, and the need to maintain
 state in the backbone. Because of these limitations, MP-BGP MVPNs provide the
 architectural model that has been taken as the base for implementing
 multicast services in L3VPNs. In this scenario, BGP is used to
 autodiscover MVPN PE members and the customer PIM signaling is sent
 across the provider's core through MP-BGP. The multicast traffic is
 transported on MPLS Point-to-Multipoint (P2MP) Label Switched Paths (LSPs).

 Description of the L3NM YANG Module
 The L3NM ("ietf-l3vpn-ntw") is defined to manage L3VPNs in a service
 provider network. In particular, the "ietf-l3vpn-ntw" module can be used
 to create, modify, and retrieve L3VPN services of a network.
 The full tree diagram of the module can be generated using the
 "pyang" tool . That tree is not included
 here because it is too long (). Instead, subtrees are provided for the
 reader's convenience.

 Overall Structure of the Module
 The "ietf-l3vpn-ntw" module uses two main containers:
 'vpn-profiles' and 'vpn-services' (see).
 The 'vpn-profiles' container is used by the provider to maintain a
 set of common VPN profiles that apply to one or several VPN services
 ().
 The 'vpn-services' container maintains the set of VPN services
 managed within the service provider network. The 'vpn-service' is the data
 structure that abstracts a VPN service ().

 Overall L3NM Tree Structure
 module: ietf-l3vpn-ntw
 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...

 Some of the data nodes are keyed by the address family. For the
 sake of data representation compactness, it is RECOMMENDED to use the
 dual-stack address family for data nodes that have the same value for
 both IPv4 and IPv6. If, for some reason, a data node is present for
 both dual-stack and IPv4 (or IPv6), the value that is indicated under
 dual-stack takes precedence over the value that is indicated under IPv4
 (or IPv6).

 VPN Profiles
 The 'vpn-profiles' container () allows the VPN service provider to
 define and maintain a set of VPN profiles that apply to one or
 several VPN services.

 VPN Profiles Subtree Structure
 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | +--rw valid-provider-identifiers
 | +--rw external-connectivity-identifier* [id]
 | | {external-connectivity}?
 | | +--rw id string
 | +--rw encryption-profile-identifier* [id]
 | | +--rw id string
 | +--rw qos-profile-identifier* [id]
 | | +--rw id string
 | +--rw bfd-profile-identifier* [id]
 | | +--rw id string
 | +--rw forwarding-profile-identifier* [id]
 | | +--rw id string
 | +--rw routing-profile-identifier* [id]
 | +--rw id string
 +--rw vpn-services
 ...

 This document does not make any assumption about the exact
 definition of these profiles. The exact definition of the profiles is
 local to each VPN service provider. The model only includes an
 identifier for these profiles in order to facilitate identifying and
 binding local policies when building a VPN service. As shown in , the following identifiers can be
 included:

 'external-connectivity-identifier':
 This identifier
 refers to a profile that defines the external connectivity
 provided to a VPN service (or a subset of VPN sites). External
 connectivity may be access to the Internet or restricted
 connectivity, such as access to a public/private cloud.
 'encryption-profile-identifier':
 An encryption
 profile refers to a set of policies related to the encryption
 schemes and setup that can be applied when building and offering a
 VPN service.
 'qos-profile-identifier':
 A Quality of Service (QoS)
 profile refers to a set of policies, such as classification,
 marking, and actions (e.g.,).
 'bfd-profile-identifier':
 A Bidirectional Forwarding
 Detection (BFD) profile refers to a set of BFD policies that can be invoked when
 building a VPN service.
 'forwarding-profile-identifier':
 A forwarding
 profile refers to the policies that apply to the forwarding of
 packets conveyed within a VPN. Such policies may consist, for
 example, of applying Access Control Lists (ACLs).
 'routing-profile-identifier':
 A routing profile
 refers to a set of routing policies that will be invoked (e.g.,
 BGP policies) when delivering the VPN service.

 VPN Services
 The 'vpn-service' is the data structure that abstracts a VPN
 service in the service provider network. Each 'vpn-service' is
 uniquely identified by an identifier: 'vpn-id'. Such a 'vpn-id' is only
 meaningful locally (e.g., the network controller). The subtree of the
 'vpn-services' is shown in .

 VPN Services Subtree Structure
 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 +--rw vpn-id vpn-common:vpn-id
 +--rw vpn-name? string
 +--rw vpn-description? string
 +--rw customer-name? string
 +--rw parent-service-id? vpn-common:vpn-id
 +--rw vpn-type? identityref
 +--rw vpn-service-topology? identityref
 +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw vpn-instance-profiles
 | ...
 +--rw underlay-transport
 | +-- (type)?
 | +--:(abstract)
 | | +--rw transport-instance-id? string
 | | +--rw instance-type? identityref
 | +--:(protocol)
 | +--rw protocol* identityref
 +--rw external-connectivity
 | {vpn-common:external-connectivity}?
 | +--rw (profile)?
 | +--:(profile)
 | +--rw profile-name? leafref
 +--rw vpn-nodes
 ...

 The descriptions of the VPN service data nodes that are depicted in
 are as follows:

 'vpn-id':
 An identifier that is used to uniquely
 identify the L3VPN service within the L3NM scope.
 'vpn-name':
 Associates a name with the service in
 order to facilitate the identification of the service.
 'vpn-description':

 Includes a textual description of
 the service.
 The internal structure of a
 VPN description is local to each VPN service provider.

 'customer-name':
 Indicates the name of the customer
 who ordered the service.
 'parent-service-id':
 Refers to an identifier of the
 parent service (e.g., L3SM, IETF network slice, VPN+) that
 triggered the creation of the VPN service. This identifier is used
 to easily correlate the (network) service as built in the network
 with a service order. A controller can use that correlation to
 enrich or populate some fields (e.g., description fields) as a
 function of local deployments.
 'vpn-type':
 Indicates the VPN type. The values are
 taken from . For
 the L3NM, this is typically set to "BGP/MPLS L3VPN", but other
 values may be defined to support specific Layer 3
 VPN capabilities (e.g.,).
 'vpn-service-topology':
 Indicates the network
 topology for the service: 'hub-spoke', 'any-to-any', or 'custom'. The
 network implementation of this attribute is defined by the correct
 usage of import and export targets ().
 'status':

 Used to track the service status of a
 given VPN service. Both operational status and administrative status are
 maintained together with a timestamp. For example, a service can
 be created but not put into effect.
 Administrative status and operational status can be used
 as a trigger to detect service anomalies. For example, a service
 that is declared active at the service layer but is still
 inactive at the network layer may be an indication that network
 provision actions are needed to align the observed service status
 with the expected service status.

 'vpn-instance-profiles':

 Defines reusable parameters
 for the same 'vpn-service'.
 More details
 are provided in .

 'underlay-transport':

 Describes the preference for
 the transport technology to carry the traffic of the VPN service.
 This preference is especially useful in networks with multiple
 domains and Network-to-Network Interface (NNI) types. The underlay
 transport can be expressed as an abstract transport instance
 (e.g., an identifier of a VPN+ instance, a virtual network
 identifier, or a network slice name) or as an ordered list of the
 actual protocols to be enabled in the network.
 A rich set of protocol identifiers that can be
 used to refer to an underlay transport are defined in .

 'external-connectivity':

 Indicates whether/how
 external connectivity is provided to the VPN service. For example,
 a service provider may provide external connectivity to a VPN
 customer (e.g., to a public cloud). Such a service may involve
 tweaking both filtering and NAT rules (e.g., binding a Virtual
 Routing and Forwarding (VRF) interface with a NAT instance as
 discussed in).
 These value-added features may be bound to all, or a subset of,
 network accesses. Some of these value-added features may be
 implemented in a PE or in nodes other than PEs (e.g., a P node or
 even a dedicated node that hosts the NAT function).
 Only a pointer to a local profile that defines
 the external-connectivity feature is supported in this
 document.

 'vpn-node':

 An abstraction that represents a set
 of policies applied to a network node and belonging to a single
 'vpn-service'. A VPN service is typically built by adding
 instances of 'vpn-node' to the 'vpn-nodes' container.
 A 'vpn-node' contains 'vpn-network-accesses',
 which are the interfaces attached to the VPN by which the customer
 traffic is received. Therefore, the customer sites are connected
 to the 'vpn-network-accesses'.
 Note that
 because this is a network data model, information about customers'
 sites is not required in the model. Rather, such information is
 relevant in the L3SM. Whether that information is included in the
 L3NM, e.g., to populate the various 'description' data nodes, is
 implementation specific.
 More details are
 provided in .

 VPN Instance Profiles
 VPN instance profiles are meant to factorize data nodes that are
 used at many levels of the model. Generic VPN instance profiles are
 defined at the VPN service level and then called at the VPN node and
 VPN network access levels. Each VPN instance profile is identified by
 'profile-id'. This identifier is then referenced for one or multiple
 VPN nodes () so that the controller can
 identify generic resources (e.g., RTs and RDs) to be configured for a
 given VRF instance.
 The subtree of the 'vpn-instance-profiles' is shown in .

 Subtree Structure of VPN Instance Profiles
 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 +--rw vpn-id vpn-common:vpn-id
 ...
 +--rw vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | +--rw profile-id string
 | +--rw role? identityref
 | +--rw local-as? inet:as-number
 | | {vpn-common:rtg-bgp}?
 | +--rw (rd-choice)?
 | | +--:(directly-assigned)
 | | | +--rw rd?
 | | | rt-types:route-distinguisher
 | | +--:(directly-assigned-suffix)
 | | | +--rw rd-suffix? uint16
 | | +--:(auto-assigned)
 | | | +--rw rd-auto
 | | | +--rw (auto-mode)?
 | | | | +--:(from-pool)
 | | | | | +--rw rd-pool-name? string
 | | | | +--:(full-auto)
 | | | | +--rw auto? empty
 | | | +--ro auto-assigned-rd?
 | | | rt-types:route-distinguisher
 | | +--:(auto-assigned-suffix)
 | | | +--rw rd-auto-suffix
 | | | +--rw (auto-mode)?
 | | | | +--:(from-pool)
 | | | | | +--rw rd-pool-name? string
 | | | | +--:(full-auto)
 | | | | +--rw auto? empty
 | | | +--ro auto-assigned-rd-suffix? uint16
 | | +--:(no-rd)
 | | +--rw no-rd? empty
 | +--rw address-family* [address-family]
 | | +--rw address-family identityref
 | | +--rw vpn-targets
 | | | +--rw vpn-target* [id]
 | | | | +--rw id uint8
 | | | | +--rw route-targets* [route-target]
 | | | | | +--rw route-target
 | | | | | rt-types:route-target
 | | | | +--rw route-target-type
 | | | | rt-types:route-target-type
 | | | +--rw vpn-policies
 | | | +--rw import-policy? string
 | | | +--rw export-policy? string
 | | +--rw maximum-routes* [protocol]
 | | +--rw protocol identityref
 | | +--rw maximum-routes? uint32
 | +--rw multicast {vpn-common:multicast}?
 | ...

 The descriptions of the listed data nodes are as follows:

 'profile-id':
 Used to uniquely identify a VPN
 instance profile.
 'role':
 Indicates the role of the VPN instance
 profile in the VPN. Role values are defined in (e.g.,
 'any-to-any-role', 'spoke-role', 'hub-role').
 'local-as':
 Indicates the Autonomous System Number
 (ASN) that is configured for the VPN node.
 'rd':

 As defined in , the following RD
 assignment modes are supported: direct assignment, full automatic
 assignment, automatic assignment from a given pool, and no
 assignment. For illustration purposes, the following modes can be
 used in the deployment cases:

 'directly-assigned':
 The VPN service provider
 (service orchestrator) assigns RDs explicitly. This case will
 fit with a brownfield scenario where some existing services
 need to be updated by the VPN service provider.
 'full-auto':
 The network controller auto-assigns
 RDs. This can apply for the deployment of new services.
 'no-rd':
 The VPN service provider (service
 orchestrator) explicitly wants no RD to be assigned. This case
 can be used for CE testing within the network or for
 troubleshooting proposes.

 Also, the module accommodates deployments where only the
 Assigned Number subfield of RDs () is assigned from a pool while the
 Administrator subfield is set to, for example, the Router ID that is
 assigned to a VPN node. The module supports these modes for
 managing the Assigned Number subfield: explicit assignment,
 auto-assignment from a pool, and full auto-assignment.

 'address-family':

 Includes a set of data nodes per address family:

 'address-family':
 Identifies the address family.
 It can be set to 'ipv4', 'ipv6', or 'dual-stack'.
 'vpn-targets':
 Specifies RT import/export rules
 for the VPN service ().
 'maximum-routes':
 Indicates the maximum number
 of prefixes that the VPN node can accept for a given routing
 protocol. If 'protocol' is set to 'any', this means that the
 maximum value applies to each active routing protocol.

 'multicast':
 Enables multicast traffic in the VPN
 service. Refer to .

 VPN Nodes
 The 'vpn-node' is an abstraction that represents a set of common
 policies applied on a given network node (typically, a PE) and belonging
 to one L3VPN service. The 'vpn-node' includes a parameter to indicate
 the network node on which it is applied. In the case that the 'ne-id'
 points to a specific PE, the 'vpn-node' will likely be mapped to a
 VRF instance in the node. However, the model also allows pointing to an
 abstract node. In this case, the network controller will decide how to
 split the 'vpn-node' into VRF instances.
 The VPN node subtree structure is shown in .

 VPN Node Subtree Structure
 +--rw l3vpn-ntw
 +--rw vpn-profiles
 | ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 +--rw vpn-node-id vpn-common:vpn-id
 +--rw description? string
 +--rw ne-id? string
 +--rw local-as? inet:as-number
 | {vpn-common:rtg-bgp}?
 +--rw router-id? rt-types:router-id
 +--rw active-vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | +--rw profile-id leafref
 | +--rw router-id* [address-family]
 | | +--rw address-family identityref
 | | +--rw router-id? inet:ip-address
 | +--rw local-as? inet:as-number
 | | {vpn-common:rtg-bgp}?
 | +--rw (rd-choice)?
 | |
 | +--rw address-family* [address-family]
 | | +--rw address-family identityref
 | | | ...
 | | +--rw vpn-targets
 | | | ...
 | | +--rw maximum-routes* [protocol]
 | | ...
 | +--rw multicast {vpn-common:multicast}?
 | ...
 +--rw msdp {msdp}?
 | +--rw peer? inet:ipv4-address
 | +--rw local-address? inet:ipv4-address
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw groups
 | +--rw group* [group-id]
 | +--rw group-id string
 +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw vpn-network-accesses
 ...

 The descriptions of the 'vpn-node' data nodes () are as follows:

 'vpn-node-id':
 An identifier that uniquely
 identifies a node that enables a VPN network access.
 'description':
 Provides a textual description of the
 VPN node.
 'ne-id':
 Includes a unique identifier of the network
 element where the VPN node is deployed.
 'local-as':
 Indicates the ASN that is
 configured for the VPN node.
 'router-id':
 Indicates a 32-bit number that is used
 to uniquely identify a router within an AS.
 'active-vpn-instance-profiles':

 Lists the set of
 active VPN instance profiles for this VPN node. Concretely, one or
 more VPN instance profiles that are defined at the VPN service
 level can be enabled at the VPN node level; each of these profiles
 is uniquely identified by means of 'profile-id'. The structure of
 'active-vpn-instance-profiles' is the same as the structure discussed in
 , except that the structure of
 'active-vpn-instance-profiles' includes 'router-id' but does not include the 'role' leaf. The value
 of 'router-id' indicated under 'active-vpn-instance-profiles'
 takes precedence over the 'router-id' under the 'vpn-node' for the
 indicated address family. For example, Router IDs can be
 configured per address family. This capability can be used, for
 example, to configure an IPv6 address as a Router ID when such a
 capability is supported by involved routers.
 Values defined in 'active-vpn-instance-profiles'
 override the values defined at the VPN service level. An example is
 shown in .

 'msdp':
 For redundancy purposes, the Multicast Source
 Discovery Protocol (MSDP) may be
 enabled and used to share state information about sources between multiple
 Rendezvous Points (RPs). The purpose of MSDP in this context is to
 enhance the robustness of the multicast service. MSDP may be
 configured on non-RP routers; this is useful in a domain that
 does not support multicast sources but does support multicast
 transit.
 'groups':
 Lists the groups to which a VPN node
 belongs . For example, the
 'group-id' is used to associate redundancy or protection
 constraints with VPN nodes.
 'status':
 Tracks the status of a node involved in a
 VPN service. Both operational status and administrative status are
 maintained. A mismatch between the administrative status vs. the
 operational status can be used as a trigger to detect
 anomalies.
 'vpn-network-accesses':

 Represents the point to
 which sites are connected.
 Note that
 unlike the L3SM, the L3NM does not need to model the customer
 site -- only the points that receive traffic from the site
 (i.e., the PE side of Provider Edge to Customer Edge (PE-CE) connections). Hence, the VPN network
 access contains the connectivity information between the
 provider's network and the customer premises. The VPN profiles
 ('vpn-profiles') have a set of routing policies that can be
 applied during the service creation.
 See
 for more details.

 VPN Network Accesses
 The 'vpn-network-access' includes a set of data nodes that describe
 the access information for the traffic that belongs to a particular
 L3VPN ().

 VPN Network Access Subtree Structure
 ...
+--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 +--rw id vpn-common:vpn-id
 +--rw interface-id? string
 +--rw description? string
 +--rw vpn-network-access-type? identityref
 +--rw vpn-instance-profile? leafref
 +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw connection
 | ...
 +--rw ip-connection
 | ...
 +--rw routing-protocols
 | ...
 +--rw oam
 | ...
 +--rw security
 | ...
 +--rw service
 ...

 A 'vpn-network-access' () includes the following data nodes:

 'id':
 An identifier of the VPN network
 access.
 'interface-id':
 Indicates the physical or logical
 interface on which the VPN network access is bound.
 'description':
 Includes a textual description of the
 VPN network access.
 'vpn-network-access-type':

 Used to select the
 type of network interface to be deployed in the devices. The
 available defined values are as follows:

 'point-to-point':
 Represents a direct connection
 between the endpoints. The controller must keep the
 association between a logical or physical interface on the
 device with the 'id' of the 'vpn-network-access'.
 'multipoint':
 Represents a multipoint connection
 between the customer site and the PEs. The controller must
 keep the association between a logical or physical interface
 on the device with the 'id' of the 'vpn-network-access'.
 'irb':
 Represents a connection coming from an
 L2VPN service. An identifier of such a service ('l2vpn-id') may
 be included in the 'connection' container, as depicted in (). The controller must keep
 the relationship between the logical tunnels or bridges on the
 devices with the 'id' of the 'vpn-network-access'.
 'loopback':
 Represents the creation of a logical
 interface on a device. An example that illustrates how a loopback
 interface can be used in the L3NM is provided in .

 'vpn-instance-profile':
 Provides a pointer to an
 active VPN instance profile at the VPN node level. Referencing an
 active VPN instance profile implies that all associated data nodes
 will be inherited by the VPN network access. However, some
 inherited data nodes (e.g., multicast) can be overridden at the
 VPN network access level. In such a case, adjusted values take
 precedence over inherited values.
 'status':
 Indicates both operational status and
 administrative status of a VPN network access.
 'connection':
 Represents and groups the set of Layer
 2 connectivity from where the traffic of the L3VPN in a particular
 VPN network access is coming. See .
 'ip-connection':
 Contains Layer 3 connectivity
 information on a VPN network access (e.g., IP addressing). See
 .
 'routing-protocols':
 Includes the CE-PE routing
 configuration information. See .
 'oam':
 Specifies the Operations, Administration, and
 Maintenance (OAM) mechanisms used for a VPN network access. See
 .
 'security':
 Specifies the authentication and the
 encryption to be applied for a given VPN network access. See .
 'service':
 Specifies the service parameters (e.g.,
 QoS, multicast) to apply for a given VPN network access. See .

 Connection
 The 'connection' container represents the Layer 2 connectivity to
 the L3VPN for a particular VPN network access. As shown in the tree
 depicted in , the
 'connection' container defines protocols and parameters to enable
 such connectivity at Layer 2.
 The traffic can enter the VPN with or without encapsulation
 (e.g., VLAN, QinQ). The 'encapsulation' container specifies the
 Layer 2 encapsulation to use (if any) and allows the configuration of the
 relevant tags.
 The interface that is attached to the L3VPN is identified by the
 'interface-id' at the 'vpn-network-access' level. From a network
 model perspective, it is expected that the 'interface-id' is
 sufficient to identify the interface. However, specific Layer 2
 sub-interfaces may be required to be configured in some
 implementations/deployments. Such a Layer-2-specific interface can
 be included in 'l2-termination-point'.
 If a Layer 2 tunnel is needed to terminate the service in the
 CE-PE connection, the 'l2-tunnel-service' container is used to
 specify the required parameters to set such a tunneling service (e.g.,
 a Virtual Private LAN Service (VPLS) or a Virtual eXtensible Local Area Network (VXLAN)). An identity called 'l2-tunnel-type' is defined for
 Layer 2 tunnel selection. The container can also identify the
 pseudowire ().
 As discussed in , 'l2vpn-id' is used to
 identify the L2VPN service that is associated with an Integrated Routing and Bridging (IRB)
 interface.
 To accommodate implementations that require internal bridging, a
 local bridge reference can be specified in 'local-bridge-reference'.
 Such a reference may be a local bridge domain.
 A site, as per , represents a VPN
 customer's location that is connected to the service provider
 network via a CE-PE link, which can access at least one VPN. The
 connection from the site to the service provider network is the
 bearer. Every site is associated with a list of bearers. A bearer is
 the Layer 2 connection with the site. In the L3NM, it is assumed
 that the bearer has been allocated by the service provider at the
 service orchestration stage. The bearer is associated with a network
 element and a port. Hence, a bearer is just a 'bearer-reference' to
 allow the association between a service request (e.g., the L3SM) and
 the L3NM.
 The L3NM can be used to create a Link Aggregation Group (LAG) interface for a given L3VPN
 service ('lag-interface') . Such a
 LAG interface can be referenced under 'interface-id' ().

