Document Object Model (DOM) Level 3 Content Models and Load and Save Specification

W3C

I~

DocumentObject Model (DOM) Level 3 Content Models
and Load and SaveSpecification

Version 1.0

W3C Working Draft 09 February 2001

This version:
[http://mvww.w3.0org/TR/2001/WD-DOM-Level-3-CMLS-20010309
(PostScripfile| ,[PDFfile|,[plaintext, [ZIP file] ,|single HTML file)
Latest version:
[http://mvww.w3.org/TR/DOM-Level-3-CMLS
Previous version:
[http://mvww.w3.0org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/

Editors:
Ben ChangQracle
Andy Heninger)BM
Joe KesselmanBM
Rezaur Rahmarnntel Corporation

[Copyright©2001jWw3d® (MIT}[I[NRIA] [Keid), All Rights Reserved. W3lEability] frademarlfdocument
uséandsoftwarelicensingrulesapply.

Abstract

This specification defines the Document Object Model Content Models and Load and Save Level 3, a
platform- and language-neutral interface that allows programs and scripts to dynamically access and
update the content, structure and style of documents. The Document Object Model Content Models and

Load and Save Level 3 builds on the Document Object Model Core Bevel

Status of this document

This document is an early release of the Document Object Model Level 3 Content Model and Load and

Savespecification.

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/TR/2000/WD-DOM-Level-3-Content-Models-and-Load-Save-20000901/
http://www.w3.org/TR/DOM-Level-3-CMLS
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.html
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.zip
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.txt
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.pdf
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209/DOM3-CMLS.ps
http://www.w3.org/TR/2001/WD-DOM-Level-3-CMLS-20010209
http://www.w3.org/

Table of contents

It is guaranteed to change; anyone implementing it should realize that we will not allow ourselves to be
restricted by experimental implementations of Level 3 when deciding whether to change the
specifications.

This is a W3C Working Draft for review by W3C members and other interested parties. It is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "work in progress". This is
work in progress and does not imply endorsement by, or the consensus of, either W3C or members of the
DOM workinggroup.

Comments on this document are invited and are to be sent to the public maiingwistom@w3.org
An archive is available fhttp://lists.w3.org/Archives/Public/www-dom/

This document has been produced as part ¢/ MBE DOM Activity| The authors of this document are
the DOM WGmembers.

A list of[current W3C Recommendations and other techdicalimentsan be found at
http://lwww.w3.0rg/TR.

Table of contents

|[Expanded Table dfontentp)
|CopyrightNoticea5
|Chapter 1: Content Models an@lidaton9
|[Chapter 2: Document Object Model Load 8=d/¢ 39
[Appendix A: IDL Definitiong 61
[Appendix B: Java Languadgndind 67
[Appendix C: ECMA Script Languad&ndind 17

http://www.w3.org/TR/
http://www.w3.org/DOM/Activity.html
http://lists.w3.org/Archives/Public/www-dom/

Expanded Table of Contents

Expanded Table of Contents

|[Expanded Table dEontentp

|[CopyrightNoticq .
[W3C Document Copyrlqht Notlce amntensda
[W3C Software Copyright Notice argdcensé

|Chapter 1: Content Models aN@lidation]
Il 1.1. Generaﬂ:haracterlstlds
|1.1.2. Use Cases aR&quirements
[1.2. Content Model and CM-Editirigterfacep .
[1.3. Validation and Othdnterfacep
|1.4. Document-Editinénterfacep .
[1.5. DOM Error Handleinterfacep
[1.6. Editing and Generating a Cont&fide|
[1.7. Content Model-directed Documéviainipulation
[1.8. Validating a Document Against a Contbtudel|
[1.9. Well-formednes$esting .
|[Chapter 2: Document Object Model Load eﬁu:tlda
[2.1. Load and Saveequirements .
[2.1.1. GeneraRequirements .
[2.1.2. LoadRequirements
[2.1.3. XML WriterRequirements .
[2.1.4. Other ltems Undé€onsideration
|2 2.1. Operlssuels
[2.2.2. Resolvetbsuep
2.3.Interfacep
|2 3.1. InterfacéSummart/
[2.3.2.Interfacek .

[Appendix A: IDL Definitiong
[Appendix B: Java Languad&nding
IAppendix C: ECMA Script Lanquadginding

[Referencds .

[1. Normatlvereferencels .

o v oW

© © ©

10
12
19
23
32
35
36
36
37
39
39
39
40
40
41
42
42
43
47
47
47

61
67
7
87
87
89

Expanded Table of Contents

Copyright Notice

Copyright Notice

Copyright © 2001[World Wide Web Consortium] (Massachusetts Institute ofTechnology [Institut]
[National de Recherche en Informatique et eAutomatique] [Keio University). All Rights Reserved.

This document is published under fiM8C Document Copyright Notice alhttensg[p.5] . The bindings

within this document are published under[ii@C Software Copyright Notice amdcens¢[p.6] . The

software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
'w3c.org’; in the case of the Java language binding, the package names can no longer be in the 'org.w3c’
package.

W3C Document Copyright Notice andLicense

Note: This section is a copy of the W3C Document Notice and License and could be found at
|http://www.w3.org/Consortium/Legal/copyright-documents-1999p405

Copyright © 1994-2001World Wide Web Consortium] (Massachusetts Institute ofTechnology,
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
[SoftwareNoticg By using and/or copying this document, or the W3C document from which this

statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms andonditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following éh.L copies of the document, or portions thereof, thatusmu

1. Alink or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn't exist, a notice of the form:

"Copyright © [$date-of-documern/orld Wide WebConsortium (Massachusetts Institute jof
[Technolog)/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)
3. If it exists, the STATUS of the W3@ocument.

When space permits, inclusion of the full text of tRBTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any poetieaf.

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

W3C Software Copyright Notice and License

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented ifGbpyrightFAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS 1S," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTBHEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyridhlders.

W3C Software Copyright Notice andLicense

Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
[http:/iwvww.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2001World Wide Web Consortium] (Massachusetts Institute ofTechnology
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terneemditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-softwar§Vorld Wide WebConsortiunh (Massachusetts Institute Jof
[Technologl/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/."

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

W3C Software Copyright Notice and License

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the coderiged.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyhghtters.

W3C Software Copyright Notice and License

1. Content Models and Validation

1. Content Models andValidation

Editors
Ben Chang, Oracle
Joe Kesselman, IBM
Rezaur Rahman, Int€lorporation

1.1.Overview

This chapter describes the optional DOM Lev€@ddtent Moddl (CM) feature. This module provides a
representation for XML content models, e.g., DTDs and XML Schemas, together with operations on the
content models, and how such information within the content models could be applied to XML documents
used in both the document-editing and CM-editing worlds. It also provides additional tests for
well-formedness of XML documents, including Namespace well-formedness. A DOM application can use
thehasFeat ur e method otheDOM npl enent at i on interface to determine whether a given DOM
supports these capabilities or not. One feature string for the CM-editing interfaces listed in this section is
"CM-EDIT" and another feature string for document-editing interfacé&SN&DOC".

This chapter interacts strongly with thead and Save chapter, which is also under development in DOM

Level 3. Not only will that code serialize/deserialize content models, but it may also wind up defining its
well-formedness and validity checks in terms of what is defined in this chapter. In addition, the CM and
Load/Save functional areas will share a common error-reporting mechanism allowing user-registered error
callbacks. Note that this may not imply that the parser actually calls the DOM’s validation code -- it may

be able to achieve better performance via its own -- but the appearance to the user should probably be "as
if* the DOM has been asked to validate the document, and parsers should probably be able to validate
newly loaded documents in terms of a previously loaded [ZDM

Finally, this chapter will have separate sections to address the needs of the document-editing and
CM-editing worlds, along with a section that details overlapping areas such as validation. In this manner,
the document-editing world’s focuses on editing aspects and usage of information in the CM are made
distinct from the CM-editing world’s focuses on defining and manipulating the information @Mhe

1.1.1.General Characteristics

In the October 9, 1997 DOM requirements document, the following appeared: "There will be a way to
determine the presence of a DTD. There will be a way to add, remove, and change declarations in the
underlying DTD (if available). There will be a way to test conformance of all or part of the given
document against a DTD (if available)." In later discussions, the following was added, "There will be a
way to query element/attribute (and maybe other) declarations in the underlying DTD (if available),"
supplementing the primitive support for these in Lével

That work was deferred past Level 2, in the hope that XML Schemas would be addressed as well. It is
anticipated that lowest common denominator general APIs generated in this chapter can support both
DTDs and XML Schemas, and other XML content models downoie.

1.1.2. Use Cases and Requirements

The kinds of information that a Content Model must make available are mostly self-evident from the
definitions of Infoset, DTDs, and XML Schemas. Note that some kinds of information on which the DOM
already relies, e.g., default values for attributes, will finally be given a visible representation here,
however.

1.1.2.Use Cases an®equirements

The content model referenced in these use cases/requirements is an abstraction and does not refer solely to
DTDs or XML Schemas.

For the CM-editing and document-editing worlds, the following use cases and requirements are common
to both and could be labeled as the "Validation and Other Common Functioseditygn:

UseCases:

1. CUL. Associating a content model (external and/or internal) with a document, or changing the current
association.

2. CU2. Using the same external content model with several documents, without having td.reload
Requirements:

CRL1. Validate against the content model.

CR2. Retrieve information from content model.

CR3. Load an existing content model, perhaps independently from a document.
CRA4. Being able to determine if a document has a content model associated with it.
CR5. Associate a CM with a document and make it the aCtive

aprwbd e

Specific to the CM-editing world, the following are use cases and requirements and could be labeled as
the "CM-editing"section:

UseCases:

1. CMUL. Clone/map all or parts of an existing content model to a new or existing content model.

2. CMU2. Save a content model in a separate file. For example, if a DTD can be broken up into

reusable pieces, which are then brought in via entity references, these can then be saved in a separate

file. Note that the external subset of a DTD, which includes both an internal and external subset, is a

special case of dividing a content model into entities.

CMU3. Modify an existing content model.

CMUA4. Create a new content model.

5. CMUS. Partial content model checking. For example, the document need only be validated against a
selected portion of the contembdel.

kW

Requirements:

1. CMRL1. View and modify all parts of the content model.
2. CMR2. Validate the content model itself.
3. CMRS3. Serialize the content model.

10

4.
5.
6.

1.1.2. Use Cases and Requirements

CMR4. Clone all or parts of an existing content model.
CMRS5. Create a new content model object.
CMR6. Validate portions of the XML document against the contertel.

Specific to the document-editing world, the following are use cases and requirements and could be labeled
as the "Document-editingection:

UseCases:

1.

2.

DU1. For editing documents with an associated content model, provide the guidance necessary so
that valid documents can be modified and remain valid.

DU2. For editing documents with an associated content model, provide the guidance necessary to
transform an invalid document into a vatide.

Requirements:

1.

2.

B

DR1. Be able to determine if the document is well-formed, and if not, be given enough guidance to
locate the error.

DR2. Be able to determine if the document is namespace well-formed, and if not, be given enough
guidance to locate the error.

DR3. Be able to determine if the document is valid with respect to its associated content model, and
if not, give enough guidance to locate the error.

DR4. Be able to determine if specific modifications to a document would make it become invalid.
DR5. Retrieve information from all content models. One example might be getting a list of all the
defined element names for document edipagposes.

Generalssues:

1.

I11. Some concerns exist regarding whether a single abstract Content Model structure can successfully
represent both namespace-unaware, e.g., DTD, and namespace-aware, e.g., XML Schema, models of
document’s content. For example, when you ask what elements can be inserted in a specific place,
the former will report the element@ane, e.g.f oo: bar, whereas the latter will report its

namespace and local name, €@+t p: / / my. nanespace} bar . We have added the

i sNanespaceAwar e attribute to the generic CM object to help applications determine which of

these fields are important, but we are still analyzing this challenge.

12. An XML document may be associated with multiple CMs. We have decided that only one of

these is "active" (for validation and guidance) at a time. DOM applications may switch which CM is
active, remove CMs that are no longer relevant, or add CMs to the list. If it becomes necessary to
simultaneously consult more than one CM, it should be possible to write a "union" CM which

provides that capability within this framework.

I3. Content model being able to handle more datatypes than strings. Currently, this functionality is

not available and should be dealt with in the future.

14. Round-trippability for include/ignore statements and other constructs such as parameter entities,
e.g., "'macro-like" constructs, will not be supported since no data representation exists to support
these constructs without having to re-parse them.

. 15. Basic interface for a common error handler for both CM and Load/Save. Agreement has been to

utilize user-registered callbacks but other details to be warked

11

1.2. Content Model and CM-Editing Interfaces

1.2.Content Model and CM-Editing Interfaces

A list of the proposed Content Model data structures and functions follow, starting off with the data
structures and "CM-editinghethods.

Interface CMMode

CWMVvbdel is an abstract object that could map to a DTD, an XML Schema, a database schema, etc.
It's a generalized content model object, that has both an internal and external subset. The internal
subset would always exist, even if empty, with the external subset (if present) being represented as a
link to one or morfEVEXt er nal Model [[p.14] s. It is possible, however, that none of these

[CVEXt er nal Mbdel s areactive.

IDL Definition
i nterface CMvbdel : CWNode {
readonly attribute bool ean i sNamespaceAwar e;
readonly attri bute El ement Decl arati on rootEl enent Decl;
DOVBt ri ng get Location();
nsEl enent get CMNanespace() ;
CMNanedNodeMap get CMNodes() ;
bool ean renoveNode(i n CMNode node);
bool ean i nsertBefore(in CvNode newNode,
i n CWNode ref Node) ;
bool ean val i date();
s
Attributes

i sNanespaceAwar e of typebool ean, readonly
True if this content model defines the document structure in terms of namespaces and local
names; false if the document structure is defined only in teri@slayfes.

root El emrent Decl of typeEl enent Decl ar at 1 on|[p.16] , readonly
The root element declaration for the contaaidel.

Methods

get CMNanespace
Determines namespace@\bdel .
Return Value

nsEl ement Namespace dcEMModel .

No Parameters
No Exceptions
get CMNodes
ReturngCMNode] [p.14] list of all the constituent nodes in the content model.
Return Value

[CvWNamedNodeMap|[p.15] List of all[CMNodes][p.14] of the contenmodel.

12

1.2. Content Model and CM-Editing Interfaces

No Parameters
No Exceptions
get Locati on
Location of the document describing the content model defined in this CMModel.
Return Value

DOVt ri ng This method returns a DOMString defining the absolute location from
which this document is retrieved including the docunmamte.

No Parameters
No Exceptions
i nsertBefore

Inser{CMNode][p.14] .

Parameters

newNode of typelCVNode][p.14]
[CWNode]to beinserted.

r ef Node of typelCMNode]
[CWNode]to be insertethefore.

Return Value

bool ean Success or failure..

No Exceptions
r enoveNode

Removes thepecifie@VNode] [p.14] .

Parameters

node of typelCMNode][p.14]
|CI\/Node to beremoved.

Return Value

bool ean Success or failure..

No Exceptions

val i date
Determines if a CMModel and CMExternalModel itself is valid, i.e., confirming that it's
well-formed and valid per its own formal grammar. Note that within a CMModel, a pointer
to a CMExternalModel can exist.
Return Value

bool ean Is the CMvalid?

No Parameters
No Exceptions

13

1.2. Content Model and CM-Editing Interfaces

Interface CMExternal M odél

CMVEXt er nal Model is an abstract object that could map to a DTD, an XML Schema, a database
schema, etc. It's a generalized content model object that is not bound to a particuldo2ivhent.

IDL Definition

i nterface CMExternal Model : CwWbdel ({
b

Interface CMNode

CMNodeis analogous to Hode in the Core DOM, e.g., an element declaration. This can exist for
both[CMEXxt er nal Model |[p.14] (include/ignore must be handled here) [@Mbdel][p.12] . It
should handle thiollowing:

i nterface ComrentsPlsDeclaration { attribute Processinglnstruction
pis; attribute Comment conments; }; interface Conditional
Declaration { attribute bool ean includel gnore; };

Opaque.
IDL Definition
i nterface CMNode {

const unsigned short ELEMVENT _DECLARATI ON = 1;
const unsigned short ATTRI BUTE_DECLARATI ON = 2;
const unsigned short CM _NOTATI ON_DECLARATI ON = 3;
const unsigned short ENTI TY_DECLARATI ON = 4;
const unsigned short CM _CHI LDREN = b;
const unsigned short CM_MODEL = 6;
const unsigned short CM_EXTERNAL MODEL = 7;
readonly attribute unsigned short cmNodeType;
CWMNode cl oneCM);
CWMNode cl oneExt ernal CM) ;

}s

ConstantELEMENT_DECLARATION

The node is agl ement Decl ar at i on|[p.16] .
ConstantATTRIBUTE_DECLARATION

The node is @At t ri but eDecl ar ati on|[p.18] .
ConstantCM_NOTATION_DECLARATION

The node is EMNot at i onDecl ar at i on|[p.19] .
ConstantENTITY_DECLARATION

The node is afgnt i t yDecl ar at i on|[p.19] .
ConstantCM_CHILDREN

The node is €MChi T dr en][p.18] .
ConstantCM_MODEL

The node is @€WvVbdel][p.12] .

