
Techniques for User Agent Accessibility
Guidelines 1.0

W3C Working Draft 5-November-1999
This version:

http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105
(plain text, postscript, pdf, gzip tar file of HTML, zip archive of HTML)

Latest version:
http://www.w3.org/TR/WAI-USERAGENT-TECHS

Previous version:
http://www.w3.org/WAI/UA/WD-WAI-USERAGENT-TECHS-19991029

Editors:
Jon Gunderson, University of Illinois at Urbana-Champaign
Ian Jacobs, W3C

Copyright © 1999 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability,
trademark, document use and software licensing rules apply.

Abstract
This document provides techniques for implementing the checkpoints defined in
"User Agent Accessibility Guidelines 1.0". These techniques address the
accessibility of user interfaces, content rendering, program interfaces, and
languages such as HTML, CSS and SMIL.

This document is part of a series of accessibility documents published by the Web
Accessibility Initiative.

Status of this document
This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this document
series is maintained at the W3C.

This is a W3C Working Draft for review by W3C Members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". This is work in progress
and does not imply endorsement by, or the consensus of, either W3C or Members of

 5 Nov 1999 18:371

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/WAI/
http://www.w3.org/WAI/
http://www.w3.org/TR/WAI-USERAGENT
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.uiuc.edu/
http://www.w3.org/WAI/UA/WD-WAI-USERAGENT-TECHS-19991029
http://www.w3.org/TR/WAI-USERAGENT-TECHS
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105/wai-useragent-tech.zip
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105/wai-useragent-tech.tgz
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105/wai-useragent-tech.pdf
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105/wai-useragent-tech.ps
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105/wai-useragent-tech.txt
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105
http://www.w3.org/

the WAI User Agent (UA) Working Group.

While User Agent Accessibility Guidelines 1.0 strives to be a stable document (as
a W3C Recommendation), the current document is expected to evolve as
technologies change and content developers discover more effective techniques for
designing accessible Web sites and pages.

Please send comments about this document to the public mailing list:
w3c-wai-ua@w3.org. Mailing list archives are available on the Web.

This document has been produced as part of the Web Accessibility Initiative. The
goals of the WAI UA Working Group are discussed in the WAI UA charter. A list of
the UA Working Group participants is available.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

2 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR
http://www.w3.org/WAI/UA/wai-ua-members.html
http://www.w3.org/WAI/UA/wai-ua-charter.html
http://www.w3.org/WAI/UA
http://www.w3.org/WAI
http://lists.w3.org/Archives/Public/w3c-wai-ua/

Table of Contents
................. 1Abstract
.............. 1Status of this document
................ 41 Introduction
............... 41.1 Priorities
.......... 52 User Agent Accessibility Guidelines
...... 51. Support input and output device-independence
.......... 82. Ensure user access to all content

3. Allow the user to turn off rendering or behavior that may reduce
............... 12accessibility
.......... 144. Ensure user control over styles
.. 165. Observe operating system conventions and standard interfaces
... 206. Implement open specifications and their accessibility features
.......... 217. Provide navigation mechanisms
............. 268. Help orient the user
...... 289. Notify the user of content and viewport changes
....... 3010. Allow the user to configure the user agent
..... 3411. Provide accessible product documentation and help
.............. 403 Accessibility Topics
............. 403.1 User control of style
.............. 423.2 Link techniques
............. 433.3 Table techniques
............. 463.4 Frame techniques
............. 523.5 Form techniques
............. 553.6 Script techniques
........... 553.7 Abbreviations and acronyms
.... 554 Appendix: Accessibility features of some operating systems
..... 605 Appendix: Loading assistive technologies for DOM access
........ 666 Appendix: Assistive Technology Functionalities
........... 687 Appendix: Terms and Definitions
............... 758 Acknowledgments
................ 779 References
................. 7710 Services

 5 Nov 1999 18:373

Techniques for User Agent Accessibility Guidelines 1.0

1 Introduction

1.1 Priorities
Each checkpoint in this document is assigned a priority that indicates its importance
for users.

[Priority 1]
This checkpoint must be satisfied by user agents as a native feature, otherwise
one or more groups of users with disabilities will find it impossible to access
information. Satisfying this checkpoint is a basic requirement for some
individuals to be able to use the Web.

[Priority 2]
This checkpoint should be satisfied by user agents as a native feature,
otherwise one or more groups of users will find it difficult to access information.
Satisfying this checkpoint will remove significant barriers to accessing Web
documents.

[Priority 3]
This checkpoint may be satisfied by user agents as a native feature to make it
easier for one or more groups of users to access information. Satisfying this
checkpoint will improve access to the Web for some individuals.

4 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

2 User Agent Accessibility Guidelines
This section lists each checkpoint of the Guidelines along with some possible
techniques for satisfying it. Each checkpoint also links to larger accessibility topics
where appropriate.

Guideline 1. Support input and output device-independence

1.1 Ensure that every functionality offered through the user interface is available
through every input device API used by the user agent. User agents are not required
to reimplement low-level functionalities (e.g., for character input or pointer motion)
that are inherently bound to a particular API and most naturally accomplished with
that API. [Priority 1]

Note. The device-independence required by this checkpoint applies to
functionalities described by the other checkpoints in this document unless
otherwise stated by individual checkpoints. This checkpoint does not require
user agents to use all operating system input device APIs, only to make the
software accessible through those they do use.

Techniques:

Operating system and application frameworks provide standard mechanisms
for controlling application navigation for standard input devices. In the case of
Windows, OS/2, the X Windows System, and MacOS, the window manger
provides GUI applications with this information through the messaging queue. In
the case of non-GUI applications, the compiler run-time libraries provide
standard mechanisms for receiving keyboard input in the case of desktop
operating systems. Should you use an application framework such as the
Microsoft Foundation Classes, the framework used must support the same
standard input mechanisms.

When implementing custom GUI controls do so using the standard input
mechanisms defined above. Examples of not using the standard input devices
are:

Do not communicate directly with the device. For instance, in Windows, do
not open the keyboard device driver directly. This may circumvent system
messaging. It is often the case that the windowing system needs to change
the form and method for processing standard input mechanisms for proper
application coexistence within the user interface framework.
Do not implement your own input queue handler. Devices for mobility
access, such as those that use serial keys, use the standard input queue to
control applications.
If you implement an interface where the user selects text then issues a
command related to it (e.g., select text then create a link using the selected
text as content), ensure that the user can select the text in a
device-independent manner, then activate the functionality in a
device-independent manner, then interact with any prompts, etc. in a

 5 Nov 1999 18:375

Techniques for User Agent Accessibility Guidelines 1.0

device-independent manner.

1.2 Use the standard input and output device APIs of the operating system.
[Priority 1]

For example, do not directly manipulate the memory associated with information
being rendered since screen review utilities, which monitor rendering through
the standard APIs, will not work properly.