 Connection Subtree Structure
 ...
+--rw connection
| +--rw encapsulation
| | +--rw type? identityref
| | +--rw dot1q
| | | +--rw tag-type? identityref
| | | +--rw cvlan-id? uint16
| | +--rw priority-tagged
| | | +--rw tag-type? identityref
| | +--rw qinq
| | +--rw tag-type? identityref
| | +--rw svlan-id uint16
| | +--rw cvlan-id uint16
| +--rw (l2-service)?
| | +--:(l2-tunnel-service)
| | | +--rw l2-tunnel-service
| | | +--rw type? identityref
| | | +--rw pseudowire
| | | | +--rw vcid? uint32
| | | | +--rw far-end? union
| | | +--rw vpls
| | | | +--rw vcid? uint32
| | | | +--rw far-end* union
| | | +--rw vxlan
| | | +--rw vni-id uint32
| | | +--rw peer-mode? identityref
| | | +--rw peer-ip-address* inet:ip-address
| | +--:(l2vpn)
| | +--rw l2vpn-id? vpn-common:vpn-id
| +--rw l2-termination-point? string
| +--rw local-bridge-reference? string
| +--rw bearer-reference? string
| | {vpn-common:bearer-reference}?
| +--rw lag-interface {vpn-common:lag-interface}?
| +--rw lag-interface-id? string
| +--rw member-link-list
| +--rw member-link* [name]
| +--rw name string
...

 IP Connection
 This container is used to group Layer 3 connectivity information,
 particularly the IP addressing information, of a VPN network access.
 The allocated address represents the PE interface address
 configuration. Note that a distinct Layer 3 interface other than the
 interface indicated under the 'connection' container may be needed to
 terminate the Layer 3 service. The identifier of such an interface is
 included in 'l3-termination-point'. For example, this data node can
 be used to carry the identifier of a bridge domain interface.
 As shown in , the
 'ip-connection' container can include IPv4, IPv6, or both if
 dual-stack is enabled.

 IP Connection Subtree Structure
 ...
+--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw ip-connection
 | +--rw l3-termination-point? string
 | +--rw ipv4 {vpn-common:ipv4}?
 | | ...
 | +--rw ipv6 {vpn-common:ipv6}?
 | ...
 ...

 For both IPv4 and IPv6, the IP connection supports three IP
 address assignment modes for customer addresses: provider DHCP, DHCP
 relay, and static addressing. Note that for the IPv6 case, Stateless Address Autoconfiguration (SLAAC)
 can be used. For both IPv4 and IPv6,
 'address-allocation-type' is used to indicate the IP address
 allocation mode to activate for a given VPN network access.
 When 'address-allocation-type' is set to 'provider-dhcp', DHCP
 assignments can be made locally or by an external DHCP server. Such
 behavior is controlled by setting 'dhcp-service-type'.
 shows the structure of the
 dynamic IPv4 address assignment (i.e., by means of DHCP).

 IP Connection Subtree Structure (IPv4)
 ...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw local-address? inet:ipv4-address
| | +--rw prefix-length? uint8
| | +--rw address-allocation-type? identityref
| | +--rw (allocation-type)?
| | +--:(provider-dhcp)
| | | +--rw dhcp-service-type? enumeration
| | | +--rw (service-type)?
| | | +--:(relay)
| | | | +--rw server-ip-address*
| | | | inet:ipv4-address
| | | +--:(server)
| | | +--rw (address-assign)?
| | | +--:(number)
| | | | +--rw number-of-dynamic-address?
| | | | uint16
| | | +--:(explicit)
| | | +--rw customer-addresses
| | | +--rw address-pool* [pool-id]
| | | +--rw pool-id string
| | | +--rw start-address
| | | | inet:ipv4-address
| | | +--rw end-address?
| | | inet:ipv4-address
| | +--:(dhcp-relay)
| | | +--rw customer-dhcp-servers
| | | +--rw server-ip-address* inet:ipv4-address
| | +--:(static-addresses)
| | ...
...

 shows the structure of the
 dynamic IPv6 address assignment (i.e., DHCPv6 and/or SLAAC). Note
 that if 'address-allocation-type' is set to 'slaac', the Prefix
 Information option of Router Advertisements that will be issued for
 SLAAC purposes will carry the IPv6 prefix that is determined by
 'local-address' and 'prefix-length'. For example, if 'local-address'
 is set to '2001:db8:0:1::1' and 'prefix-length' is set to '64', the
 IPv6 prefix that will be used is '2001:db8:0:1::/64'.

 IP Connection Subtree Structure (IPv6)
 ...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | ...
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw local-address? inet:ipv6-address
| +--rw prefix-length? uint8
| +--rw address-allocation-type? identityref
| +--rw (allocation-type)?
| +--:(provider-dhcp)
| | +--rw provider-dhcp
| | +--rw dhcp-service-type?
| | | enumeration
| | +--rw (service-type)?
| | +--:(relay)
| | | +--rw server-ip-address*
| | | inet:ipv6-address
| | +--:(server)
| | +--rw (address-assign)?
| | +--:(number)
| | | +--rw number-of-dynamic-address?
| | | uint16
| | +--:(explicit)
| | +--rw customer-addresses
| | +--rw address-pool* [pool-id]
| | +--rw pool-id string
| | +--rw start-address
| | | inet:ipv6-address
| | +--rw end-address?
| | inet:ipv6-address
| +--:(dhcp-relay)
| | +--rw customer-dhcp-servers
| | +--rw server-ip-address*
| | inet:ipv6-address
| +--:(static-addresses)
| ...

 In the case of static addressing (), the model supports the
 assignment of several IP addresses in the same 'vpn-network-access'.
 To identify which of the addresses is the primary address of a
 connection, the 'primary-address' reference MUST be set with the
 corresponding 'address-id'.

 IP Connection Subtree Structure (Static Mode)
 ...
+--rw ip-connection
| +--rw l3-termination-point? string
| +--rw ipv4 {vpn-common:ipv4}?
| | +--rw address-allocation-type? identityref
| | +--rw (allocation-type)?
| | ...
| | +--:(static-addresses)
| | +--rw primary-address? -> ../address/address-id
| | +--rw address* [address-id]
| | +--rw address-id string
| | +--rw customer-address? inet:ipv4-address
| +--rw ipv6 {vpn-common:ipv6}?
| +--rw address-allocation-type? identityref
| +--rw (allocation-type)?
| ...
| +--:(static-addresses)
| +--rw primary-address? -> ../address/address-id
| +--rw address* [address-id]
| +--rw address-id string
| +--rw customer-address? inet:ipv6-address
...

 CE-PE Routing Protocols
 A VPN service provider can configure one or more routing
 protocols associated with a particular 'vpn-network-access'. Such
 routing protocols are enabled between the PE and the CE. Each
 instance is uniquely identified to accommodate scenarios where
 multiple instances of the same routing protocol have to be
 configured on the same link.
 The subtree of the 'routing-protocols' is shown in .

 Routing Subtree Structure
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw routing-protocols
 | +--rw routing-protocol* [id]
 | +--rw id string
 | +--rw type? identityref
 | +--rw routing-profiles* [id]
 | | +--rw id leafref
 | | +--rw type? identityref
 | +--rw static
 | | ...
 | +--rw bgp
 | | ...
 | +--rw ospf
 | | ...
 | +--rw isis
 | | ...
 | +--rw rip
 | | ...
 | +--rw vrrp
 | ...
 +--rw security
 ...

 Multiple routing instances can be defined, each uniquely
 identified by an 'id'. The type of routing instance is indicated in
 'type'. The values of these attributes are those defined in (the 'routing-protocol-type'
 identity).
 Configuring multiple instances of the same routing protocol does
 not automatically imply that, from a device configuration
 perspective, there will be parallel instances (e.g., multiple
 processes) running on the PE-CE link. It is up to each
 implementation (typically, network orchestration, as shown in) to decide on the appropriate
 configuration as a function of underlying capabilities and service
 provider operational guidelines. As an example, when multiple BGP
 peers need to be implemented, multiple instances of BGP must be
 configured as part of this model. However, from a device
 configuration point of view, this could be implemented as:

 Multiple BGP processes with a single neighbor running in each
 process.
 A single BGP process with multiple neighbors running.
 A combination thereof.

 Routing configuration does not include low-level policies. Such
 policies are handled at the device configuration level. Local
 policies of a service provider (e.g., filtering) are implemented as
 part of the device configuration; these are not captured in the
 L3NM, but the model allows local profiles to be associated with
 routing instances ('routing-profiles'). Note that these routing
 profiles can be scoped to capture parameters that are globally
 applied to all L3VPN services within a service provider network,
 while customized L3VPN parameters are captured by means of the L3NM.
 The provisioning of an L3VPN service will thus rely upon the
 instantiation of these global routing profiles and the customized
 L3NM.

 Static Routing
 The L3NM supports the configuration of one or more IPv4/IPv6
 static routes. Since the same structure is used for both IPv4 and
 IPv6, using one single container to group both
 static entries independently of their address family was considered at one time, but that
 design was abandoned to ease the mapping, using the structure provided in
 .
 The static routing subtree structure is shown in .

 Static Routing Subtree Structure
 ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw static
| | +--rw cascaded-lan-prefixes
| | +--rw ipv4-lan-prefixes*
| | | [lan next-hop]
| | | {vpn-common:ipv4}?
| | | +--rw lan inet:ipv4-prefix
| | | +--rw lan-tag? string
| | | +--rw next-hop union
| | | +--rw bfd-enable? boolean
| | | +--rw metric? uint32
| | | +--rw preference? uint32
| | | +--rw status
| | | +--rw admin-status
| | | | +--rw status? identityref
| | | | +--rw last-change? yang:date-and-time
| | | +--ro oper-status
| | | +--ro status? identityref
| | | +--ro last-change? yang:date-and-time
| | +--rw ipv6-lan-prefixes*
| | [lan next-hop]
| | {vpn-common:ipv6}?
| | +--rw lan inet:ipv6-prefix
| | +--rw lan-tag? string
| | +--rw next-hop union
| | +--rw bfd-enable? boolean
| | +--rw metric? uint32
| | +--rw preference? uint32
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

 As depicted in , the
 following data nodes can be defined for a given IP prefix:

 'lan-tag':
 Indicates a local tag (e.g.,
 "myfavorite-lan") that is used to enforce local policies.
 'next-hop':
 Indicates the next hop to be used
 for the static route. It can be identified by an IP address,
 a predefined next-hop type (e.g., 'discard' or 'local-link'), etc.
 'bfd-enable':
 Indicates whether BFD is enabled
 or disabled for this static route entry.
 'metric':
 Indicates the metric associated with
 the static route entry. This metric is used when the route is exported
 into an IGP.
 'preference':
 Indicates the preference
 associated with the static route entry. This preference is
 used to select a preferred route among routes to the same
 destination prefix.
 'status':
 Used to convey the status of a static
 route entry. This data node can also be used to control the
 (de)activation of individual static route entries.

 BGP
 The L3NM allows the configuration of a BGP neighbor, including
 a set of parameters that are pertinent to be tweaked at the
 network level for service customization purposes. The 'bgp' container does not aim to include every
 BGP parameter; a comprehensive set of parameters belongs more to
 the BGP device model.
 The BGP routing subtree structure is shown in .

 BGP Routing Subtree Structure
 ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw bgp
| | +--rw description? string
| | +--rw local-as? inet:as-number
| | +--rw peer-as inet:as-number
| | +--rw address-family? identityref
| | +--rw local-address? union
| | +--rw neighbor* inet:ip-address
| | +--rw multihop? uint8
| | +--rw as-override? boolean
| | +--rw allow-own-as? uint8
| | +--rw prepend-global-as? boolean
| | +--rw send-default-route? boolean
| | +--rw site-of-origin? rt-types:route-origin
| | +--rw ipv6-site-of-origin? rt-types:ipv6-route-origin
| | +--rw redistribute-connected* [address-family]
| | | +--rw address-family identityref
| | | +--rw enable? boolean
| | +--rw bgp-max-prefix
| | | +--rw max-prefix? uint32
| | | +--rw warning-threshold? decimal64
| | | +--rw violate-action? enumeration
| | | +--rw restart-timer? uint32
| | +--rw bgp-timers
| | | +--rw keepalive? uint16
| | | +--rw hold-time? uint16
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(ao)
| | | | +--rw enable-ao? boolean
| | | | +--rw ao-keychain? key-chain:key-chain-ref
| | | +--:(md5)
| | | | +--rw md5-keychain? key-chain:key-chain-ref
| | | +--:(explicit)
| | | | +--rw key-id? uint32
| | | | +--rw key? string
| | | | +--rw crypto-algorithm? identityref
| | | +--:(ipsec)
| | | +--rw sa? string
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

 The following data nodes are captured in . It is up to the implementation
 (e.g., network orchestrator) to derive the corresponding BGP
 device configuration:

 'description':
 Includes a description of the BGP
 session.
 'local-as':
 Indicates a local AS Number (ASN), if
 a distinct ASN is required other than the ASN configured at
 the VPN node level.
 'peer-as':
 Conveys the customer's ASN.
 'address-family':

 Indicates the address family
 of the peer. It can be set to 'ipv4', 'ipv6', or 'dual-stack'.

 This address family will be used
 together with the 'vpn-type' to derive the appropriate Address
 Family Identifiers (AFIs) / Subsequent Address Family
 Identifiers (SAFIs) that will be part of the derived device
 configurations (e.g., unicast IPv4 MPLS L3VPN (AFI,SAFI =
 1,128) as defined in).

 'local-address':
 Specifies an address or a
 reference to an interface to use when establishing the BGP
 transport session.
 'neighbor':
 Can indicate two neighbors (each for
 a given address family) or one neighbor (if the 'address-family'
 attribute is set to 'dual-stack'). A list of IP address(es) of
 the BGP neighbor(s) can then be conveyed in this data node.
 'multihop':
 Indicates the number of allowed IP
 hops between a PE and its BGP peer.
 'as-override':
 If set, this parameter indicates
 whether ASN override is enabled, i.e., replacing the ASN of the
 customer specified in the AS_PATH BGP attribute with the ASN
 identified in the 'local-as' attribute.
 'allow-own-as':
 Used in some topologies
 (e.g., hub-and-spoke) to allow the provider's ASN to be
 included in the AS_PATH BGP attribute received from a CE.
 Loops are prevented by setting 'allow-own-as' to a maximum
 number of the provider's ASN occurrences. By default, this parameter is set to '0' (that is, reject any AS_PATH attribute that
 includes the provider's ASN).
 'prepend-global-as':
 When distinct ASNs are
 configured at the VPN node and network access levels, this
 parameter controls whether the ASN provided at the VPN node
 level is prepended to the AS_PATH attribute.
 'send-default-route':
 Controls whether default
 routes can be advertised to the peer.
 'site-of-origin':
 Meant to uniquely identify
 the set of routes learned from a site via a particular CE-PE
 connection. It is used to prevent routing loops (). The Site of Origin attribute
 is encoded as a Route Origin Extended Community.
 'ipv6-site-of-origin':
 Carries an IPv6 Address
 Specific BGP Extended Community that is used to indicate the
 Site of Origin for VRF information . It is used to prevent routing
 loops.
 'redistribute-connected':
 Controls whether the
 PE-CE link is advertised to other PEs.
 'bgp-max-prefix':

 Controls the behavior when a
 prefix maximum is reached.

 'max-prefix':
 Indicates the maximum number
 of BGP prefixes allowed in the BGP session. If the limit
 is reached, the action indicated in 'violate-action' will
 be followed.
 'warning-threshold':
 A warning notification
 is triggered when this limit is reached.
 'violate-action':
 Indicates which action to
 execute when the maximum number of BGP prefixes is
 reached. Examples of such actions include sending a warning
 message, discarding extra paths from the peer, or restarting the
 session.
 'restart-timer':
 Indicates, in seconds, the
 time interval after which the BGP session will be
 reestablished.

 'bgp-timers':
 Two timers can be captured in
 this container: (1) 'hold-time', which is the time interval
 that will be used for the Hold Timer () when establishing a BGP session and (2)
 'keepalive', which is the time interval for the KeepaliveTimer
 between a PE and a BGP peer (). Both timers are expressed in seconds.
 'authentication':

 The module adheres to the
 recommendations in , as it allows enabling the TCP Authentication Option (TCP-AO) and accommodates the installed base
 that makes use of MD5. In addition, the module includes a
 provision for using IPsec.
 This
 version of the L3NM assumes that parameters specific to the TCP-AO are preconfigured as part of the key chain that is referenced
 in the L3NM. No assumption is made about how such a key chain
 is preconfigured. However, the structure of the key chain
 should cover data nodes beyond those in , mainly SendID and RecvID ().

 'status':
 Indicates the status of the BGP
 routing instance.

 OSPF
 OSPF can be configured to run as a routing protocol on the
 'vpn-network-access'.
 The OSPF routing subtree structure is shown in .

 OSPF Routing Subtree Structure
 ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw ospf
| | +--rw address-family? identityref
| | +--rw area-id yang:dotted-quad
| | +--rw metric? uint16
| | +--rw sham-links {vpn-common:rtg-ospf-sham-link}?
| | | +--rw sham-link* [target-site]
| | | +--rw target-site string
| | | +--rw metric? uint16
| | +--rw max-lsa? uint32
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | | +--rw key-id? uint32
| | | | +--rw key? string
| | | | +--rw crypto-algorithm?
| | | | identityref
| | | +--:(ipsec)
| | | +--rw sa? string
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

 The following data nodes are captured in :

 'address-family':

 Indicates whether IPv4, IPv6,
 or both address families are to be activated.
 When the IPv4 or dual-stack address family is
 requested, it is up to the implementation (e.g., network
 orchestrator) to decide whether OSPFv2 or OSPFv3 is used to announce IPv4 routes. Such a
 decision will typically be reflected in the device
 configurations that will be derived to implement the
 L3VPN.

 'area-id':
 Indicates the OSPF Area ID.
 'metric':
 Associates a metric with OSPF
 routes.
 'sham-links':
 Used to create OSPF sham links
 between two VPN network accesses sharing the same area and
 having a backdoor link (and).
 'max-lsa':
 Sets the maximum number of Link State Advertisements (LSAs) that
 the OSPF instance will accept.
 'authentication':
 Controls the authentication
 schemes to be enabled for the OSPF instance. The following
 options are supported: IPsec for OSPFv3 authentication , and the Authentication Trailer for OSPFv2

 and OSPFv3 .
 'status':
 Indicates the status of the OSPF
 routing instance.

 IS-IS
 The model allows the user
 to configure IS-IS to run on
 the 'vpn-network-access' interface. See .

 IS-IS Routing Subtree Structure
 ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw isis
| | +--rw address-family? identityref
| | +--rw area-address area-address
| | +--rw level? identityref
| | +--rw metric? uint16
| | +--rw mode? enumeration
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key-id? uint32
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

 The following IS-IS data nodes are supported:

 'address-family':
 Indicates whether IPv4, IPv6,
 or both address families are to be activated.
 'area-address':
 Indicates the IS-IS area
 address.
 'level':
 Indicates the IS-IS level: Level 1,
 Level 2, or both.
 'metric':
 Associates a metric with IS-IS
 routes.
 'mode':
 Indicates the IS-IS interface mode type.
 It can be set to 'active' (that is, send or receive IS-IS
 protocol control packets) or 'passive' (that is, suppress the
 sending of IS-IS updates through the interface).
 'authentication':
 Controls the authentication
 schemes to be enabled for the IS-IS instance. Both the
 specification of a key chain
 and the direct specification of key and authentication
 algorithms are supported.
 'status':
 Indicates the status of the IS-IS
 routing instance.

 RIP
 The model allows the user to
 configure RIP to run on the 'vpn-network-access' interface. See
 .

 RIP Subtree Structure
 ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw rip
| | +--rw address-family? identityref
| | +--rw timers
| | | +--rw update-interval? uint16
| | | +--rw invalid-interval? uint16
| | | +--rw holddown-interval? uint16
| | | +--rw flush-interval? uint16
| | +--rw default-metric? uint8
| | +--rw authentication
| | | +--rw enable? boolean
| | | +--rw keying-material
| | | +--rw (option)?
| | | +--:(auth-key-chain)
| | | | +--rw key-chain?
| | | | key-chain:key-chain-ref
| | | +--:(auth-key-explicit)
| | | +--rw key? string
| | | +--rw crypto-algorithm? identityref
| | +--rw status
| | +--rw admin-status
| | | +--rw status? identityref
| | | +--rw last-change? yang:date-and-time
| | +--ro oper-status
| | +--ro status? identityref
| | +--ro last-change? yang:date-and-time
...