14

1.2. Content Model and CM-Editing Interfaces

ConstantCM_EXTERNALMODEL
The node is @VEXt er nal Mbdel |[p.14] .
Attributes
cmNodeType of typeunsi gned short, readonly
A code representing the underlying object as defaimve.
Methods
cl oneCM
Creates a copy {fMbdel |[p.12] . No document refers to ti@MNode returned.
Return Value

[p.14 ClonedCMNode.

No Parameters
No Exceptions
cl oneExt er nal CM
Creates a copy {@VExt er nal Model][p.14] . It is possible that a document would not
refer to theCMNode returned.
Return Value

[p.14 ClonedCMNode.

No Parameters
No Exceptions
Interface CMNodeList

CMNodelLi st is the CM analogue tdodelLi st ; the document order is meaningful, as opposed to
[CWNanmedNodeMap|[p.15] .

IDL Definition

i nterface CWMNodeLi st {
b

Interface CMNamedNodeMap

CvNanedNodeMap is the CM analogue tdamedNodeMap. The order is natneaningful.

IDL Definition

i nterface CMNanedNodeMap {
b

Interface CMDataType

The primitive datatypes supported currently ater.i ng, bool ean, f| oat,doubl e, deci nal .

15

1.2. Content Model and CM-Editing Interfaces

IDL Definition
i nterface CMVDat aType {
const short STRI NG_DATATYPE = 1;
const short BOOLEAN_DATATYPE = 2;
const short FLOAT_DATATYPE = 3
const short DOUBLE_DATATYPE = 4;
const short LONG_DATATYPE = b5;
const short | NT_DATATYPE = 6;
const short SHORT_DATATYPE =7
const short BYTE_DATATYPE = 8;
attribute int | owval ue;
attribute int hi ghVal ue;
short getPrimtiveType();

b

ConstantSTRING_DATATYPE
code representing ttet r i ng data type as defined[KML SchemaDatatypes
ConstantBOOLEAN_DATATYPE
code representing thmol ean data type as defined XML SchemaDatatypeps
ConstantFLOAT_DATATYPE
code representing tid oat data type as defined XML SchemaDatatypeps
ConstantDOUBLE_DATATYPE
code representing tloubl e data type as defined[KML SchemaDatatypes
ConstantLONG_DATATYPE
code representing a long data type as definpgdMh SchemaDatatypeps
ConstantINT_DATATYPE
code representing amt eger data type as defined XML SchemaDatatypeps
ConstantSHORT_DATATYPE
code representing a short data type as defin/ih SchemaDatatypels
ConstantBYTE_DATATYPE
code representing a byte data type as defingd/ih SchemaDatatypels
Attributes
hi ghVal ue of typei nt
The high value for the data type in the valaege.
| owval ue of typei nt
The low value for the data type in the vataage.
Methods
getPrimtiveType
Returns one of the enumerated code representing the primitive data type.
Return Value

short code representing the primitive type of the attachedittata

No Parameters
No Exceptions
Interface ElementDeclaration

16

http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#byte
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#short
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#int
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#long
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#double
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#float
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#boolean
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/#string

1.2. Content Model and CM-Editing Interfaces

The element name along with the content specification in the conteiki\ade] [p.14] .

IDL Definition
i nterface El enentDecl aration {
i nt get Cont ent Type() ;
CMChi | dren get CMChi | dren();
CMNaredNodeMap get CMAttri but es();
CMNarredNodeMap get CMG andChi I dren() ;
b
Methods

get CMAt tri but es
Returns {CMNamedNodeMap] [p.15] containindAt t r i but eDecl ar at i ons][p.18] for
all the attributes that can appear on this type of element.
Return Value

[CWNanedNodeMap|[p.15 Attributes list for thigCVNode][p.14] .

No Parameters
No Exceptions
get CMChi | dren
Gets content model of element.
Return Value

[p.18] Content model oélement.

No Parameters
No Exceptions
get CM& andChi | dren
Returns {CMNamedNodeMap] [p.15] containingEl ement Decl ar at i ons for all the
El ement s that can appear as children of this type of element. Note that which ones can

actually appear, and in what order, is defined bya¥ehi I dr en][p.18] .

Return Value

[CWNamedNodeMap|[p.15] Children list for thifCVNode][p.14] .

No Parameters
No Exceptions
get Cont ent Type
Gets content type, e.g., empty, any, mixed, elements, PCDATA, of an element.
Return Value

i nt Content typeonstant.

17

1.2. Content Model and CM-Editing Interfaces

No Parameters
No Exceptions
Interface CMChildren

An element in the context of@Node][p.14] .

IDL Definition
interface CMchildren {
attribute DOVString |'i st Operator;
attri bute CMDat aType el ement Type;
attribute int mul tiplicity;
attri bute CvNamedNodeMap subModel s;
readonly attribute bool ean i sPCDat aOnl y;
b
Attributes

el ement Type of typefOVDat aTy pe][p.15]

Datatype of thelement.

i sPCDat aOnl y of typebool ean, readonly
Boolean defining whether the element type contains child elements and PCDATA or
PCDATA only for mixed element types. True if the element is of type PCDATA only.
Relevant only for mixed content type elements.
(ED: Do we really need this attribu®

I'i st Qperator of typeDOVt ri ng
Operatotist.

mul tiplicity oftypei nt
0 or 1 ormany.

subMbdel s of typelCVNanedNode Vap][p.15]
Additional[CMNode][p.14] s in which the element can Hefined.

Interface AttributeDeclaration

An attribute in the context off@Node][p.14] .

IDL Definition
interface Attri buteDeclaration {
const short NO_VALUE_CONSTRAI NT = 0;
const short DEFAULT _VALUE_CONSTRAI NT = 1;
const short FI XED_VALUE_CONSTRAI NT = 2;
readonly attribute DOVString att r Name;
attri bute CMDat aType attrType;
attribute DOVString attri but eVal ue;
attribute DOVString enunmAttr;
attri bute CMNodeli st owner El enent ;
attribute short constrai nt Type;

b

ConstantNO_VALUE_CONSTRAINT
Describes that the attribute does not have any value constraint.

18

1.2. Content Model and CM-Editing Interfaces

ConstantDEFAULT_VALUE_CONSTRAINT
Indicates that the there is a default value constraint.
ConstantFIXED_VALUE_CONSTRAINT
Indicates that there is a fixed value constraint for this attribute.
Attributes
at t r Name of typeDOVSt r i ng, readonly
Name ofattribute.
attr Type of typefCMVDat aTypel[p.15]
Datatype of thattribute.
attri but eVal ue of typeDOVBt ri ng
Defaultvalue.
constrai nt Type of typeshort
Constraint type if any for thiattribute.
enumAt t r of typeDOMSt ri ng
Enumeration ofttribute.
owner El ement of typelCMNodeLi st][p.15]
Owner element CMNode aittribute.
Interface EntityDeclaration

As in currentDOM.

IDL Definition

interface EntityDeclaration {

b
Interface CMNotationDeclaration

This interface represents a notataectlaration.

IDL Definition
interface CMNot ati onDecl aration {
attribute DOVString strSystem dentifier;
attribute DOVString strPublicldentifier;
b
Attributes

strPublicldentifier oftypeDOVSt ri ng
The string representing the public identifier for this notatiealaration.

strSystem dentifier of typeDOVSt ri ng
the URI representing the system identifier for the notation declaration, if present, null
otherwise.

19

1.3. Validation and Other Interfaces

1.3.Validation and Other Interfaces

This section contains "Validation and Other" methods common to both the document-editing and
CM-editing worlds (includeBocunent][p.20] , DOM npl enent at i on, andDOVEr r or Hand[er]
[p-32] methods).

Interface Document

Theset Er r or Handl er method is off of th&®ocunent interface.

IDL Definition

i nterface Docunent {

voi d set Error Handl er (i n DOVErr or Handl er handl er);
s

Methods

set Err or Handl er

Allow an application to register an error event handler.
Parameters
handl er of typgDOVEr r or Handl er|[p.32]
The errothandler
No Return Value
No Exceptions

Interface DocumentCM

This interface extends tf@cunent][p.20] interface with additional methods for both document
and CMediting.
IDL Definition
i nterface DocunentCM : Docurnent {
i nt numCMVs () ;
CW\bdel getlnternal CM);
CMExt er nal Model * get CMVs();
CW\bdel get ActiveCM);
voi d addCM i n CMvbdel cm);
voi d renoveCM i n CMVbdel cn);
bool ean activateCMin Cvvbdel cm;
}
Methods

acti vat eCM

Make the givefCMVbdel |[p.12] active. Note that if a user wants to activate one CM to get
default attribute values and then activate another to do validation, a user can do that;
however, only one CM is active at a time.
Parameters
cmof typelCvMbdeTl][p.12]

CM to be active for the document. points to a list of

[CVEXt er nal Model |[p.14] s; with this call, only the specified CM will lzetive.

20

1.3. Validation and Other Interfaces

Return Value

bool ean True if thgCMVbdel |has already been associated with the document
usingaddCM) ; false ifnot.

No Exceptions
addC™M

Associate {CMVbdel |[p.12] with a document. Can be invoked multiple times to result in a
list of[QVExt er nal Model |[p.14] s. Note that only one sole inter{@Wbdel |is
associated with the document, however, and that only one of the possible list of
[CVEXt er nal Mbdel k is active at any one time.
Parameters
cmof typelCVvbdeT][p.12]
CM to be associated with tli®cument.
No Return Value
No Exceptions
get Acti veCM

Find the activgCVEXt er nal Mbdel |[p.14] for a document.
Return Value

with a pointer to the actiN@VExt er nal Model |[p.14]
[p.12] of document.

No Parameters
No Exceptions
get CMvs

Obtains a list JCVEXt er nal Model|[p.14] s associated with a document from the
[p.12] . This list arises wheaddCM) is invoked.
Return Value

CMEXxt er nal Model A list of[CVEXt er nal Model |[p.14] s associated with a
* document.

No Parameters
No Exceptions
getInternal CM
Find the sol{gCMvbdel][p.12] of a document. Only off@vvbdel | may be associated with
the document.
Return Value

[CWbdeT][p.12]

No Parameters
No Exceptions

21

1.3. Validation and Other Interfaces

nunCvVs

Determines number [VExt er nal Model |[p.14] s associated with the document. Only
oneglCMVbdel |[p.12] can be associated with the document, but it may point to a list of
[CVExt er nal Model k.

Return Value

i nt Non-negative number of external Gdjects.

No Parameters
No Exceptions
removeCM
Removes a CM associated with a document; actually rem{@eBé er nal Model |

[p.14] . Can be invoked multiple times to remove a number of these in the list of
[CVEXt er nal Mbdel k.
Parameters
cmof typelCMvbdel] [p.12]
CM to beremoved.
No Return Value
No Exceptions
Interface DOMI mplementationCM

This interface extends theOM npl ement at i on interface with additionahethods.

IDL Definition
interface DOM npl enentati onCM : DOM npl enent ati on {
CW\bdel createCM);
CMEXt er nal Model createExternal CM);
b
Methods
creat eCM

Creates a CMModel.
Return Value

[p.12] A NULL return indicatedailure.

No Parameters
No Exceptions
cr eat eExt er nal CM
Creates a CMExternalModel.
Return Value

[CVEXt er nal Model [[p.14] A NULL return indicatedailure.

22

1.4. Document-Editing Interfaces

No Parameters
No Exceptions
1.4.Document-Editing Interfaces

This section contains "Document-editing” methods (inclidege, El ement , Text andDocunent]
[p.20] methods).

Interface NodeCM
This interface extends tiNode interface with additional methods for guided docunsetiting.

IDL Definition

interface NodeCM : Node {
bool ean canl nsertBefore(i n Node newChild,
in Node refChild)
rai ses(DOVExcepti on);

bool ean canRenoveChi I d(in Node ol dChi | d)
rai ses(DOVExcepti on);
bool ean canRepl aceChil d(i n Node newChild,

in Node ol dChil d)
rai ses(DOVExcepti on);
bool ean canAppendChi | d(i n Node newChi | d)
rai ses(DOVExcepti on);
bool ean isValid();

}s

Methods
canAppendChi |l d
Has the same args AppendChi | d.
Parameters
newChi | d of typeNode
Node to beappended.
Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canl nsert Before
Determines whether thdode: : | nser t Bef or e operation would make this document
invalid with respect to the currently active CM. ISSUE: Describe "valid" when referring to
partially completed documents.
Parameters

23

1.4. Document-Editing Interfaces

newChi | d of typeNode
Node to beinserted.
r ef Chi | d of typeNode
ReferencéNode.
Return Value

bool ean A boolean that is true if thidode: : | nser t Bef or e operation is
allowed.

Exceptions

DOVExcepti on DOMException.

canRenoveChi | d
Has the same args BenoveChi | d.
Parameters
ol dChi | d of typeNode
Node to beremoved.
Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canRepl aceChi l d
Has the same args Bepl aceChi | d.
Parameters
newChi | d of typeNode
New Node.
ol dChi | d of typeNode
Node to bereplaced.
Return Value

bool ean Success ofailure.

Exceptions

DOVException DOMException.

24

1.4. Document-Editing Interfaces

isvalid
Determines if the Node is valid relative to currently active CM.
Return Value

bool ean True if the node is valid in the current context, falg®oif

No Parameters
No Exceptions
Interface ElementCM

This interface extends ti# enent interface with additional methods for guided docunesfiting.

IDL Definition

interface ElenentCM : El enment {
i nt content Type();
El enent Decl arati on get El enent Decl arati on()
rai ses(DOVExcepti on);

bool ean canSet Attribute(in DOVString attrname,
in DOVBtring attrval);

bool ean canSet Attri but eNode(i n Node node);

bool ean canSet Attri but eNodeNS(i n Node node,

in DOVBtring nanespaceURl,
in DOVBtring | ocal Nane) ;
bool ean canSet AttributeNS(in DOMString attrnane,
in DOVBtring attrval,
in DOVBtring nanespaceURl,
in DOVBtring | ocal Nane) ;

}s

Methods
canSet Attri bute
Sets value for specified attribute.
Parameters
at t r name of typeDOVSt ri ng
Name ofattribute.
attrval of typeDOVSt ri ng
Value to be assigned to th#ribute.
Return Value

bool ean Success ofailure.

No Exceptions
canSet Attri but eNS
Determines if namespace of attribute can be set.
Parameters
at t r nane of typeDOVSt ri ng
Name ofattribute.

25

1.4. Document-Editing Interfaces

attrval of typeDOVSt ri ng
Value to be assigned to thdribute.
namespaceURl of typeDOVSt ri ng
namespaceURl of namespace.
| ocal Name of typeDOVSt ri ng
| ocal Name of namespace.
Return Value

bool ean Success ofailure.

No Exceptions
canSet Attri but eNode
Determines if attribute can be set.
Parameters
node of typeNode
Node in which the attribute can possibly bet.
Return Value

bool ean Success ofailure.

No Exceptions
canSet Attri but eNodeNS
Determines if namespace of attribute’s node can be set.
Parameters
node of typeNode
Attribute’s Node in which to set th@eamespace.
nanespaceURIl of typeDOMVSt ri ng
namespaceURl of namespace.
| ocal Name of typeDOVSt ri ng
| ocal Name of namespace.
Return Value

bool ean Success ofailure.

No Exceptions

cont ent Type
Determines element content type.
Return Value

i nt Constant for mixed, empty, angtc.

No Parameters
No Exceptions

26

1.4. Document-Editing Interfaces

get El ement Decl arati on
gets the CM editing object describing this element
Return Value

[El ement Decl ar ati on|[p.16] ElementDeclaratioobject

Exceptions

DOVException If no DTD is present raises thixception

No Parameters
Interface CharacterDataCM

This interface extends tléhar act er Dat a interface with additional methods for document
editing.

IDL Definition
i nterface CharacterDataCM: Text {
bool ean i s\Whi tespaceOnl y();
bool ean canSet Dat a(i n unsi gned | ong of f set,

in DOVBtring arQ)
rai ses(DOVExcepti on);

bool ean canAppendDat a(in DOVBtring arg)
rai ses(DOVExcepti on);
bool ean canRepl aceDat a(i n unsi gned | ong of fset,

i n unsigned | ong count,
in DOVBtring arQ)
rai ses(DOVExcepti on);
bool ean canl nsertData(i n unsigned | ong offset,
in DOVBtring arg)
rai ses(DOVExcepti on);
bool ean canDel et eDat a(i n unsi gned | ong of f set,
in DOVBtring arg)
rai ses(DOVExcepti on);
b

Methods
canAppendDat a
Determines if data can be appended.
Parameters
ar g of typeDOVSt ri ng
Argument to beppended.
Return Value

bool ean Success ofailure.