Techniques:

When writing textual information in GUI operating system use standard text
drawing APIs of an operating system, do not create off screen bitmaps and
copy them to the display. This allows assistive technologies to capture text
and render it as speech or braille.
Use operating system resources for rendering audio information; do not
take exclusive control of system audio resources.
Enhance the functionality of standard system controls to improve
accessibility. For example provide keyboard navigation to menus and dialog
box controls in the Apple Macintosh operating system.

1.3 Ensure that the user can interact with all active elements in a
device-independent manner. [Priority 1]

For example, users who are blind or have motor impairments must be able to
activate the links in a client-side image map without a pointing device. One
technique for doing so is to render client-side image maps as text links. Note.
This checkpoint is an important special case of checkpoint 1.1.

Techniques:

Refer to checkpoint 1.1 and checkpoint 1.5.

For client-side image maps:

If alternative text ("alt" or "title" in HTML) is available and not null for the
element (like INPUT or IMG in HTML) that points to a client-side map, then
render some text indicating a map (like "Start of map") plus the alternative
text and the number of areas in the map. If alt text is null, do not render the
map or its areas.
For each AREA in the map, if alternative text ("alt" or "title") is available and
not null, then render the alternative text as a link. Otherwise, render some
text like "Map area" plus part or all of the href as a link. If alt "text" is null for
an AREA, do not render that AREA.
When reading through the whole Web page, read the start of map
alternative text with the number of areas, but skip over the AREA links. To
read and activate the map areas, use keys that read and navigate link by
link or element by element.

6 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

1.4 Ensure that every functionality offered through the user interface is available
through the standard keyboard API . [Priority 1]

The keystroke-only command protocol of the user interface should be efficient
enough to support production use. Functionalities include being able to show,
hide, resize and move graphical viewports created by the user agent. Note.
This checkpoint is an important special case of checkpoint 1.1.

Techniques:

Ensure that the user can trigger mouseover, mouseout, click, etc. events
from the keyboard consistently.
Ensure that the user can use the graphical user interface menus from the
keyboard.
Ensure that the user can select text using the keyboard standards for the
platform.
Allow the user to change the state of form controls using the keyboard.
In specialized user agents (i.e. touch screen kiosks, portable devices) with
only one input techniques provide an accessible alternative (for example
EasyAccess, IR links to assistive technologies)
Allow the user to activate events associated with an element using the
keyboard, including events that imply device dependence like
onMouseOver, MouseClick, etc...

1.5 Ensure that all messages to the user (e.g., informational messages, warnings,
errors, etc.) are available through all output device APIs used by the user agent. Do
not bypass the standard output APIs when rendering information (e.g., for reasons of
speed, efficiency, etc.). [Priority 1]

For instance, ensure that information about how much content has been viewed
is available through output device APIs. Proportional navigation bars may
provide this information graphically, but the information must be available (e.g.,
as text) to users relying on synthesized speech or braille output.

Techniques:

Operating system and application frameworks provide standard mechanisms
for using standard output devices. In the case of common desktop operating
systems such as Windows, OS/2, and MacOS, standard API are provided for
writing to the display and the multimedia subsystems.

It is important to also support standard output notification of sound such as
notifications found in the Windows control panel for sounds. Windows maps
accessibility features to the event caused by generation of these specific system
sounds. Accessibility features such as SoundSentry would flash the screen, as
appropriate, in response to events that would cause these sounds to play. This
enables the users with deafness to use the application in the absence of sound.

When implementing standard output, do not:

 5 Nov 1999 18:377

Techniques for User Agent Accessibility Guidelines 1.0

Render text in the form of bitmap before transferring to the screen. Screen
Readers intercept text drawing calls to create a text representation of the
screen, called an offscreen model, which is read to the user. Common
operating system 2D graphics engines and drawing libraries provide
functions for drawing text to the screen. Examples of this are the Graphics
Device Interface (GDI) for Windows, Graphics Programming Interface (GPI)
for OS/2, and for the X Windows System or Motif it is the X library (XLIB).
Provide your own mechanism for generating pre-defined system sounds.
When using a device do not use the device driver directly. Screen readers
are designed to monitor what is drawn on the screen by hooking drawing
calls at different points in the of the drawing process. By calling the display
driver directly you may be drawing to the display below the point at which a
screen reader for the blind is intercepting the drawing call.
Do not draw directly to the video frame buffer. This circumvents the
interception point at which a screen reader hooks the display calls.
Make sure an auditory message also has a redundant visual text message.
For example in AOL "You have mail" should also be presented visually.
Tutorials that use speech to guide a user through the operation of the user
agent should also be available at the same time as graphically displayed
text.

Guideline 2. Ensure user access to all content

2.1 Ensure that the user has access to all content, including alternative
representations of content. [Priority 1]

Note. Although it is not a requirement that alternative content be available at the
same time as primary content, some users may benefit from simultaneous
access. For instance, users with low vision may want to view images (even
imperfectly) but require alternative text for the image to be rendered in a very
large size or as speech.

Techniques:

It is not sufficient to convert a rendering intended for one medium into a
rendering for a different medium (e.g., a graphical rendering to speech) since
structural information is lost. Examples: table cells, nested lists (want to know
where list item ends).

Also, serial access to content not always convenient, so we need additional
mechanisms to select and receive content.

Where does content come from?

Some combination of document source, style sheets (which may hide content
or generate content), and user agent additions (which may add contextual
information or dynamic information such as whether a link has been visited).

8 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

In addition, the user agent may want to provide "intelligent" access to content
to simplify the view or to convey models more familiar to users than what is
conveyed by the DTD alone.

In the Amaya browser ([AMAYA]), users may access attribute values as
follows: Place the cursor at the element in question, open/swap to the structure
view. You are shown list of attributes and values. Another technique: select the
element (press escape in Linux), then the attributes are all available from the
attributes menu. For alt, one can also look at the alternate view, which renders
alt text instead of images - a lynx-like view. All the views are synchronized for
navigation (and for editing).

What does access mean?

Access means that the user agent renders selected content. Content includes
text, video, audio, and alternative equivalents to them (which may be attribute
values, element content, external resources, etc.).

In the simplest case, the user agent renders the document (e.g.,
two-dimensional graphical layout, audio stream, line-by-line braille stream) and
the user has access to the entire rendering.

But this is not sufficient and so the user agent must provide navigation
mechanisms that allow the user to set the selection/focus and then request the
selected content (or information about the content - refer to another section...).

User interface issues
How to indicate what piece of content one wants to access?
How does the user agent present the information?
How does the user configure the user agent to present associated
contextual information?

Refer to the section on navigation for different navigation techniques (serial,
direct, tree, etc.).