 As shown in , the following RIP data
 nodes are supported:

 'address-family':
 Indicates whether IPv4, IPv6,
 or both address families are to be activated. This parameter
 is used to determine whether RIPv2 , RIP Next Generation (RIPng), or both are to be enabled .
 'timers':

 Indicates the following timers:

 'update-interval':
 The interval at which
 RIP updates are sent.
 'invalid-interval':
 The interval before a
 RIP route is declared invalid.
 'holddown-interval':
 The interval before
 better RIP routes are released.
 'flush-interval':
 The interval before a
 route is removed from the routing table.

 These timers are expressed in seconds.

 'default-metric':
 Sets the default RIP
 metric.
 'authentication':
 Controls the authentication
 schemes to be enabled for the RIP instance.
 'status':
 Indicates the status of the RIP
 routing instance.

 VRRP
 The model allows enabling the Virtual Router Redundancy Protocol (VRRP) on
 the 'vpn-network-access' interface. See .

 VRRP Subtree Structure
 ...
+--rw routing-protocols
| +--rw routing-protocol* [id]
| ...
| +--rw vrrp
| +--rw address-family* identityref
| +--rw vrrp-group? uint8
| +--rw backup-peer? inet:ip-address
| +--rw virtual-ip-address* inet:ip-address
| +--rw priority? uint8
| +--rw ping-reply? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
...

 The following data nodes are supported:

 'address-family':
 Indicates whether IPv4, IPv6,
 or both address families are to be activated. Note that VRRP
 version 3 supports both IPv4
 and IPv6.
 'vrrp-group':
 Used to identify the VRRP
 group.
 'backup-peer':
 Carries the IP address of the
 peer.
 'virtual-ip-address':
 Includes virtual IP
 addresses for a single VRRP group.
 'priority':
 Assigns the VRRP election priority
 for the backup virtual router.
 'ping-reply':
 Controls whether the VRRP speaker should
 reply to ping requests.
 'status':
 Indicates the status of the VRRP
 instance.

 Note that no authentication data node is included for
 VRRP, as there isn't any type of VRRP authentication at this time (see
).

 OAM
 This container () defines the
 Operations, Administration, and Maintenance (OAM) mechanisms used
 for a VPN network access. In the current version of the L3NM, only
 BFD is supported.

 IP Connection Subtree Structure (OAM)
 ...
+--rw oam
| +--rw bfd {vpn-common:bfd}?
| +--rw session-type? identityref
| +--rw desired-min-tx-interval? uint32
| +--rw required-min-rx-interval? uint32
| +--rw local-multiplier? uint8
| +--rw holdtime? uint32
| +--rw profile? leafref
| +--rw authentication!
| | +--rw key-chain? key-chain:key-chain-ref
| | +--rw meticulous? boolean
| +--rw status
| +--rw admin-status
| | +--rw status? identityref
| | +--rw last-change? yang:date-and-time
| +--ro oper-status
| +--ro status? identityref
| +--ro last-change? yang:date-and-time
...

 The following OAM data nodes can be specified:

 'session-type':
 Indicates which BFD flavor is used
 to set up the session (e.g., classic BFD , Seamless BFD). By default, it is assumed that the BFD session will
 follow the behavior specified in .
 'desired-min-tx-interval':
 The minimum
 interval, in microseconds, that a PE would like to use when
 transmitting BFD Control packets, less any jitter applied.
 'required-min-rx-interval':
 The minimum
 interval, in microseconds, between received BFD Control packets
 that a PE is capable of supporting, less any jitter applied by
 the sender.
 'local-multiplier':
 The negotiated transmit
 interval, multiplied by this value, provides the detection time
 for the peer.
 'holdtime':
 Used to indicate the expected BFD
 holddown time, in milliseconds. This value may be inherited from
 the service request (see).
 'profile':
 Refers to a BFD profile (). Such a profile can be set by the
 provider or inherited from the service request (see).
 'authentication':
 Includes the required
 information to enable the BFD authentication modes discussed in
 . In particular,
 'meticulous' controls the activation of meticulous mode as
 discussed in Sections and of .
 'status':
 Indicates the status of BFD.

 Security
 The 'security' container specifies the authentication and the
 encryption to be applied to traffic for a given VPN network access. As
 depicted in the subtree shown in ,
 the L3NM can be used to directly control the encryption to be
 applied (e.g., Layer 2 or Layer 3 encryption) or invoke a local
 encryption profile.

 Security Subtree Structure
 ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw security
 | +--rw encryption {vpn-common:encryption}?
 | | +--rw enabled? boolean
 | | +--rw layer? enumeration
 | +--rw encryption-profile
 | +--rw (profile)?
 | +--:(provider-profile)
 | | +--rw profile-name? leafref
 | +--:(customer-profile)
 | +--rw customer-key-chain?
 | key-chain:key-chain-ref
 +--rw service
 ...

 Services

 Overview
 The 'service' container specifies the service parameters to
 apply for a given VPN network access ().

 Services Subtree Structure
 ...
+--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw service
 +--rw pe-to-ce-bandwidth? uint64 {vpn-common:inbound-bw}?
 +--rw ce-to-pe-bandwidth? uint64 {vpn-common:outbound-bw}?
 +--rw mtu? uint32
 +--rw qos {vpn-common:qos}?
 | ...
 +--rw carriers-carrier
 | {vpn-common:carriers-carrier}?
 | +--rw signaling-type? enumeration
 +--rw ntp
 | +--rw broadcast? enumeration
 | +--rw auth-profile
 | | +--rw profile-id? string
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw multicast {vpn-common:multicast}?
 ...

 The following data nodes are defined:

 'pe-to-ce-bandwidth':
 Indicates, in bits per
 second (bps), the inbound bandwidth of the connection (i.e., the
 download bandwidth from the service provider to the site).
 'ce-to-pe-bandwidth':
 Indicates, in bps, the
 outbound bandwidth of the connection (i.e., the upload bandwidth
 from the site to the service provider).
 'mtu':
 Indicates the MTU at the service
 level.
 'qos':
 Used to define a set of QoS policies
 to apply on a given connection (refer to for more details).
 'carriers-carrier':
 Groups a set of parameters
 that are used when Carriers' Carriers (CsC) is enabled, such as
 using BGP for signaling purposes .
 'ntp':
 Time synchronization may be needed in
 some VPNs, such as infrastructure and management VPNs. This
 container is used to enable the NTP service .
 'multicast':
 Specifies the multicast mode and
 other data nodes, such as the address family. Refer to .

 QoS
 The 'qos' container is used to define a set of QoS policies to
 apply on a given connection (). A
 QoS policy may be a classification or an action policy. For
 example, a QoS action can be defined to rate-limit
 inbound/outbound traffic of a given class of service.

 Overall QoS Subtree Structure
 ...
+--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | +--:(ipv4)
| | | | | | ...
| | | | | +--:(ipv6)
| | | | | ...
| | | | +--rw (l4)?
| | | | +--:(tcp)
| | | | | ...
| | | | +--:(udp)
| | | | ...
| | | +--:(match-application)
| | | +--rw match-application?
| | | identityref
| | +--rw target-class-id? string
| +--rw qos-action
| | +--rw rule* [id]
| | +--rw id string
| | +--rw target-class-id? string
| | +--rw inbound-rate-limit? decimal64
| | +--rw outbound-rate-limit? decimal64
| +--rw qos-profile
| +--rw qos-profile* [profile]
| +--rw profile leafref
| +--rw direction? identityref
...

 QoS classification can be based on many criteria, such as the following:

 Layer 3:
 As shown in , classification can be based on
 any IP header field or a combination thereof. Both IPv4 and
 IPv6 are supported.

 QoS Subtree Structure (L3)
 +--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | +--:(ipv4)
| | | | | | +--rw ipv4
| | | | | | +--rw dscp? inet:dscp
| | | | | | +--rw ecn? uint8
| | | | | | +--rw length? uint16
| | | | | | +--rw ttl? uint8
| | | | | | +--rw protocol? uint8
| | | | | | +--rw ihl? uint8
| | | | | | +--rw flags? bits
| | | | | | +--rw offset? uint16
| | | | | | +--rw identification? uint16
| | | | | | +--rw (destination-network)?
| | | | | | | +--:(destination-ipv4-network)
| | | | | | | +--rw destination-ipv4-network?
| | | | | | | inet:ipv4-prefix
| | | | | | +--rw (source-network)?
| | | | | | +--:(source-ipv4-network)
| | | | | | +--rw source-ipv4-network?
| | | | | | inet:ipv4-prefix
| | | | | +--:(ipv6)
| | | | | +--rw ipv6
| | | | | +--rw dscp? inet:dscp
| | | | | +--rw ecn? uint8
| | | | | +--rw length? uint16
| | | | | +--rw ttl? uint8
| | | | | +--rw protocol? uint8
| | | | | +--rw (destination-network)?
| | | | | | +--:(destination-ipv6-network)
| | | | | | +--rw destination-ipv6-network?
| | | | | | inet:ipv6-prefix
| | | | | +--rw (source-network)?
| | | | | | +--:(source-ipv6-network)
| | | | | | +--rw source-ipv6-network?
| | | | | | inet:ipv6-prefix
| | | | | +--rw flow-label?
| | | | | inet:ipv6-flow-label
...

 Layer 4:

 As discussed in , any Layer 4
 protocol can be indicated in the 'protocol' data node under
 'l3' (), but only TCP- and
 UDP-specific match criteria are elaborated in this version, as
 these protocols are widely used in the context of VPN
 services. Augmentations can be considered in the future to add
 other Layer-4-specific data nodes, if needed.
 TCP- or UDP-related match criteria can be
 specified in the L3NM, as shown in .
 As
 discussed in , some transport
 protocols use existing protocols (e.g., TCP or UDP) as the
 substrate. The match criteria for such protocols may rely upon
 the 'protocol' setting under 'l3', TCP/UDP match criteria as shown in
 , part of the TCP/UDP
 payload, or a combination thereof. This version of the module
 does not support such advanced match criteria. Future
 revisions of the VPN common module or augmentations to the
 L3NM may consider adding match criteria based on the transport
 protocol payload (e.g., by means of a bitmask match).

 QoS Subtree Structure (L4)
 +--rw qos {vpn-common:qos}?
| +--rw qos-classification-policy
| | +--rw rule* [id]
| | +--rw id string
| | +--rw (match-type)?
| | | +--:(match-flow)
| | | | +--rw (l3)?
| | | | | ...
| | | | +--rw (l4)?
| | | | +--:(tcp)
| | | | | +--rw tcp
| | | | | +--rw sequence-number? uint32
| | | | | +--rw acknowledgement-number? uint32
| | | | | +--rw data-offset? uint8
| | | | | +--rw reserved? uint8
| | | | | +--rw flags? bits
| | | | | +--rw window-size? uint16
| | | | | +--rw urgent-pointer? uint16
| | | | | +--rw options? binary
| | | | | +--rw (source-port)?
| | | | | | +--:(source-port-range-or-operator)
| | | | | | +--rw source-port-range-or-operator
| | | | | | +--rw (port-range-or-operator)?
| | | | | | +--:(range)
| | | | | | | +--rw lower-port
| | | | | | | | inet:port-number
| | | | | | | +--rw upper-port
| | | | | | | inet:port-number
| | | | | | +--:(operator)
| | | | | | +--rw operator? operator
| | | | | | +--rw port
| | | | | | inet:port-number
| | | | | +--rw (destination-port)?
| | | | | +--:(destination-port-range-or-operator)
| | | | | +--rw destination-port-range-or-operator
| | | | | +--rw (port-range-or-operator)?
| | | | | +--:(range)
| | | | | | +--rw lower-port
| | | | | | | inet:port-number
| | | | | | +--rw upper-port
| | | | | | inet:port-number
| | | | | +--:(operator)
| | | | | +--rw operator? operator
| | | | | +--rw port
| | | | | inet:port-number
| | | | +--:(udp)
| | | | +--rw udp
| | | | +--rw length? uint16
| | | | +--rw (source-port)?
| | | | | +--:(source-port-range-or-operator)
| | | | | +--rw source-port-range-or-operator
| | | | | +--rw (port-range-or-operator)?
| | | | | +--:(range)
| | | | | | +--rw lower-port
| | | | | | | inet:port-number
| | | | | | +--rw upper-port
| | | | | | inet:port-number
| | | | | +--:(operator)
| | | | | +--rw operator? operator
| | | | | +--rw port
| | | | | inet:port-number
| | | | +--rw (destination-port)?
| | | | +--:(destination-port-range-or-operator)
| | | | +--rw destination-port-range-or-operator
| | | | +--rw (port-range-or-operator)?
| | | | +--:(range)
| | | | | +--rw lower-port
| | | | | | inet:port-number
| | | | | +--rw upper-port
| | | | | inet:port-number
| | | | +--:(operator)
| | | | +--rw operator? operator
| | | | +--rw port
| | | | inet:port-number
...

 Application match:
 Relies upon
 application-specific classification ().

 Multicast
 Multicast may be enabled for a particular VPN at the VPN node and
 VPN network access levels (see).
 Some data nodes (e.g., max-groups ()) can be controlled at various
 levels: VPN service, VPN node level, or VPN network access.

 Overall Multicast Subtree Structure
 ...
 +--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 |
 | +--rw multicast {vpn-common:multicast}?
 | ...
 +--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw active-vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | ...
 | +--rw multicast {vpn-common:multicast}?
 | ...
 +--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw service
 ...
 +--rw multicast {vpn-common:multicast}?
 ...

 Multicast-related data nodes at the VPN instance profile level have
 the structure shown in .

 Multicast Subtree Structure (VPN Instance Profile Level)
 ...
+--rw vpn-services
 +--rw vpn-service* [vpn-id]
 ...
 +--rw vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 |
 | +--rw multicast {vpn-common:multicast}?
 | +--rw tree-flavor? identityref
 | +--rw rp
 | | +--rw rp-group-mappings
 | | | +--rw rp-group-mapping* [id]
 | | | +--rw id uint16
 | | | +--rw provider-managed
 | | | | +--rw enabled? boolean
 | | | | +--rw rp-redundancy? boolean
 | | | | +--rw optimal-traffic-delivery? boolean
 | | | | +--rw anycast
 | | | | +--rw local-address? inet:ip-address
 | | | | +--rw rp-set-address* inet:ip-address
 | | | +--rw rp-address inet:ip-address
 | | | +--rw groups
 | | | +--rw group* [id]
 | | | +--rw id uint16
 | | | +--rw (group-format)
 | | | +--:(group-prefix)
 | | | | +--rw group-address?
 | | | | inet:ip-prefix
 | | | +--:(startend)
 | | | +--rw group-start?
 | | | | inet:ip-address
 | | | +--rw group-end?
 | | | | inet:ip-address
 | | +--rw rp-discovery
 | | +--rw rp-discovery-type? identityref
 | | +--rw bsr-candidates
 | | +--rw bsr-candidate-address*
 | | | inet:ip-address
 | +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
 | | +--rw static-group* [group-addr]
 | | | +--rw group-addr
 | | | | rt-types:ipv4-multicast-group-address
 | | | +--rw source-addr?
 | | | rt-types:ipv4-multicast-source-address
 | | +--rw max-groups? uint32
 | | +--rw max-entries? uint32
 | | +--rw version? identityref
 | +--rw mld {vpn-common:mld and vpn-common:ipv6}?
 | | +--rw static-group* [group-addr]
 | | | +--rw group-addr
 | | | | rt-types:ipv6-multicast-group-address
 | | | +--rw source-addr?
 | | | rt-types:ipv6-multicast-source-address
 | | +--rw max-groups? uint32
 | | +--rw max-entries? uint32
 | | +--rw version? identityref
 | +--rw pim {vpn-common:pim}?
 | +--rw hello-interval?
 | | rt-types:timer-value-seconds16
 | +--rw dr-priority? uint32
 ...

 The model supports a single type of tree per VPN access
 ('tree-flavor'): Any-Source Multicast (ASM), Source-Specific Multicast
 (SSM), or bidirectional.
 When ASM is used, the model supports the configuration of
 Rendezvous Points (RPs). RP discovery may be 'static', 'bsr-rp', or
 'auto-rp'. When set to 'static', RP-to-multicast-group mappings
 MUST be configured as part of the 'rp-group-mappings' container. The
 RP MAY be a provider node or a customer node. When the RP is a
 customer node, the RP address must be configured using the
 'rp-address' leaf.
 The model supports RP redundancy through the 'rp-redundancy' leaf.
 How the redundancy is achieved is out of scope.
 When a particular VPN using ASM requires traffic
 delivery that is more optimal (e.g., requested per the guidance in),
 'optimal-traffic-delivery' can be set. When set to 'true', the
 implementation must use any mechanism to provide
 traffic delivery that is more optimal for the customer. For example, anycast is one of the
 mechanisms for enhancing RP redundancy, providing resilience against failures, and
 recovering from failures quickly.

 When configuring multicast-related parameters at the VPN node level
 (), the same structure as the structure depicted in
 is used. When defined at the VPN node level, Internet Group Management Protocol (IGMP) parameters , Multicast
 Listener Discovery (MLD) parameters , and Protocol Independent Multicast (PIM) parameters are applicable to all VPN
 network accesses of that VPN node unless corresponding nodes are
 overridden at the VPN network access level.

 Multicast Subtree Structure (VPN Node Level)
 ...
+--rw vpn-nodes
 +--rw vpn-node* [vpn-node-id]
 ...
 +--rw active-vpn-instance-profiles
 | +--rw vpn-instance-profile* [profile-id]
 | ...
 | +--rw multicast {vpn-common:multicast}?
 | +--rw tree-flavor* identityref
 | +--rw rp
 | | ...
 | +--rw igmp {vpn-common:igmp and vpn-common:ipv4}?
 | | ...
 | +--rw mld {vpn-common:mld and vpn-common:ipv6}?
 | | ...
 | +--rw pim {vpn-common:pim}?
 | ...

 Multicast-related data nodes at the VPN network access level are
 shown in . The values configured
 at the VPN network access level override the values configured for the
 corresponding data nodes at other levels.