27

1.4. Document-Editing Interfaces

Exceptions

DOVExcepti on DOMException.

canDel et eDat a

Determines if data can be deleted.

Parameters

of f set of typeunsi gned | ong
Offset.

ar g of typeDOVSt r i ng
Argument to beset.

Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canl nsertDat a

Determines if data can be inserted.

Parameters

of f set of typeunsi gned | ong
Offset.

ar g of typeDOVSt r i ng
Argument to beset.

Return Value

bool ean Success odfailure.

Exceptions

DOVExcepti on DOMException.

canRepl aceDat a

Determines if data can be replaced.

Parameters

of f set of typeunsi gned | ong
Offset.

count of typeunsi gned | ong
Replacement.

ar g of typeDOVSt ri ng
Argument to beset.

Return Value

28

1.4. Document-Editing Interfaces

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMException.

canSet Dat a
Determines if data can be set.
Parameters
of f set of typeunsi gned | ong
Offset.

ar g of typeDOVSt ri ng
Argument to beset.
Return Value

bool ean Success ofailure.

Exceptions

DOVExcepti on DOMEXxception.

i sWhitespaceOnly
Determines if content is only whitespace.
Return Value

bool ean True if content only whitespace; false for non-whitespace if it is a text
node in elementontent.

No Parameters
No Exceptions
Interface DocumentTypeCM

This interface extends tliBcunent Type interface with additional methods for documediting.

IDL Definition
i nterface Docunent TypeCM : Docunent Type {
bool ean i sEl ement Defined(in DOVString el enifypeNane) ;
bool ean i sEl ement Defi nedNS(in DOVBtring el enifypeNane,

in DOVBtring namespaceUR!,
in DOVBtring | ocal Nane) ;

bool ean i sAttributeDefined(in DOVBtring el eniTypeNane,
in DOVBtring attrNane);
bool ean i sAttributeDefinedNS(in DOVString el eniTypeNane,

in DOVBtring attrNane,

29

1.4. Document-Editing Interfaces

in DOVBtri ng namespaceUR!,
in DOVBtring | ocal Nane) ;
bool ean i sentityDefined(in DOVString ent Nane);

}s

Methods
i SAttri buteDefined
Determines if this attribute is defined for this element in the currently active CM.
Parameters
el emlypeNane of typeDOMSt ri ng
Name ofelement.
at t r Nane of typeDOVSt ri ng
Name ofattribute.
Return Value

bool ean Success ofailure.

No Exceptions
i SAttri but eDefinedNS

Determines if this attribute’s namespace is defined in the currently active CM.

Parameters

el enTypeNane of typeDOVBt ri ng
Name ofelement.

at t r Name of typeDOVBt r i ng
Name ofattribute.

nanespaceURIl of typeDOMSt ri ng
nanespaceURl of namespace.

| ocal Nane of typeDOVSt ri ng
| ocal Nane of namespace.

Return Value

bool ean Success ofailure.

No Exceptions
i SEl erent Defi ned
Determines if this element is defined in the currently active CM.
Parameters
el emlypeNane of typeDOMSt ri ng
Name ofelement.
Return Value

bool ean Success ofailure.

No Exceptions

30

1.4. Document-Editing Interfaces

i SEl enent Def i nedNS
Determines if this element’s namespace is defined in the currently active CM.
Parameters
el enifypeNane of typeDOVSt r i ng
Name ofelement.
nanespaceURIl of typeDOVSt ri ng
namespaceURl of namespace.
| ocal Namre of typeDOVSt ri ng
| ocal Name of namespace.
Return Value

bool ean Success ofailure.

No Exceptions
i sEntityDefined
Determines if an entity is defined in tdecument.
ISSUE: Should methods be added to the DocumentTypeCM for the complete list of
defined elements and for a particular element type, the complete list of defined attributes.
These two methods might return a list of strings which is a type not yet described in the
DOM spec.
Parameters
ent Nanme of typeDOMSt ri ng
Name ofentity.
Return Value

bool ean Success ofailure.

No Exceptions
Interface AttributeCM

This interface extendat t r to provide guided editing of an XMdocument.

IDL Definition

interface AttributeCM {
AttributeDecl aration getAttributeDeclaration();
CMNot at i onDecl arati on get Notation()
rai ses(DOVExcepti on);

}s

Methods
get Attri but eDecl arati on
returns the corresponding attribute declaration in the content model.
Return Value

31

1.5. DOM Error Handler Interfaces

At tri but eDecl ar ati on| The attribute declaration corresponding to this
[p.18] attribute

No Parameters
No Exceptions
get Not ati on
Returns the notation declaration for the attributes defined of type NOTATION.
Return Value

|CVNot at i onDecl ar ati on| Returns the notation declaration for this attribute
[p.19 if the type is of notation type, nudtherwise.
Exceptions

DOVExcepti on DOMEXxception

No Parameters

1.5.DOM Error Handler Interfaces

This section contains DOM error handlimgerfaces.
Interface DOMErrorHandler

Basic interface for DOM error handlers. If an application needs to implement customized error
handling for DOM such as CM or Load/Save, it must implement this interface and then register an
instance using theet Er r or Handl er method. All errors and warnings will then be reported
through this interface. Application writers can override the methods in a subclass to take
user-specified@ctions.

IDL Definition

i nterface DOVErrorHandl er {
voi d war ni ng(i n DOMLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(DOVByst enExcepti on);
voi d fatal Error(in DOMLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(DOVByst enExcepti on);
voi d error (i n DOVLocat or where,
in DOVBtring how,
in DOVBtring why)
rai ses(DOVByst enExcepti on);

32

Methods

1.5. DOM Error Handler Interfaces

error

Receive notification of a recoverable error per section 1.2 of the W3C XML 1.0
recommendation. The default behavior if the user doesn’t register a handler is to report
conditions that are not fatal errors, and allow the calling application to continue processing.
Parameters
wher e of typeDOMLocat or][p.34]
Location of the error, which could be either a source position in the case of loading, or
a node reference for later validation. The public ID and system ID for the error
location could be some of ti@formation.
how of typeDOVSt ri ng
How the erroioccurred.
why of typeDOVSt ri ng
Why the erroioccurred.
Exceptions

DOVByst enmExcepti on A subclass oDOMEXxception.

No Return Value

fatal Error

Report a fatal, non-recoverable CM or Load/Save error per section 1.2 of the W3C XML
1.0 recommendation. The default behavior if the user doesn't register a handler is to throw
a DOMSystemException and stop all further processing.
Parameters
wher e of typeDOVLocat or][p.34]
Location of the fatal error, which could be either a source position in the case of
loading, or a node reference for later validation. The public ID and system ID for the
error location could be some of timformation.
how of typeDOVSt ri ng
How the fatal errooccurred.
why of typeDOMSt ri ng
Why the fatal errooccurred.
Exceptions

DOVByst enExcepti on A subclass oDOMEXxception.

No Return Value

war ni ng

Receive notification of a warning per the W3C XML 1.0 recommendation. The default
behavior if the user doesn’t register a handler is to report conditions that are not errors or
fatal errors, and then allow the calling application to continue even after invoking this
method.

Parameters

33

1.5. DOM Error Handler Interfaces

wher e of typeDOVLocat or][p.34]
Location of the warning, which could be either a source position in the case of
loading, or a node reference for later validation. The public ID and system ID for the
error location could be some of timéormation.

how of typeDOVSt ri ng
How the warningpccurred.

why of typeDOVSt ri ng
Why the warningccurred.

Exceptions

DOVByst enmExcepti on A subclass oDOMEXxception.

No Return Value
Interface DOML ocator

This interface provides document location information and is similar to a SAX |aizéemt.

IDL Definition
interface DOMLocat or {
i nt get Col utmmNunber () ;
i nt get Li neNunber () ;
DOVBt ri ng getPubliclX);
DOVBt ri ng get System () ;
Node get Node() ;
b
Methods

get Col umNunber
Return the column number.
Return Value

i nt The column number, or -1 if noneasailable.

No Parameters
No Exceptions
get Li neNunber
Return the line number.
Return Value

i nt The line number, or -1 if none available.

No Parameters

No Exceptions
get Node

Return the Node.

Return Value

34

1.6. Editing and Generating a Content Model

Node The NODE, or null if none iavailable.

No Parameters

No Exceptions
getPubliclD

Return the public identifier.

Return Value

DOVt ri ng A string containing the public identifier, or null if noneargailable.

No Parameters
No Exceptions
get System D
Return the system identifier.
Return Value

DOVBt ring A string containing the system identifier, or null if nonavsilable.

No Parameters
No Exceptions

1.6. Editing and Generating a ContentModel

Editing and generating a content model falls in the CM-editing world. The most obvious requirement for
this set of requirements is for tools that author content models, either under user control, i.e., explicitly
designed document types, or generated from other representations. The latter class includes transcoding
tools, e.g., synthesizing an XML representation to match a datstizema.

It's important to note here that a DTD’s "internal subset" is part of the Content Model, yet is loaded,

stored, and maintained as part of the individual document instance. This implies that even tools which do
not want to let users change the definition of the Document Type may need to support editing operations
upon this portion of the CM. It also means that our representation of the CM must be aware of where each
portion of its content resides, so that when the serializer processes this document it can write out just the
internal subset. A similar issue may arise with external parsed entities, or if schemas introduce the ability

to reference other schemas. Finally, the internal-subset case suggests that we may want at least a two-level
representation of content models, so a single DOM representation of a DTD can be shared among several
documents, each potentially also having its own internal subset; it's possible that entity layering may be
represented the samay.

The API for altering the content model may also be the CM’s official interface with parsers. One of the
ongoing problems in the DOM is that there is some information which must currently be created via
completely undocumented mechanisms, which limits the ability to mix and match DOMs and parsers.
Given that specialized DOMs are going to become more common (sub-classed, or wrappers around other
kinds of storage, or optimized for specific tasks), we must avoid that situation and provide a "builder"”

API. Particular pairs of DOMs and parsers may bypass it, but it's required as a pomadxlitgnism.

35

1.7. Content Model-directed Document Manipulation

Note that several of these applications require that a CM be able to be created, loaded, and manipulated
without/before being bound to a specific Document. A related issue is that we’d want to be able to share a
single representation of a CM among several documents, both for storage efficiency and so that changes in
the CM can quickly be tested by validating it against a set of known-good documents. Similarly, there is a
known problem in DOM Level 2 where we assume that the DocumentType will be created before the
Document, which is fine for newly-constructed documents but not a good match for the order in which an
XML parser encounters this data; being able to "rebind" a Document to a new CM, after it has been
created may bdesirable.

As noted earlier, questions about whether one can alter the content of the CM via its syntax, via
higher-level abstractions, or both, exist. It's also worth noting that many of the editing concepts from the
Document tree still apply; users should probably be able to clone part of a CM, remove and re-insert parts,
and soon.

1.7.Content Model-directed DocumentManipulation

In addition to using the content model to validate a document instance, applications would like to be able
to use it to guide construction and editing of documents, which falls into the document-editing world.
Examples of this sort of guided editing already exist, and are becoming more common. The necessary
gueries can be phrased in several ways, the most useful of which may be a combination of "what does the
DTD allow me to insert here" and "if | insert this here, will the document still be valid". The former is

better suited to presentation to humans via a user interface, and when taken together with sub-tree
validation may subsume thagter.

It has been proposed that in addition to asking questions about specific parts of the content model, there
should be a reasonable way to obtain a list of all the defined symbols of a given type (element, attribute,
entity) independent of whether they’re valid in a given location; that might be useful in building a list in a
user-interface, which could then be updated to reflect which of these are relevant for the program’s current
state.

Remember that namespaces also weigh in on this issue, in the case of attributes, a "can-this-go-there" may
prompt a namespace-well-formedness check and warn you if you're about to conflict with or overwrite
another attribute with the same namespaceURI/localName but different prefix... or same nodeName but
differentnamespaceURI.

As mentioned above, we have to deal with the fact that the shortest distance between two valid documents
may be through an invalid one. Users may want to know several levels of detail (all the possible children,
those which would be valid given what precedes this point, those which would be valid given both
preceding and following siblings). Also, once XML Schemas introduce context sensitive validity, we may
have to consider the effect of children as well as the individual nodeibsérged.

1.8.Validating a Document Against a ContentModel

The most obvious use for a content model (DTD or XML Schema or any Content Model) is to use it to
validate that a given XML document is in fact a properly constructed instance of the document type
described by this CM. This again falls into the document-editing world. The XML spec only discusses

36

1.9. Well-formedness Testing

performing this test at the time the document is loaded into the "processor”, which most of us have taken
to mean that this check should be performed at parse time. But it is obviously desirable to be able to
validate again a document -- or selected subtrees -- at other times. One such case would be validating an
edited or newly constructed document before serializing it or otherwise passing it to other users. This
issue also arises if the "internal subset" is altered -- or if the whole Content dhadeles.

In the past, the DOM has allowed users to create invalid documents, and assumed the serializer would
accept the task of detecting problems and announcing/repairing them when the document was written out
in XML syntax... or that they would be checked for validity when read back in. We considered adding
validity checks to the DOM’s existing editing operations to prevent creation of invalid documents, but are
currently inclined against this for several reasons. First, it would impose a significant amount of
computational overhead to the DOM, which might be unnecessary in many situations, e.g., if the change is
occurring in a context where we know the result will be valid. Second, "the shortest distance between two
good documents may be through a bad document". Preventing a document from becoming temporarily
invalid may impose a considerable amount of additional work on higher-level code and users Hence our
current plan is to continue to permit editing to produce invalid DOMs, but provide operations which

permit a user to check the validity of a nodedemand.

Note that validation includes checking that ID attributes are unique, and that IDREFs point to IDs which
actuallyexist.

1.9. Well-formednessTesting

XML defined the "well-formed{WF) state for documents which are parsed without reference to their
DTDs. Knowing that a document is well-formed may be useful by itself even when a DTD is available.
For example, users may wish to deliberately save an invalid document, perhaps as a checkpoint before
further editing. Hence, the CM feature will permit both full validity checking (see next section) and
"lightweight" WF checking, as requested by the caller, as well as processing entity declarations in the CM
even if validation is not turned on. This falls within the document-editioidd.

While the DOM inherently enforces some of XML'’s well-formedness conditions (proper nesting of
elements, constraints on which children may be placed within each node), there are some checks that are
not yet performed. Theseclude:

® Character restrictions for text content and attribute values. Some characters aren’t permitted even
when expressed as numeric character entities

® The three-character sequence "]]>" in CDATASections.

® The two-character sequence "--" in comments. (Which, be it noted, some XML validators don’t
currently remember ttest...)

In addition, Namespaces introduce their own concepts of well-forme@p=sfically:

® No two attributes on a single Element may have the same combination of namespaceURI and
localName, even if their prefixes are different and hence they don’t conflict under XML 1.0 rules.

® NamespaceURIs must be legal URI syntax. (Note that once we have this code, it may be reusable for
the URI "datatype" in document content; see discussion of datatypes.)

e The mapping of namespace prefixes to their URIs must be declared and consistent. That isn’t

37

1.9. Well-formedness Testing

required during normal DOM operation, since we perform "early binding" and thereafter refer to

nodes primarily via their namespaceURIs and localName. But it does become an issue when we want
to serialize the DOM to XML syntax, and may be an issue if an application is assuming that all the
declarations are present and correct. This may imply that we should provide a

namespaceNor mal i ze operation, which would create the implied declarations and reconcile
conflicts in some reasonably standardized manner. This may be a major undertaking, since some
DOMs may be using the namespace to direct subclassing of the nodes or similar special treatment; as
with the existinghor mal i ze method, you may be left with a different-but-equivalent set of node
objects.

In the past, the DOM has allowed users to create documents which violate these rules, and assumed the
serializer would accept the task of detecting problems and announcing/repairing them when the document
was written out in XML syntax. We considered adding WF checks to the DOM'’s existing editing
operations to prevent WF violations from arising, but are currently inclined against this for two reasons.
First, it would impose a significant amount of computational overhead to the DOM, which might be
unnecessary in many situations (for example, if the change is occurring in a context where we know the
illegal characters have already been prevented from arising). Second, "the shortest distance between two
good documents may be through a bad document" -- preventing a document from becoming temporarily
ill-formed may impose a considerable amount of additional work on higher-level code and users. (Note
possible issue for Serialization: In some applications, being able to save and reload marginally
poorly-formed DOMs might be useful -- editor checkpoint files, for example.) Hence our current plan is to
continue to permit editing to produce ill-formed DOMSs, but provide operations which permit a user to
check the well-formedness of a node on demand, and possibly provide some of the primitive (e.g.,
string-checking) functiondirectly.