Rendering issues:
If an object with a preferred geometry is specified and not rendered,
should the alt content be rendered in the preferred (but empty) region?
What if the alternative content exceeds the size of the preferred
geometry? One option is to allow the user to specify through the UI
whether to respect the preferred geometries or ignore them.
Should you render inline or in some other view: distinguished or
integrated in content?
Need to be able to distinguish image links from their long descriptions
("longdesc" in HTML).

Structured v. Unstructured selection.
Users may want to select content based on the rendering structure
alone (i.e., that amounts to selecting across element borders).
Users may want to select content based on structure (e.g., a table cell).

 5 Nov 1999 18:379

Techniques for User Agent Accessibility Guidelines 1.0

Contextual information
In addition to providing information about content, user agents must provide
contextual information. Examples: table cell row/column position or header
information. Or list item number within nested lists. Contextual information
includes language of content as well.
Refer to the section on link techniques .
Refer to the section on table techniques .
Refer to the section on frame techniques .
Refer to the section on form techniques .
Refer to the section on abbreviations and acronyms .
To provide text equivalents of non-text content:

Look for the "alt" attribute (e.g., on IMG in HTML).
Look for the "title" attribute
If the replaced content is text (e.g., a "text" element in SMIL), use the
text content.

The "Altifier Tool" (refer to [ALTIFIER]) illustrates smart techniques for
generating alternative text for images, etc. when the author hasn’t supplied
any.

Speech-based user agents providing accessible solutions for images should,
by default, provide no information about images for which the author has
provided no alternative text. The reason for this is that the image will clutter the
user’s view with unusable information adding to the confusion. In the case of an
speech rendering, nothing should be spoken for the image element. This user
should be able to turn off this option to find out what images were inaccessible
so that the content author could be contacted to correct the problem.

In the case of videos, an assistive technology should, by default, notify the
user that a video exists as this will likely result in the launch of a plug-in. In the
case of a video, user agents should indicate what type of video it is,
accompanied by any associated alternative equivalent. User agents should
prefer plug-ins that support system-specific accessibility features over those that
don’t.

In the case of applets, an assistive technology should, by default, notify the
user that an applet exists, as this will likely result in the launch of an associated
plug-in or browser specific Java Virtual Machine. In the case of an applet, the
notification should include any associated alternative equivalent. This is
especially important since applets typically do provide an application frame that
would provide application title information.

When an applet is loaded, it should support the Java system conventions for
loading an assistive technology (refer to the appendix on loading assistive
technologies for DOM access). When the applet receives focus, the browser
user agent should first notify the user about the applet as described in the
previous paragraph and turn control over to the assistive technology that
provides access to the Java applet.

10 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

In [HTML40] , alternative content may come from the following sources:

For the IMG element: The "alt", "title", and "longdesc" attributes.
For the OBJECT element: The content of the element and the "title"
attribute.
For the APPLET element: The "alt" attribute and the content of the element.
For the AREA element: The "alt" attribute.
For the INPUT element: The "alt" attribute.
For the ACRONYM and ABBR elements: The "title" attribute may be used
for the acronym or abbreviation expansion.
For the TABLE element, the "summary" attribute.
For frames, the NOFRAMES element and the "longdesc" attribute on
FRAME and IFRAME.
For scripts, the NOSCRIPT element.

2.2 If more than one alternative equivalent is available for content, allow the user to
choose from among the alternatives. This includes the choice of viewing no
alternatives. [Priority 1]

For example, if a multimedia presentation has several tracks of closed closed
captions (or subtitles) available (e.g., in different languages, different levels of
detail, etc.) allow the user to choose from among them.

2.3 Render content according to natural language identification. [Priority 1]
Natural language may be identified by markup (e.g., the "lang" attribute in HTML
[HTML40] or "xml:lang" in [XML]) or HTTP headers. Refer also to checkpoint
2.9 and checkpoint 5.3.

2.4 Provide time-independent access to time-dependent active elements or allow
the user to control the timing of changes. [Priority 1]

Techniques:

Provide time-dependent information in a time-independent manner, such as
a static list of links that are time-dependent and occupy the same screen
real estate.
Allow the user to control the timing of changes.
Allow the user to navigate sequences of related links that vary over time.

2.5 Allow the user to specify that continuous equivalent tracks (e.g., closed captions
, auditory descriptions , video of sign language, etc.) be rendered at the same time
as audio and video tracks. [Priority 1]
2.6 If a technology allows for more than one audio track, allow the user to choose
from among tracks. [Priority 1]
2.7 When no text equivalent has been specified, indicate what type of object is
present. [Priority 2]

 5 Nov 1999 18:3711

Techniques for User Agent Accessibility Guidelines 1.0

Techniques:

If no captioning information is available and captioning is turned on, render
"no captioning information available" in the captioning region of the
viewport.
The "Altifier Tool" (refer to [ALTIFIER]) illustrates smart techniques for
generating alternative text for images, etc. when the author hasn’t supplied
any.

2.8 When alternative text has been specified explicitly as empty (i.e., an empty
string), render nothing. [Priority 3]
2.9 For identified but unsupported natural languages, notify the user of language
changes when configured to do so. [Priority 3]

Techniques:

A user agent should treat content language as part of contextual information.
When the language changes, the user agent should either render the content in
the supported language or notify the user of the language change (if configured
for notification). Rendering could involve speaking in the designated language in
the case of an audio browser or screen reader. If the language was not
supported, the language change notification could be spoken in the default
language by a screen reader or audio browser.

Language switching for blocks of content may be more helpful than inline
language switching. In some language combinations, less than a few words long
foreign phrases are often well-integrated in the primary language (e.g.,
Japanese being the primary and English being the secondary or quoted). In
such situations, dynamic switching in in-line level may make the reading sound
unnatural, and possibly harder to be understood.

Language information for HTML ("lang", "dir") and XML ("xml:lang") should be
made available through the DOM ([DOM1]).

User agents may announce language changes using style sheets and
generating text (refer to [CSS2]) that indicates the change of language.

Guideline 3. Allow the user to turn off rendering or behavior
that may reduce accessibility

3.1 Allow the user to turn on and off rendering of background images. [Priority 1]

Techniques:

In [CSS1] , background images may be turned on/off with the ’background’
and ’background-image’ properties.

12 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

3.2 Allow the user to turn on and off rendering of background audio. [Priority 1]

Techniques:

Users sometimes specify background sounds with the "bgsound" attribute.
Note. This attribute is not part of [HTML40] .
In [CSS2] , background sounds may be turned on/off with the ’play-during’,
property.

3.3 Allow the user to turn on and off rendering of video. [Priority 1]
3.4 When the user agent renders audio natively, allow the user to turn on and off
rendering of audio. [Priority 1]
3.5 Allow the user to turn on and off animated or blinking text. [Priority 1]

Techniques:

The BLINK element. Note. The BLINK element is not defined by a W3C
specification.
The MARQUEE element. Note. The MARQUEE element is not defined by a
W3C specification.
The CSS ’blink’ value of the ’text-decoration’ property.