 Multicast Subtree Structure (VPN Network Access Level)
 ...
+--rw vpn-network-accesses
 +--rw vpn-network-access* [id]
 ...
 +--rw service
 ...
 +--rw multicast {vpn-common:multicast}?
 +--rw access-type? enumeration
 +--rw address-family? identityref
 +--rw protocol-type? enumeration
 +--rw remote-source? boolean
 +--rw igmp {vpn-common:igmp}?
 | +--rw static-group* [group-addr]
 | | +--rw group-addr
 | | rt-types:ipv4-multicast-group-address
 | | +--rw source-addr?
 | | rt-types:ipv4-multicast-source-address
 | +--rw max-groups? uint32
 | +--rw max-entries? uint32
 | +--rw max-group-sources? uint32
 | +--rw version? identityref
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw mld {vpn-common:mld}?
 | +--rw static-group* [group-addr]
 | | +--rw group-addr
 | | rt-types:ipv6-multicast-group-address
 | | +--rw source-addr?
 | | rt-types:ipv6-multicast-source-address
 | +--rw max-groups? uint32
 | +--rw max-entries? uint32
 | +--rw max-group-sources? uint32
 | +--rw version? identityref
 | +--rw status
 | +--rw admin-status
 | | +--rw status? identityref
 | | +--rw last-change? yang:date-and-time
 | +--ro oper-status
 | +--ro status? identityref
 | +--ro last-change? yang:date-and-time
 +--rw pim {vpn-common:pim}?
 +--rw hello-interval? rt-types:timer-value-seconds16
 +--rw dr-priority? uint32
 +--rw status
 +--rw admin-status
 | +--rw status? identityref
 | +--rw last-change? yang:date-and-time
 +--ro oper-status
 +--ro status? identityref
 +--ro last-change? yang:date-and-time

 L3NM YANG Module
 This module uses types defined in ,
 , and . It also uses groupings defined in , , and .

module ietf-l3vpn-ntw {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw";
 prefix l3nm;

 import ietf-vpn-common {
 prefix vpn-common;
 reference
 "RFC 9181: A Common YANG Data Model for Layer 2 and Layer 3
 VPNs";
 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types, Section 4";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types, Section 3";
 }
 import ietf-key-chain {
 prefix key-chain;
 reference
 "RFC 8177: YANG Data Model for Key Chains";
 }
 import ietf-routing-types {
 prefix rt-types;
 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }

 organization
 "IETF OPSAWG (Operations and Management Area Working Group)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>

 Author: Samier Barguil
 <mailto:samier.barguilgiraldo.ext@telefonica.com>
 Editor: Oscar Gonzalez de Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>
 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>
 Author: Luis Angel Munoz
 <mailto:luis-angel.munoz@vodafone.com>
 Author: Alejandro Aguado
 <mailto:alejandro.aguado_martin@nokia.com>";
 description
 "This YANG module defines a generic network-oriented model
 for the configuration of Layer 3 Virtual Private Networks.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9182; see the
 RFC itself for full legal notices.";

 revision 2022-02-14 {
 description
 "Initial revision.";
 reference
 "RFC 9182: A YANG Network Data Model for Layer 3 VPNs";
 }

 /* Features */

 feature msdp {
 description
 "This feature indicates that Multicast Source Discovery
 Protocol (MSDP) capabilities are supported by the VPN.";
 reference
 "RFC 3618: Multicast Source Discovery Protocol (MSDP)";
 }

 /* Identities */

 identity address-allocation-type {
 description
 "Base identity for address allocation type in the
 Provider Edge to Customer Edge (PE-CE) link.";
 }

 identity provider-dhcp {
 base address-allocation-type;
 description
 "The provider's network provides a DHCP service to the
 customer.";
 }

 identity provider-dhcp-relay {
 base address-allocation-type;
 description
 "The provider's network provides a DHCP relay service to the
 customer.";
 }

 identity provider-dhcp-slaac {
 if-feature "vpn-common:ipv6";
 base address-allocation-type;
 description
 "The provider's network provides a DHCP service to the
 customer as well as IPv6 Stateless Address
 Autoconfiguration (SLAAC).";
 reference
 "RFC 4862: IPv6 Stateless Address Autoconfiguration";
 }

 identity static-address {
 base address-allocation-type;
 description
 "The provider's network provides static IP addressing to the
 customer.";
 }

 identity slaac {
 if-feature "vpn-common:ipv6";
 base address-allocation-type;
 description
 "The provider's network uses IPv6 SLAAC to provide
 addressing to the customer.";
 reference
 "RFC 4862: IPv6 Stateless Address Autoconfiguration";
 }

 identity local-defined-next-hop {
 description
 "Base identity of local defined next hops.";
 }

 identity discard {
 base local-defined-next-hop;
 description
 "Indicates an action to discard traffic for the
 corresponding destination.
 For example, this can be used to black-hole traffic.";
 }

 identity local-link {
 base local-defined-next-hop;
 description
 "Treat traffic towards addresses within the specified
 next-hop prefix as though they are connected to a local
 link.";
 }

 identity l2-tunnel-type {
 description
 "Base identity for Layer 2 tunnel selection under the VPN
 network access.";
 }

 identity pseudowire {
 base l2-tunnel-type;
 description
 "Pseudowire tunnel termination in the VPN network access.";
 }

 identity vpls {
 base l2-tunnel-type;
 description
 "Virtual Private LAN Service (VPLS) tunnel termination in
 the VPN network access.";
 }

 identity vxlan {
 base l2-tunnel-type;
 description
 "Virtual eXtensible Local Area Network (VXLAN) tunnel
 termination in the VPN network access.";
 }

 /* Typedefs */

 typedef predefined-next-hop {
 type identityref {
 base local-defined-next-hop;
 }
 description
 "Predefined next-hop designation for locally generated
 routes.";
 }

 typedef area-address {
 type string {
 pattern '[0-9A-Fa-f]{2}(\.[0-9A-Fa-f]{4}){0,6}';
 }
 description
 "This type defines the area address format.";
 }

 /* Groupings */

 grouping vpn-instance-profile {
 description
 "Grouping for data nodes that may be factorized
 among many levels of the model. The grouping can
 be used to define generic profiles at the VPN service
 level and then referenced at the VPN node and VPN
 network access levels.";
 leaf local-as {
 if-feature "vpn-common:rtg-bgp";
 type inet:as-number;
 description
 "Provider's Autonomous System (AS) number. Used if the
 customer requests BGP routing.";
 }
 uses vpn-common:route-distinguisher;
 list address-family {
 key "address-family";
 description
 "Set of parameters per address family.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family (IPv4 and/or IPv6).";
 }
 container vpn-targets {
 description
 "Set of route targets to match for import and export
 routes to/from VRF.";
 uses vpn-common:vpn-route-targets;
 }
 list maximum-routes {
 key "protocol";
 description
 "Defines the maximum number of routes for VRF.";
 leaf protocol {
 type identityref {
 base vpn-common:routing-protocol-type;
 }
 description
 "Indicates the routing protocol. A value of 'any'
 can be used to identify a limit that will apply for
 each active routing protocol.";
 }
 leaf maximum-routes {
 type uint32;
 description
 "Indicates the maximum number of prefixes that VRF can
 accept for this address family and protocol.";
 }
 }
 }
 container multicast {
 if-feature "vpn-common:multicast";
 description
 "Global multicast parameters.";
 leaf tree-flavor {
 type identityref {
 base vpn-common:multicast-tree-type;
 }
 description
 "Type of the multicast tree to be used.";
 }
 container rp {
 description
 "Rendezvous Point (RP) parameters.";
 container rp-group-mappings {
 description
 "RP-to-group mapping parameters.";
 list rp-group-mapping {
 key "id";
 description
 "List of RP-to-group mappings.";
 leaf id {
 type uint16;
 description
 "Unique identifier for the mapping.";
 }
 container provider-managed {
 description
 "Parameters for a provider-managed RP.";
 leaf enabled {
 type boolean;
 default "false";
 description
 "Set to 'true' if the RP must be a
 provider-managed node. Set to 'false' if it is
 a customer-managed node.";
 }
 leaf rp-redundancy {
 type boolean;
 default "false";
 description
 "If set to 'true', it indicates that a
 redundancy mechanism for the RP is required.";
 }
 leaf optimal-traffic-delivery {
 type boolean;
 default "false";
 description
 "If set to 'true', the service provider (SP)
 must ensure that the traffic uses an optimal
 path. An SP may use Anycast RP or
 RP-tree-to-SPT ('SPT' is 'shortest path tree')
 switchover architectures.";
 }
 container anycast {
 when "../rp-redundancy = 'true' and
 ../optimal-traffic-delivery = 'true'" {
 description
 "Only applicable if both RP redundancy and
 delivery through an optimal path are
 activated.";
 }
 description
 "PIM Anycast-RP parameters.";
 leaf local-address {
 type inet:ip-address;
 description
 "IP local address for the PIM RP. Usually
 corresponds to the Router ID or the
 primary address.";
 }
 leaf-list rp-set-address {
 type inet:ip-address;
 description
 "Specifies the IP address of other RP routers
 that share the same RP IP address.";
 }
 }
 }
 leaf rp-address {
 when "../provider-managed/enabled = 'false'" {
 description
 "Relevant when the RP is not managed by the
 provider.";
 }
 type inet:ip-address;
 mandatory true;
 description
 "Defines the address of the RP.
 Used if the RP is managed by the customer.";
 }
 container groups {
 description
 "Multicast groups associated with the RP.";
 list group {
 key "id";
 description
 "List of multicast groups.";
 leaf id {
 type uint16;
 description
 "Identifier for the group.";
 }
 choice group-format {
 mandatory true;
 description
 "Choice for multicast group format.";
 case group-prefix {
 leaf group-address {
 type inet:ip-prefix;
 description
 "A single multicast group prefix.";
 }
 }
 case startend {
 leaf group-start {
 type inet:ip-address;
 description
 "The first multicast group address in
 the multicast group address range.";
 }
 leaf group-end {
 type inet:ip-address;
 description
 "The last multicast group address in
 the multicast group address range.";
 }
 }
 }
 }
 }
 }
 }
 container rp-discovery {
 description
 "RP discovery parameters.";
 leaf rp-discovery-type {
 type identityref {
 base vpn-common:multicast-rp-discovery-type;
 }
 default "vpn-common:static-rp";
 description
 "Type of RP discovery used.";
 }
 container bsr-candidates {
 when "derived-from-or-self(../rp-discovery-type, "
 + "'vpn-common:bsr-rp')" {
 description
 "Only applicable if the discovery type
 is 'bsr-rp'.";
 }
 description
 "Container for the customer Bootstrap Router (BSR)
 candidate's addresses.";
 leaf-list bsr-candidate-address {
 type inet:ip-address;
 description
 "Specifies the address of the candidate BSR.";
 }
 }
 }
 }
 container igmp {
 if-feature "vpn-common:igmp and vpn-common:ipv4";
 description
 "Includes IGMP-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group associated with the
 IGMP session.";
 leaf group-addr {
 type rt-types:ipv4-multicast-group-address;
 description
 "Multicast group IPv4 address.";
 }
 leaf source-addr {
 type rt-types:ipv4-multicast-source-address;
 description
 "Multicast source IPv4 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of IGMP entries.";
 }
 leaf version {
 type identityref {
 base vpn-common:igmp-version;
 }
 default "vpn-common:igmpv2";
 description
 "Indicates the IGMP version.";
 reference
 "RFC 1112: Host Extensions for IP Multicasting
 RFC 2236: Internet Group Management Protocol,
 Version 2
 RFC 3376: Internet Group Management Protocol,
 Version 3";
 }
 }
 container mld {
 if-feature "vpn-common:mld and vpn-common:ipv6";
 description
 "Includes MLD-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group associated with the
 MLD session.";
 leaf group-addr {
 type rt-types:ipv6-multicast-group-address;
 description
 "Multicast group IPv6 address.";
 }
 leaf source-addr {
 type rt-types:ipv6-multicast-source-address;
 description
 "Multicast source IPv6 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of MLD entries.";
 }
 leaf version {
 type identityref {
 base vpn-common:mld-version;
 }
 default "vpn-common:mldv2";
 description
 "Indicates the MLD protocol version.";
 reference
 "RFC 2710: Multicast Listener Discovery (MLD) for IPv6
 RFC 3810: Multicast Listener Discovery Version 2
 (MLDv2) for IPv6";
 }
 }
 container pim {
 if-feature "vpn-common:pim";
 description
 "Only applies when the protocol type is 'pim'.";
 leaf hello-interval {
 type rt-types:timer-value-seconds16;
 default "30";
 description
 "Interval between PIM Hello messages. If set to
 'infinity' or 'not-set', no periodic Hello messages
 are sent.";
 reference
 "RFC 7761: Protocol Independent Multicast - Sparse
 Mode (PIM-SM): Protocol Specification
 (Revised), Section 4.11
 RFC 8294: Common YANG Data Types for the Routing
 Area";
 }
 leaf dr-priority {
 type uint32;
 default "1";
 description
 "Indicates the preference associated with the
 Designated Router (DR) election process. A larger
 value has a higher priority over a smaller value.";
 reference
 "RFC 7761: Protocol Independent Multicast - Sparse
 Mode (PIM-SM): Protocol Specification
 (Revised), Section 4.3.2";
 }
 }
 }
 }

 /* Main Blocks */
 /* Main l3vpn-ntw */

 container l3vpn-ntw {
 description
 "Main container for management of Layer 3 Virtual Private
 Network (L3VPN) services.";
 container vpn-profiles {
 description
 "Contains a set of valid VPN profiles to reference
 in the VPN service.";
 uses vpn-common:vpn-profile-cfg;
 }
 container vpn-services {
 description
 "Container for the VPN services.";
 list vpn-service {
 key "vpn-id";
 description
 "List of VPN services.";
 uses vpn-common:vpn-description;
 leaf parent-service-id {
 type vpn-common:vpn-id;
 description
 "Pointer to the parent service, if any.
 A parent service can be an L3SM, a slice request,
 a VPN+ service, etc.";
 }
 leaf vpn-type {
 type identityref {
 base vpn-common:service-type;
 }
 description
 "Indicates the service type.";
 }
 leaf vpn-service-topology {
 type identityref {
 base vpn-common:vpn-topology;
 }
 default "vpn-common:any-to-any";
 description
 "VPN service topology.";
 }
 uses vpn-common:service-status;
 container vpn-instance-profiles {
 description
 "Container for a list of VPN instance profiles.";
 list vpn-instance-profile {
 key "profile-id";
 description
 "List of VPN instance profiles.";
 leaf profile-id {
 type string;
 description
 "VPN instance profile identifier.";
 }
 leaf role {
 type identityref {
 base vpn-common:role;
 }
 default "vpn-common:any-to-any-role";
 description
 "Role of the VPN node in the VPN.";
 }
 uses vpn-instance-profile;
 }
 }
 container underlay-transport {
 description
 "Container for the underlay transport.";
 uses vpn-common:underlay-transport;
 }
 container external-connectivity {
 if-feature "vpn-common:external-connectivity";
 description
 "Container for external connectivity.";
 choice profile {
 description
 "Choice for the external connectivity profile.";
 case profile {
 leaf profile-name {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/external-connectivity-identifier/id";
 }
 description
 "Name of the service provider's profile to be
 applied at the VPN service level.";
 }
 }
 }
 }
 container vpn-nodes {
 description
 "Container for VPN nodes.";
 list vpn-node {
 key "vpn-node-id";
 description
 "Includes a list of VPN nodes.";
 leaf vpn-node-id {
 type vpn-common:vpn-id;
 description
 "An identifier of the VPN node.";
 }
 leaf description {
 type string;
 description
 "Textual description of the VPN node.";
 }
 leaf ne-id {
 type string;
 description
 "Unique identifier of the network element where
 the VPN node is deployed.";
 }
 leaf local-as {
 if-feature "vpn-common:rtg-bgp";
 type inet:as-number;
 description
 "Provider's AS number. Used if the customer
 requests BGP routing.";
 }
 leaf router-id {
 type rt-types:router-id;
 description
 "A 32-bit number in the dotted-quad format that is
 used to uniquely identify a node within an AS.
 This identifier is used for both IPv4 and IPv6.";
 }
 container active-vpn-instance-profiles {
 description
 "Container for active VPN instance profiles.";
 list vpn-instance-profile {
 key "profile-id";
 description
 "Includes a list of active VPN instance
 profiles.";
 leaf profile-id {
 type leafref {
 path "/l3vpn-ntw/vpn-services/vpn-service"
 + "/vpn-instance-profiles"
 + "/vpn-instance-profile/profile-id";
 }
 description
 "Node's active VPN instance profile.";
 }
 list router-id {
 key "address-family";
 description
 "Router ID per address family.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family for which the
 Router ID applies.";
 }
 leaf router-id {
 type inet:ip-address;
 description
 "The 'router-id' information can be an IPv4
 or IPv6 address. This can be used,
 for example, to configure an IPv6 address
 as a Router ID when such a capability is
 supported by underlay routers. In such a
 case, the configured value overrides the
 generic value defined at the VPN node
 level.";
 }
 }
 uses vpn-instance-profile;
 }
 }
 container msdp {
 if-feature "msdp";
 description
 "Includes MSDP-related parameters.";
 leaf peer {
 type inet:ipv4-address;
 description
 "Indicates the IPv4 address of the MSDP peer.";
 }
 leaf local-address {
 type inet:ipv4-address;
 description
 "Indicates the IPv4 address of the local end.
 This local address must be configured on
 the node.";
 }
 uses vpn-common:service-status;
 }
 uses vpn-common:vpn-components-group;
 uses vpn-common:service-status;
 container vpn-network-accesses {
 description
 "List of network accesses.";
 list vpn-network-access {
 key "id";
 description
 "List of network accesses.";
 leaf id {
 type vpn-common:vpn-id;
 description
 "Identifier for the network access.";
 }
 leaf interface-id {
 type string;
 description
 "Identifier for the physical or logical
 interface.
 The identification of the sub-interface
 is provided at the connection level and/or
 the IP connection level.";
 }
 leaf description {
 type string;
 description
 "Textual description of the network access.";
 }
 leaf vpn-network-access-type {
 type identityref {
 base vpn-common:site-network-access-type;
 }
 default "vpn-common:point-to-point";
 description
 "Describes the type of connection, e.g.,
 point to point.";
 }
 leaf vpn-instance-profile {
 type leafref {
 path "/l3vpn-ntw/vpn-services/vpn-service"
 + "/vpn-nodes/vpn-node"
 + "/active-vpn-instance-profiles"
 + "/vpn-instance-profile/profile-id";
 }
 description
 "An identifier of an active VPN instance
 profile.";
 }
 uses vpn-common:service-status;
 container connection {
 description
 "Defines Layer 2 protocols and parameters that
 are required to enable connectivity between
 the PE and the CE.";
 container encapsulation {
 description
 "Container for Layer 2 encapsulation.";
 leaf type {
 type identityref {
 base vpn-common:encapsulation-type;
 }
 default "vpn-common:priority-tagged";
 description
 "Encapsulation type. By default, the type
 of the tagged interface is
 'priority-tagged'.";
 }
 container dot1q {
 when "derived-from-or-self(../type, "
 + "'vpn-common:dot1q')" {
 description
 "Only applies when the type of the
 tagged interface is 'dot1q'.";
 }
 description
 "Tagged interface.";
 leaf tag-type {
 type identityref {
 base vpn-common:tag-type;
 }
 default "vpn-common:c-vlan";
 description
 "Tag type. By default, the tag type is
 'c-vlan'.";
 }
 leaf cvlan-id {
 type uint16 {
 range "1..4094";
 }
 description
 "VLAN identifier.";
 }
 }
 container priority-tagged {
 when "derived-from-or-self(../type, "
 + "'vpn-common:priority-tagged')" {
 description
 "Only applies when the type of
 the tagged interface is
 'priority-tagged'.";
 }
 description
 "Priority tagged.";
 leaf tag-type {
 type identityref {
 base vpn-common:tag-type;
 }
 default "vpn-common:c-vlan";
 description
 "Tag type. By default, the tag type is
 'c-vlan'.";
 }
 }
 container qinq {
 when "derived-from-or-self(../type, "
 + "'vpn-common:qinq')" {
 description
 "Only applies when the type of the
 tagged interface is 'qinq'.";
 }
 description
 "Includes QinQ parameters.";
 leaf tag-type {
 type identityref {
 base vpn-common:tag-type;
 }
 default "vpn-common:s-c-vlan";
 description
 "Tag type.";
 }
 leaf svlan-id {
 type uint16;
 mandatory true;
 description
 "Service VLAN (S-VLAN) identifier.";
 }
 leaf cvlan-id {
 type uint16;
 mandatory true;
 description
 "Customer VLAN (C-VLAN) identifier.";
 }
 }
 }
 choice l2-service {
 description
 "The Layer 2 connectivity service can be
 provided by indicating a pointer to an
 L2VPN or by specifying a Layer 2 tunnel
 service.";
 container l2-tunnel-service {
 description
 "Defines a Layer 2 tunnel termination.
 It is only applicable when a tunnel is
 required. The supported values are
 'pseudowire', 'vpls', and 'vxlan'. Other
 values may be defined, if needed.";
 leaf type {
 type identityref {
 base l2-tunnel-type;
 }
 description
 "Selects the tunnel termination option
 for each VPN network access.";
 }
 container pseudowire {
 when "derived-from-or-self(../type, "
 + "'pseudowire')" {
 description
 "Only applies when the Layer 2 service
 type is 'pseudowire'.";
 }
 description
 "Includes pseudowire termination
 parameters.";
 leaf vcid {
 type uint32;
 description
 "Indicates a pseudowire (PW) or
 virtual circuit (VC) identifier.";
 }
 leaf far-end {
 type union {
 type uint32;
 type inet:ip-address;
 }
 description
 "Neighbor reference.";
 reference
 "RFC 8077: Pseudowire Setup and
 Maintenance Using the Label
 Distribution Protocol
 (LDP), Section 6.1";
 }
 }
 container vpls {
 when "derived-from-or-self(../type, "
 + "'vpls')" {
 description
 "Only applies when the Layer 2 service
 type is 'vpls'.";
 }
 description
 "VPLS termination parameters.";
 leaf vcid {
 type uint32;
 description
 "VC identifier.";
 }
 leaf-list far-end {
 type union {
 type uint32;
 type inet:ip-address;
 }
 description
 "Neighbor reference.";
 }
 }
 container vxlan {
 when "derived-from-or-self(../type, "
 + "'vxlan')" {
 description
 "Only applies when the Layer 2 service
 type is 'vxlan'.";
 }
 description
 "VXLAN termination parameters.";
 leaf vni-id {
 type uint32;
 mandatory true;
 description
 "VXLAN Network Identifier (VNI).";
 }
 leaf peer-mode {
 type identityref {
 base vpn-common:vxlan-peer-mode;
 }
 default "vpn-common:static-mode";
 description
 "Specifies the VXLAN access mode. By
 default, the peer mode is set to
 'static-mode'.";
 }
 leaf-list peer-ip-address {
 type inet:ip-address;
 description
 "List of a peer's IP addresses.";
 }
 }
 }
 case l2vpn {
 leaf l2vpn-id {
 type vpn-common:vpn-id;
 description
 "Indicates the L2VPN service associated
 with an Integrated Routing and Bridging
 (IRB) interface.";
 }
 }
 }
 leaf l2-termination-point {
 type string;
 description
 "Specifies a reference to a local Layer 2
 termination point, such as a Layer 2
 sub-interface.";
 }
 leaf local-bridge-reference {
 type string;
 description
 "Specifies a local bridge reference to
 accommodate, for example, implementations
 that require internal bridging.
 A reference may be a local bridge domain.";
 }
 leaf bearer-reference {
 if-feature "vpn-common:bearer-reference";
 type string;
 description
 "This is an internal reference for the
 service provider to identify the bearer
 associated with this VPN.";
 }
 container lag-interface {
 if-feature "vpn-common:lag-interface";
 description
 "Container for configuration of Link
 Aggregation Group (LAG) interface
 attributes.";
 leaf lag-interface-id {
 type string;
 description
 "LAG interface identifier.";
 }
 container member-link-list {
 description
 "Container for the member link list.";
 list member-link {
 key "name";
 description
 "Member link.";
 leaf name {
 type string;
 description
 "Member link name.";
 }
 }
 }
 }
 }
 container ip-connection {
 description
 "Defines IP connection parameters.";
 leaf l3-termination-point {
 type string;
 description
 "Specifies a reference to a local Layer 3
 termination point, such as a bridge domain
 interface.";
 }
 container ipv4 {
 if-feature "vpn-common:ipv4";
 description
 "IPv4-specific parameters.";
 leaf local-address {
 type inet:ipv4-address;
 description
 "The IP address used at the provider's
 interface.";
 }
 leaf prefix-length {
 type uint8 {
 range "0..32";
 }
 description
 "Subnet prefix length expressed in bits.
 It is applied to both local and customer
 addresses.";
 }
 leaf address-allocation-type {
 type identityref {
 base address-allocation-type;
 }
 must "not(derived-from-or-self(current(), "
 + "'slaac') or "
 + "derived-from-or-self(current(), "
 + "'provider-dhcp-slaac'))" {
 error-message "SLAAC is only applicable "
 + "to IPv6.";
 }
 description
 "Defines how addresses are allocated to
 the peer site.