38

2. Document Object Model Load and Save

2. Document Object Model Load andSave
Editors

Andy Heninger)BM
2.1.Load and SaveRequirements

DOM Level 3 will provide an API for loading XML source documents into a DOM representation and for
saving a DOM representation as a XMbcument.

Some environments, such as the Java platform or COM, have their own ways to persist objects to streams
and to restore them. There is no direct relationship between these mechanisms and the DOM load/save
mechanism. This specification defines how to serialize documents only to and fronfoXivLt.

2.1.1.General Requirements

Requirements that apply to both loading and sastouments.

2.1.1.1.DocumentSources
Documents must be able to be parsed from and saved to the folEwiraps:

® [nput and Output Streams
® URIs
® Files

Note that Input and Output streams take care of the in memory case. One point of caution is that a stream
doesn’t allow a base URI to be defined against which all relative URIs in the documessadved.

2.1.1.2.Content Model Loading

While creating a new document using the DOM API, a mechanism must be provided to specify that the
new document uses a pre-existing Content Model and to cause that Content Modighdethe

Note that while DOM Level 2 creation can specify a Content Model when creating a document (public
and system IDs for the external subset, and a string for the subset), DOM Level 2 implementations do not
process the Content Model’s content. For DOM Level 3, the Content Model’s content maeed be

2.1.1.3.Content Model Reuse
When processing a series of documents, all of which use the same Content Model, implementations

should be able to reuse the already parsed and loaded Content Model rather than parsing it again for each
newdocument.

39

2.1.2. Load Requirements

This feature may not have an explicit DOM API associated with it, but it does require that nothing in this
section, or the Content Model section, of this specification block it or make it diffidaiplement.

2.1.1.4.Entity Resolution

Some means is required to allow applications to map public and system IDs to the correct document. This
facility should provide sufficient capability to allow the implementation of catalogs, but providing
catalogs themselves is not a requirement. In addition XML Base needaddressed.

2.1.1.5.Error Reporting
Loading a document can cause the generation of énctgling:

e |/O Errors, such as the inability to find or open the specdmiment.
XML well formednesserrors.
Validity errors

Saving a document can cause the generation of énabusling:

® |/O Errors, such as the inability to write to a specified stream, URfileor
Improper constructs, such as ’--’ in comments, in the DOM that cannot be represented as well formed
XML.

This section, as well as the DOM Level 3 Content Model section should use a common error reporting
mechanism. Well-formedness and validity checking are in the domain of the Content Model section, even
though they may be commonly generated in response to an application asking that a docloaéetibe

2.1.2.Load Requirements

The following requirements apply to loadidgcuments.

2.1.2.1.Parser Properties andOptions
Parsers may have properties or options that can be set by applications. Exachjules

® Expansion of entity references.

e Creation of entity ref nodes.

e Handling of white space in element content.
e Enabling of namespace handling.

® Enabling of content modehlidation.

A mechanism to set properties, query the state of properties, and to query the set of properties supported
by a particular DOM implementationiisquired.

40

2.1.3. XML Writer Requirements

2.1.3. XML Writer Requirements

The fundamental requirement is to write a DOM document as XML source. All information to be
serialized should be available via the normal D@RI.

2.1.3.1. XML Writer Properties and Options
There are several options that can be defined when saving an XML document. Someavéthese

Saving to Canonical XML format.

Pretty Printing.

Specify the encoding in which a document is written.
How and when to use character entities.
Namespace prefix handling.

Saving of Content Models.

Handling of externaéntities.

2.1.3.2.Content Model Saving

Requirement from the Content Modgbup.

2.1.4.0ther Items Under Consideration

The following items are not committed to, but are under consideration. Public feedback on these items is
especiallyrequested.

2.1.4.1.Incremental and/or Concurrent Parsing

Provide the ability for a thread that requested the loading of a document to continue execution without
blocking while the document is being loaded. This would require some sort of notification or completion
event when the loading process wase.

Provide the ability to examine the partial DOM representation before it has bedoddibyl.

In one form, a document may be loaded asynchronously while a DOM based application is accessing the
document. In another form, the application may explicitly ask for the next incremental portion of a
document to béaded.

2.1.4.2 Filtered Save

Provide the capability to write out only a part of a document. May be able to leverage TreeWalkers, or the
Filters associated with TreeWalkers, or Ranges as a means of specifying the portion of the document to be
written.

41

2.2. Issue List

2.1.4.3.DocumentFragments

Document fragments, as specified by the XML Fragment specification, should be able to be loaded. This
is useful to applications that only need to process some part of a large document. Because the DOM is
typically implemented as an in-memory representation of a document, fully loading large documents can
require large amounts aiemory.

XPath should also be considered as a way to identify XML Document fragméuwesl to

2.1.4.4.Document Fragments in Context of ExistingpOM

Document fragments, as specified by the XML Fragment specification, should be able to be loaded into
the context of an existing document at a point specified by a node position, or perhaps a range. This is a
separate feature than simply loading document fragments asMaukw

2.2.IssuelList

2.2.1.0penlssues

Issue LS-Issue-10:
Error Reporting. Loading will be reporting well-formedness and validation errors, just like CM. A
common error reporting mechanism needs to be developed.
Issue LS-Issue-12:
Definition of "Non-validating”. Exactly how much processing is done by "non-validating” parsers is
not fully defined by the XML specification. In particular, they are not required to read any external
entities, but are not prohibited from doisg.
Another common user request: a mode that completely ignores DTDs, both and external. Such a
parser would not conform to XML 1.8pwever.
For the documents produced by a non-validating load to be the same, we need to tie down exactly
what processing must be done. The XML Core WG also has question as an open issue
Some discussion is http://lists.w3.org/Archives/Member/w3c-xml-core-wg/2000JanMar/0192.html
Here is proposal: Have three classeparkers
e Minimal. No external entities of any type are accessed. DTD subset is processes normally, as
required by XML 1.0, including all entity definitions it contains.
e Non-Validating. All external entities are read. Does everything except validation.
e Validating. As defined by XML 1.0ec.
Tentative resolution: use the options from SAX2. These provide separate flags for validation, reading
of external general entities and reading of external parameter entities.
Issue LS-Issue-14:
Should there be separate DOM modules for browser or scripting style loading
(document.load("whatever")) and server style parsers? It's probably easy for the server style parsers
to implement the browser style interface, but the reverse may not be true.
Issue LS-Issue-16:
Loading and saving of content models - DTDs or Schemas - outside of the context of a document is
not addressed.

42

2.2.2. Resolved Issues

Issue LS-Issue-17:
Loading while validating using an already loaded content model is not addressed. Applications
should be able to load a content model (issue 16), and then repeatedly reuse it during the loading of
additional documents.

Issue LS-Issue-20:
Action from September f2f to "add issues raised by schema discussion. What were these?

Issue LS-Issue-22:
What do the bindings for things like InputStream look like in ECMA Script?

Issue LS-Issue-27:
How is validation handled when there are multiple possible content models associated with the
document? How is one selected?

Issue LS-Issue-31:
We now have an option for fixing up name space declarations and prefixes on serialization. Should
we specify how this is done, so that the documents from different implementations of serialization
will use the same declarations and prefixes, or should we leave the details up to the implementation?

Issue LS-Issue-32:
Mimetypes. If the input being parsed is from http or something else that supplies types, and the type
is something other than text/xml, should we parse it anyhow, or should we complain. Should there be
an option? My preference - always parse, never complain. Reasons: 1. This is what all parsers do
now, and no one has ever complained, at least not that I'm aware of. 2. Applications must have a
pretty good reason to suspect that they’re getting xml or they wouldn’t have invoked the parser. 3.
All the test would do is to take something that might have worked (xml that is not known to the
server) and turn it into an error.

Issue LS-Issue-33:
Unicode Character Normalization Problems. It turns out that for some code pages, normalizing a
Unicode representation, translating to the code page, then translating back to Unicode can result in
un-normalized Unicode. Mark Davis says that this can happen with Viethamese and maybe with
Hebrew.
This means that the suggested W3C model of normalization on serialization (early normalization)
may not work, and that the receiver of the data may need to normalize it againcfss.in

2.2.2.Resolvedissues

Issue LS-Issue-1:
Should these methods be in a new interface, or should they be added to the existing
DOMImplementation Interface? | think that adding them to the existing interface is cleaner, because
it helps avoid an explosion of nemterfaces.
The methods are in a separate interface in this description for convenience in preparing the doc, so
that | don’'t need to edit Core to add the methods. (The same argument could perhaps be made for
implementations.)
Resolution: The methods are in a separate DOMImplementationLS interface. Because Load/Save is
an optional module, we don’t want to add its to the core DOMImplementation interface.

Issue LS-Issue-2:
SAX handles the setting of parser attributes differently. Rather than having distinct getters and setters
for each attribute, it has a generic setter and getter of named properties, where properties are
specified by a URL. This has an advantage in that implementations do not need to extend the

43

2.2.2. Resolved Issues

interface when providing additionattributes.
If we choose to use strings, their syntax needs to be chosen. URIs would make sense, except for the
fact that these are just names that do not refer to any resources. Dereferencing them would be
meaningless. Yet the direction of the W3C is that all URIs must be dereferencable, and refer to
something on theveb.
Resolution: Use strings for properties. Use Java package name syntax for the identifying names. The
question was revisited at the July f2f, with the same conclusion. But some discussion of using URLs
continues.
This issue was revisited once again at the 9/2000 meeting. Now all DOM properties or features will
be short, descriptive names, and we will recommend that all vendor-specific extensions be prefixed
to avoid collisions, but will not make specific recommendations for the syntax of the prefix.

Issue LS-Issue-3:
It's not obvious what name to choose for the parser interface. Taking any of the names already in use
by parser implementations would create problems when trying to support both the new APl and the
existing old API. That leaves oDocunent Bui | der (Sun) and>OVPar ser (Xerces).
Resolution: This is issue really just a comment. The "resolution” is in the names appearing in the
API.

Issue LS-Issue-4:
Question: should ResolveEntity pass a baseURI string back to the application, in addition to the
publicld, systemld, and/or stream? Particularly in the case of anstrpatn.
Resolution: No. Sax2 explicitly says that the system ID URI must be fully resolved before passing it
out to the entity resolve. We will follow SAX’s lead on this unless some additional use case surfaces.
This is from the 9/2000 f2f, and reverses an earlier decision.

Issue LS-Issue-5:
When parsing a document that contains errors, should the whole document be decreed unusable, or
should we say that portions prior to the point where the error was detec@dare
Resolution: In the case of errors in the XML source, what, if any, document is returned is
implementation dependent.

Issue LS-Issue-6:
The relationship between SAXExceptions and DOM exceptions ss@mhssing.
Resolution: This issue goes away because we are no longer using SAX. Any exceptions will be
DOM Exceptions.

Issue LS-Issue-7:
Question: In the original Java definition, are the strings returned from the methods
SAXException.toString() andSAXExcepti on. get Message() always the same? If not,
we need to add anothattribute.
Resolution: No longer an issue because we are no longer using SAX.

Issue LS-Issue-8:
JAXP defines a mechanism, based on Java system properties, by which the Document Builder
Factory locates the specific parser implementation to be used. This ability to redirect to different
parsers is a key feature of JAXP. How this redirection works in the context of this design may be
something that needs to be defined separately for each largjndgey.
This question was discussed at the July f2f, without resolution. Agreed that the feature is not critical
to the rest of the API, and can pestponed.
Resolution: The issue is moving to core, where it is part of the bigger question of where does the
DOM implementation come from, and how do multiple implementations coexist. Allowing separate,

44

2.2.2. Resolved Issues

or mix-and-match, specification of the parser and the rest of the DOM is not generally practical
because parsers generally have some degree of private knowledge about their DOMs.

Issue LS-Issue-9:
The use of interfaces from SAX2 raises some questions. The Java bindings for these interfaces need
to be exactly the SAX2 definitions, including the original org.xml.sax package.
The IDL presented here for these interfaces is an attempt to map the Java into IDL, but it will
certainly not round-trip accurately - Java bindings generated from the IDL will not match the original
Java.
The reasons for using the SAX interfaces are that they are well designed, widely implemented and
used, and provide what is needed. Designing something new would create confusion for application
developers (which should be used?) and make extra work for implementers of the DOM, most of
whom probably already provide SAX, all for no rgain.
Resolution: Problem is gone. We are not using SAX2. The design will borrow features and concepts
from SAX2 when it makes sense to do so.

Issue LS-Issue-11:
Another Error Reporting Question. We decided at the June f2f that validity errors should not be
exceptions. This means that a document load operation could encounter multiple errors. Should these
be collected and delivered as some sort of collection at the (otherwise) successful completion of the
load, or should there be some sort of callback? Callbacks are harder for applicationsvithdeal
Resolution: Provide a callback mechanism. Provide a default error handler that throws an exception
and stops further processing. From July f2f.

Issue LS-Issue-13:
Use of System or Language specific types for Input@uigut
Loading and Saving requires that one of the possible sources or destinations of the XML data be
some sort of stream that can be used with io streams or memory buffers, or anything else that might
take or supply data. The type will vary, depending on the lanchiading.
The question is, what should be put into the IDL interfaces for these? Should we define an XML
stream to abstract out the dependency, or use system classes directhiriditigs?
Resolution: Define IDL types for use in the rest of the interface definitions. These types will be
mapped directly to system types for each language binding

Issue LS-Issue-15:
System Exceptions. Loading involves file opens and reads, and these can result in a variety of system
errors that may already have associated system exceptions. Should these system exceptions pass
through as is, or should they be some how wrapped in DOMEXxceptions, or should there be a parallel
set DOM Exceptions, avhat?
Resolution: Introduce a new DOMSystemException to standardize the reporting of common 1/O
errors across different DOM environments. Let it wrap an underlying system exception or error code
when appropriate. To be defined in the common ErrorReporting module, to be shared with
ContentModel.

Issue LS-Issue-18:
For the list of parser properties, which must all implementations recognize, which settings must all
implementations support, and which apional?
Resolution: Done

Issue LS-Issue-19:
DOMOutputStream: should this be an interface with methods, or just an opaque type that maps onto
an appropriate binding-specific stretype?

45

2.2.2. Resolved Issues

If we specify an actual interface with methods, applications can implement it to wrap any arbitrary
destination that they may have. If we go with the system type it's simpler to output to that type of
stream, but hardetherwise.
Resolution: Opaque.

Issue LS-Issue-21:
Define exceptions. AOVByst enExcept i on needs to be defined as part of the error handling
module that is to be shared with CM. Common I/O type errors need to be defined for it, so that they
can be reported in a uniform way. A way to embed errors or exceptions from the OS or language
environment is needed, to provide full information to applications thatitvant
Resolution: Duplicate of issue #15

Issue LS-Issue-23:
To Do: Add a method or methods to DOMBuilder that will provide information about a parser
feature - is the name recognized, which (boolean) values are supported - without throwing
exceptions.
Resolution: Done. Added canSetFeature.

Issue LS-Issue-24:
Clearly identify which of the parser properties must be recognized, and which of their settings must
be supported by all conforminignplementations.
Resolution: Done. All must be recognized.

Issue LS-Issue-25:
How does the validation property work in SAX, and how should it work for us? The default value in
SAX2 is "true". Non-validating parsers only support a value of false. Does this mean that the default
depends on the parser, or that some sort of an error happens if a parse is attempted before resetting
the property, owhat?
The same question applies to the External Entities proparties
Resolution: Make the default value for the validation property be false.

Issue LS-Issue-26:
Do we want to rename the "auto-validation" property to "validate-if-cm"? Proposed at f2f. Resolution
unclear.
Resolution: Changed the name to "validate-if-cm".

Issue LS-Issue-29:
Should all properties except namespaces default to false? Discussed at f2f. I'm not so sure now.
Some of the properties have somewhat non-standard behavior when false - leaving out ER nodes or
whitespace, for example - and support of false will probably not evesgheed.
Resolution: Not all properties should default to false. But validation should.

Issue LS-Issue-28:
To do: add new parser property "createEntityNodes". default is true. lllegal for it to be false and
createEntityReferenceNodes tothge.
Is this really what wevant?
Resolution: new feature added.

Issue LS-Issue-30:
Possible additional parser features - option to not create CDATA nodes, and to merge CDATA
contents with adjacent TEXT nodes if they exist. Otherwise just create a M&GET
Option to omitComments.
Resolution: new featuredded.

46

2.3. Interfaces

2.3.Interfaces

This section defines an API for loading (parsing) XML source documents into a DOM representation and
for saving (serializing) a DOM representation as an Xddcument.

The proposal for loading is influenced by Sun’s JAXP API for XML Parsing in Java,

[http://java.sun.com/xml/download.hinand by SAX2, available at
[http://www.megginson.com/SAX/index.html

2.3.1.Interface Summary

Here is a list of each of the interfaces involved with the Loading and Savingdékliments.

e [DOM npl enent ati onLY[p.47] -- A newDOM npl enent at i on interface that provides the
factory methods for creating the objects required for loading and saving.