3.6 Allow the user to turn on and off animations and blinking images. [Priority 1]

Techniques:

Render static text in its place.

3.7 Allow the user to turn on and off support for scripts and applets. [Priority 1]
Note. This is particularly important for scripts that cause the screen to flicker,
since people with photosensitive epilepsy can have seizures triggered by
flickering or flashing in the 4 to 59 flashes per second (Hertz) range. Users
should be able, for security reasons, to prevent scripts from executing on their
machines.

Techniques:

Refer to the section on script techniques

3.8 Allow the user to turn on and off rendering of images. [Priority 3]
3.9 Allow the user to turn on and off author-specified forwards that occur after a time
delay and without user intervention. [Priority 3]

Techniques:

Content refresh according to an author-specified time interval can be
achieved with the following markup in HTML:

 5 Nov 1999 18:3713

Techniques for User Agent Accessibility Guidelines 1.0

<META http-equiv="refresh" content="60">

The user agent should allow the user to disable this type of content refresh.

Although no HTML specification defines this behavior formally, some user
agents support the use of the META element to refresh the current page after a
specified number of seconds, with the option of replacing it by a different URI.
Instead of this markup, authors should use server-side redirects (with HTTP).

User agents can provide a link to other content rather than changing the
content automatically.

For example, when forwarding has been turned off, offer a static link to the
target.

3.10 Allow the user to turn on and off automatic content refresh. [Priority 3]
For example, when turned off, allow the user to refresh content manually
instead (through the user interface).

Guideline 4. Ensure user control over styles
Checkpoints for fonts and colors:

4.1 Allow the user to control font family. [Priority 1]

Techniques:

Implement the CSS ’font-family’ property.

4.2 Allow the user to control the size of text. [Priority 1]
For example, allow the user to control font size through style sheets or the user
interface. Or allow the user to magnify text.

Techniques:

Implement the CSS ’font-size’ property.
Allow the user to configure the user agent to ignore author-specified font
family.
Allow the user to set the default font family for the user agent.

4.3 Allow the user to control foreground color. [Priority 1]

Techniques:

Implement the CSS ’color’ and ’border-color’ properties.
Allow the user to specify minimal contrast between foreground and
background colors, adjusting colors dynamically to meet those
requirements.
Allow the user to impose a specific foreground color, ignoring
author-supplied colors.

14 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

4.4 Allow the user to control background color. [Priority 1]

Techniques:

Implement the CSS ’background-color’ property and other background
properties.
Allow the user to impose a specific background color, ignoring
author-supplied colors.

4.5 Allow the user to control selection highlighting (e.g., foreground and
background color). [Priority 1]

Techniques:

For instance, in X Windows, the following resources controls the selection colors
in Netscape Navigator: "*selectForeground" and "*selectBackground".

4.6 Allow the user to control focus highlighting (e.g., foreground and background
color). [Priority 1]

Checkpoints for applets and animations:

4.7 Allow the user to control animation rate. [Priority 2]

Checkpoints for video.

4.8 Allow the user to control video frame rates. [Priority 1]
4.9 Allow the user to control the position of audio closed captions . [Priority 1]
4.10 Allow the user to start, stop, pause, and rewind video. [Priority 2]

Checkpoints for audio:

4.11 Allow the user to control audio playback rate. [Priority 1]
4.12 When the user agent renders audio natively, allow the user to control the audio
volume. [Priority 2]
4.13 Allow the user to start, stop, pause, and rewind audio. [Priority 2]

Checkpoints for synthesized speech:

4.14 Allow the user to control synthesized speech playback rate. [Priority 1]
4.15 Allow the user to control synthesized speech volume. [Priority 1]
4.16 Allow the user to control synthesized speech pitch, gender, and other
articulation characteristics. [Priority 2]

Checkpoints for the user interface:

4.17 Allow the user to select from available author, user, and user agent default style
sheets. [Priority 1]

Note. Users should be able to select no style sheets (i.e., turn them off).

 5 Nov 1999 18:3715

Techniques for User Agent Accessibility Guidelines 1.0

4.18 Allow the user to control user agent-initiated spawned viewports . [Priority 2]
For example, in HTML, allow the user to control the process of opening a
document in a new target frame or a viewport created by author-supplied
scripts. In SMIL 1.0, allow the user to control viewports created with
show="new". Control may involve prompting the user to confirm or cancel the
viewport creation. Users may also want to control the size or position of the
viewport and to be able to close the viewport (e.g., with the "back" functionality).

Techniques:

User agents may:

Allow users to turn off support for spawned viewports entirely
Prompt them before spawning a viewport

For example, user agents may recognize the HTML construct
target="_blank" and spawn the window according to the user’s preference.

Guideline 5. Observe operating system conventions and
standard interfaces

5.1 Provide accessible APIs to other technologies. [Priority 1]
5.2 Use accessibility resources and conventions of the operating system and
supported programming languages, including those for plug-ins and virtual machine
environments. [Priority 1]

For instance, if the user agent supports Java applets and provides a Java
Virtual Machine to run them, the user agent should support the proper loading
and operation of a Java native assistive technology. This assistive technology
can provide access to the applet as defined by Java accessibility standards.

Techniques:

The operating system application programming interfaces (APIs) that support
accessibility are designed to provide a bridge between the standard user
interface supported by the operating system and alternative user interfaces
developed by third-party assistive technology vendors to provide access to
persons with disabilities. Applications supporting these APIs are therefore
generally more compatible with third-party assistive technology.

The User Agent Accessibility Guidelines Working Group strongly
recommends using and supporting APIs that improve accessibility and
compatibility with third-party assistive technology. Third-party assistive
technology can use the accessibility information provided by the APIs to provide
an alternative user interface for various disabilities.

The following is an informative list of currently public APIs that promote
accessibility:

16 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Microsoft Active Accessibility ([MSAA]) in Windows 95/98/NT versions.
Sun Microsystems Java Accessibility API ([JAVAAPI]) in Java Code.

Many operating systems have built-in accessibility features for improving the
usability of the standard operating system by persons with disabilities. When
designing software that runs above an underlying operating system, developers
should ensure that the application:

1. Makes use of operating system level features. See the appendix of
accessibility features for some common operating systems.

2. Inherits operating system settings related to accessibility. Pertinent settings
include font and color information as well as other pieces of information
discussed in this document.

Write output to and take input from standard system APIs rather than direct
from hardware controls where possible. This will enable the I/O to be redirected
from or to assistive technology devices - for example, screen readers and braille
devices often redirect output (or copy it) to a serial port, while many devices
provide character input, or mimic mouse functionality. The use of generic APIs
makes this feasible in a way that allows for interoperability of the assistive
technology with a range of applications.