 If there is no value for the address
 allocation type, then IPv4 addressing
 is not enabled.";
 }
 choice allocation-type {
 description
 "Choice of the IPv4 address allocation.";
 case provider-dhcp {
 description
 "Parameters related to DHCP-allocated
 addresses. IP addresses are allocated
 by DHCP, which is provided by the
 operator.";
 leaf dhcp-service-type {
 type enumeration {
 enum server {
 description
 "Local DHCP server.";
 }
 enum relay {
 description
 "Local DHCP relay. DHCP requests
 are relayed to a provider's
 server.";
 }
 }
 description
 "Indicates the type of DHCP service to
 be enabled on this access.";
 }
 choice service-type {
 description
 "Choice based on the DHCP service
 type.";
 case relay {
 description
 "Container for a list of the
 provider's DHCP servers (i.e.,
 'dhcp-service-type' is set to
 'relay').";
 leaf-list server-ip-address {
 type inet:ipv4-address;
 description
 "IPv4 addresses of the provider's
 DHCP server, for use by the local
 DHCP relay.";
 }
 }
 case server {
 description
 "A choice for how addresses are
 assigned when a local DHCP server
 is enabled.";
 choice address-assign {
 default "number";
 description
 "A choice for how IPv4 addresses
 are assigned.";
 case number {
 leaf number-of-dynamic-address {
 type uint16;
 default "1";
 description
 "Specifies the number of IP
 addresses to be assigned to
 the customer on this
 access.";
 }
 }
 case explicit {
 container customer-addresses {
 description
 "Container for customer
 addresses to be allocated
 using DHCP.";
 list address-pool {
 key "pool-id";
 description
 "Describes IP addresses to
 be allocated by DHCP.

 When only 'start-address'
 is present, it represents a
 single address.

 When both 'start-address'
 and 'end-address' are
 specified, it implies a
 range inclusive of both
 addresses.";
 leaf pool-id {
 type string;
 description
 "A pool identifier for the
 address range from
 'start-address' to
 'end-address'.";
 }
 leaf start-address {
 type inet:ipv4-address;
 mandatory true;
 description
 "Indicates the first
 address in the pool.";
 }
 leaf end-address {
 type inet:ipv4-address;
 description
 "Indicates the last
 address in the pool.";
 }
 }
 }
 }
 }
 }
 }
 }
 case dhcp-relay {
 description
 "The DHCP relay is provided by the
 operator.";
 container customer-dhcp-servers {
 description
 "Container for a list of the
 customer's DHCP servers.";
 leaf-list server-ip-address {
 type inet:ipv4-address;
 description
 "IPv4 addresses of the customer's
 DHCP server.";
 }
 }
 }
 case static-addresses {
 description
 "Lists the IPv4 addresses that are
 used.";
 leaf primary-address {
 type leafref {
 path "../address/address-id";
 }
 description
 "Primary address of the connection.";
 }
 list address {
 key "address-id";
 description
 "Lists the IPv4 addresses that are
 used.";
 leaf address-id {
 type string;
 description
 "An identifier of the static IPv4
 address.";
 }
 leaf customer-address {
 type inet:ipv4-address;
 description
 "IPv4 address of the customer
 side.";
 }
 }
 }
 }
 }
 container ipv6 {
 if-feature "vpn-common:ipv6";
 description
 "IPv6-specific parameters.";
 leaf local-address {
 type inet:ipv6-address;
 description
 "IPv6 address of the provider side.";
 }
 leaf prefix-length {
 type uint8 {
 range "0..128";
 }
 description
 "Subnet prefix length expressed in bits.
 It is applied to both local and customer
 addresses.";
 }
 leaf address-allocation-type {
 type identityref {
 base address-allocation-type;
 }
 description
 "Defines how addresses are allocated.
 If there is no value for the address
 allocation type, then IPv6 addressing is
 disabled.";
 }
 choice allocation-type {
 description
 "A choice based on the IPv6 allocation
 type.";
 container provider-dhcp {
 when "derived-from-or-self(../address-allo"
 + "cation-type, 'provider-dhcp') or "
 + "derived-from-or-self(../address-allo"
 + "cation-type, 'provider-dhcp-slaac')" {
 description
 "Only applies when addresses are
 allocated by DHCPv6 as provided by
 the operator.";
 }
 description
 "Parameters related to DHCP-allocated
 addresses.";
 leaf dhcp-service-type {
 type enumeration {
 enum server {
 description
 "Local DHCPv6 server.";
 }
 enum relay {
 description
 "DHCPv6 relay.";
 }
 }
 description
 "Indicates the type of the DHCPv6
 service to be enabled on this
 access.";
 }
 choice service-type {
 description
 "Choice based on the DHCPv6 service
 type.";
 case relay {
 leaf-list server-ip-address {
 type inet:ipv6-address;
 description
 "IPv6 addresses of the provider's
 DHCPv6 server.";
 }
 }
 case server {
 choice address-assign {
 default "number";
 description
 "Choice for how IPv6 prefixes are
 assigned by the DHCPv6 server.";
 case number {
 leaf number-of-dynamic-address {
 type uint16;
 default "1";
 description
 "Describes the number of IPv6
 prefixes that are allocated
 to the customer on this
 access.";
 }
 }
 case explicit {
 container customer-addresses {
 description
 "Container for customer IPv6
 addresses allocated by
 DHCPv6.";
 list address-pool {
 key "pool-id";
 description
 "Describes IPv6 addresses
 allocated by DHCPv6.

 When only 'start-address'
 is present, it represents a
 single address.

 When both 'start-address'
 and 'end-address' are
 specified, it implies a
 range inclusive of both
 addresses.";
 leaf pool-id {
 type string;
 description
 "A pool identifier for the
 address range from
 'start-address' to
 'end-address'.";
 }
 leaf start-address {
 type inet:ipv6-address;
 mandatory true;
 description
 "Indicates the first
 address.";
 }
 leaf end-address {
 type inet:ipv6-address;
 description
 "Indicates the last
 address.";
 }
 }
 }
 }
 }
 }
 }
 }
 case dhcp-relay {
 description
 "DHCPv6 relay provided by the
 operator.";
 container customer-dhcp-servers {
 description
 "Container for a list of the
 customer's DHCP servers.";
 leaf-list server-ip-address {
 type inet:ipv6-address;
 description
 "Contains the IP addresses of the
 customer's DHCPv6 server.";
 }
 }
 }
 case static-addresses {
 description
 "IPv6-specific parameters for static
 allocation.";
 leaf primary-address {
 type leafref {
 path "../address/address-id";
 }
 description
 "Principal address of the
 connection.";
 }
 list address {
 key "address-id";
 description
 "Describes IPv6 addresses that are
 used.";
 leaf address-id {
 type string;
 description
 "An identifier of an IPv6 address.";
 }
 leaf customer-address {
 type inet:ipv6-address;
 description
 "An IPv6 address of the customer
 side.";
 }
 }
 }
 }
 }
 }
 container routing-protocols {
 description
 "Defines routing protocols.";
 list routing-protocol {
 key "id";
 description
 "List of routing protocols used on the
 CE-PE link. This list can be augmented.";
 leaf id {
 type string;
 description
 "Unique identifier for the routing
 protocol.";
 }
 leaf type {
 type identityref {
 base vpn-common:routing-protocol-type;
 }
 description
 "Type of routing protocol.";
 }
 list routing-profiles {
 key "id";
 description
 "Routing profiles.";
 leaf id {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/routing-profile-identifier/id";
 }
 description
 "Routing profile to be used.";
 }
 leaf type {
 type identityref {
 base vpn-common:ie-type;
 }
 description
 "Import, export, or both.";
 }
 }
 container static {
 when "derived-from-or-self(../type, "
 + "'vpn-common:static-routing')" {
 description
 "Only applies when the protocol is a
 static routing protocol.";
 }
 description
 "Configuration specific to static
 routing.";
 container cascaded-lan-prefixes {
 description
 "LAN prefixes from the customer.";
 list ipv4-lan-prefixes {
 if-feature "vpn-common:ipv4";
 key "lan next-hop";
 description
 "List of LAN prefixes for the site.";
 leaf lan {
 type inet:ipv4-prefix;
 description
 "LAN prefixes.";
 }
 leaf lan-tag {
 type string;
 description
 "Internal tag to be used in VPN
 policies.";
 }
 leaf next-hop {
 type union {
 type inet:ip-address;
 type predefined-next-hop;
 }
 description
 "The next hop that is to be used
 for the static route. This may be
 specified as an IP address or a
 predefined next-hop type (e.g.,
 'discard' or 'local-link').";
 }
 leaf bfd-enable {
 if-feature "vpn-common:bfd";
 type boolean;
 description
 "Enables Bidirectional Forwarding
 Detection (BFD).";
 }
 leaf metric {
 type uint32;
 description
 "Indicates the metric associated
 with the static route.";
 }
 leaf preference {
 type uint32;
 description
 "Indicates the preference associated
 with the static route.";
 }
 uses vpn-common:service-status;
 }
 list ipv6-lan-prefixes {
 if-feature "vpn-common:ipv6";
 key "lan next-hop";
 description
 "List of LAN prefixes for the site.";
 leaf lan {
 type inet:ipv6-prefix;
 description
 "LAN prefixes.";
 }
 leaf lan-tag {
 type string;
 description
 "Internal tag to be used in VPN
 policies.";
 }
 leaf next-hop {
 type union {
 type inet:ip-address;
 type predefined-next-hop;
 }
 description
 "The next hop that is to be used for
 the static route. This may be
 specified as an IP address or a
 predefined next-hop type (e.g.,
 'discard' or 'local-link').";
 }
 leaf bfd-enable {
 if-feature "vpn-common:bfd";
 type boolean;
 description
 "Enables BFD.";
 }
 leaf metric {
 type uint32;
 description
 "Indicates the metric associated
 with the static route.";
 }
 leaf preference {
 type uint32;
 description
 "Indicates the preference associated
 with the static route.";
 }
 uses vpn-common:service-status;
 }
 }
 }
 container bgp {
 when "derived-from-or-self(../type, "
 + "'vpn-common:bgp-routing')" {
 description
 "Only applies when the protocol is
 BGP.";
 }
 description
 "Configuration specific to BGP.";
 leaf description {
 type string;
 description
 "Includes a description of the BGP
 session.

 This description is meant to be used
 for diagnostic purposes. The semantic
 of the description is local to an
 implementation.";
 }
 leaf local-as {
 type inet:as-number;
 description
 "Indicates a local AS Number (ASN), if
 an ASN distinct from the ASN configured
 at the VPN node level is needed.";
 }
 leaf peer-as {
 type inet:as-number;
 mandatory true;
 description
 "Indicates the customer's ASN when
 the customer requests BGP routing.";
 }
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "This node contains the address families
 to be activated. 'dual-stack' means
 that both IPv4 and IPv6 will be
 activated.";
 }
 leaf local-address {
 type union {
 type inet:ip-address;
 type if:interface-ref;
 }
 description
 "Sets the local IP address to use for
 the BGP transport session. This may be
 expressed as either an IP address or a
 reference to an interface.";
 }
 leaf-list neighbor {
 type inet:ip-address;
 description
 "IP address(es) of the BGP neighbor.
 IPv4 and IPv6 neighbors may be
 indicated if two sessions will be used
 for IPv4 and IPv6.";
 }
 leaf multihop {
 type uint8;
 description
 "Describes the number of IP hops allowed
 between a given BGP neighbor and
 the PE.";
 }
 leaf as-override {
 type boolean;
 default "false";
 description
 "Defines whether ASN override is
 enabled, i.e., replacing the ASN of
 the customer specified in the AS_PATH
 attribute with the local ASN.";
 }
 leaf allow-own-as {
 type uint8;
 default "0";
 description
 "If set, specifies the maximum number of
 occurrences of the provider's ASN that
 are permitted within the AS_PATH
 before it is rejected.";
 }
 leaf prepend-global-as {
 type boolean;
 default "false";
 description
 "In some situations, the ASN that is
 provided at the VPN node level may be
 distinct from the ASN configured at the
 VPN network access level. When such
 ASNs are provided, they are both
 prepended to the BGP route updates
 for this access. To disable that
 behavior, 'prepend-global-as'
 must be set to 'false'. In such a
 case, the ASN that is provided at
 the VPN node level is not prepended
 to the BGP route updates for
 this access.";
 }
 leaf send-default-route {
 type boolean;
 default "false";
 description
 "Defines whether default routes can be
 advertised to a peer. If set, the
 default routes are advertised to a
 peer.";
 }
 leaf site-of-origin {
 when "../address-family = 'vpn-common:ipv4' "
 + "or 'vpn-common:dual-stack'" {
 description
 "Only applies if IPv4 is activated.";
 }
 type rt-types:route-origin;
 description
 "The Site of Origin attribute is encoded
 as a Route Origin Extended Community.
 It is meant to uniquely identify the
 set of routes learned from a site via a
 particular CE-PE connection and is used
 to prevent routing loops.";
 reference
 "RFC 4364: BGP/MPLS IP Virtual Private
 Networks (VPNs), Section 7";
 }
 leaf ipv6-site-of-origin {
 when "../address-family = 'vpn-common:ipv6' "
 + "or 'vpn-common:dual-stack'" {
 description
 "Only applies if IPv6 is activated.";
 }
 type rt-types:ipv6-route-origin;
 description
 "The IPv6 Site of Origin attribute is
 encoded as an IPv6 Route Origin
 Extended Community. It is meant to
 uniquely identify the set of routes
 learned from a site via VRF
 information.";
 reference
 "RFC 5701: IPv6 Address Specific BGP
 Extended Community
 Attribute";
 }
 list redistribute-connected {
 key "address-family";
 description
 "Indicates, per address family, the
 policy to follow for connected
 routes.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family.";
 }
 leaf enable {
 type boolean;
 description
 "Enables the redistribution of
 connected routes.";
 }
 }
 container bgp-max-prefix {
 description
 "Controls the behavior when a prefix
 maximum is reached.";
 leaf max-prefix {
 type uint32;
 default "5000";
 description
 "Indicates the maximum number of BGP
 prefixes allowed in the BGP session.

 It allows control of how many
 prefixes can be received from a
 neighbor.

 If the limit is exceeded, the action
 indicated in 'violate-action' will be
 followed.";
 reference
 "RFC 4271: A Border Gateway Protocol 4
 (BGP-4), Section 8.2.2";
 }
 leaf warning-threshold {
 type decimal64 {
 fraction-digits 5;
 range "0..100";
 }
 units "percent";
 default "75";
 description
 "When this value is reached, a warning
 notification will be triggered.";
 }
 leaf violate-action {
 type enumeration {
 enum warning {
 description
 "Only a warning message is sent to
 the peer when the limit is
 exceeded.";
 }
 enum discard-extra-paths {
 description
 "Discards extra paths when the
 limit is exceeded.";
 }
 enum restart {
 description
 "The BGP session restarts after
 the indicated time interval.";
 }
 }
 description
 "If the BGP neighbor 'max-prefix'
 limit is reached, the action
 indicated in 'violate-action'
 will be followed.";
 }
 leaf restart-timer {
 type uint32;
 units "seconds";
 description
 "Time interval after which the BGP
 session will be reestablished.";
 }
 }
 container bgp-timers {
 description
 "Includes two BGP timers that can be
 customized when building a VPN service
 with BGP used as the CE-PE routing
 protocol.";
 leaf keepalive {
 type uint16 {
 range "0..21845";
 }
 units "seconds";
 default "30";
 description
 "This timer indicates the KEEPALIVE
 messages' frequency between a PE
 and a BGP peer.

 If set to '0', it indicates that
 KEEPALIVE messages are disabled.

 It is suggested that the maximum
 time between KEEPALIVE messages be
 one-third of the Hold Time
 interval.";
 reference
 "RFC 4271: A Border Gateway Protocol 4
 (BGP-4), Section 4.4";
 }
 leaf hold-time {
 type uint16 {
 range "0 | 3..65535";
 }
 units "seconds";
 default "90";
 description
 "Indicates the maximum number of
 seconds that may elapse between the
 receipt of successive KEEPALIVE
 and/or UPDATE messages from the peer.