° [p.48] -- A parser interface.

e [DOM nput Sour ce|[p.53 -- Encapsulate information about the source of the XML to be loaded.
e [DOVENt i t yResol ver|[p.55] -- During loading, provides a way for applications to redirect

references to external entities.
e [DOVBuUI | der Fi | t er|[p.56] -- Provide the ability to examine and optionally remove Element

nodes as they are being processed during the parsing of a document.
e [DOWW i t er][p.57] -- An interface for writing out or serializing DOMbcuments.

2.3.2.Interfaces

Interface DOMImplementationL S

DOM npl enent at i onLS contains the factory methods for creating objects implementing the

[0.48] (parser) anfDOMW T T er] [p.57] interfaces.
IDL Definition
i nterface DOM npl enent ati onLS {
DOWVBUI | der creat eDOVBUI | der () ;
DOWY i t er createDOMWViter();
3
Methods
creat eDOMBUI | der
Create a nefOVBUI | der][p.48] . The newly constructed parser may then be configured

by means of itset Feat ur e() method, and used to parse documents by means of its

par se() method.
Return Value

[p.48] The newly created parsebject.

47

http://www.megginson.com/SAX/index.html
http://java.sun.com/xml/download.html

2.3.2. Interfaces

No Parameters
No Exceptions
createDOMN i t er
Create a nefDOMN i t er][p.57] object[DOMNI t erk are used to serialize a DOM tree
back into source XML form.
Return Value

DOWViter][p.57] The newly creat@OMNT t er]object.

No Parameters
No Exceptions

Interface DOMBuilder

A parsetrinterface.

DOMBUI | der provides an API for parsing XML documents and building the corresponding DOM
document tree. AOVBUI | der instance is obtained from tfM npl enent at 1 onLY [p.47]
interface by invoking iter eat eDOVBuI | der () method.

DOMBUI | der s have a number of named properties that can be queried or set. Here is a list of
properties that must be recognized byirapplementations.

namespaces

true: perform Namespageocessing.

false: do not perform name spaecessing.

default:true.

supported values: true: required; false: optional

namespace-declarations

true: include namespace declarations (xmlIns attributes) in the @f@lment.

false: discard all namespace declarations. In either case, namespace prefixaetaihbd.
default:true.

supported values: true: required; false: optional

validation

true: report validation errors (setting true also will force the external-general-entities and
external-parameter-entities properties to be set true.) Also note thatltheat e-i f-cm
feature will alter the validation behavior when this feature isrget

false: do not report validatiogrrors.

default:false.

supported values: true: optional; falsequired

external-general-entities

true: include all external general (tegt)tities.

false: do not include external genegalities.

default:true.

supported values: true: required; falgptional

external-parameter-entities

true: include all external parametatities.

48

2.3.2. Interfaces

false: do not include external paramedatities.

default:true.

supported values: true: required; false: optional

validate-if-cm

true: when both this feature and validation are true, enable validation only when the document
being processed has a content model. Documents without content models are parsed without
validation.

false: the validation feature alone controls whether the document is checked for validity.
Documents without content models are vatd.

default:false.

supported values: true: optional; falsequired

create-entity-ref-nodes

true: create entity reference nodes in the DOM document. Setting this value true will also set
create-entity-nodes to theie

false: omit all entity reference nodes from the DOM document, putting the entity expansions
directly in theirplace.

default:true.

supported values: true: required; false: optional

entity-nodes

true: create entity nodes in the DQMcument.

false: omit all entity nodes from the DOM document. Setting this value false will also set
create-entity-ref-noddalse.

default:true.

supported values: true: required; false: optional

white-space-in-element-content

true: include white space in element content in the DOM document. This is sometimes referred
to as ignorable whitepace

false: omit said white space. Note that white space in element content will only be omitted if it
can be identified as such, and not all parsers may be ablesto do

default:true.

supported values: true: required; false: optional

cdata-nodes

true: Create DOM CDATA nodes in response to the appearance of CDATA sections in the
sourceXML.

false: Do not create CDATA nodes in the DOM document. The content of any CDATA sections
in the source XML appears in the DOM as if it had been normal (non-CDATA) content. If a
CDATA section is adjacent to other content, the combined content appears in a single TEXT
node. The DOM Document produced by the DOMBuilder will not have adjacent HieXds.
default:true

supported values: false: optional; true: required

comments

true: Include XML comments in the DONbcument

false: Discard XML comments, do not create Comment nodes in the DOM Document resulting
from aparse.

default:true

supported values: false: required; true: required

49

2.3.2. Interfaces

® charset-overrides-xml-encoding

true: If a higher level protocol such as http provides an indication of the character encoding of
the input stream being processed, that will override any encoding specified in the XML or
TEXT declaration of the XML. Explicitly setting an encoding in the DOMInputSource overrides
encodings from thprotocol.
false: Any character set encoding information from higher level protocols is ignored by the
parser.
default:true
supported values: false: required; trregquired

IDL Definition

i nterface DOVBuUIi | der {
attribute DOVEntityResol ver entityResol ver;
attri bute DOVErrorHandl er errorHandl er;
attribute DOVBuilderFilter filter;
voi d set Feature(in DOMBtring nane,
i n bool ean state)
rai ses(DOVExcepti on);

bool ean supportsFeature(in DOVString nane);
bool ean canSet Feature(in DOVBtring nane,
in boolean state);
bool ean get Feature(in DOVBtri ng nane)
rai ses(DOVExcepti on);
Docunent parseURI (in DOVBtring uri)

rai ses(DOVExcepti on,
DOVByst enExcept i on) ;
Document par seDOM nput Sour ce(i n DOM nput Source i S)
rai ses(DOVExcepti on,
DOVByst enExcept i on) ;
3

Attributes

entityResol ver of typgDOVENt i t yResol ver|[p.55]
If a[DOVENt i t yResol ver][p.55] has been specified, each time a reference to an
external entity is encountered th&\VBui | der will pass the public and system IDs to the
entity resolver, which can then specify the actual source @frtity.

error Handl er of typgDOVEr r or Handl er|[p.32]
In the event that an error is encountered in the XML document being parsed, the
DOVDcounent Bui | der will call back to theer r or Handl er with the error
information.

Note: The DOMErrorHandler interface is being developed separately, in conjunction with
the design of the content model and validatimsdule.

filter oftypgDOVBUI | der Fi |t er|[p.56]
When the application provides a filter, the parser will call out to the filter at the completion
of the construction of eadfi enrent node. The filter implementation can choose to
remove the element from the document being constructed or to terminate thegpigrse
Methods

50

2.3.2. Interfaces

canSet Feat ure
guery whether setting a featuresigoported.
The feature name has the same form as a DOM hasFstinge
It is possible for &OVBui | der to recognize a feature name but to be unable to set its
value.
Parameters
nane of typeDOVBt ri ng
The feature name, which is a DOM has-feature siylag.
st at e of typebool ean
The requested state of the feature (truiaise).
Return Value

bool ean true if the feature could be successfully set to the specified value, or false
if the feature is not recognized or the requested value is not supported.
The value of the feature itself is radtanged.

No Exceptions
get Feature
Look up the value of geature.
The feature name has the same form as a DOM hasFeature string
Parameters
nane of typeDOVEt ri ng
The feature name, which is a string with DOM has-feagyrgax.
Return Value

bool ean The current state of the feature (trudaise).

Exceptions

DOVExcepti on Raise a NOT_FOUND_ERR When tb&VvBui | der does not
recognize the featurgame.

par seDOM nput Sour ce
Parse an XML document from a location identified bjp@W nput Sour ce][p.53) .
Parameters
i s of typeDOM nput Sour ce|[p.53)]
The[DOM nput Sour ce|from which the source document is torbad.
Return Value

Docunent][p.20] The newly created arbpulateflocunent]

Exceptions

51

DOVExcepti on

DOVBy st enExcept i on

par seURI

2.3.2. Interfaces

Exceptions raised byyar seDOM nput Sour ce()
originate with the installed ErrorHandler, and thus
depend on the implementation of the

[DQVET r or Handl er|[p.32] interfaces. The default
ErrorHandlers will raise BOVEXcept i on if any form
of XML validation or well formedness error or warning
occurs during the parse, but application defined
errorHandlers are not required to sm

Exceptions raised byar seDOM nput Sour ce()
originate with the installed ErrorHandler, and thus
depend on the implementation of the

[DOVEr r or Handl er|[p.32] interfaces. The default
ErrorHandlers will raise BOVBy st emExcept i on if
any form 1/O or other system error occurs during the
parse, but application defined ErrorHandlers are not
required to dso.

Parse an XML document from a location identified by an URI.

Parameters
uri of typeDOMSt ri ng

The location of the XML document to bead.

Return Value

[Docunent][p.20] The newly created arbpulatefdocunent]

Exceptions

DOVExcepti on

DOVBy st enExcepti on

Exceptions raised byar seURI () originate with the
installed ErrorHandler, and thus depend on the
implementation of thfPOVEr r or Handl er][p.32]
interfaces. The default error handlers will raise a
DOVExcept i on if any form of XML validation or well
formedness error or warning occurs during the parse, but
application defined errorHandlers are not required to do
So.

Exceptions raised byar seURI () originate with the
installed ErrorHandler, and thus depend on the
implementation of thiPOVEr r or Handl er][p.32]
interfaces. The default error handlers will raise a
DOMSystemException if any form 1/O or other system
error occurs during the parse, but application defined
error handlers are not required tosin

52

2.3.2. Interfaces

set Feature
Set the state of feature.
The feature name has the same form as a DOM hasFstinge
It is possible for &OVBui | der to recognize a feature name but to be unable to set its
value.
Parameters
nane of typeDOVBt ri ng
The feature name, which is a DOM has-feature siylag.
st at e of typebool ean
The requested state of the feature (truiaise).
Exceptions

DOVExcepti on Raise a NOT_SUPPORTED_ERR exception When the
DOMBUI | der recognizes the feature name but cannot set the
requestedalue.

Raise a NOT_FOUND_ERR When tb&\VBui | der does not
recognize the featurgame.

No Return Value
supportsFeature
qguery whether th®OVBuI | der recognizes a featureame.
The feature name has the same form as a DOM hasFetaitnge
It is possible for &OVBui | der to recognize a feature name but to be unable to set its
value. For example, a non-validating parser would recognize the feature "validation”,
would report that its value was false, and would raise an exception if an attempt was made
to enable validation by setting the feature to true.
Parameters
name of typeDOVSt ri ng
The feature name, which has the same syntax as a DOM has-&dhge
Return Value

bool ean true if the feature name is recognized byE®/MBui | der . False if the
feature name is noecognized.

No Exceptions
Interface DOMI nputSource

This interface represents a single input source for an Xity.
This interface allows an application to encapsulate information about an input source in a single

object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), and/or a charactieeam.

53

2.3.2. Interfaces

The exact definitions of a byte stream and a character stream are liiederglent.

There are two places that the application will deliver this input source to the parser: as the argument
to thepar seDOM nput Sour ce method, or as the return value of the
[DOMVENt i t yResol ver. r esol veEnti t y][p.55 method.

The[DOVBUI T der][p.48] will use theDOM nput Sour ce object to determine how to read XML

input. If there is a character stream available, the parser will read that stream directly; if not, the
parser will use a byte stream, if available; if neither a character stream nor a byte stream is available,
the parser will attempt to open a URI connection to the resource identified by the is\gsitfier.

An DOM nput Sour ce object belongs to the application: the parser shall never modify it in any
way (it may modify a copy ihecessary).

IDL Definition

i nterface DOM nput Source {
attribute DOM nput Stream byteStream

attribute DOVReader charact er Stream
attribute DOVBtring encodi ng;
attribute DOVBtring publi cl d;
attribute DOVBtring system d;

}s

Attributes

byt eSt r eamof typeDOM nput St r eam
An attribute of a language-binding dependent type that represents a stiggesof
The parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI conneatseif.
If the application knows the character encoding of the byte stream, it should set the
encoding property. Setting the encoding in this way will override any encoding specified in
the XML declarationitself.

char act er St r eamof typeDOVReader
An attribute of a language-binding dependent type that represents a stream of 16 bit values
(utf-16 encodeaharacters).
If a character stream is specified, the parser will ignore any byte stream and will not
attempt to open a URI connection to the sysaentifier.

encodi ng of typeDOVSt ri ng
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration (see section 4.3.3 of the XMLrdcOmmendation).
This attribute has no effect when the application provides a character stream. For other
sources of input, an encoding specified by means of this attribute will override any
encoding specified in the XML or text declaration of the XML, or an encoding obtained
from a higher level protocol, such laip.

publ i cl d of typeDOMVSt ri ng
The public identifier for this input source. The public identifier is always optional: if the
application writer includes one, it will be provided as part of the locatfonmation.

54

2.3.2. Interfaces

syst em d of typeDOVSt r i ng
The system identifier for this input source. The system identifier is optional if there is a
byte stream or a character stream, but it is still useful to provide one, since the application
can use it to resolve relative URIs and can include it in error messages and warnings (the
parser will attempt to open a connection to the URI only if there is no byte stream or
character streaspecified).
If the application knows the character encoding of the object pointed to by the system
identifier, it can register the encoding by setting the encaatinidpute.
If the system ID is a URL, it must be fullgsolved.

Interface DOMEntityResolver

DOVENt i t yResol ver Provides a way for applications to redirect references to extamtities.

Applications needing to implement customized handling for external entities must implement this
interface and register their implementation by settingetite t yResol ver property of the

[p.48] .

ThelDOMVBUI | der |[p.48] will then allow the application to intercept any external entities (including
the external DTD subset and external parameter entities) before indiieing

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URI types other thHRLs.

DOVEtL i t yResol ver is based on the SAXEnt i t yResol ver interface, described at
|http://www.megginson.com/SAX/Javal/javadoc/org/xml/sax/EntityResolvef.html

IDL Definition

interface DOMVENtityResol ver {
DOM nput Sour ce resol veEntity(in DOMString publicld,
in DOVBtring systemd)
rai ses(DOVByst enExcepti on);
s

Methods
resol veentity

Allow the application to resolve exterrettities.
The[DOVBuUI T der][p.48] will call this method before opening any external entity except
the top-level document entity (including the external DTD subset, external entities
referenced within the DTD, and external entities referenced within the document element);
the application may request that resolve the entity itself, that it use an
alternative URI, or that it use an entirely different inpatirce.
Application writers can use this method to redirect external system identifiers to secure
and/or local URIs, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialog

If the system identifier is a URL, tf@OVBui | der][p.48] must resolve it fully before
reporting it to the application through this interface.

55

http://www.megginson.com/SAX/Java/javadoc/org/xml/sax/EntityResolver.html

2.3.2. Interfaces

Note: See issue #4. An alternative would be to pass the URL out without resolving it, and
to provide a base as an additional parameter. SAX resolves URLSs first, and does not
provide abase.

Parameters

publ i cl d of typeDOVSt ri ng
The public identifier of the external entity being referenced, or null if none was
supplied.

syst em d of typeDOVSt r i ng
The system identifier of the external entity beiaterenced.

Return Value

[DOM nput Sour ce| A|DOM nput Sour ce|object describing the new input
[p.53] source, or null to request that the parser open a regular URI
connection to the systeigentifier.

Exceptions

DOVByst enExcepti on Any DOVByst enExcept i on, possibly wrapping
anotherexception.

Interface DOMBuilderFilter

DOMBUI | der Fi | t er s provide applications the ability to examine Element nodes as they are being
constructed during a parse. As each elements is examined, it may be modified or removed, or the
entire parse may be terminatearly.

IDL Definition
interface DOVBui | derFilter {
bool ean endEl ement (i n El ement el enent) ;
b
Methods
endEl enment

This method will be called by the parser at the completion of the parse of each element.
The element node will exist and be complete, as will all of its children, and their children,
recursively. The element’s parent node will also exist, although that node may be
incomplete, as it may have additional children that have not yetdaesed.

From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. This node may also be removed from its parent node,
which will prevent it from appearing in the final document at the completion of the parse.
Aside from this one operation on the node’s parent, the state of the rest of the document
outside of this node is not defined, and the affect of any attempt to navigate to or modify
any other part of the documentusdefined.

For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications

56

2.3.2. Interfaces

made by the filter.

Parameters

el enent of typeEl enent
The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to parent.

Return Value

bool ean returntrue

No Exceptions
Interface DOMWriter

DOMWriter provides an API for serializing (writing) a DOM document out in the form of a source
XML document. The XML data is written to an output stream, the type of which depends on the
specific language bindings use.

Three options are available for the general appearance of the formatted output: As-is, canonical and
reformatted.