User agents should use standard rather than custom controls when designing
user agents. Third-party assistive technology developers are more likely able to
access standard controls than custom controls. If you must use custom controls,
review them for accessibility and compatibility with third-party assistive
technology.

For information about rapid access to Microsoft Internet Explorer’s DOM
through COM, refer to [BHO] .

5.3 Provide programmatic read and write access to user agent functionalities and
user interface controls. [Priority 1]

For example, ensure that assistive technologies have access to information
about the current input configuration so that they can trigger functionalities
through keyboard events, mouse events, etc. Refer also to checkpoint 5.2.

5.4 Implement selection and focus mechanisms and make the selection and focus
available to users and through APIs. [Priority 1]

Refer also to checkpoint 7.1 and checkpoint 5.3.
5.5 Provide programmatic notification of changes to content and user interface
controls (including selection and focus). [Priority 1]

Refer also to checkpoint 5.2.
5.6 Conform to W3C Document Object Model specifications and export interfaces
defined by those specifications. [Priority 1]

For example, refer to [DOM1] and [DOM2] . User agents should export these
interfaces using available operating system conventions. Note. The DOM Level
1 specification states that "DOM applications may provide additional interfaces
and objects not found in this specification and still be considered DOM
compliant."

 5 Nov 1999 18:3717

Techniques for User Agent Accessibility Guidelines 1.0

Techniques:

A Document Object Model (DOM) is an interface to a standardized tree
structure representation of a document. This interface allows authors to access
and modify the document with client-side scripting language (e.g., JavaScript) in
a consistent manner across scripting languages. As a standard interface, a
DOM makes it easier not just for authors but for assistive technology developers
to extract information and render it in ways most suited to the needs of particular
users. Information of particular importance to accessibility that must be available
through the DOM includes:

Content, including alternative content.
Style sheet information (for user control of styles).
Script and event handlers (for device-independent control of behavior).
The document structure (for navigation, creation of alternative views).

User agents should implement W3C DOM Recommendations, including
[DOM1] and [DOM2]]. The W3C Recommendation for DOM Level 1 ([DOM1])
provides access to HTML and XML document information. The DOM Level 2
([DOM2]) is made of a set of core interfaces to create and manipulate the
structure and contents of a document and a set of optional modules. These
modules contain specialized interfaces dedicated to XML, HTML, an abstract
view, generic stylesheets, Cascading Style Sheets, Events, traversing the
document structure, and a Range object.

It is important to note that DOM is designed to be used on a server as well as
a client and therefore many user interface-specific information such as screen
coordinate information is not relevant and not addressed by the DOM
specification.

Assistive technologies also require information about browser highlight
mechanisms (e.g., the selection and focus) that may not be available through
the W3C DOM.

Note. The WAI Protocols and Formats Working Group is focusing its efforts
on the DOM as the conduit from which to extract accessibility information from
and to enhance the accessibility of a rendered document through a user agent.
It is this are should concentrate on for providing access to user agent
documents.

5.7 Provide programmatic exchange of information in a timely manner. [Priority 2]
This is important for synchronous alternative renderings and simulation of
events.

5.8 Follow operating system conventions and accessibility settings. In particular,
follow conventions for user interface design, default keyboard configuration, product
installation, and documentation . [Priority 2]

Refer also to checkpoint 10.5.

18 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Techniques:

Develop the UA User Interface (UI) with standard interface components per
the target platform(s). Most major operating system platforms provide a series of
design and usability guidelines, these should be followed when possible (see
platforms below).

These checklists, style guides, and human interface guidelines provide very
valuable information for developing applications (e.g., UAs) for any
platform/operating system/GUI. If your custom interface cannot provide
information or operation as defined above, then you may need to design your
UA using any additional options provided by that platform.

For instance, software should use the standard interface for keyboard events
rather than working around it.

Evaluate your standard interface components on the target platform against
any built in operating system accessibility functions (see Appendix 8) and be
sure your UA operates properly with all these functions.

For example, take caution with the following:

Microsoft Windows supports an accessibility function called "High
Contrast". Standard window classes and controls automatically support this
setting. However, applications created with custom classes or controls must
understand how to work with the "GetSysColor" API to ensure compatibility
with High Contrast.
Apple Macintosh supports an accessibility function called "Sticky Keys".
Sticky Keys operates with keys the operating system understands to be
defined as modifier keys, and therefore a custom UA control should not
attempt to define a new modifier key.

Some guidelines for specific platforms:

"Macintosh Human Interface Guidelines" [APPLE-HI] Apple Computer Inc.
"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java"
[JAVA-ACCESS] .
"An ICE Rendezvous Mechanism for X Window System Clients" [ICE-RAP]
.
"Information for Developers About Microsoft Active Accessibility" [MSAA] .
"The Inter-Client communication conventions manual" [ICCCM] .
"Lotus Notes accessibility guidelines" [NOTES-ACCESS] .
"Java accessibility guidelines and checklist" [JAVA-CHECKLIST] .
"The Java Tutorial. Trail: Creating a GUI with JFC/Swing" [JAVA-TUT] .
"The Microsoft Windows Guidelines for Accessible Software Design"
[MS-SOFTWARE] .

General guidelines for producing accessible software:

"Accessibility for applications designers" [MS-ENABLE] .
"Application Software Design Guidelines" [TRACE-REF] .

 5 Nov 1999 18:3719

Techniques for User Agent Accessibility Guidelines 1.0

"Designing for Accessibility" [SUN-DESIGN] .
"EITAAC Desktop Software standards" [EITAAC] .
"Requirements for Accessible Software Design" [ED-DEPT] .
"Software Accessibility" [IBM-ACCESS] .
Towards Accessible Human-Computer Interaction" [SUN-HCI] .
"What is Accessible Software" [WHAT-IS] .
Accessibility guidelines for Unix and X Window applications
[XGUIDELINES] .

Follow System Conventions for loading Assistive Technologies:

User agents should follow operating system or application environment (e.g.,
Java) conventions for loading assistive technologies. In the case of Java
applets, the browser’s Java Virtual Machine should follow the Sun convention
for loading an assistive technology. Writing an application that follows the Java
system conventions for accessible software does not allow the applet to be
accessible if an assistive technology designed for that environment cannot be
run to make the applet accessible. Refer to the appendix on loading assistive
technologies for DOM access for information about how an assistive technology
developer can load its software into a Java Virtual Machine.

Guideline 6. Implement open specifications and their
accessibility features

6.1 Implement the accessibility features of supported specifications (markup
languages, style sheet languages, metadata languages, graphics formats, etc.).
[Priority 1]

Note. The Techniques Document ([UA-TECHNIQUES]) discusses accessibility
features of W3C specifications.