 The Hold Time must be either zero or
 at least three seconds.";
 reference
 "RFC 4271: A Border Gateway Protocol 4
 (BGP-4), Section 4.2";
 }
 }
 container authentication {
 description
 "Container for BGP authentication
 parameters between a PE and a CE.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how a BGP
 routing session is to be secured
 between a PE and a CE.";
 choice option {
 description
 "Choice of authentication options.";
 case ao {
 description
 "Uses the TCP Authentication
 Option (TCP-AO).";
 reference
 "RFC 5925: The TCP Authentication
 Option";
 leaf enable-ao {
 type boolean;
 description
 "Enables the TCP-AO.";
 }
 leaf ao-keychain {
 type key-chain:key-chain-ref;
 description
 "Reference to the TCP-AO key
 chain.";
 reference
 "RFC 8177: YANG Data Model for
 Key Chains";
 }
 }
 case md5 {
 description
 "Uses MD5 to secure the session.";
 reference
 "RFC 4364: BGP/MPLS IP Virtual
 Private Networks
 (VPNs), Section 13.2";
 leaf md5-keychain {
 type key-chain:key-chain-ref;
 description
 "Reference to the MD5 key
 chain.";
 reference
 "RFC 8177: YANG Data Model for
 Key Chains";
 }
 }
 case explicit {
 leaf key-id {
 type uint32;
 description
 "Key identifier.";
 }
 leaf key {
 type string;
 description
 "BGP authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 case ipsec {
 description
 "Specifies a reference to an
 Internet Key Exchange Protocol
 (IKE) Security Association
 (SA).";
 leaf sa {
 type string;
 description
 "Indicates the
 administrator-assigned name
 of the SA.";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;
 }
 container ospf {
 when "derived-from-or-self(../type, "
 + "'vpn-common:ospf-routing')" {
 description
 "Only applies when the protocol is
 OSPF.";
 }
 description
 "Configuration specific to OSPF.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or
 both are to be activated.";
 }
 leaf area-id {
 type yang:dotted-quad;
 mandatory true;
 description
 "Area ID.";
 reference
 "RFC 4577: OSPF as the Provider/Customer
 Edge Protocol for BGP/MPLS IP
 Virtual Private Networks
 (VPNs), Section 4.2.3
 RFC 6565: OSPFv3 as a Provider Edge to
 Customer Edge (PE-CE) Routing
 Protocol, Section 4.2";
 }
 leaf metric {
 type uint16;
 default "1";
 description
 "Metric of the PE-CE link. It is used
 in the routing state calculation and
 path selection.";
 }
 container sham-links {
 if-feature "vpn-common:rtg-ospf-sham-link";
 description
 "List of sham links.";
 reference
 "RFC 4577: OSPF as the Provider/Customer
 Edge Protocol for BGP/MPLS IP
 Virtual Private Networks
 (VPNs), Section 4.2.7
 RFC 6565: OSPFv3 as a Provider Edge to
 Customer Edge (PE-CE) Routing
 Protocol, Section 5";
 list sham-link {
 key "target-site";
 description
 "Creates a sham link with another
 site.";
 leaf target-site {
 type string;
 description
 "Target site for the sham link
 connection. The site is referred
 to by its identifier.";
 }
 leaf metric {
 type uint16;
 default "1";
 description
 "Metric of the sham link. It is
 used in the routing state
 calculation and path selection.
 The default value is set to '1'.";
 reference
 "RFC 4577: OSPF as the
 Provider/Customer Edge
 Protocol for BGP/MPLS IP
 Virtual Private Networks
 (VPNs), Section 4.2.7.3
 RFC 6565: OSPFv3 as a Provider Edge
 to Customer Edge (PE-CE)
 Routing Protocol,
 Section 5.2";
 }
 }
 }
 leaf max-lsa {
 type uint32 {
 range "1..4294967294";
 }
 description
 "Maximum number of allowed Link State
 Advertisements (LSAs) that the OSPF
 instance will accept.";
 }
 container authentication {
 description
 "Authentication configuration.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how an OSPF
 session is to be secured between a CE
 and a PE.";
 choice option {
 description
 "Options for OSPF authentication.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 }
 case auth-key-explicit {
 leaf key-id {
 type uint32;
 description
 "Key identifier.";
 }
 leaf key {
 type string;
 description
 "OSPF authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 case ipsec {
 leaf sa {
 type string;
 description
 "Indicates the
 administrator-assigned name
 of the SA.";
 reference
 "RFC 4552: Authentication/
 Confidentiality for
 OSPFv3";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;
 }
 container isis {
 when "derived-from-or-self(../type, "
 + "'vpn-common:isis-routing')" {
 description
 "Only applies when the protocol is
 IS-IS.";
 }
 description
 "Configuration specific to IS-IS.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or both
 are to be activated.";
 }
 leaf area-address {
 type area-address;
 mandatory true;
 description
 "Area address.";
 }
 leaf level {
 type identityref {
 base vpn-common:isis-level;
 }
 description
 "Can be 'level-1', 'level-2', or
 'level-1-2'.";
 reference
 "RFC 9181: A Common YANG Data Model for
 Layer 2 and Layer 3 VPNs";
 }
 leaf metric {
 type uint16;
 default "1";
 description
 "Metric of the PE-CE link. It is used
 in the routing state calculation and
 path selection.";
 }
 leaf mode {
 type enumeration {
 enum active {
 description
 "The interface sends or receives
 IS-IS protocol control packets.";
 }
 enum passive {
 description
 "Suppresses the sending of IS-IS
 updates through the specified
 interface.";
 }
 }
 default "active";
 description
 "IS-IS interface mode type.";
 }
 container authentication {
 description
 "Authentication configuration.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how an IS-IS
 session is to be secured between a CE
 and a PE.";
 choice option {
 description
 "Options for IS-IS authentication.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 }
 case auth-key-explicit {
 leaf key-id {
 type uint32;
 description
 "Key identifier.";
 }
 leaf key {
 type string;
 description
 "IS-IS authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;
 }
 container rip {
 when "derived-from-or-self(../type, "
 + "'vpn-common:rip-routing')" {
 description
 "Only applies when the protocol is RIP.
 For IPv4, the model assumes that RIP
 version 2 is used.";
 }
 description
 "Configuration specific to RIP routing.";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or both
 address families are to be activated.";
 }
 container timers {
 description
 "Indicates the RIP timers.";
 reference
 "RFC 2453: RIP Version 2";
 leaf update-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "30";
 description
 "Indicates the RIP update time, i.e.,
 the amount of time for which RIP
 updates are sent.";
 }
 leaf invalid-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "180";
 description
 "The interval before a route is
 declared invalid after no updates are
 received. This value is at least
 three times the value for the
 'update-interval' argument.";
 }
 leaf holddown-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "180";
 description
 "Specifies the interval before better
 routes are released.";
 }
 leaf flush-interval {
 type uint16 {
 range "1..32767";
 }
 units "seconds";
 default "240";
 description
 "Indicates the RIP flush timer, i.e.,
 the amount of time that must elapse
 before a route is removed from the
 routing table.";
 }
 }
 leaf default-metric {
 type uint8 {
 range "0..16";
 }
 default "1";
 description
 "Sets the default metric.";
 }
 container authentication {
 description
 "Authentication configuration.";
 leaf enable {
 type boolean;
 default "false";
 description
 "Enables or disables authentication.";
 }
 container keying-material {
 when "../enable = 'true'";
 description
 "Container for describing how a RIP
 session is to be secured between a CE
 and a PE.";
 choice option {
 description
 "Specifies the authentication
 scheme.";
 case auth-key-chain {
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 }
 case auth-key-explicit {
 leaf key {
 type string;
 description
 "RIP authentication key.
 This model only supports the
 subset of keys that are
 representable as ASCII
 strings.";
 }
 leaf crypto-algorithm {
 type identityref {
 base key-chain:crypto-algorithm;
 }
 description
 "Indicates the cryptographic
 algorithm associated with the
 key.";
 }
 }
 }
 }
 }
 uses vpn-common:service-status;
 }
 container vrrp {
 when "derived-from-or-self(../type, "
 + "'vpn-common:vrrp-routing')" {
 description
 "Only applies when the protocol is the
 Virtual Router Redundancy Protocol
 (VRRP).";
 }
 description
 "Configuration specific to VRRP.";
 reference
 "RFC 5798: Virtual Router Redundancy
 Protocol (VRRP) Version 3 for
 IPv4 and IPv6";
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates whether IPv4, IPv6, or both
 address families are to be enabled.";
 }
 leaf vrrp-group {
 type uint8 {
 range "1..255";
 }
 description
 "Includes the VRRP group identifier.";
 }
 leaf backup-peer {
 type inet:ip-address;
 description
 "Indicates the IP address of the peer.";
 }
 leaf-list virtual-ip-address {
 type inet:ip-address;
 description
 "Virtual IP addresses for a single VRRP
 group.";
 reference
 "RFC 5798: Virtual Router Redundancy
 Protocol (VRRP) Version 3 for
 IPv4 and IPv6,
 Sections 1.2 and 1.3";
 }
 leaf priority {
 type uint8 {
 range "1..254";
 }
 default "100";
 description
 "Sets the local priority of the VRRP
 speaker.";
 }
 leaf ping-reply {
 type boolean;
 default "false";
 description
 "Controls whether the VRRP speaker
 should reply to ping requests.";
 }
 uses vpn-common:service-status;
 }
 }
 }
 container oam {
 description
 "Defines the Operations, Administration,
 and Maintenance (OAM) mechanisms used.

 BFD is set as a fault detection mechanism,
 but other mechanisms can be defined in the
 future.";
 container bfd {
 if-feature "vpn-common:bfd";
 description
 "Container for BFD.";
 leaf session-type {
 type identityref {
 base vpn-common:bfd-session-type;
 }
 default "vpn-common:classic-bfd";
 description
 "Specifies the BFD session type.";
 }
 leaf desired-min-tx-interval {
 type uint32;
 units "microseconds";
 default "1000000";
 description
 "The minimum interval between
 transmissions of BFD Control packets, as
 desired by the operator.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.7";
 }
 leaf required-min-rx-interval {
 type uint32;
 units "microseconds";
 default "1000000";
 description
 "The minimum interval between received BFD
 Control packets that the PE should
 support.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.7";
 }
 leaf local-multiplier {
 type uint8 {
 range "1..255";
 }
 default "3";
 description
 "Specifies the detection multiplier that
 is transmitted to a BFD peer.

 The detection interval for the receiving
 BFD peer is calculated by multiplying the
 value of the negotiated transmission
 interval by the received detection
 multiplier value.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.7";
 }
 leaf holdtime {
 type uint32;
 units "milliseconds";
 description
 "Expected BFD holdtime.

 The customer may impose some fixed
 values for the holdtime period if the
 provider allows the customer to use
 this function.

 If the provider doesn't allow the
 customer to use this function,
 fixed values will not be set.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.8.18";
 }
 leaf profile {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/bfd-profile-identifier/id";
 }
 description
 "Well-known service provider profile name.

 The provider can propose some profiles
 to the customer, depending on the
 service level the customer wants to
 achieve.";
 }
 container authentication {
 presence "Enables BFD authentication";
 description
 "Parameters for BFD authentication.";
 leaf key-chain {
 type key-chain:key-chain-ref;
 description
 "Name of the key chain.";
 }
 leaf meticulous {
 type boolean;
 description
 "Enables meticulous mode.";
 reference
 "RFC 5880: Bidirectional Forwarding
 Detection (BFD),
 Section 6.7";
 }
 }
 uses vpn-common:service-status;
 }
 }
 container security {
 description
 "Site-specific security parameters.";
 container encryption {
 if-feature "vpn-common:encryption";
 description
 "Container for CE-PE security encryption.";
 leaf enabled {
 type boolean;
 default "false";
 description
 "If set to 'true', traffic encryption on
 the connection is required. Otherwise,
 it is disabled.";
 }
 leaf layer {
 when "../enabled = 'true'" {
 description
 "Included only when encryption
 is enabled.";
 }
 type enumeration {
 enum layer2 {
 description
 "Encryption occurs at Layer 2.";
 }
 enum layer3 {
 description
 "Encryption occurs at Layer 3.
 For example, IPsec may be used when
 a customer requests Layer 3
 encryption.";
 }
 }
 description
 "Indicates the layer on which encryption
 is applied.";
 }
 }
 container encryption-profile {
 when "../encryption/enabled = 'true'" {
 description
 "Indicates the layer on which encryption
 is enabled.";
 }
 description
 "Container for the encryption profile.";
 choice profile {
 description
 "Choice for the encryption profile.";
 case provider-profile {
 leaf profile-name {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/encryption-profile-identifier/id";
 }
 description
 "Name of the service provider's
 profile to be applied.";
 }
 }
 case customer-profile {
 leaf customer-key-chain {
 type key-chain:key-chain-ref;
 description
 "Customer-supplied key chain.";
 }
 }
 }
 }
 }
 container service {
 description
 "Service parameters of the attachment.";
 leaf pe-to-ce-bandwidth {
 if-feature "vpn-common:inbound-bw";
 type uint64;
 units "bps";
 description
 "From the customer site's perspective, the
 service inbound bandwidth of the connection
 or download bandwidth from the SP to the
 site. Note that the L3SM uses
 'input-bandwidth' to refer to the same
 concept.";
 }
 leaf ce-to-pe-bandwidth {
 if-feature "vpn-common:outbound-bw";
 type uint64;
 units "bps";
 description
 "From the customer site's perspective,
 the service outbound bandwidth of the
 connection or upload bandwidth from
 the site to the SP. Note that the L3SM
 uses 'output-bandwidth' to refer to the
 same concept.";
 }
 leaf mtu {
 type uint32;
 units "bytes";
 description
 "MTU at the service level. If the service
 is IP, it refers to the IP MTU. If
 Carriers' Carriers (CsC) is enabled, the
 requested MTU will refer to the MPLS
 maximum labeled packet size and not to the
 IP MTU.";
 }
 container qos {
 if-feature "vpn-common:qos";
 description
 "QoS configuration.";
 container qos-classification-policy {
 description
 "Configuration of the traffic
 classification policy.";
 uses vpn-common:qos-classification-policy;
 }
 container qos-action {
 description
 "List of QoS action policies.";
 list rule {
 key "id";
 description
 "List of QoS actions.";
 leaf id {
 type string;
 description
 "An identifier of the QoS action
 rule.";
 }
 leaf target-class-id {
 type string;
 description
 "Identification of the class of
 service. This identifier is internal
 to the administration.";
 }
 leaf inbound-rate-limit {
 type decimal64 {
 fraction-digits 5;
 range "0..100";
 }
 units "percent";
 description
 "Specifies whether/how to rate-limit
 the inbound traffic matching this QoS
 policy. It is expressed as a percent
 of the value that is indicated in
 'input-bandwidth'.";
 }
 leaf outbound-rate-limit {
 type decimal64 {
 fraction-digits 5;
 range "0..100";
 }
 units "percent";
 description
 "Specifies whether/how to rate-limit
 the outbound traffic matching this
 QoS policy. It is expressed as a
 percent of the value that is
 indicated in 'output-bandwidth'.";
 }
 }
 }
 container qos-profile {
 description
 "QoS profile configuration.";
 list qos-profile {
 key "profile";
 description
 "QoS profile.
 Can be a standard profile or
 a customized profile.";
 leaf profile {
 type leafref {
 path "/l3vpn-ntw/vpn-profiles"
 + "/valid-provider-identifiers"
 + "/qos-profile-identifier/id";
 }
 description
 "QoS profile to be used.";
 }
 leaf direction {
 type identityref {
 base vpn-common:qos-profile-direction;
 }
 default "vpn-common:both";
 description
 "The direction to which the QoS
 profile is applied.";
 }
 }
 }
 }
 container carriers-carrier {
 if-feature "vpn-common:carriers-carrier";
 description
 "This container is used when the customer
 provides MPLS-based services. This is
 only used in the case of CsC (i.e., a
 customer builds an MPLS service using an
 IP VPN to carry its traffic).";
 leaf signaling-type {
 type enumeration {
 enum ldp {
 description
 "Uses LDP as the signaling protocol
 between the PE and the CE. In this
 case, an IGP routing protocol must
 also be configured.";
 }
 enum bgp {
 description
 "Uses BGP as the signaling protocol
 between the PE and the CE.
 In this case, BGP must also be
 configured as the routing protocol.";
 reference
 "RFC 8277: Using BGP to Bind MPLS
 Labels to Address
 Prefixes";
 }
 }
 default "bgp";
 description
 "MPLS signaling type.";
 }
 }
 container ntp {
 description
 "Time synchronization may be needed in some
 VPNs, such as infrastructure and management
 VPNs. This container includes parameters
 to enable the NTP service.";
 reference
 "RFC 5905: Network Time Protocol Version 4:
 Protocol and Algorithms
 Specification";
 leaf broadcast {
 type enumeration {
 enum client {
 description
 "The VPN node will listen to NTP
 broadcast messages on this VPN
 network access.";
 }
 enum server {
 description
 "The VPN node will behave as a
 broadcast server.";
 }
 }
 description
 "Indicates the NTP broadcast mode to use
 for the VPN network access.";
 }
 container auth-profile {
 description
 "Pointer to a local profile.";
 leaf profile-id {
 type string;
 description
 "A pointer to a local authentication
 profile on the VPN node is provided.";
 }
 }
 uses vpn-common:service-status;
 }
 container multicast {
 if-feature "vpn-common:multicast";
 description
 "Multicast parameters for the network
 access.";
 leaf access-type {
 type enumeration {
 enum receiver-only {
 description
 "The peer site only has receivers.";
 }
 enum source-only {
 description
 "The peer site only has sources.";
 }
 enum source-receiver {
 description
 "The peer site has both sources and
 receivers.";
 }
 }
 default "source-receiver";
 description
 "Type of multicast site.";
 }
 leaf address-family {
 type identityref {
 base vpn-common:address-family;
 }
 description
 "Indicates the address family.";
 }
 leaf protocol-type {
 type enumeration {
 enum host {
 description
 "Hosts are directly connected to the
 provider network.

 Host protocols, such as IGMP or MLD,
 are required.";
 }
 enum router {
 description
 "Hosts are behind a customer router.
 PIM will be implemented.";
 }
 enum both {
 description
 "Some hosts are behind a customer
 router, and some others are directly
 connected to the provider network.
 Both host and routing protocols must
 be used.

 Typically, IGMP and PIM will be
 implemented.";
 }
 }
 default "both";
 description
 "Multicast protocol type to be used with
 the customer site.";
 }
 leaf remote-source {
 type boolean;
 default "false";
 description
 "A remote multicast source is a source
 that is not on the same subnet as the
 VPN network access. When set to 'true',
 the multicast traffic from a remote
 source is accepted.";
 }
 container igmp {
 when "../protocol-type = 'host' and "
 + "../address-family = 'vpn-common:ipv4' "
 + "or 'vpn-common:dual-stack'";
 if-feature "vpn-common:igmp";
 description
 "Includes IGMP-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group
 associated with the IGMP session.";
 leaf group-addr {
 type rt-types:ipv4-multicast-group-address;
 description
 "Multicast group IPv4 address.";
 }
 leaf source-addr {
 type
 rt-types:ipv4-multicast-source-address;
 description
 "Multicast source IPv4 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of
 groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of IGMP
 entries.";
 }
 leaf max-group-sources {
 type uint32;
 description
 "The maximum number of group sources.";
 }
 leaf version {
 type identityref {
 base vpn-common:igmp-version;
 }
 default "vpn-common:igmpv2";
 description
 "Indicates the IGMP version.";
 }
 uses vpn-common:service-status;
 }
 container mld {
 when "../protocol-type = 'host' and "
 + "../address-family = 'vpn-common:ipv6' "
 + "or 'vpn-common:dual-stack'";
 if-feature "vpn-common:mld";
 description
 "Includes MLD-related parameters.";
 list static-group {
 key "group-addr";
 description
 "Multicast static source/group associated
 with the MLD session.";
 leaf group-addr {
 type rt-types:ipv6-multicast-group-address;
 description
 "Multicast group IPv6 address.";
 }
 leaf source-addr {
 type
 rt-types:ipv6-multicast-source-address;
 description
 "Multicast source IPv6 address.";
 }
 }
 leaf max-groups {
 type uint32;
 description
 "Indicates the maximum number of
 groups.";
 }
 leaf max-entries {
 type uint32;
 description
 "Indicates the maximum number of MLD
 entries.";
 }
 leaf max-group-sources {
 type uint32;
 description
 "The maximum number of group sources.";
 }
 leaf version {
 type identityref {
 base vpn-common:mld-version;
 }
 default "vpn-common:mldv2";
 description
 "Indicates the MLD protocol version.";
 }
 uses vpn-common:service-status;
 }
 container pim {
 when "../protocol-type = 'router'";
 if-feature "vpn-common:pim";
 description
 "Only applies when the protocol type is
 'pim'.";
 leaf hello-interval {
 type rt-types:timer-value-seconds16;
 default "30";
 description
 "Interval between PIM Hello messages.
 If set to 'infinity' or 'not-set',
 no periodic Hello messages are sent.";
 reference
 "RFC 7761: Protocol Independent
 Multicast - Sparse Mode
 (PIM-SM): Protocol
 Specification (Revised),
 Section 4.11
 RFC 8294: Common YANG Data Types for
 the Routing Area";
 }
 leaf dr-priority {
 type uint32;
 default "1";
 description
 "Indicates the preference associated
 with the DR election process. A larger
 value has a higher priority over a
 smaller value.";
 reference
 "RFC 7761: Protocol Independent
 Multicast - Sparse Mode
 (PIM-SM): Protocol
 Specification (Revised),
 Section 4.3.2";
 }
 uses vpn-common:service-status;
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

 Security Considerations
 The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF or RESTCONF .
The lowest NETCONF layer is the secure transport layer, and the
mandatory-to-implement secure transport is Secure Shell (SSH)
 . The lowest RESTCONF layer is HTTPS, and the
mandatory-to-implement secure transport is TLS .
 The Network Configuration Access Control Model (NACM)
provides the means to restrict access for particular NETCONF or RESTCONF users
to a preconfigured subset of all available NETCONF or RESTCONF protocol
operations and content.
 There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., config true, which is the default). These
data nodes may be considered sensitive or vulnerable in some network
environments. Write operations (e.g., edit-config) and delete operations to these data nodes without
proper protection or authentication can have a negative effect on network operations. These are
the subtrees and data nodes and their sensitivity/vulnerability in
the "ietf-l3vpn-ntw" module:

 'vpn-profiles':
 This container includes a set of sensitive data
 that influence how the L3VPN service is delivered. For example, an
 attacker who has access to these data nodes may be able to
 manipulate routing policies, QoS policies, or encryption properties.
 These data nodes are defined with "nacm:default-deny-write" tagging
 .
 'vpn-services':
 An attacker who is able to access network nodes
 can undertake various attacks, such as deleting a running L3VPN
 service, interrupting all the traffic of a client. In addition, an
 attacker may modify the attributes of a running service (e.g., QoS,
 bandwidth, routing protocols, keying material), leading to
 malfunctioning of the service and therefore to Service Level Agreement (SLA) violations. In
 addition, an attacker could attempt to create an L3VPN service or
 add a new network access. In addition to using NACM to prevent
 unauthorized access, such activity can be detected by adequately
 monitoring and tracking network configuration changes.

 Some of the readable data nodes in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus important to
control read access (e.g., via get, get-config, or notification) to these data
nodes. These are the subtrees and data nodes and their
sensitivity/vulnerability:

 'customer-name' and 'ip-connection':
 An attacker can retrieve
 privacy-related information, which can be used to track a customer.
 Disclosing such information may be considered a violation of the
 customer-provider trust relationship.
 'keying-material':
 An attacker can retrieve the cryptographic
 keys protecting the underlying VPN service (CE-PE routing, in
 particular). These keys could be used to inject spoofed routing
 advertisements.

 Several data nodes ('bgp', 'ospf', 'isis', 'rip', and 'bfd') rely
 upon for authentication purposes.
 Therefore, this module inherits the security considerations discussed in
 . Also, these data nodes
 support supplying explicit keys as strings in ASCII format. The use of
 keys in hexadecimal string format would afford greater key entropy with
 the same number of key-string octets. However, such a format is not
 included in this version of the L3NM, because it is not supported by the
 underlying device modules (e.g.,).
 As discussed in , the module supports MD5
 to basically accommodate the installed BGP base. MD5 suffers from the
 security weaknesses discussed in and .
 describes best current practices to be
 considered in VPNs making use of NTP. Moreover, a mechanism to provide
 cryptographic security for NTP is specified in .

 IANA Considerations
 IANA has registered the following URI in the "ns"
 subregistry within the "IETF XML Registry" :

 URI:
 urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
 Registrant Contact:
 The IESG.
 XML:
 N/A; the requested URI is an XML namespace.

 IANA has registered the following YANG module in
 the "YANG Module Names" subregistry
 within the "YANG Parameters" registry.