® As-is formatting leaves all "white space in element content" and new-lines unchanged. If the
DOM document originated as XML source, and if all white space was retained, this option will
come the closest to recovering the format of the original document. (There may still be
differences due to normalization of attribute values and new-line characters or the handling of
character references.)

e® Canonical formatting writes the document according to the rules specified by W3C Canonical
XML Version 1.0}http://www.w3.org/TR/xml-c14n

® Reformatted output has white space and newlines adjusted to produce a pretty-printed, indented,
human-readable form. The exact form of the transformations spectified.

DOWMW i t er accepts any node type for serialization. For nodes of@gpenent][p.20] or

Enti ty, well formed XML will be created. The serialized output for these node types is either as a
Document or an External Entity, respectively, and is acceptable input for an XML parser. For all
other types of nodes the serialized form is not specified, but should be something useful to a human
for debugging or diagnostic purposes. Note: rigorously designing an external (source) form for
stand-alone node types that don't already have one defined by the XML rec seems a bit much to take
onhere.

Within a Document or Entity being serialized, Nodes are procesgelioags

e Documents are written including an XML declaration and a DTD subset, if one exists in the
DOM. Writing a document node serializes the entire document.

e Entity nodes, when written directly IBOMNV i t er . wri t eNode(), output a Text Decl and
the entity expansion. The resulting output will be valid as an extentiay.
No output is generated for any entity nodes when writBgaunment |[p.20] .

® Entity References nodes are serializes as an entity reference of tHeSfnni t yNane; ") in
the output. Child nodes (the expansion) of the entity reference are ignored.

57

http://www.w3.org/TR/xml-c14n

2.3.2. Interfaces

® CDATA sections containing content characters that can not be represented in the specified
output encoding are handled handled according to the "split-cdata-seofiios!.
If the option is true, CDATA sections are split, and the unrepresentable characters are serialized
as numeric character references in ordinary content. The exact position and number of splits is
not specified.
If the option is false, unrepresentable characters in a CDATA section are reported as errors. The
error is not recoverable - there is no mechanism for supplying alternative characters and
continuing with the serialization.

e All other node types (Element, Text, etc.) are serialized to their corresponding XML source
form.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of '<’ and ‘&’ are replaced
by the predefined entities &It; and &. The other predefined entities (>, &apos, etc.) are not
used; these characters can be included directly. Any character that can not be represented directly in
the output character encoding is serialized as a numeric chaedetence.

Attributes not containing quotes are serialized in quotes. Attributes containing quotes but no
apostrophes are serialized in apostrophes (single quotes). Attributes containing both forms of quotes
are serialized in quotes, with quotes within the value represented by the predefined entity ".
Any character that can not be represented directly in the output character encoding is serialized as a
numeric charactaeference.

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as an error. An example would be serializing the element
<LaCafiada/> with thencoding=US-ASCII

Unicode Character Normalization. When requested by settingotherl i zeChar act er s option

on DOMWriter, all data to be serialized, both markup and character data, is normalized according to
the rules defined by Unicode Canonical Composition, Normalization Form C. The normalization
process affects only the data as it is being written; it does not alter the DOM'’s view of the document
after serialization has completed. The W3C character model and normalization are described at
[http://wvww.w3.org/TR/charmod/#TextNormalizatlddnicode normalization forms are described at
[http://www.unicode.org/unicode/reports/trjl5/

Name space checking and fixup during serialization is a user option. When the option is selected, the
serialization process will verify that name space declarations, name space prefixes and the name
space URIs associated with Elements and Attributes are consistent. If inconsistencies are found, the
serialized form of the document will be altered to remove them. The exact form of the alterations are
not defined, and are implementatidependent.

Any changes made affect only the name space prefixes and declarations appearing in the serialized
data. The DOM'’s view of the document is not altered by the serialization operation, and does not
reflect any changes made to name space declarations or prefixes in the setigtiaed

58

http://www.unicode.org/unicode/reports/tr15/
http://www.w3.org/TR/2001/WD-charmod-20010126/#sec-TextNormalization

2.3.2. Interfaces

DOV i t er s have a number of named properties that can be queried or set. Here is a list of
properties that must be recognized byirapplementations.

® normalizeCharacters
true: Perform Unicode Normalization of the characters in document as they are written out.
Only the characters being written are (potentially) altered. The DOM document itself is
unchanged.
false: do not perform characteormalization.
default:true.
supported values: true: required; false: required.

® namespaceFixup

true: Check namespace declarations and prefixes for consistency, and fix them in the serialized

data if they arénconsistent.
false: Perform no special checks on hame space declarations, prefikeisor
default:true;
supported values: true: required; false: required.
® split-cdata-sections
true: Split CDATA sections containing characters that can not be represented in the output
encoding, and output the characters using numeric charafgsgnces.
false: Signal an error if a CDATA section contains an unrepreserttaddacter.
supported values: true: required; falsjuired.

IDL Definition
interface DOMWWiter {
attribute DOVBtring encodi ng;
readonly attribute DOMBtring | ast Encodi ng;

attribute unsigned short format;
/1 Modified in DOM Level 3:
attribute DOVBtring newLi ne;
voi d writeNode(in DOMOut put St ream destinati on,
i n Node node)
rai ses(DOVByst enExcepti on);

}s

Attributes
encodi ng of typeDOVSt ri ng
The character encoding in which the output willWréten.
The encoding to use when writing is determined as follows:
e |f the encoding attribute has been set, that value will be used.
e |f the encoding attribute is null or empty, but the item to be written includes an
encoding declaration, that value will be used.
e |f neither of the above provides an encoding name, a default encoding of "utf-8" will
beused.
The default value isull.
f or mat of typeunsi gned short
As-is, canonical or reformatteNeed to add constants for these.
The default value ias-is.

59

2.3.2. Interfaces

| ast Encodi ng of typeDOMSt r i ng, readonly
The actual character encoding that was last used by this formatter. This convenience
method allows the encoding that was used when serializing a document to be directly
obtained.

newLi ne of typeDOVSt r i ng, modified inDOM Level 3
The end-of-line character(s) to be used in the XML being written out. The only permitted
values are these:

e null: Use a default end-of-line sequence. DOM implementations should choose the
default to match the usual convention for text files in the environment being used.
Implementations must choose a default sequence that matches one of those allowed by
the XML Recommendatiofittp://www.w3.0org/TR/REC-xml#sec-line-ends

e CR

® CR-LF

e LF

The default value for this attributensill.
Methods
writ eNode
Write out the specified node as described above in the descripfiVa¥ i t er . Writing
a Document or Entity node produces a serialized form that is well formed XML. Writing
other node types produces a fragment of text in a form that is not fully defined by this
document, but that should be useful to a human for debugging or diagnostic purposes.
Parameters
desti nati on of typeDOMQut put St r eam
The destination for the data to Wwetten.
node of typeNode
The[Docunent][p.20] or Ent i t y node to be written. For other node types,
something sensible should be written, but the exact serialized formdpeuitied.
Exceptions

DOVByst enExcepti on This exception will be raised in response to any sort of
IO or system error that occurs while writing to the
destination. It may wrap an underlying systexgeption.

No Return Value

60

http://www.w3.org/TR/REC-xml#sec-line-ends

Appendix A: IDL Definitions

Appendix A: IDL Definitions

This appendix contains the complete OMG I[@MGIDL] for the Level 3 Document Object Model
Content Model and Load and Sadefinitions.

The IDL files are also available as:
http://www.w3.0rg/TR/2001/WD-DOM-Level-3-CMLS-20010209/idl.zip

content-models.idl

/! File: content-nodels.idl

#i f ndef _ CONTENT- MODELS | DL_
#defi ne _CONTENT- MODELS | DL_

#i ncl ude "domidl"

#pragma prefix "dom w3c. org"
nodul e cont ent - nodel s

{

typedef dom:int int;

typedef dom :DOMString DOVBtring;

typedef dom : CMExt er nal Model * CMExter nal Model *;
typedef dom : Node Node;

typedef dom : nsEl enent nsEl enment;

typedef dom : DOM npl enent ati on DOM npl enent ati on;
typedef dom: El ement El enent;

typedef dom: Text Text;

typedef dom : Docunent Type Docunent Type;

interface CMChil dren;

i nterface DOVErrorHandl er;
i nterface CWbdel ;
interface DOVLocat or;

i nterface CMNode ({

const unsi gned short ELEMENT _DECLARATI ON = 1;
const unsi gned short ATTRI BUTE_DECLARATI ON = 2;
const unsi gned short CM_NOTATI ON_DECLARATI ON = 3;
const unsi gned short ENTI TY_DECLARATI ON = 4;
const unsi gned short CM_CHI LDREN = b;
const unsi gned short CM_MODEL = 6;
const unsi gned short CM_EXTERNAL MODEL =7,
readonly attribute unsigned short cmNodeType;
CMNode cl oneCM) ;
CMNode cl oneExt ernal CM) ;

3

i nterface CWMNodeLi st {

3

i nterface CMNanedNodeMap {

3

61

content-models.idl:

i nterface CMVDat aType {

const short STRI NG_DATATYPE = 1;
const short BOOLEAN_DATATYPE = 2;
const short FLOAT_DATATYPE = 3;
const short DOUBLE_DATATYPE = 4,
const short LONG_DATATYPE = 5;
const short | NT_DATATYPE = 6;
const short SHORT_DATATYPE =7;
const short BYTE_DATATYPE = 8;
attribute int | owal ue;
attribute int hi ghVal ue;
short getPrimtiveType();
3
interface El enentDecl aration {
i nt get Cont ent Type() ;
CMChi | dren get CMChi | dren();
CWMNanedNodeMap getCMAttri butes();
CWNanedNodeMap get CM& andChi | dren();
3
interface CMChildren {
attribute DOVBtring |'i stOperator;
attribute CMDat aType el ement Type;
attribute int multiplicity;
attri bute CMNanedNodeMap subModel s;
readonly attribute bool ean i sPCDhat aOnl y;
3
interface AttributeDeclaration {
const short NO_VALUE_CONSTRAI NT = 0;
const short DEFAULT_VALUE_CONSTRAI NT = 1;
const short FI XED_VALUE_CONSTRAI NT = 2;
readonly attribute DOVString at t r Name;
attribute CMDat aType attrType;
attribute DOVBtring attri but eval ue;
attribute DOVBtring enumAttr;
attri bute CMNodeli st owner El enent ;
attribute short constrai nt Type;
3
interface EntityDecl aration {
3
i nterface CMNot ati onDecl aration {
attribute DOMVSBtring strSystem dentifier;
attribute DOVBtring strPublicldentifier;
3

interface Docunment {

voi d

h

interface

i nt

Cwvivbdel

set Error Handl er (i n DOVErr or Handl er handl er);

Docunment CM : Docunent {

nunmCvs() ;
getlnternal CM);

62

content-models.idl:

CMExt er nal Model * get CVs();

CWM\vbdel get ActiveCM);

voi d addCM i n CMvbdel cm;

voi d removeCM i n CMVbdel cn);
bool ean activateCMin CWbdel cm;

I

interface AttributeCM {
AttributeDeclaration getAttributeDeclaration();
CWNot at i onDecl arati on getNotation()
rai ses(dom : DOVExcepti on);
3

i nterface DOVErrorHandl er {
voi d war ni ng(i n DOM_Locat or wher e,
in DOVSBtring how,
in DOVBtring why)
rai ses(dom : DOVByst enExcepti on) ;
voi d fatal Error (i n DOMLocat or where,
in DOVBtring how,
in DOVBt ring why)
rai ses(dom : DOVByst enExcepti on) ;
voi d error(in DOMLocat or where,
in DOVString how,
in DOVBtring why)
rai ses(dom : DOVByst enExcepti on) ;

3
i nterface DOVLocat or ({
i nt get Col utmNurber () ;
i nt get Li neNunber () ;
DOVBt ri ng get PubliclX);
DOVBt ri ng get System) ;
Node get Node() ;
3
interface CMvbdel : CwNode {
readonly attribute bool ean i sNamespaceAwar e;
readonly attribute El enmentDeclaration rootEl enentDecl;
DOVBt ri ng get Location();
nsEl ement get CMNamespace();
CWNanedNodeMap get CMNodes() ;
bool ean renoveNode(i n CMNode node);
bool ean i nsertBefore(in CMNode newNode,
in CMNode ref Node) ;
bool ean val i date();
3
i nterface CMEXternal Mbdel : CMvbdel {
3
interface DOM npl enentati onCM : DOM npl enent ati on {
CWM\vbdel createCM);
CMEXt er nal Model creat eExternal CM);

h

interface NodeCM : Node {

63

bool ean

bool ean

bool ean

bool ean

bool ean

I

interface
int

content-models.idl:

canl nsertBefore(in Node newchild,

in Node refChild)

rai ses(dom : DOVExcepti on);
canRenoveChi I d(in Node ol dChil d)

rai ses(dom : DOVExcepti on);
canRepl aceChi Il d(in Node newchil d,

i n Node ol dChi | d)

rai ses(dom : DOVExcepti on);
canAppendChi | d(i n Node newChi | d)

rai ses(dom : DOVExcepti on);
isValid();

El enentCM : El ement {
cont ent Type();

El ement Decl ar ati on get El ement Decl arati on()

bool ean

bool ean
bool ean

bool ean

I
interface

bool ean
bool ean

bool ean

bool ean

bool ean

bool ean

I

interface
bool ean
bool ean

bool ean

bool ean

rai ses(dom : DOVExcepti on);
canSet Attribute(in DOMString attrnane,
in DOVBtring attrval);
canSet Attri but eNode(i n Node node);
canSet Attri but eNodeNS(i n Node node
in DOVBt ri ng namespaceUR!,
in DOVBtring | ocal Nane);
canSet Attri buteNS(in DOMString attrnane,
in DOVBtring attrval
in DOVBt ri ng namespaceUR!,
in DOVBtring | ocal Nane);

CharacterDataCM : Text {
i sWhi t espaceOnl y();
canSet Dat a(i n unsigned | ong of fset,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);
canAppendDat a(i n DOMString arg)
rai ses(dom : DOVExcepti on);
canRepl aceDat a(i n unsigned | ong of fset,
in unsigned | ong count,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);
canl nsertData(i n unsigned | ong offset,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);
canDel et eDat a(i n unsi gned | ong of fset,
in DOVBtring arQg)
rai ses(dom : DOVExcepti on);

Docunent TypeCM : Docunent Type {
i SEl enent Defined(in DOVString el enTypeNane) ;
i sEl ement Defi nedNS(in DOVBtring el enTypeNane,
in DOVBtring nanmespaceURI
in DOVBtring | ocal Nane) ;
i sAttributeDefined(in DOVBtring el enTypeNane,
in DOVBtring attrNane);
i SAttributeDefinedNS(in DOVSBtring el emlypeNare,
in DOVBtring attrNane,

64

bool ean
I
I

load-save.idl:

in DOVBtring nanespaceURl,
in DOVBtring | ocal Nane) ;
i sEntityDefined(in DOMBtring entNane);

#endif // _CONTENT- MODELS | DL_

load-save.idl

/1l File: |oad-save.idl

#i fndef _LOAD SAVE I DL_
#define _LOAD SAVE |DL_

#i ncl ude "domidl"

#pragma prefix "dom w3c. org"

nodul e | oad- save

{

typedef dom : DOVErr or Handl er DOVEr r or Handl er;
typedef dom :DOMString DOMSBtring;

typedef dom : Document Docunent;

typedef dom : DOM nput St r eam DOM nput St r eam
typedef dom : DOVReader DOVReader ;

typedef dom : El ement

El enent ;

typedef dom : DOMOut put St r eam DOMCut put St r eam
typedef dom : Node Node;

nterface DOWViter;

DOMBUI | der
DOMN i t er
H

interface DOVBuUI | der
attribute
attribute
attribute
voi d
bool ean
bool ean
bool ean
Docunent

nt erface DOVBui | der;

nterface DOVENtityResol ver;
nterface DOVBui l derFil ter;
nt erf ace DOM nput Sour ce;

nterface DOM npl enentati onLS {

cr eat eDOVBuI | der () ;
createDOMNiter();

{
DOMENt i t yResol ver entityResol ver;
DOVEr r or Handl er error Handl er;
DOMBui | derFilter filter;
set Feature(in DOMString nane,
in bool ean state)

rai ses(dom : DOVExcepti on);
support sFeature(in DOVString nane);
canSet Feature(in DOVBtring nane,

in bool ean state);

get Feature(in DOVString nane)

rai ses(dom : DOVExcepti on);
parseURI (in DOVString uri)

rai ses(dom : DOVExcepti on,

dom : DOVByst enExcepti on);

65

load-save.idl:

Docunent par seDOM nput Sour ce(i n DOM nput Source i s)
rai ses(dom : DOVExcept i on,
dom : DOVByst enExcepti on);
3

i nterface DOM nput Source {
attribute DOM nput Stream byteStream

attribute DOVReader character Stream
attribute DOVBtring encodi ng;
attribute DOVBtring publicld;
attribute DOVBtring system d;

I

interface DOMVENntityResol ver {
DOM nput Sour ce resol veEntity(in DOMString publicld,
in DOVBtring systemd)
rai ses(dom : DOVByst enExcepti on) ;

b
interface DOMBui |l derFilter {
bool ean endEl ement (i n El ement el enent);
b
interface DOWVYiter {
attribute DOVBtring encodi ng;
readonly attribute DOVString | ast Encodi ng;

attribute unsigned short format;
/! Modified in DOM Level 3:

attribute DOVBtring newLi ne;
voi d wri teNode(in DOMOut put St ream desti nati on,
i n Node node)

rai ses(dom : DOVByst enExcepti on) ;
I
I

#endif // _LOAD-SAVE |DL_

66

Appendix B: Java Language Binding

Appendix B: Java LanguageBinding

This appendix contains the complete Jfavd bindings for the Level 3 Document Object Model
Content Model and Load arghve.