Techniques:

The accessibility features of Cascading Style Sheets (refer to [CSS1] and
[CSS2]) are described in [CSS-ACCESS] .
The accessibility features of SMIL 1.0 (refer to [SMIL]) are described in
[SMIL-ACCESS] .
The following is a list of accessibility features of [HTML40] :

The "alt" attribute defined for the IMG, AREA, INPUT, and APPLET
elements.
The "longdesc" attribute defined for IMG elements ([HTML40] , section
13.2). This attribute may be used to attach additional descriptive
information to images if the "alt" description is insufficient.
The CAPTION element ([HTML40] , section 11.2.2) for rich table
captions.
The ACRONYM and ABBR elements ([HTML40] , section 9.2.1) for
acronyms and abbreviations.
The "summary" attribute for TABLE ([HTML40] , section 11.2.1) for

20 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

table summary information.
Table elements (THEAD, TBODY, TFOOT, COLGROUP, and COL)
that group table rows and columns into meaningful sections.
Attributes ("scope", "headers", and "axes") so that non-visual browsers
may render a table in a linear fashion, based on the semantically
significant labels.
The NOSCRIPT element ([HTML40] , sections 18.3.1 and 16.4.1) for
accessible alternatives to scripts.
The NOFRAMES element ([HTML40] , sections 18.3.1 and 16.4.1) for
accessible alternatives to frames.
Support the "lang" attribute ([HTML40] , section 8.1).
The "tabindex" attribute ([HTML40] , section 17.11.1) for assigning the
order of keyboard navigation within a document.
The "accesskey" attribute ([HTML40] , section 17.11.2) for assigning
keyboard commands to active components such as links, and form
controls.

6.2 Conform to W3C specifications when they are appropriate for a task. [Priority 2]
For instance, for markup, implement [HTML40] or [XML] . For style sheets,
implement [CSS1] , [CSS2] , or XSL. For mathematics, implement [MATHML] .
For synchronized multimedia, implement [SMIL] . For access to the structure of
HTML or XML documents, implement [DOM1] . For an event model, implement
[DOM2] . Refer also to checkpoint 5.6.

Guideline 7. Provide navigation mechanisms

7.1 Allow the user to navigate viewports (including frames). [Priority 1]
Note. For example, when all frames of a frameset are displayed side-by-side,
allow the user to navigate among them with the keyboard. Or, when frames are
displayed individually (e.g., by a text browser or speech synthesizer), provide a
list of links to individual frames. Navigating into a viewport makes it the current
viewport.

Techniques:

Some operating systems provide a means to navigate among all windows,
not just those created by the user agent. This suffices for viewports that are
windows. However user agents may also allow the user to shift the focus
from window to window independent of the standard operating system
mechanism.
Consult the section on frame techniques .

7.2 For user agents that offer a browsing history mechanism, when the user returns
to a previous view, restore the point of regard in the viewport . [Priority 1]

For example, when users navigate "back" and "forth" among views, for each
view they should find the viewport position where they left it.

 5 Nov 1999 18:3721

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105#def-active-components

7.3 Allow the user to navigate just among cells of a table (notably left and right within
a row and up and down within a column). [Priority 1]

Note. Navigation techniques include keyboard navigation from cell to cell (e.g.,
using the arrow keys) and page up/down scrolling. Refer also to checkpoint 1.1
and checkpoint 5.3.

Techniques:

All users should be able to quickly determine the nature and purpose of a
table. Examining the table visually often conveys a sense of the table contents
with a quick scan of the cells. Users with blindness or low vision, users who
have difficulty translating printed material, or users in an eyes-busy or
speech-based environment may not able to do this. Providing table summary
information, when first navigating to a table allows the nature of a table to be
easily determined. In HTML, summary information for tables comes from the
"summary" attribute on the TABLE element as well as the CAPTION element.

An auditory rendering agent, when the point-of-regard moves to a table, might
say, "Table: Tax tables for 1998," thus identifying the nature of the table. The
user could then use keyboard commands to move the selection to the next
logical block of information, or use a different command to "burrow" into the
table.

The "burrow" command should have an opposite "up" command, which would
move the selection from an individual cell to the table as a whole, so that the
user can leave a table from any cell within it, rather than navigating to the end.

If the user moves the focus up to look over the summary information, it should
be possible to burrow back to the same cell.

When navigating a table that contains another table, this strategy can avoid
confusion. For example, if each row of a table contained five cells, but the
second row contained a 4x4 table in the third cell, a user could be disoriented
when the row did not end as expected. However, when the selection moved to
the third cell of the table, a compliant browser would report that this was a table,
and describe its contents. The user would have the option of navigating to the
forth cell of the parent table, or burrowing into the table within this cell.

When rendering tabular information, the fact that it is tabular information
should be apparent. For a graphical user agent, such information is commonly
made obvious by the border attribute or by visually apparent aligned white
space between columns. However, for a non-graphical agent, such information
must also be made evident.

As the user agent shifts the selection to a table, it should first allow users to
access summary information about the table (e.g., the CAPTION element or the
"summary" attribute in HTML). Access to this information allows the user to
determine whether or not to examine the contents of the table, or to move the
selection to the next block of content. Users should be able to choose not to
have the summary information presented, if, for example, they visit a table
frequently and don’t want to hear the summary information repeated each time.

22 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

In many data tables, the meaning of the contents of a cell are related to the
contents of adjacent cells. For example, in a table of sales figures, the sales for
the current quarter might be best understood in relation to the sales for the
previous quarter, located in the adjacent cell.

In order to provide access to contextual information for individuals using
non-graphical browsers, or for individuals with certain types of learning
disabilities, it is necessary for the user agent to allow the selection to be moved
from cell to cell, both right/left and up/down via keyboard commands. The UA
should inform the user when navigation has led to a table edge.

The most direct method of performing such navigation would be via the cursor
keys, though other navigation strategies might be used.

Users of graphical browsers can easily locate cells within a table that are at
the intersection of a row and column of interest. To provide equivalent access to
users of non-graphical browsers, equivalent means of navigation should be
provided. The search function of a browser will allow the user to locate key
terms within a table, but will not allow the user to find cells that are at the
intersection of rows and columns of interest.

More techniques:

An advanced search mode might provide entries for header information,
allowing the user to find information at the intersection of columns and rows
using the key terms.
A search mode might allow the user to search for key terms that are related
to key header terms, allowing searches to be restricted to specific rows or
headers within a table.

The header information visible in a TH cell may be abbreviated, in which case
it should be user preference to see the "abbr" value if any or the full contents.

Axis information may also help the user search into confined portions of the
table.

Column groups and row groups are other confining partitions of a table in
which a search may be limited.

Software:

Table navigation script from the Trace Center

7.4 Allow the user to navigate all active elements . [Priority 1]
Navigation mechanisms may range from sequential (e.g., serial navigation by
tabbing) to direct (e.g., by entering link text) to searching on active elements
only (e.g., based on form control text, associated labels, or form control names).