 Name:
 ietf-l3vpn-ntw
 Maintained by IANA?
 N
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-l3vpn-ntw
 Prefix:
 l3nm
 Reference:
 RFC 9182

 References

 Normative References

 Information technology - Telecommunications and information exchange between systems - Intermediate System to Intermediate System intra-domain routeing information exchange protocol for use in conjunction with the protocol for providing the connectionless-mode network service (ISO 8473)

 ISO

 ISO/IEC 10589:2002

 Host extensions for IP multicasting

 This memo specifies the extensions required of a host implementation of the Internet Protocol (IP) to support multicasting. Recommended procedure for IP multicasting in the Internet. This RFC obsoletes RFCs 998 and 1054. [STANDARDS-TRACK]

 Use of OSI IS-IS for routing in TCP/IP and dual environments

 This memo specifies an integrated routing protocol, based on the OSI Intra-Domain IS-IS Routing Protocol, which may be used as an interior gateway protocol (IGP) to support TCP/IP as well as OSI. This allows a single routing protocol to be used to support pure IP environments, pure OSI environments, and dual environments. This specification was developed by the IS-IS working group of the Internet Engineering Task Force. [STANDARDS-TRACK]

 RIPng for IPv6

 This document specifies a routing protocol for an IPv6 internet. It is based on protocols and algorithms currently in wide use in the IPv4 Internet [STANDARDS-TRACK]

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Internet Group Management Protocol, Version 2

 This memo documents IGMPv2, used by IP hosts to report their multicast group memberships to routers. It updates STD 5, RFC 1112. [STANDARDS-TRACK]

 RIP Version 2

 This document specifies an extension of the Routing Information Protocol (RIP) to expand the amount of useful information carried in RIP messages and to add a measure of security. [STANDARDS-TRACK]

 Multicast Listener Discovery (MLD) for IPv6

 This document specifies the protocol used by an IPv6 router to discover the presence of multicast listeners (that is, nodes wishing to receive multicast packets) on its directly attached links, and to discover specifically which multicast addresses are of interest to those neighboring nodes. [STANDARDS-TRACK]

 Internet Group Management Protocol, Version 3

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 Multicast Listener Discovery Version 2 (MLDv2) for IPv6

 This document updates RFC 2710, and it specifies Version 2 of the ulticast Listener Discovery Protocol (MLDv2). MLD is used by an IPv6 router to discover the presence of multicast listeners on directly attached links, and to discover which multicast addresses are of interest to those neighboring nodes. MLDv2 is designed to be interoperable with MLDv1. MLDv2 adds the ability for a node to report interest in listening to packets with a particular multicast address only from specific source addresses or from all sources except for specific source addresses. [STANDARDS-TRACK]

 A Border Gateway Protocol 4 (BGP-4)

 This document discusses the Border Gateway Protocol (BGP), which is an inter-Autonomous System routing protocol.
 The primary function of a BGP speaking system is to exchange network reachability information with other BGP systems. This network reachability information includes information on the list of Autonomous Systems (ASes) that reachability information traverses. This information is sufficient for constructing a graph of AS connectivity for this reachability from which routing loops may be pruned, and, at the AS level, some policy decisions may be enforced.
 BGP-4 provides a set of mechanisms for supporting Classless Inter-Domain Routing (CIDR). These mechanisms include support for advertising a set of destinations as an IP prefix, and eliminating the concept of network "class" within BGP. BGP-4 also introduces mechanisms that allow aggregation of routes, including aggregation of AS paths.
 This document obsoletes RFC 1771. [STANDARDS-TRACK]

 BGP/MPLS IP Virtual Private Networks (VPNs)

 This document describes a method by which a Service Provider may use an IP backbone to provide IP Virtual Private Networks (VPNs) for its customers. This method uses a "peer model", in which the customers' edge routers (CE routers) send their routes to the Service Provider's edge routers (PE routers); there is no "overlay" visible to the customer's routing algorithm, and CE routers at different sites do not peer with each other. Data packets are tunneled through the backbone, so that the core routers do not need to know the VPN routes. [STANDARDS-TRACK]

 Authentication/Confidentiality for OSPFv3

 This document describes means and mechanisms to provide authentication/confidentiality to OSPFv3 using an IPv6 Authentication Header/Encapsulating Security Payload (AH/ESP) extension header. [STANDARDS-TRACK]

 OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)

 Many Service Providers offer Virtual Private Network (VPN) services to their customers, using a technique in which customer edge routers (CE routers) are routing peers of provider edge routers (PE routers). The Border Gateway Protocol (BGP) is used to distribute the customer's routes across the provider's IP backbone network, and Multiprotocol Label Switching (MPLS) is used to tunnel customer packets across the provider's backbone. This is known as a "BGP/MPLS IP VPN". The base specification for BGP/MPLS IP VPNs presumes that the routing protocol on the interface between a PE router and a CE router is BGP. This document extends that specification by allowing the routing protocol on the PE/CE interface to be the Open Shortest Path First (OSPF) protocol.
 This document updates RFC 4364. [STANDARDS-TRACK]

 Routing IPv6 with IS-IS

 This document specifies a method for exchanging IPv6 routing information using the IS-IS routing protocol. The described method utilizes two new TLVs: a reachability TLV and an interface address TLV to distribute the necessary IPv6 information throughout a routing domain. Using this method, one can route IPv6 along with IPv4 and OSI using a single intra-domain routing protocol. [STANDARDS-TRACK]

 IPv6 Address Specific BGP Extended Community Attribute

 Current specifications of BGP Extended Communities (RFC 4360) support the IPv4 Address Specific Extended Community, but do not support an IPv6 Address Specific Extended Community. The lack of an IPv6 Address Specific Extended Community may be a problem when an application uses the IPv4 Address Specific Extended Community, and one wants to use this application in a pure IPv6 environment. This document defines a new BGP attribute, the IPv6 Address Specific Extended Community, that addresses this problem. The IPv6 Address Specific Extended Community is similar to the IPv4 Address Specific Extended Community, except that it carries an IPv6 address rather than an IPv4 address. [STANDARDS TRACK]

 OSPFv2 HMAC-SHA Cryptographic Authentication

 This document describes how the National Institute of Standards and Technology (NIST) Secure Hash Standard family of algorithms can be used with OSPF version 2's built-in, cryptographic authentication mechanism. This updates, but does not supercede, the cryptographic authentication mechanism specified in RFC 2328. [STANDARDS-TRACK]

 Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6

 This memo defines the Virtual Router Redundancy Protocol (VRRP) for IPv4 and IPv6. It is version three (3) of the protocol, and it is based on VRRP (version 2) for IPv4 that is defined in RFC 3768 and in "Virtual Router Redundancy Protocol for IPv6". VRRP specifies an election protocol that dynamically assigns responsibility for a virtual router to one of the VRRP routers on a LAN. The VRRP router controlling the IPv4 or IPv6 address(es) associated with a virtual router is called the Master, and it forwards packets sent to these IPv4 or IPv6 addresses. VRRP Master routers are configured with virtual IPv4 or IPv6 addresses, and VRRP Backup routers infer the address family of the virtual addresses being carried based on the transport protocol. Within a VRRP router, the virtual routers in each of the IPv4 and IPv6 address families are a domain unto themselves and do not overlap. The election process provides dynamic failover in the forwarding responsibility should the Master become unavailable. For IPv4, the advantage gained from using VRRP is a higher-availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host. For IPv6, the advantage gained from using VRRP for IPv6 is a quicker switchover to Backup routers than can be obtained with standard IPv6 Neighbor Discovery mechanisms. [STANDARDS-TRACK]

 Bidirectional Forwarding Detection (BFD)

 This document describes a protocol intended to detect faults in the bidirectional path between two forwarding engines, including interfaces, data link(s), and to the extent possible the forwarding engines themselves, with potentially very low latency. It operates independently of media, data protocols, and routing protocols. [STANDARDS-TRACK]

 Network Time Protocol Version 4: Protocol and Algorithms Specification

 The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]

 The TCP Authentication Option

 This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5). TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5. TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints. The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes. TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5. [STANDARDS-TRACK]

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Using the NETCONF Protocol over Secure Shell (SSH)

 This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem. This document obsoletes RFC 4742. [STANDARDS-TRACK]

 Multicast in MPLS/BGP IP VPNs

 In order for IP multicast traffic within a BGP/MPLS IP VPN (Virtual Private Network) to travel from one VPN site to another, special protocols and procedures must be implemented by the VPN Service Provider. These protocols and procedures are specified in this document. [STANDARDS-TRACK]

 BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs

 This document describes the BGP encodings and procedures for exchanging the information elements required by Multicast in MPLS/BGP IP VPNs, as specified in RFC 6513. [STANDARDS-TRACK]

 OSPFv3 as a Provider Edge to Customer Edge (PE-CE) Routing Protocol

 Many Service Providers (SPs) offer Virtual Private Network (VPN) services to their customers using a technique in which Customer Edge (CE) routers are routing peers of Provider Edge (PE) routers. The Border Gateway Protocol (BGP) is used to distribute the customer's routes across the provider's IP backbone network, and Multiprotocol Label Switching (MPLS) is used to tunnel customer packets across the provider's backbone. Support currently exists for both IPv4 and IPv6 VPNs; however, only Open Shortest Path First version 2 (OSPFv2) as PE-CE protocol is specified. This document extends those specifications to support OSPF version 3 (OSPFv3) as a PE-CE routing protocol. The OSPFv3 PE-CE functionality is identical to that of OSPFv2 except for the differences described in this document. [STANDARDS-TRACK]

 Common YANG Data Types

 This document introduces a collection of common data types to be used with the YANG data modeling language. This document obsoletes RFC 6021.

 Supporting Authentication Trailer for OSPFv3

 Currently, OSPF for IPv6 (OSPFv3) uses IPsec as the only mechanism for authenticating protocol packets. This behavior is different from authentication mechanisms present in other routing protocols (OSPFv2, Intermediate System to Intermediate System (IS-IS), RIP, and Routing Information Protocol Next Generation (RIPng)). In some environments, it has been found that IPsec is difficult to configure and maintain and thus cannot be used. This document defines an alternative mechanism to authenticate OSPFv3 protocol packets so that OSPFv3 does not depend only upon IPsec for authentication.
 The OSPFv3 Authentication Trailer was originally defined in RFC 6506. This document obsoletes RFC 6506 by providing a revised definition, including clarifications and refinements of the procedures.

 Security Extension for OSPFv2 When Using Manual Key Management

 The current OSPFv2 cryptographic authentication mechanism as defined in RFCs 2328 and 5709 is vulnerable to both inter-session and intra- session replay attacks when using manual keying. Additionally, the existing cryptographic authentication mechanism does not cover the IP header. This omission can be exploited to carry out various types of attacks.
 This document defines changes to the authentication sequence number mechanism that will protect OSPFv2 from both inter-session and intra- session replay attacks when using manual keys for securing OSPFv2 protocol packets. Additionally, we also describe some changes in the cryptographic hash computation that will eliminate attacks resulting from OSPFv2 not protecting the IP header.

 Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)

 This document specifies Protocol Independent Multicast - Sparse Mode (PIM-SM). PIM-SM is a multicast routing protocol that can use the underlying unicast routing information base or a separate multicast-capable routing information base. It builds unidirectional shared trees rooted at a Rendezvous Point (RP) per group, and it optionally creates shortest-path trees per source.
 This document obsoletes RFC 4601 by replacing it, addresses the errata filed against it, removes the optional (*,*,RP), PIM Multicast Border Router features and authentication using IPsec that lack sufficient deployment experience (see Appendix A), and moves the PIM specification to Internet Standard.

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 YANG Data Model for Key Chains

 This document describes the key chain YANG data model. Key chains are commonly used for routing protocol authentication and other applications requiring symmetric keys. A key chain is a list containing one or more elements containing a Key ID, key string, send/accept lifetimes, and the associated authentication or encryption algorithm. By properly overlapping the send and accept lifetimes of multiple key chain elements, key strings and algorithms may be gracefully updated. By representing them in a YANG data model, key distribution can be automated.

 Common YANG Data Types for the Routing Area

 This document defines a collection of common data types using the YANG data modeling language. These derived common types are designed to be imported by other modules defined in the routing area.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 A YANG Data Model for Interface Management

 This document defines a YANG data model for the management of network interfaces. It is expected that interface-type-specific data models augment the generic interfaces data model defined in this document. The data model includes definitions for configuration and system state (status information and counters for the collection of statistics).
 The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA) defined in RFC 8342.
 This document obsoletes RFC 7223.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 A YANG Data Model for Layer 2 Virtual Private Network (L2VPN) Service Delivery

 This document defines a YANG data model that can be used to configure a Layer 2 provider-provisioned VPN service. It is up to a management system to take this as an input and generate specific configuration models to configure the different network elements to deliver the service. How this configuration of network elements is done is out of scope for this document.
 The YANG data model defined in this document includes support for point-to-point Virtual Private Wire Services (VPWSs) and multipoint Virtual Private LAN Services (VPLSs) that use Pseudowires signaled using the Label Distribution Protocol (LDP) and the Border Gateway Protocol (BGP) as described in RFCs 4761 and 6624.
 The YANG data model defined in this document conforms to the Network Management Datastore Architecture defined in RFC 8342.

 YANG Data Model for Network Access Control Lists (ACLs)

 This document defines a data model for Access Control Lists (ACLs). An ACL is a user-ordered set of rules used to configure the forwarding behavior in a device. Each rule is used to find a match on a packet and define actions that will be performed on the packet.

 A Common YANG Data Model for Layer 2 and Layer 3 VPNs

 Informative References

 BGP YANG Model for Service Provider Networks

 Kloud Services

 Arrcus

 Huawei

 Juniper Networks

 This document defines a YANG data model for configuring and managing
 BGP, including protocol, policy, and operational aspects, such as
 RIB, based on data center, carrier, and content provider operational
 requirements.

 Work in Progress

 A Framework for Enhanced Virtual Private Network (VPN+) Services

 Huawei

 University of Surrey

 China Mobile

 KDDI Corporation

 Samsung

 This document describes the framework for Enhanced Virtual Private
 Network (VPN+) services. The purpose of enhanced VPNs is to support
 the needs of new applications, particularly applications that are
 associated with 5G services, by utilizing an approach that is based
 on existing VPN and Traffic Engineering (TE) technologies and adds
 characteristics that specific services require over those provided by
 traditional VPNs.

 Typically, VPN+ will be used to underpin network slicing, but could
 also be of use in its own right providing enhanced connectivity
 services between customer sites.

 It is envisaged that enhanced VPNs will be delivered using a
 combination of existing, modified, and new networking technologies.
 This document provides an overview of relevant technologies and
 identifies some areas for potential new work.

 Work in Progress

 802.1AX-2020 - IEEE Standard for Local and Metropolitan Area Networks--Link Aggregation

 IEEE

 IEEE Std 802.1AX-2020

 Framework for IETF Network Slices

 Work in Progress

 A YANG Data Model for Protocol Independent Multicast (PIM)

 Work in Progress

 pyang

 commit 524cf61

 A YANG Data Model for Quality of Service (QoS)

 Cisco Systems

 VMware

 Juniper Networks

 The MITRE Corporation

 This document describes a YANG Data model for Quality of Service
 (QoS) configuration in network devices. This document doesn't
 describe QoS statistics counters.

 Work in Progress

 Multicast Source Discovery Protocol (MSDP)

 The Multicast Source Discovery Protocol (MSDP) describes a mechanism to connect multiple IP Version 4 Protocol Independent Multicast Sparse-Mode (PIM-SM) domains together. Each PIM-SM domain uses its own independent Rendezvous Point (RP) and does not have to depend on RPs in other domains. This document reflects existing MSDP implementations.

 Policy Quality of Service (QoS) Information Model

 This document presents an object-oriented information model for representing Quality of Service (QoS) network management policies. This document is based on the IETF Policy Core Information Model and its extensions. It defines an information model for QoS enforcement for differentiated and integrated services using policy. It is important to note that this document defines an information model, which by definition is independent of any particular data storage mechanism and access protocol.

 Provider Provisioned Virtual Private Network (VPN) Terminology

 The widespread interest in provider-provisioned Virtual Private Network (VPN) solutions lead to memos proposing different and overlapping solutions. The IETF working groups (first Provider Provisioned VPNs and later Layer 2 VPNs and Layer 3 VPNs) have discussed these proposals and documented specifications. This has lead to the development of a partially new set of concepts used to describe the set of VPN services.
 To a certain extent, more than one term covers the same concept, and sometimes the same term covers more than one concept. This document seeks to make the terminology in the area clearer and more intuitive. This memo provides information for the Internet community.

 A Framework for Layer 3 Provider-Provisioned Virtual Private Networks (PPVPNs)

 This document provides a framework for Layer 3 Provider-Provisioned Virtual Private Networks (PPVPNs). This framework is intended to aid in the standardization of protocols and mechanisms for support of layer 3 PPVPNs. It is the intent of this document to produce a coherent description of the significant technical issues that are important in the design of layer 3 PPVPN solutions. Selection of specific approaches, making choices regarding engineering tradeoffs, and detailed protocol specification, are outside of the scope of this framework document. This memo provides information for the Internet community.

 Framework for Layer 3 Virtual Private Networks (L3VPN) Operations and Management

 This document provides a framework for the operation and management of Layer 3 Virtual Private Networks (L3VPNs). This framework intends to produce a coherent description of the significant technical issues that are important in the design of L3VPN management solutions. The selection of specific approaches, and making choices among information models and protocols are outside the scope of this document. This memo provides information for the Internet community.

 IPv6 Stateless Address Autoconfiguration

 This document specifies the steps a host takes in deciding how to autoconfigure its interfaces in IP version 6. The autoconfiguration process includes generating a link-local address, generating global addresses via stateless address autoconfiguration, and the Duplicate Address Detection procedure to verify the uniqueness of the addresses on a link. [STANDARDS-TRACK]

 Cisco Systems' Solution for Multicast in BGP/MPLS IP VPNs

 This document describes the MVPN (Multicast in BGP/MPLS IP VPNs) solution designed and deployed by Cisco Systems. The procedures specified in this document are largely a subset of the generalized MVPN framework recently standardized by the IETF. However, as the deployment of the procedures specified herein predates the publication of IETF standards (in some cases by over five years), an implementation based on these procedures differs in some respects from a fully standards-compliant implementation. These differences are pointed out in the document. This document defines a Historic Document for the Internet community.

 Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms

 This document updates the security considerations for the MD5 message digest algorithm. It also updates the security considerations for HMAC-MD5. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide

 This document analyzes TCP-based routing protocols, the Border Gateway Protocol (BGP), the Label Distribution Protocol (LDP), the Path Computation Element Communication Protocol (PCEP), and the Multicast Source Distribution Protocol (MSDP), according to guidelines set forth in Section 4.2 of "Keying and Authentication for Routing Protocols Design Guidelines", RFC 6518.

 Software-Defined Networking: A Perspective from within a Service Provider Environment

 Software-Defined Networking (SDN) has been one of the major buzz words of the networking industry for the past couple of years. And yet, no clear definition of what SDN actually covers has been broadly admitted so far. This document aims to clarify the SDN landscape by providing a perspective on requirements, issues, and other considerations about SDN, as seen from within a service provider environment.
 It is not meant to endlessly discuss what SDN truly means but rather to suggest a functional taxonomy of the techniques that can be used under an SDN umbrella and to elaborate on the various pending issues the combined activation of such techniques inevitably raises. As such, a definition of SDN is only mentioned for the sake of clarification.

 IP Connectivity Provisioning Profile (CPP)

 This document describes the Connectivity Provisioning Profile (CPP) and proposes a CPP template to capture IP/MPLS connectivity requirements to be met within a service delivery context (e.g., Voice over IP or IP TV). The CPP defines the set of IP transfer parameters to be supported by the underlying transport network together with a reachability scope and bandwidth/capacity needs. Appropriate performance metrics, such as one-way delay or one-way delay variation, are used to characterize an IP transfer service. Both global and restricted reachability scopes can be captured in the CPP.
 Such a generic CPP template is meant to (1) facilitate the automation of the service negotiation and activation procedures, thus accelerating service provisioning, (2) set (traffic) objectives of Traffic Engineering functions and service management functions, and (3) improve service and network management systems with 'decision- making' capabilities based upon negotiated/offered CPPs.

 Software-Defined Networking (SDN): Layers and Architecture Terminology

 Software-Defined Networking (SDN) refers to a new approach for network programmability, that is, the capacity to initialize, control, change, and manage network behavior dynamically via open interfaces. SDN emphasizes the role of software in running networks through the introduction of an abstraction for the data forwarding plane and, by doing so, separates it from the control plane. This separation allows faster innovation cycles at both planes as experience has already shown. However, there is increasing confusion as to what exactly SDN is, what the layer structure is in an SDN architecture, and how layers interface with each other. This document, a product of the IRTF Software-Defined Networking Research Group (SDNRG), addresses these questions and provides a concise reference for the SDN research community based on relevant peer-reviewed literature, the RFC series, and relevant documents by other standards organizations.