The Java files are also available as
http://www.w3.0rg/TR/2001/WD-DOM-Level-3-CMLS-20010209/java-binding.zip

org/w3c/dom/contentModel/CMModel.java:
package org.w3c. dom cont ent Mbdel ;
i mport org.w3c.dom nsEl enent;

public interface CMbdel extends CWNode {
publ i ¢ bool ean get| sNanespaceAwar e() ;

publ i ¢ El enent Decl arati on get Root El ement Decl () ;
public String getLocation();

publ i c nsEl enent get CVNanmespace();

publ i ¢ CMNanmedNodeMap get CMNodes();

publ i c bool ean renoveNode(CMNode node) ;

publ i ¢ bool ean i nsert Bef or e(CMNode newNode,
CWMNode r ef Node) ;

public bool ean validate();

}

org/w3c/dom/contentModel/CMExternalModel.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMExternal Mbdel extends CwWbdel {
}

org/w3c/dom/contentModel/CMNode.java:

package org.w3c. dom cont ent Mbdel ;

public interface CMNode {
public static final short ELEMENT_DECLARATI ON
public static final short ATTRI BUTE_DECLARATI ON
public static final short CM NOTATI ON_DECLARATI ON
public static final short ENTI TY_DECLARATI ON
public static final short CM CH LDREN
public static final short CM MODEL
public static final short CM EXTERNALMODEL

oo
Noeghrowne

67

org/w3c/dom/contentModel/CMNodeList.java:

public short get CnNodeType();
publ i c CMNode cl oneCM);

publ i c CMNode cl oneExt ernal CM);

org/w3c/dom/contentModel/CMNodeList.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMNodeLi st {
}

org/w3c/dom/contentModel/CMNamedNodeMap.java:

package org.w3c. dom cont ent Mbdel ;

public interface CMNamedNodeMap {
}

org/w3c/dom/contentModel/CMDataType.java:

package org.w3c.dom cont ent Mbdel ;

public interface CMDataType {

public static final short STRI NG DATATYPE = 1;
public static final short BOOLEAN DATATYPE = 2;
public static final short FLOAT_DATATYPE = 3;
public static final short DOUBLE_DATATYPE = 4;
public static final short LONG DATATYPE = b5;
public static final short |NT_DATATYPE = 6;
public static final short SHORT_DATATYPE =7;
public static final short BYTE DATATYPE = 8;
public int getLowval ue();

public void setLowval ue(int | owal ue);

public int getHi ghVal ue();
public void setH ghVal ue(i nt hi ghVal ue);

public short getPrimtiveType();

org/w3c/dom/contentModel/ElementDeclaration.java:

package org.w3c. dom cont ent Mbdel ;

public interface El enentDeclaration {
public int getContentType();

public CMChil dren get CMChi |l dren();

68

org/w3c/dom/contentModel/CMChildren.java:

publ i c CMNanmedNodeMap get CMAttri butes();

publ i ¢ CMNanmedNodeMap get CM&G andChi I dren();

org/w3c/dom/contentModel/CMChildren.java:

package org.w3c.dom cont ent Mbdel ;
public interface CMChildren {
public String getListOperator();
public void setListCOperator(String |istQOperator);

publ i c CVDat aType get El enent Type();
public void setEl emrent Type(CVDat aType el enent Type) ;

public int getMultiplicity();
public void setMiultiplicity(int multiplicity);

publ i c CMNamedNodeMap get SubMbdel s();
public void set SubMddel s(CMNamedNodeMap subModel s);

publ i c bool ean getl sPCDat aOnl y();

org/w3c/dom/contentModel/AttributeDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface AttributeDeclaration {

public static final short NO _VALUE_CONSTRAI NT = 0;

public static final short DEFAULT_VALUE_CONSTRAINT = 1;

public static final short FIXED VALUE_CONSTRAI NT = 2;
c

public String getAttrNanme();

public CMVDat aType get AttrType();
public void setAttrType(CNVDat aType attrType);

public String getAttributeVal ue();
public void setAttributeValue(String attributeVal ue);

public String getEnumAttr();
public void setEnumAttr(String enumAttr);

publ i ¢ CMNodeLi st get Oaner El enent () ;
public void set Oaner El ement (CMNodeLi st owner El enent) ;

public short getConstraintType();
public void setConstraint Type(short constraintType);

69

org/w3c/dom/contentModel/EntityDeclaration.java:

org/w3c/dom/contentModel/EntityDeclaration.java:

package org.w3c.dom cont ent Mbdel ;

public interface EntityDeclaration {

}

org/w3c/dom/contentModel/CMNotationDeclaration.java:

package org.w3c.dom cont ent Mbdel ;
public interface CMNotationDecl aration {
public String getStrSystenm dentifier();
public void setStrSystemdentifier(String strSystem dentifier);

public String getStrPublicldentifier();
public void setStrPublicldentifier(String strPublicldentifier);

}

org/w3c/dom/contentModel/Document.java:

package org.w3c.dom cont ent Mbdel ;

public interface Document {
public void setErrorHandl er (DOVEr r or Handl er handl er);

}

org/w3c/dom/contentModel/DocumentCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom CMExt er nal Model *;

public interface Docunent CM ext ends Docunent {
public int nunCMs();

public CMvbdel getlnternal CM);
publ i ¢ CMEXt ernal Mbdel * get CMs();
publ i c CMvbdel getActiveCM);
public void addCM CMvbdel cn);
public void renoveCM CMvbdel cm;

public bool ean activateCM CMvbdel cnj;

70

org/w3c/dom/contentModel/DOMImplementationCM.java:

org/w3c/dom/contentModel/DOMImplementationCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom DOM npl enent ati on;

public interface DOM npl ement ati onCM ext ends DOM npl enent ati on {
public CMvbdel createCM);

publ i ¢ CMExt er nal Mbdel creat eExternal CM);

org/w3c/dom/contentModel/NodeCM.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c. dom Node;
i mport org.w3c.dom DOVExcepti on;

public interface NodeCM extends Node {
publ i c bool ean canl nsert Bef or e(Node newchil d,
Node ref Chil d)
t hrows DOMVExcepti on;

publ i c bool ean canRenpveChi | d(Node ol dChi | d)
t hrows DOVExcepti on;

publ i ¢ bool ean canRepl aceChi |l d(Node newChi l d,
Node ol dChi | d)
t hrows DOMVExcepti on;

publ i ¢ bool ean canAppendChi | d(Node newChi | d)
t hrows DOVExcepti on;

public boolean isValid();

org/w3c/dom/contentModel/ElementCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c. dom Node;

i mport org.w3c. dom DOVExcepti on;

i mport org.w3c.dom El enent ;

public interface El enentCM extends El enent {
public int contentType();

publ i c El ement Decl arati on get El ement Decl arati on()
t hrows DOVEXxcepti on;

publ i c bool ean canSet Attribute(String attrnamne,
String attrval);

71

org/w3c/dom/contentModel/CharacterDataCM.java:

publ i c bool ean canSet Attri but eNode(Node node);

publ i ¢ bool ean canSet Attri but eNodeNS(Node node,
String nanespaceURl,
String | ocal Nane);

public bool ean canSet Attri buteNS(String attrnane,
String attrval,
String nanespaceURl,
String | ocal Nane);

org/w3c/dom/contentModel/CharacterDataCM.java:

package org.w3c.dom cont ent Mbdel ;

i mport org.w3c.dom Text;
i mport org.w3c.dom DOVExcepti on;

public interface CharacterDataCM extends Text {
publ i c bool ean isWitespaceOnly();

publ i c bool ean canSet Dat a(i nt of f set,
String arg)
t hrows DOVExcepti on;

publ i c bool ean canAppendData(String arg)
t hrows DOVExcepti on;

publ i c bool ean canRepl aceDat a(i nt of f set,
int count,
String arg)
t hrows DOVExcepti on;
publ i c bool ean canl nsertData(int offset,
String arg)
t hrows DOVExcepti on;
publ i c bool ean canDel et eDat a(i nt of fset,

String arg)
t hrows DOVExcepti on;

org/w3c/dom/contentModel/DocumentTypeCM.java:

package org.w3c. dom cont ent Mbdel ;
i mport org.w3c.dom Docurnent Type;

public interface Docunent TypeCM ext ends Docurent Type {
publ i ¢ bool ean i sEl enent Defi ned(String el enTypeNane) ;

publ i c bool ean i sEl enent Defi nedNS(String el enmlypeNane,

72

org/w3c/dom/contentModel/AttributeCM .java:

String nanespaceURl,
String | ocal Nane);

public boolean isAttributeDefined(String el emlypeNane,
String attrNane);

public bool ean isAttributeDefinedNS(String el enifypeNane,
String attrNane,
String nanespaceURl,
String | ocal Nane);

publ i c bool ean isEntityDefined(String entNane);

org/w3c/dom/contentModel/AttributeCM.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c.dom DOVExcepti on;

public interface Attri buteCM {
public AttributeDeclaration getAttributeDeclaration();

publ i c CMNot ati onDecl arati on get Notation()
t hrows DOVExcepti on;

org/w3c/dom/contentModel/DOMErrorHandler.java:

package org.w3c. dom cont ent Mbdel ;
i mport org.w3c. dom DOVByst enExcepti on;

public interface DOVErrorHandl er {
public void warni ng(DOM.ocat or wher e,
String how,
String why)
t hrows DOVSyst enExcepti on;

public void fatal Error (DOM.ocat or where,
String how,
String why)
t hrows DOMSyst enExcepti on;

public void error(DOVLocat or where,
String how,
String why)
t hrows DOVSyst enExcepti on;

73

org/w3c/dom/contentModel/DOMLocator.java:

org/w3c/dom/contentModel/DOMLocator.java:

package org.w3c.dom cont ent Mbdel ;
i mport org.w3c. dom Node;

public interface DOMLocator {
public int getCol umNumnber();

public int getLineNunber();
public String getPubliclD();
public String getSystem I();

publ i ¢ Node get Node();

org/w3c/dom/loadSave/DOMImplementationLS.java:

package org.w3c. dom | oadSave;

public interface DOM npl enent ati onLS {
publ i c DOMVBuI | der creat eDOVBUI | der () ;

public DOMWYiter createDOMNiter();

org/w3c/dom/loadSave/DOMBuilder.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom DOVErr or Handl er;

i mport org.w3c.dom Docunent ;

i mport org.w3c. dom DOVByst enExcepti on;
i mport org.w3c. dom DOVExcepti on;

public interface DOVBuIi | der {
public DOMENntityResol ver getEntityResol ver();
public void setEntityResol ver (DOVEntityResol ver entityResol ver);

publ i ¢ DOVError Handl er get ErrorHandl er () ;
public void setErrorHandl er (DOVEr r or Handl er errorHandl er);

public DOMVBui | derFilter getFilter();
public void setFilter(DOVBuilderFilter filter);

public void setFeature(String nane,
bool ean state)
t hrows DOVExcepti on;

publ i ¢ bool ean supportsFeature(String name);

74

org/w3c/dom/loadSave/DOMInputSource.java:

publi ¢ bool ean canSet Feature(String nane,

bool ean state);

public bool ean get Feature(String nane)

t hrows DOVExcepti on;

public Docunment parseURl (String uri)

t hrows DOMExcepti on, DOVByst enExcepti on;

publ i ¢ Docunent parseDOM nput Sour ce(DOM nput Sour ce is)

t hrows DOVExcepti on, DOVSyst enExcepti on;

org/w3c/dom/loadSave/DOMInputSource.java:

package org.w3c. dom | oadSave;

public interface DOM nput Source {
public java.io.lnputStream getByteStrean();
public void setByteStrean{(java.io.|nputStream byteStream;

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

C
Cc

java.io. Reader getCharacterStrean();
voi d set Character Strean(java.i o. Reader characterStreamn;

String get Encodi ng();
voi d set Encodi ng(String encoding);

String getPublicld();
voi d setPublicld(String publicld);

String getSystem d();
voi d set System d(String system d);

org/w3c/dom/loadSave/DOMEntityResolver.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom DOVByst enExcepti on;

public interface DOMENntityResol ver {
publ i c DOM nput Source resol veEntity(String publicld,

String systemd)
t hrows DOVSyst enExcepti on;

75

org/w3c/dom/loadSave/DOMBuilderFilter.java:

org/w3c/dom/loadSave/DOMBuilderFilter.java:
package org.w3c. dom | oadSave;
i mport org.w3c.dom El enent ;

public interface DOVBui | derFilter {
publ i c bool ean endEl enent (El ement el enment) ;

org/w3c/dom/loadSave/DOMWriter.java:

package org.w3c. dom | oadSave;

i mport org.w3c. dom Node;
i mport org.w3c. dom DOVByst enExcepti on;

public interface DOMNiter {
public String getEncoding();
public void setEncodi ng(String encoding);

public String getLastEncodi ng();

public short getFormat();
public void setFormat(short fornat);

public String get NewLine();
public void setNewLi ne(String newLine);

public void witeNode(java.io.QutputStream destination,

Node node)
t hrows DOVSyst enExcepti on;

76

Appendix C: ECMA Script Language Binding

Appendix C: ECMA Script Language Binding

This appendix contains the complete ECMA SdgEMAScrip{ binding for the Level 3 Document
Object Model Content Model and Load and Sde#nitions.

ObjectCMModel
CMModel has the all the properties and methods ofXkNode object as well as the properties and
methods defined below.
The CMModel object has the following properties:
isNamespaceAware
This read-only property is of tyg&oolean
rootElementDecl
This read-only property isBlementDeclarationobject.
The CMModel object has the following methods:
getLocation()
This method returns &tring.
getCMNamespace()
This method returnsssElementobject.
getCMNodes()
This method returns @MNamedNodeMap object.
removeNode(node)
This method returnsBoolean
Thenode parameter is @MNode object.
insertBefore(newNode refNode)
This method returnsBoolean
ThenewNodeparameter is @MNode object.
TherefNode parameter is @MNode object.
validate()
This method returnsBoolean
ObjectCMExternalModel
CMExternalModel has the all the properties and methods ofathBModel object as well as the
properties and methods defineelow.
Prototype Objec€MNode
The CMNode class has the following constants:
CMNode.ELEMENT_DECLARATION
This constant is of typdumber and its value i4.
CMNode.ATTRIBUTE_DECLARATION
This constant is of typdumber and its value i.
CMNode.CM_NOTATION_DECLARATION
This constant is of typdumber and its value i8.
CMNode.ENTITY_DECLARATION
This constant is of typdumber and its value ig.
CMNode.CM_CHILDREN
This constant is of typdumber and its value i$.

7

Appendix C: ECMA Script Language Binding

CMNode.CM_MODEL
This constant is of typdumber and its value i§.
CMNode.CM_EXTERNALMODEL
This constant is of typdumber and its value i§.
ObjectCMNode
The CMNode object has the following properties:
cmNodeType
This read-only property is of typéumber.
The CMNode object has the following methods:
cloneCM()
This method returns @MNode object.
cloneExternalCM()
This method returns @MNode object.
ObjectCMNodeList
ObjectCMNamedNodeMap
Prototype ObjecCMDataType
The CMDataType class has the following constants:
CMDataType.STRING_DATATYPE
This constant is of typshort and its value i4.
CMDataType.BOOLEAN_DATATYPE
This constant is of typshort and its value i2.
CMDataType.FLOAT_DATATYPE
This constant is of typshort and its value i8.
CMDataType.DOUBLE_DATATYPE
This constant is of typshort and its value i4.
CMDataType.LONG_DATATYPE
This constant is of typshort and its value i§.
CMDataType.INT_DATATYPE
This constant is of typshort and its value i$.
CMDataType.SHORT_DATATYPE
This constant is of typshort and its value ig.
CMDataType.BYTE_DATATYPE
This constant is of typshort and its value i8.
ObjectCMDataType
The CMDataType object has the following properties:
lowValue
This property is @&t object.
highValue
This property is @t object.
The CMDataType object has the following methods:
getPrimitiveType()
This method returns hort object.
ObjectElementDeclaration
The ElementDeclarationobject has the following methods:
getContentType()
This method returnsiat object.