7.5 Allow the user to navigate just among all active elements . [Priority 2]
Refer also to checkpoint 7.4.

 5 Nov 1999 18:3723

Techniques for User Agent Accessibility Guidelines 1.0

http://trace.wisc.edu/world/computer_access/table_nav_script/table-nav.html

Techniques:

Sequential navigation includes all active elements. User agents might provide
other navigation mechanisms limited to a particular type of element. For
example "Find the next table" or "Find the previous form". The following
techniques suggest some types of navigation.

Serial navigation. It is important that application developers maintain a
logical keyboard navigation order. The navigation order is defined as the
order of navigation among components and component elements via the
keyboard. Generally users navigate by tabbing between components or
groups and using the arrow keys within a component group or component’s
elements. The ability to tab between software components is a key feature
in the implementation of keyboard accessibility. (Cross-reference to
keyboard access.) Buttons of common functionality, such as a set of radio
buttons used to set the location of a panel (top left, bottom left, and so on.),
should be grouped together so the first element of the visible group can be
tabbed to. Allow the user to use the arrow keys to navigate to each end of
the group.
How to indicate that something is in tabbing order in Java: A component is
inclusive in the tabbing order when added to a panel and its
isFocusTraversable() method returns true. A component can be removed
from the tabbing order by simply extending the component, overloading this
method, and returning false.
For active elements, navigation to the previous or next active element.
In a table, up/down and left/right.

Direct navigation: Excessive use of serial navigation can reduce the usability
of software for both disabled and non-disabled users. As a developer, you need
to determine the point at which tabbing gets in the way and provide a keyboard
alternative. This is done through the use of keyboard shortcuts. Note that user
agents must provide information about available shortcuts (the current keyboard
configuration) to users.

Need for element identification.
Access by position in document.
Next/Previous occurrence of text in an element’s content (e.g., first letter) in
the current document.
In a table, access to cell based on coordinates.

7.6 Allow the user to search for rendered text content, including alternative text
content. [Priority 2]

Techniques:

Allow users to search for element content and attribute values
(human-readable ones).
Allow users to search the document source view.
For forms, allow users to find required controls. Allow users to search on

24 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

labels as well as content of some controls.
Allow the user to search among just alternative text.
For multimedia presentations:

Allow users to search and examine time-dependent media elements
and links in a time-independent manner. For example, present a static
list of time-dependent links.
Allow users to search closest timestamp from a text stream or a media
elements or links and find other media elements active at the same
time.
Allow users to view a list of all media elements or links of the
presentations sorted by start or end time or alphabetically.
For frames, allow users to search for content in all frames (without
having to be in a particular frame).

7.7 Allow the user to navigate according to structure. [Priority 2]
For example, allow the user to navigate familiar elements of a document:
paragraphs, tables, headers, lists, etc.

Techniques:

DOM is minimal (tree navigation)
Best navigation will involve a mix of source tree information and rendered
information.
May use commonly understood document models rather than strict DTD
navigation. E.g., properly nesting headers in HTML. Headers should be
used only to convey hierarchy, not for graphical side-effects.
Goal of simplifying the structure view as much as possible.
Allow the user to control level of detail/ view of structure.
Depth first as well as breadth first possible. Allow next/previous sibling, up
to parent, and end of element.
Navigation of synchronized multimedia: allow users to stop, pause, fast
forward, advance to the next clip, etc.

Skipping navigation bars:

Author-supplied navigation mechanisms such as navigation bars at the top of
each page may force users with screen readers or some physical disabilities to
wade through numerous links on each page of a site. User agents may facilitate
browsing for these users by allowing them to skip recognized navigation bars
(e.g., through a configuration option). Some techniques for doing so include:

1. Provide a functionality to jump to the first non-link content.
2. In HTML, the MAP element may be used to mark up a navigation bar (even

when there is no associated image). Thus, users might ask that MAP
elements not be rendered in order to hide links inside the MAP element.
Note. Starting in HTML 4.0, the MAP element allows block content, not just
AREA elements.

 5 Nov 1999 18:3725

Techniques for User Agent Accessibility Guidelines 1.0

7.8 Allow the user to configure structured navigation. [Priority 3]
For example, allow the user to navigate only paragraphs, or only headers and
paragraphs, etc.

Techniques:

Allow the user to navigate by element type.
Allow the user to expand or shrink portions of the structured view (control
detail level) for faster access to important parts content.

Guideline 8. Help orient the user

8.1 Provide a mechanism for highlighting and identifying (through a standard
interface where available) the current viewport , selection , and focus . [Priority 1]

Note. This includes highlighting and identifying frames. Refer also to checkpoint
9.1..

Techniques:

If colors are used to highlight the current viewport, selection, or focus, allow
the user to set preferred colors and to ensure sufficient contrasts.
If the current viewport is a window, allow the user to cause the window to
pop to the foreground.
If the current viewport is a frame or the user doesn’t want windows to pop to
the foreground, use colors, reverse videos, or other visual clues to indicate
the current viewport. For speech or braille output, render the title or name of
a frame or window and indicate changes in the current viewport.

Refer also to the section on frame techniques

8.2 Convey the author-specified purpose of each table and the relationships among
the table cells and headers. [Priority 1]

For example, provide information about table headers, how headers relate to
cells, table caption and summary information, cell position information, table
dimensions, etc. Note. This checkpoint is an important special case of
checkpoint 2.1.

Techniques:

Refer to the section on table techniques
Allow the user to access this information on demand (e.g., by activating a
menu or keystroke).

8.3 Provide an outline of a resource view built from its structural elements (e.g.,
frames, headers, lists, forms, tables, etc.) [Priority 2]

For example, for each frame in a frameset, provide a table of contents
composed of headers where each entry in the table of contents links to the
header in the document.

26 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

8.4 Indicate whether a focused link has been marked up to indicate that following it
will involve a fee. [Priority 2]

Note. [MICROPAYMENT] describes how authors may mark up micropayment
information in an interoperable manner. This information may be provided
through the standard user interface provided the interface is accessible. Thus,
any prompt asking the user to confirm payment must be accessible.

Techniques:

Refer to the section on link techniques .
Allow the user to access this information on demand (e.g., by activating a
menu or keystroke for a focused link).

8.5 Provide information to help the user decide whether to follow a focused link.
[Priority 2]

Note. Useful information includes: whether the link has already been visited,
whether it designates an internal anchor, the type of the target resource, the
length of an audio or video clip that will be started, and the expected natural
language of target resource.

Techniques:

Refer to the section on link techniques .
Allow the user to access this information on demand (e.g., by activating a
menu or keystroke).

8.6 Allow the user to configure the outline view. [Priority 3]
For example, allow the user to control the level of detail of the outline. Refer
also to checkpoint 8.3. Refer also to checkpoint 5.3.