 Seamless Bidirectional Forwarding Detection (S-BFD)

 This document defines Seamless Bidirectional Forwarding Detection (S-BFD), a simplified mechanism for using BFD with a large proportion of negotiation aspects eliminated, thus providing benefits such as quick provisioning, as well as improved control and flexibility for network nodes initiating path monitoring.
 This document updates RFC 5880.

 Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)

 Layer 2 services (such as Frame Relay, Asynchronous Transfer Mode, and Ethernet) can be emulated over an MPLS backbone by encapsulating the Layer 2 Protocol Data Units (PDUs) and then transmitting them over pseudowires (PWs). It is also possible to use pseudowires to provide low-rate Time-Division Multiplexed and Synchronous Optical NETworking circuit emulation over an MPLS-enabled network. This document specifies a protocol for establishing and maintaining the pseudowires, using extensions to the Label Distribution Protocol (LDP). Procedures for encapsulating Layer 2 PDUs are specified in other documents.
 This document is a rewrite of RFC 4447 for publication as an Internet Standard.

 Using BGP to Bind MPLS Labels to Address Prefixes

 This document specifies a set of procedures for using BGP to advertise that a specified router has bound a specified MPLS label (or a specified sequence of MPLS labels organized as a contiguous part of a label stack) to a specified address prefix. This can be done by sending a BGP UPDATE message whose Network Layer Reachability Information field contains both the prefix and the MPLS label(s) and whose Next Hop field identifies the node at which said prefix is bound to said label(s). This document obsoletes RFC 3107.

 YANG Data Model for L3VPN Service Delivery

 This document defines a YANG data model that can be used for communication between customers and network operators and to deliver a Layer 3 provider-provisioned VPN service. This document is limited to BGP PE-based VPNs as described in RFCs 4026, 4110, and 4364. This model is intended to be instantiated at the management system to deliver the overall service. It is not a configuration model to be used directly on network elements. This model provides an abstracted view of the Layer 3 IP VPN service configuration components. It will be up to the management system to take this model as input and use specific configuration models to configure the different network elements to deliver the service. How the configuration of network elements is done is out of scope for this document.
 This document obsoletes RFC 8049; it replaces the unimplementable module in that RFC with a new module with the same name that is not backward compatible. The changes are a series of small fixes to the YANG module and some clarifications to the text.

 Service Models Explained

 The IETF has produced many modules in the YANG modeling language. The majority of these modules are used to construct data models to model devices or monolithic functions.
 A small number of YANG modules have been defined to model services (for example, the Layer 3 Virtual Private Network Service Model (L3SM) produced by the L3SM working group and documented in RFC 8049).
 This document describes service models as used within the IETF and also shows where a service model might fit into a software-defined networking architecture. Note that service models do not make any assumption of how a service is actually engineered and delivered for a customer; details of how network protocols and devices are engineered to deliver a service are captured in other modules that are not exposed through the interface between the customer and the provider.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 A YANG Data Model for Network Topologies

 This document defines an abstract (generic, or base) YANG data model for network/service topologies and inventories. The data model serves as a base model that is augmented with technology-specific details in other, more specific topology and inventory data models.

 A YANG Data Model for Routing Management (NMDA Version)

 This document specifies three YANG modules and one submodule. Together, they form the core routing data model that serves as a framework for configuring and managing a routing subsystem. It is expected that these modules will be augmented by additional YANG modules defining data models for control-plane protocols, route filters, and other functions. The core routing data model provides common building blocks for such extensions -- routes, Routing Information Bases (RIBs), and control-plane protocols.
 The YANG modules in this document conform to the Network Management Datastore Architecture (NMDA). This document obsoletes RFC 8022.

 Framework for Abstraction and Control of TE Networks (ACTN)

 Traffic Engineered (TE) networks have a variety of mechanisms to facilitate the separation of the data plane and control plane. They also have a range of management and provisioning protocols to configure and activate network resources. These mechanisms represent key technologies for enabling flexible and dynamic networking. The term "Traffic Engineered network" refers to a network that uses any connection-oriented technology under the control of a distributed or centralized control plane to support dynamic provisioning of end-to- end connectivity.
 Abstraction of network resources is a technique that can be applied to a single network domain or across multiple domains to create a single virtualized network that is under the control of a network operator or the customer of the operator that actually owns the network resources.
 This document provides a framework for Abstraction and Control of TE Networks (ACTN) to support virtual network services and connectivity services.

 A YANG Module for Network Address Translation (NAT) and Network Prefix Translation (NPT)

 This document defines a YANG module for the Network Address Translation (NAT) function.
 Network Address Translation from IPv4 to IPv4 (NAT44), Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers (NAT64), customer-side translator (CLAT), Stateless IP/ICMP Translation (SIIT), Explicit Address Mappings (EAM) for SIIT, IPv6-to-IPv6 Network Prefix Translation (NPTv6), and Destination NAT are covered in this document.

 Network Time Protocol Best Current Practices

 The Network Time Protocol (NTP) is one of the oldest protocols on the Internet and has been widely used since its initial publication. This document is a collection of best practices for the general operation of NTP servers and clients on the Internet. It includes recommendations for the stable, accurate, and secure operation of NTP infrastructure. This document is targeted at NTP version 4 as described in RFC 5905.

 A YANG Data Model for the Routing Information Protocol (RIP)

 This document describes a data model for the management of the Routing Information Protocol (RIP). Both RIP version 2 and RIPng are covered. The data model includes definitions for configuration, operational state, and Remote Procedure Calls (RPCs).
 The YANG data model in this document conforms to the Network Management Datastore Architecture (NMDA).

 Handling Long Lines in Content of Internet-Drafts and RFCs

 This document defines two strategies for handling long lines in width-bounded text content. One strategy, called the "single backslash" strategy, is based on the historical use of a single backslash ('\') character to indicate where line-folding has occurred, with the continuation occurring with the first character that is not a space character (' ') on the next line. The second strategy, called the "double backslash" strategy, extends the first strategy by adding a second backslash character to identify where the continuation begins and is thereby able to handle cases not supported by the first strategy. Both strategies use a self-describing header enabling automated reconstitution of the original content.

 Network Time Security for the Network Time Protocol

 This memo specifies Network Time Security (NTS), a mechanism for using Transport Layer Security (TLS) and Authenticated Encryption with Associated Data (AEAD) to provide cryptographic security for the client-server mode of the Network Time Protocol (NTP).
 NTS is structured as a suite of two loosely coupled sub-protocols. The first (NTS Key Establishment (NTS-KE)) handles initial authentication and key establishment over TLS. The second (NTS Extension Fields for NTPv4) handles encryption and authentication during NTP time synchronization via extension fields in the NTP packets, and holds all required state only on the client via opaque cookies.

 A Framework for Automating Service and Network Management with YANG

 Data models provide a programmatic approach to represent services and networks. Concretely, they can be used to derive configuration information for network and service components, and state information that will be monitored and tracked. Data models can be used during the service and network management life cycle (e.g., service instantiation, service provisioning, service optimization, service monitoring, service diagnosing, and service assurance). Data models are also instrumental in the automation of network management, and they can provide closed-loop control for adaptive and deterministic service creation, delivery, and maintenance.
 This document describes a framework for service and network management automation that takes advantage of YANG modeling technologies. This framework is drawn from a network operator perspective irrespective of the origin of a data model; thus, it can accommodate YANG modules that are developed outside the IETF.

 IP Prefix Advertisement in Ethernet VPN (EVPN)

 The BGP MPLS-based Ethernet VPN (EVPN) (RFC 7432) mechanism provides a flexible control plane that allows intra-subnet connectivity in an MPLS and/or Network Virtualization Overlay (NVO) (RFC 7365) network. In some networks, there is also a need for dynamic and efficient inter-subnet connectivity across Tenant Systems and end devices that can be physical or virtual and do not necessarily participate in dynamic routing protocols. This document defines a new EVPN route type for the advertisement of IP prefixes and explains some use-case examples where this new route type is used.

 YANG Data Model for Composed VPN Service Delivery

 Work in Progress

 A Network YANG Model for Service Attachment Points

 Work in Progress

 L3VPN Examples

 4G VPN Provisioning Example
 L3VPNs are widely used to deploy 3G/4G, fixed, and enterprise
 services, mainly because several traffic discrimination policies can be
 applied within the network to deliver to the mobile customers a
 service that meets the SLA requirements.
 Typically, and as shown in ,
 an eNodeB (CE) is directly connected to the access routers
 of the mobile backhaul and their logical interfaces (one or many,
 according to the service type) are configured in a VPN that transports
 the packets to the mobile core platforms. In this example, a
 'vpn-node' is created with two 'vpn-network-accesses'.

 Mobile Backhaul Example

+-------------+ +------------------+
		PE		
		198.51.100.1		
eNodeB	>--------/------->		
	vlan 1			
	>--------/------->		
	vlan 2			
	Direct	+-------------+		
+-------------+ Routing | | vpn-node-id | |
 | | 44 | |
 | +-------------+ |
 | |
 +------------------+

 To create an L3VPN service using the L3NM, the following steps can
 be followed.
 First, create the 4G VPN service ().

 Create VPN Service

POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/vpn-services
Host: example.com
Content-Type: application/yang-data+json

{
 "ietf-l3vpn-ntw:vpn-services": {
 "vpn-service": [
 {
 "vpn-id": "4G",
 "vpn-description": "VPN to deploy 4G services",
 "customer-name": "mycustomer",
 "vpn-service-topology": "custom",
 "vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "simple-profile",
 "local-as": 65550,
 "rd": "0:65550:1",
 "address-family": [
 {
 "address-family": "ietf-vpn-common:dual-stack",
 "vpn-targets": {
 "vpn-target": [
 {
 "id": 1,
 "route-targets": [
 {
 "route-target": "0:65550:1"
 }
],
 "route-target-type": "both"
 }
]
 }
 }
]
 }
]
 }
 }
]
 }
}

 Second, create a VPN node, as depicted in . In this type of service, the VPN node
 is equivalent to VRF configured in the physical device
 ('ne-id'=198.51.100.1). NOTE: '\' line wrapping in Figures and is implemented per .

 Create VPN Node
 POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
 vpn-services/vpn-service=4G
Host: example.com
Content-Type: application/yang-data+json

{
 "ietf-l3vpn-ntw:vpn-nodes": {
 "vpn-node": [
 {
 "vpn-node-id": "44",
 "ne-id": "198.51.100.1",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "simple-profile"
 }
]
 }
 }
]
 }
}

 Finally, two VPN network accesses are created using the same
 physical port ('interface-id'=1/1/1). Each 'vpn-network-access' has a
 particular VLAN interface (1,2): "SYNC" and "DATA" (). These interfaces differentiate the traffic between them.

 Create VPN Network Access
 POST: /restconf/data/ietf-l3vpn-ntw:l3vpn-ntw/\
 vpn-services/vpn-service=4G/vpn-nodes/vpn-node=44
content-type: application/yang-data+json

{
 "ietf-l3vpn-ntw:vpn-network-accesses": {
 "vpn-network-access": [
 {
 "id": "1/1/1.1",
 "interface-id": "1/1/1",
 "description": "Interface SYNC to eNODE-B",
 "vpn-network-access-type": "ietf-vpn-common:point-to-point",
 "vpn-instance-profile": "simple-profile",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 },
 "connection": {
 "encapsulation": {
 "type": "ietf-vpn-common:dot1q",
 "dot1q": {
 "cvlan-id": 1
 }
 }
 },
 "ip-connection": {
 "ipv4": {
 "local-address": "192.0.2.1",
 "prefix-length": 30,
 "address-allocation-type": "static-address",
 "static-addresses": {
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "192.0.2.2"
 }
]
 }
 },
 "ipv6": {
 "local-address": "2001:db8::1",
 "prefix-length": 64,
 "address-allocation-type": "static-address",
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "2001:db8::2"
 }
]
 }
 },
 "routing-protocols": {
 "routing-protocol": [
 {
 "id": "1",
 "type": "ietf-vpn-common:direct"
 }
]
 }
 },
 {
 "id": "1/1/1.2",
 "interface-id": "1/1/1",
 "description": "Interface DATA to eNODE-B",
 "vpn-network-access-type": "ietf-vpn-common:point-to-point",
 "vpn-instance-profile": "simple-profile",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 },
 "connection": {
 "encapsulation": {
 "type": "ietf-vpn-common:dot1q",
 "dot1q": {
 "cvlan-id": 2
 }
 }
 },
 "ip-connection": {
 "ipv4": {
 "local-address": "192.0.2.1",
 "prefix-length": 30,
 "address-allocation-type": "static-address",
 "static-addresses": {
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "192.0.2.2"
 }
]
 }
 },
 "ipv6": {
 "local-address": "2001:db8::1",
 "prefix-length": 64,
 "address-allocation-type": "static-address",
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "2001:db8::2"
 }
]
 }
 },
 "routing-protocols": {
 "routing-protocol": [
 {
 "id": "1",
 "type": "ietf-vpn-common:direct"
 }
]
 }
 }
]
 }
}

 Loopback Interface
 An example of a loopback interface is depicted in .

 VPN Network Access with a Loopback Interface (Message Body)
 {
 "ietf-l3vpn-ntw:vpn-network-accesses": {
 "vpn-network-access": [
 {
 "id": "vpn-access-loopback",
 "interface-id": "Loopback1",
 "description": "An example of a loopback interface.",
 "vpn-network-access-type": "ietf-vpn-common:loopback",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 },
 "ip-connection": {
 "ipv6": {
 "local-address": "2001:db8::4",
 "prefix-length": 128
 }
 }
 }
]
 }
}

 Overriding VPN Instance Profile Parameters
 shows a simplified example to
 illustrate how some information that is provided at the VPN service
 level (particularly as part of the 'vpn-instance-profiles') can be
 overridden by information configured at the VPN node level. In this
 example, PE3 and PE4 inherit the 'vpn-instance-profiles' parameters
 that are specified at the VPN service level, but PE1 and PE2 are
 provided with "maximum-routes" values at the VPN node level that
 override the values that are specified at the VPN service level.

 VPN Instance Profile Example (Message Body)
 {
 "ietf-l3vpn-ntw:vpn-services": {
 "vpn-service": [
 {
 "vpn-id": "override-example",
 "vpn-service-topology": "ietf-vpn-common:hub-spoke",
 "vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "HUB",
 "role": "ietf-vpn-common:hub-role",
 "local-as": 64510,
 "rd-suffix": 1001,
 "address-family": [
 {
 "address-family": "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 100
 }
]
 }
]
 },
 {
 "profile-id": "SPOKE",
 "role": "ietf-vpn-common:spoke-role",
 "local-as": 64510,
 "address-family": [
 {
 "address-family": "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 1000
 }
]
 }
]
 }
]
 },
 "vpn-nodes": {
 "vpn-node": [
 {
 "vpn-node-id": "PE1",
 "ne-id": "pe1",
 "router-id": "198.51.100.1",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "HUB",
 "rd": "1:198.51.100.1:1001",
 "address-family": [
 {
 "address-family":
 "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 10
 }
]
 }
]
 }
]
 }
 },
 {
 "vpn-node-id": "PE2",
 "ne-id": "pe2",
 "router-id": "198.51.100.2",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "SPOKE",
 "address-family": [
 {
 "address-family":
 "ietf-vpn-common:dual-stack",
 "maximum-routes": [
 {
 "protocol": "ietf-vpn-common:any",
 "maximum-routes": 100
 }
]
 }
]
 }
]
 }
 },
 {
 "vpn-node-id": "PE3",
 "ne-id": "pe3",
 "router-id": "198.51.100.3",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "SPOKE"
 }
]
 }
 },
 {
 "vpn-node-id": "PE4",
 "ne-id": "pe4",
 "router-id": "198.51.100.4",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "SPOKE"
 }
]
 }
 }
]
 }
 }
]
 }
}

 Multicast VPN Provisioning Example
 IPTV is mainly distributed through multicast over the LANs. In the
 following example, PIM - Sparse Mode (PIM-SM) is enabled and functional between the PE and
 the CE. The PE receives multicast traffic from a CE that is directly
 connected to the multicast source. The signaling between the PE and the CE is
 achieved using BGP. Also, the RP is statically configured for a multicast
 group.

 Multicast L3VPN Service Example

+-----------+ +------+ +------+ +-----------+
| Multicast |---| CE |--/--| PE |----| Backbone |
| source | +------+ +------+ | IP/MPLS |
+-----------+ +-----------+

 illustrates how to configure a
 multicast L3VPN service using the L3NM.
 First, the multicast service is created together with a generic VPN
 instance profile (see the excerpt of the request message body shown in
).

 Create Multicast VPN Service (Excerpt of the Message Request Body)
 {
 "ietf-l3vpn-ntw:vpn-services": {
 "vpn-service": [
 {
 "vpn-id": "Multicast-IPTV",
 "vpn-description": "Multicast IPTV VPN service",
 "customer-name": "a-name",
 "vpn-service-topology": "ietf-vpn-common:hub-spoke",
 "vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "multicast",
 "role": "ietf-vpn-common:hub-role",
 "local-as": 65536,
 "multicast": {
 "rp": {
 "rp-group-mappings": {
 "rp-group-mapping": [
 {
 "id": 1,
 "rp-address": "203.0.113.17",
 "groups": {
 "group": [
 {
 "id": 1,
 "group-address": "239.130.0.0/15"
 }
]
 }
 }
]
 },
 "rp-discovery": {
 "rp-discovery-type": "ietf-vpn-common:static-rp"
 }
 }
 }
 }
]
 }
 }
]
 }
}

 Then, the VPN nodes are created (see the excerpt of the request
 message body shown in). In this
 example, the VPN node will represent VRF configured in the physical
 device.

 Create Multicast VPN Node (Excerpt of the Message Request Body)
 {
 "ietf-l3vpn-ntw:vpn-node": [
 {
 "vpn-node-id": "500003105",
 "description": "VRF-IPTV-MULTICAST",
 "ne-id": "198.51.100.10",
 "router-id": "198.51.100.10",
 "active-vpn-instance-profiles": {
 "vpn-instance-profile": [
 {
 "profile-id": "multicast",
 "rd": "65536:31050202"
 }
]
 }
 }
]
}

 Finally, create the VPN network access with multicast enabled (see
 the excerpt of the request message body shown in).

 Create VPN Network Access (Excerpt of the Message Request Body)
 {
 "ietf-l3vpn-ntw:vpn-network-access": {
 "id": "1/1/1",
 "description": "Connected-to-source",
 "vpn-network-access-type": "ietf-vpn-common:point-to-point",
 "vpn-instance-profile": "multicast",
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 },
 "ip-connection": {
 "ipv4": {
 "local-address": "203.0.113.1",
 "prefix-length": 30,
 "address-allocation-type": "static-address",
 "static-addresses": {
 "primary-address": "1",
 "address": [
 {
 "address-id": "1",
 "customer-address": "203.0.113.2"
 }
]
 }
 }
 },
 "routing-protocols": {
 "routing-protocol": [
 {
 "id": "1",
 "type": "ietf-vpn-common:bgp-routing",
 "bgp": {
 "description": "Connected to CE",
 "peer-as": "65537",
 "address-family": "ietf-vpn-common:ipv4",
 "neighbor": "203.0.113.2"
 }
 }
]
 },
 "service": {
 "pe-to-ce-bandwidth": "100000000",
 "ce-to-pe-bandwidth": "100000000",
 "mtu": 1500,
 "multicast": {
 "access-type": "source-only",
 "address-family": "ietf-vpn-common:ipv4",
 "protocol-type": "router",
 "pim": {
 "hello-interval": 30,
 "status": {
 "admin-status": {
 "status": "ietf-vpn-common:admin-up"
 }
 }
 }
 }
 }
 }
 }
}

 Acknowledgements
 During the discussions of this work, helpful comments, suggestions,
 and reviews were received from (listed alphabetically) ,
 , , , , , , , , , and . Many thanks to them. Thanks to for
 the review of an early draft version of the document.
 , , , and
 contributed to early draft versions of this document. Many thanks to for the AD review. Thanks to for the routing directorate
 review, for the security directorate review,
 for the opsdir review, and for the genart directorate
 review. Thanks to for the discussion on the TCP-AO. Thanks to , , , , , , ,
 and for the IESG review.
 This work was supported in part by the European Commission-funded
 H2020-ICT-2016-2 METRO-HAUL project (G.A. 761727) and Horizon 2020
 Secured autonomic traffic management for a Tera of SDN flows (Teraflow)
 project (G.A. 101015857).

 Contributors

 Nokia

 Madrid

 Spain

 victor.lopez@nokia.com

 Huawei

 bill.wu@huawei.com

 Vodafone

 Spain

 manuel-julian.lopez@vodafone.com

 Telefonica

 lucia.olivaballega.ext@telefonica.com

 Ribbon Communications

 erez.segev@rbbn.com

 Gamma Telecom

 paul.sherratt@gamma.co.uk

 Authors' Addresses

 Telefonica

 Madrid
 Spain

 samier.barguilgiraldo.ext@telefonica.com

 Telefonica

 Madrid
 Spain

 oscar.gonzalezdedios@telefonica.com

 Orange

 Rennes
 35000
 France

 mohamed.boucadair@orange.com

 Vodafone

 Spain

 luis-angel.munoz@vodafone.com

 Nokia

 Madrid
 Spain

 alejandro.aguado_martin@nokia.com