78

Appendix C: ECMA Script Language Binding

getCMChildren()
This method returns @MChildren object.
getCMAttributes()
This method returns @MNamedNodeMap object.
getCMGrandChildren()
This method returns @MNamedNodeMap object.
ObjectCMChildren
TheCMChildren object has the following properties:
listOperator
This property is of typ&tring.
elementType
This property is £&MDataType object.
multiplicity
This property is @&t object.
subModels
This property is & MNamedNodeMap object.
isPCDataOnly
This read-only property is of tyg&oolean
Prototype ObjecAttributeDeclaration
TheAttributeDeclaration class has the following constants:
AttributeDeclaration.NO_VALUE_CONSTRAINT
This constant is of typshort and its value i§.
AttributeDeclaration.DEFAULT_VALUE_CONSTRAINT
This constant is of typshort and its value i4.
AttributeDeclaration.FIXED_VALUE_CONSTRAINT
This constant is of typshort and its value i2.
ObjectAttributeDeclaration
TheAttributeDeclaration object has the following properties:
attrName
This read-only property is of tytring.
attrType
This property is £&MDataType object.
attributeValue
This property is of typ&tring.
enumaAttr
This property is of typ&tring.
ownerElement
This property is & MMNodeList object.
constraintType
This property is &hort object.
ObjectEntityDeclaration
ObjectCMNotationDeclaration
The CMNotationDeclaration object has the following properties:
strSystemldentifier
This property is of typ&tring.

79

Appendix C: ECMA Script Language Binding

strPublicldentifier
This property is of typ&tring.
ObjectDocument
The Documentobject has the following methods:
setErrorHandler(handler)
This method has no retuvalue.
Thehandler parameter is BOMErrorHandler object.
ObjectDocumentCM
DocumentCM has the all the properties and methods ofXbeumentobject as well as the
properties and methods defined below.
The DocumentCM object has the following methods:
numCMs()
This method returnsiat object.
getinternalCM()
This method returns @MModel object.
getCMs()
This method returns @MExternalModel * object.
getActiveCM()
This method returns @MModel object.
addCM(cm)
This method has no retuvalue.
Thecm parameter is @MModel object.
removeCM(cm)
This method has no retuvalue.
Thecm parameter is @MModel object.
activateCM(cm)
This method returnsBoolean
Thecm parameter is @MModel object.
ObjectDOMImplementationCM
DOMImplementationCM has the all the properties and methods oD@ Implementation
object as well as the properties and methods defined below.
TheD DOMImplementationCM object has the following methods:
createCM()
This method returns @MModel object.
createExternalCM()
This method returns @MExternalModel object.
ObjectNodeCM
NodeCM has the all the properties and methods of\tbée object as well as the properties and
methods defined below.
TheNodeCM object has the following methods:
caninsertBefore(newChild,refChild)
This method returnsBoolean
ThenewChild parameter is Blode object.
TherefChild parameter is Blodeobject.
This method can raise@OMEXxception object.

80

Appendix C: ECMA Script Language Binding

canRemoveChild(oldChild)
This method returnsBoolean
TheoldChild parameter is Alode object.
This method can raise@OMEXxception object.
canReplaceChild(newChild,oldChild)
This method returnsBoolean
ThenewChild parameter is Blode object.
TheoldChild parameter is Alode object.
This method can raise@OMEXxception object.
canAppendChild(newChild)
This method returnsBoolean
ThenewChild parameter is Blode object.
This method can raiseOMEXxception object.
isValid()
This method returnsBoolean
ObjectElementCM
ElementCM has the all the properties and methods oEleenent object as well as the properties
and methods defined below.
TheElementCM object has the following methods:
contentType()
This method returnsiat object.
getElementDeclaration()
This method returns BlementDeclarationobject.
This method can raiseOMEXxception object.
canSetAttribute(attrname, attrval)
This method returnsBoolean
Theattrname parameter is of typ8tring.
Theattrval parameter is of typ8tring.
canSetAttributeNode(node)
This method returnsBoolean
Thenode parameter is Alode object.
canSetAttributeNodeNS(node, namespaceURIpcalName)
This method returnsBoolean
Thenode parameter is Alode object.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
canSetAttributeNS(attrname, attrval, namespaceURIJocalName)
This method returnsBoolean
Theattrname parameter is of typ8tring.
Theattrval parameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
ObjectCharacterDataCM
CharacterDataCM has the all the properties and methods ofli object as well as the
properties and methods defined below.

81

Appendix C: ECMA Script Language Binding

The CharacterDataCM object has the following methods:
isWhitespaceOnly()
This method returnsBoolean
canSetData(offsetarg)
This method returnsBoolean
Theoffset parameter is of typRumber.
Thearg parameter is of typ8tring.
This method can raiseOMEXxception object.
canAppendData(arg)
This method returnsBoolean
Thearg parameter is of typ8tring.
This method can raise@OMEXxception object.
canReplaceData(offset, coung&rg)
This method returnsBoolean
Theoffset parameter is of typumber.
Thecount parameter is of typRumber.
Thearg parameter is of typ8tring.
This method can raise@OMEXxception object.
caninsertData(offset,arg)
This method returnsBoolean
Theoffset parameter is of typumber.
Thearg parameter is of typ8tring.
This method can raiseOMEXxception object.
canDeleteData(offsetarg)
This method returnsBoolean
Theoffset parameter is of typumber.
Thearg parameter is of typ8tring.
This method can raiseZXOMEXxception object.
ObjectDocumentTypeCM
DocumentTypeCM has the all the properties and methods ofXbeumentTypeobject as well as
the properties and methods defined below.
TheDocumentTypeCM object has the following methods:
isElementDefined(elemTypeName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.
isElementDefinedNS(elemTypeName, namespaceURicalName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
isAttributeDefined(elemTypeName attrName)
This method returnsBoolean
TheelemTypeNameparameter is of typ8tring.
TheattrName parameter is of typ8tring.
isAttributeDefinedNS(elemTypeName, attrName, namespaceURIpcalName)
This method returnsBoolean

82

Appendix C: ECMA Script Language Binding

TheelemTypeNameparameter is of typ8tring.
TheattrName parameter is of typ8tring.
ThenamespaceURIparameter is of typ8tring.
ThelocalNameparameter is of typ8tring.
isEntityDefined(entName)
This method returnsBoolean
TheentNameparameter is of typ8tring.
ObjectAttributeCM
TheAttributeCM object has the following methods:
getAttributeDeclaration()
This method returns AttributeDeclaration object.
getNotation()
This method returns @MNotationDeclaration object.
This method can raiseZXOMEXxception object.
ObjectDOMErrorHandler
TheDOMErrorHandler object has the following methods:
warning(where, how,why)
This method has no retuvalue.
Thewhere parameter is BOMLocator object.
Thehow parameter is of typ8tring.
Thewhy parameter is of typ8tring.
This method can raiseEOMSystemExceptionobject.
fatalError(where, how, why)
This method has no retuvalue.
Thewhere parameter is BOMLocator object.
Thehow parameter is of typ8tring.
Thewhy parameter is of typ8tring.
This method can raiseEOMSystemExceptionobject.
error(where, how, why)
This method has no retuvalue.
Thewhere parameter is BOMLocator object.
Thehow parameter is of typ8tring.
Thewhy parameter is of typ8tring.
This method can raiseOMSystemExceptionobject.
ObjectDOMLocator
TheDOMLocator object has the following methods:
getColumnNumber()
This method returnsiat object.
getLineNumber()
This method returnsiat object.
getPubliclD()
This method returns &tring.
getSystemID()
This method returns &tring.
getNode()
This method returnsldodeobject.

83

Appendix C: ECMA Script Language Binding

ObjectDOMImplementationLS
TheDOMImplementationLS object has the following methods:
createDOMBuilder()
This method returns ROMBuilder object.
createDOMWriter()
This method returns ROMWriter object.
ObjectDOMBuilder
TheDOMBUuilder object has the following properties:
entityResolver
This property is @ OMEntityResolver object.
errorHandler
This property is @ OMErrorHandler object.
filter
This property is &@OMBuilderFilter object.
TheDOMBuilder object has the following methods:
setFeature(namestate)
This method has no retuvalue.
Thename parameter is of typ8tring.
Thestate parameter is of typBoolean
This method can raiseOMEXxception object.
supportsFeature(name)
This method returnsBoolean
Thename parameter is of typ8tring.
canSetFeature(namestate)
This method returnsBoolean
Thename parameter is of typ8tring.
The state parameter is of typBoolean
getFeature(name)
This method returnsBoolean
Thename parameter is of typ8tring.
This method can raise@OMEXxception object.
parseURI(uri)
This method returns @ocumentobject.
Theuri parameter is of typ8tring.
This method can raiseXOMEXxception object or EDOMSystemExceptionobject.
parseDOMInputSource(is)
This method returns @ocumentobject.
Theis parameter is BOMInputSource object.
This method can raise@OMEXxception object or EDOMSystemEXxceptionobject.
ObjectDOMInputSource
The DOMInputSource object has the following properties:
byteStream
This property is @OMInputStream object.
characterStream
This property is @ OMReader object.

84

Appendix C: ECMA Script Language Binding

encoding
This property is of typ&tring.
publicld
This property is of typ&tring.
systemld
This property is of typ&tring.
ObjectDOMERntityResolver
The DOMEntityResolver object has the following methods:
resolveEntity(publicld, systemid)
This method returns ROMInputSource object.
Thepublicld parameter is of typ8tring.
Thesystemld parameter is of typ8tring.
This method can raiseOMSystemExceptionobject.
ObjectDOMBUuilderFilter
The DOMBuilderFilter object has the following methods:
endElement(element)
This method returnsBoolean
Theelementparameter is Blement object.
ObjectDOMWriter
The DOMWriter object has the following properties:
encoding
This property is of typ&tring.
lastEncoding
This read-only property is of tytring.
format
This property is of typ&lumber.
newLine
This property is of typ&tring.
The DOMWriter object has the following methods:
writeNode(destination,node)
This method has no retuvalue.
Thedestination parameter is BOMOutputStream object.
Thenode parameter is Alode object.
This method can raiseOMSystemExceptionobject.

85

Appendix C: ECMA Script Language Binding

86

References

References

For the latest version of any W3C specification please consult the[l8GfTechnicaReportkavailable
athttp://www.w3.0rg/TR.

D.1: Normative references

ECMAScript
ECMA (European Computer Manufacturers Associaff@MAScript Languag&pecificatioh
Available at http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM

Java
Sun Microsystems Infthe Java Languagdgpecificatioh James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/booksl/jls

OMGIDL
OMG (Object Managemertiroup) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

87

http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR

D.1: Normative references

88

Index

AttributeC
attrName

[BOOLEAN DATATYPH

canAppendChild
canlnsertBefole
lcanReplaceChild

lcanSetAttributeNode
canSetDafa
characterStregm
[EM_CHILDREN

Index

|AttributeDeclaratioh

[BYTE DATATYPH

canAppendData
aninsertDaja

a
lcanSetAttributeNodeNS

canSetFeatuye

cloneC

[EM_EXTERNALMODEL

[ATTRIBUTE_DECLARATION

attributeValug

byteStrea

canDeleteDaja

[canRemoveChild

canSetAttribute
[canSetAttributeNIS

[CharacterDataCM

[cloneExternalCM

[CM_MODEL

[CM_NOTATION_DECLARATION

ICMExternalModel

ICMNotationDeclaration

lcreateExternalCM

[DEFAULT_VALUE_CONSTRAINT

MMode
MNodeLis

Ooog
0
=)
=Y
D
-

onstraintTypke

createDOMBuUildgr

[Document

[IDocumentTypeCM

IDOMEnNtityResolvdr

IDOMImplementationLB
DOMWrite

ECMAScrip

|[ElementDeclaratign

DOMBuilde
IDOMErrorHandlelr

IDOMInputSourck

[DOUBLE DATATYPH

[ELEMENT_DECLARATION

[CMNamedNodeMdp
contentType
[createDOMWritgr

[DOMBuilderFiltet
[DOMImplementationCM

DOMLocato

ElementC

elementType

[©)

[encodings4, 59

Index

[endElemeit [ENTITY DECLARATION| [EntityDeclaratioh
[entityResolver
errorHandlgr
[FTIXED_VALUE_CONSTRAINT
[FLOAT DATATYPH forma
[getAttributeDeclaratign
[getCMGrandChildrgn [getCMNamespate
[getCMNodek [getColumnNumbér
getContentTyde [getElementDeclaratipn [getFeaturle
getinternalC [getCineNumbdr

d [getPrimitive Typk

getSystemID

5 o
Z
= o

insertBeforg INT DATATYPE| [isAttributeDefinedl
lisAttributeDefinedN$ lisElementDefingld [isElementDefinedNS
isEntityDefinedl lisNamespaceAwdre isPCDataOnl)
isWhitespaceOnly

[astEncodinp [istOperatdr [CONG_DATATYPH
lowValue

newLine [NG VALUE CONSTRAINT [NodeCM

Index

OMGIDL [ownerElement
lparseDOMInputSour¢e parseURI publicld
resolveEnti

[rootElementDegl

etErrorHandlgr [setFeatule [SHORT DATATYPE
[STRING DATATYPR IstrPublicldentifielr [strSystemldentifigr
subModelp e systemid

	Document Object Model †DOM‡ Level 3 Content Models and Load and Save Specification
	Version 1.0
	W3C Working Draft 09 February 2001
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Content Models and Validation
	1.1. Overview
	1.1.1. General Characteristics
	1.1.2. Use Cases and Requirements

	1.2. Content Model and CM-Editing Interfaces
	1.3. Validation and Other Interfaces
	1.4. Document-Editing Interfaces
	1.5. DOM Error Handler Interfaces
	1.6. Editing and Generating a Content Model
	1.7. Content Model-directed Document Manipulation
	1.8. Validating a Document Against a Content Model
	1.9. Well-formedness Testing

	2. Document Object Model Load and Save
	2.1. Load and Save Requirements
	2.1.1. General Requirements
	2.1.1.1. Document Sources
	2.1.1.2. Content Model Loading
	2.1.1.3. Content Model Reuse
	2.1.1.4. Entity Resolution
	2.1.1.5. Error Reporting

	2.1.2. Load Requirements
	2.1.2.1. Parser Properties and Options

	2.1.3. XML Writer Requirements
	2.1.3.1. XML Writer Properties and Options
	2.1.3.2. Content Model Saving

	2.1.4. Other Items Under Consideration
	2.1.4.1. Incremental and/or Concurrent Parsing
	2.1.4.2. Filtered Save
	2.1.4.3. Document Fragments
	2.1.4.4. Document Fragments in Context of Existing DOM

	2.2. Issue List
	2.2.1. Open Issues
	2.2.2. Resolved Issues

	2.3. Interfaces
	2.3.1. Interface Summary
	2.3.2. Interfaces

	Appendix A: IDL Definitions
	
	content-models.idl:
	load-save.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/contentModel/CMModel.java:
	org/w3c/dom/contentModel/CMExternalModel.java:
	org/w3c/dom/contentModel/CMNode.java:
	org/w3c/dom/contentModel/CMNodeList.java:
	org/w3c/dom/contentModel/CMNamedNodeMap.java:
	org/w3c/dom/contentModel/CMDataType.java:
	org/w3c/dom/contentModel/ElementDeclaration.java:
	org/w3c/dom/contentModel/CMChildren.java:
	org/w3c/dom/contentModel/AttributeDeclaration.java:
	org/w3c/dom/contentModel/EntityDeclaration.java:
	org/w3c/dom/contentModel/CMNotationDeclaration.java:
	org/w3c/dom/contentModel/Document.java:
	org/w3c/dom/contentModel/DocumentCM.java:
	org/w3c/dom/contentModel/DOMImplementationCM.java:
	org/w3c/dom/contentModel/NodeCM.java:
	org/w3c/dom/contentModel/ElementCM.java:
	org/w3c/dom/contentModel/CharacterDataCM.java:
	org/w3c/dom/contentModel/DocumentTypeCM.java:
	org/w3c/dom/contentModel/AttributeCM.java:
	org/w3c/dom/contentModel/DOMErrorHandler.java:
	org/w3c/dom/contentModel/DOMLocator.java:
	org/w3c/dom/loadSave/DOMImplementationLS.java:
	org/w3c/dom/loadSave/DOMBuilder.java:
	org/w3c/dom/loadSave/DOMInputSource.java:
	org/w3c/dom/loadSave/DOMEntityResolver.java:
	org/w3c/dom/loadSave/DOMBuilderFilter.java:
	org/w3c/dom/loadSave/DOMWriter.java:

	Appendix C: ECMA Script Language Binding
	References
	D.1: Normative references

	Index