8.7 Allow the user to configure what information about links to present. [Priority 3]
Note. Using color as the only distinguishing factor between visited and unvisited
links does not suffice since color may not be perceivable by all users or
rendered by all devices. Refer also to checkpoint 8.5.

Techniques:

Allow the user to access this information on demand (e.g., by activating a
menu or keystroke).

8.8 Provide a mechanism for highlighting and identifying (through a standard
interface where available) active elements. [Priority 3]

Note. User agents may satisfy this checkpoint by implementing the appropriate
style sheet mechanisms, such as link highlighting.

8.9 Maintain consistent user agent behavior and default configurations between
software releases. Consistency is less important than accessibility and adoption of
operating system conventions. [Priority 3]

In particular, make changes conservatively to the layout of user interface
controls, behavior of existing functionalities, and default keyboard configuration.

 5 Nov 1999 18:3727

Techniques for User Agent Accessibility Guidelines 1.0

Guideline 9. Notify the user of content and viewport changes

9.1 Provide information about user agent-initiated content and viewport changes
directly to the user and through APIs. [Priority 1]

For example, inform the users when a script causes a popup menu to appear.

Techniques:

Refer to the section on frame techniques
Render the changed content graphically.
Highlight the current viewport.
Emit an audible signal when a change occurs.
Make DOM methods fire a "change" event that can be trapped (does
[DOM2] have this already?)

9.2 Ensure that when the selection or focus changes, it is in the viewport after the
change. [Priority 2]

Techniques:

There are time when the focus changes (e.g., link navigation) and the
viewport must be moved to track it. There are other times when the
viewport changes position (e.g., scrolling) and the focus must be moved to
follow it. In both cases, the focus (or selection) is in the viewport after the
change.
Make sure that search windows do not place the new focus that is the
found object under a search popup.
Only change selection/focus in the current viewport.

9.3 Prompt the user to confirm any form submission triggered indirectly, that is by
any means other than the user activating an explicit form submit control. [Priority 2]

Techniques:

Put up a dialog indicating the form will be submitted if it is done by an
onChange, after a certain time, or for other script-based submission. Allow
the user to suppress these dialogs for good.
If the submit button is not the last control in the form, and no controls after it
have been focussed, put up a dialog pointing this out/asking if the user has
filled in the information after the button.
If a Javascript submission is fired, allow the user to ask for it to be
intercepted and trigger the dialog mentioned above.

For example, do not submit a form automatically when a menu option is
selected, when all fields of a form have been filled out, on a mouseover event,
etc.

28 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

9.4 Allow the user to configure notification preferences for common types of content
and viewport changes. [Priority 3]

For example, allow the user to choose to be notified (or not) that a script has
been executed, that a new viewport has been opened, that a pulldown menu
has been opened, that a new frame has received focus, etc.

Techniques:

Refer to the section on frame techniques
Allow the user to specify an element type for which notification should be
disabled (e.g., table, body, img, ...)
Allow the user to disable notification of changes to CSS properties
Allow the user to disable notification of images that are changed

9.5 When loading content (e.g., document, video clip, audio clip, etc.) indicate what
portion of the content has loaded and whether loading has stalled. [Priority 3]

Techniques:

Status information - on resource loading - should be provided in a
device-independent manner. Techniques include text and non-text status
indicators. Users should be able to request status information or have it
rendered automatically. User agents may allow users to configure when status
information should be rendered (e.g., by hiding or showing the status bar).

Screen readers may provide access on demand (e.g., through the keyboard)
to the most recent status information, or to announce the new information
whenever it changes.

Useful status information:

Document proportions (numbers of lines, pages, width, etc.)
Number of elements of a particular type (e.g., tables)
The viewport is at the beginning or end of the document.
Size of document in bytes.

User agents may allow users to configure what status information they want
rendered.

Allow users to access status information on demand through a keyboard or
other shortcut.

9.6 Indicate the relative position of the viewport in content (e.g., the percentage of an
audio or video clip that has been played, the percentage of a Web page that has
been viewed, etc.). [Priority 3]

Note. Depending on how the user has been browsing, the percentage may be
calculated according to focus position, selection position, or viewport position.

 5 Nov 1999 18:3729

Techniques for User Agent Accessibility Guidelines 1.0

Techniques:

Provide a scrollbar for the viewport.
List the current "page" as page X of a total of Y pages.
Use a variable pitch audible signal to indicate position.
Keep the information numerically and generate the output on user request.
See new HTML work on Forms for further examples (a slider is like a dial is
like a menu of lots of options...)
Provide standard markers for specific percentages through the document
(mileposts)
Provide markers for positions relative to some position - a user selected
point, the bottom, the H1, etc.
Put a marker on the scrollbar, or a highlight at the bottom of the page while
scrolling (so you can see what was the bottom before you started scrolling

Guideline 10. Allow the user to configure the user agent

10.1 Provide information about the current user-specified input configuration (e.g.,
keyboard or voice bindings specified through the user agent’s user interface).
[Priority 1]

Techniques:

If the current configuration changes locally (e.g., a search prompt opens that
changes the keyboard mapping for the duration of the prompt), the user must be
able to know about the current configuration. Users may have an easier time
remembering named configurations - "this is the configuration in this particular
mode."

Tabbing order:

How to specify in HTML

Keyboard shortcuts

How to specify in HTML
Visibility of.
Documentation of. At a minimum: list in README file that comes with
software.

Some suggestions:

1. Allow the user to use the find command to jump to a link instead of tabbing
there. It would save a lot of keystrokes, especially if one programs the
keystrokes as macros. But this requires that focus moves to the location
that find highlights.

2. Allow the user to use find command to jump to text in buttons.
3. Allow the user to use find command to jump to image by searching on its

alternative content (e.g., "alt" attribute).
4. Allow the user to separate setting the focus and activating the control. For

30 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

links, first-time users of a page may want to hear link text (focus) before
deciding whether to follow the link (activate). More experienced users of a
page would prefer to follow the link directly, without the intervening focus
step.

Some reserved keyboard shortcuts are listed in the appendix on accessibility
features of some operating systems.

In case of conflicts between author-supplied configuration and user-supplied,
operating system defaults, or user agent default configurations, here is some
possible behavior:

Do not over-ride default system and user agent controls, but alert the user
of author-supplied configuration and provide a pass-through mechanism to
allow author-specified configurations that conflict with default UA or OS
keybindings to be invoked.
Allow author-defined configurations to override user agent and operating
system configurations, but alert the user of the conflicts and provide a
pass-through mechanism so that the conflicting user agent or operating
system configurations can be invoked.
Remap author-supplied configurations to currently unused keystrokes,
voice commands, etc. and alert the user to which configurations have been
remapped.

10.2 Provide information about the current author-specified input configuration (e.g.,
keyboard bindings specified in content such as by "accesskey" in [HTML40]).
[Priority 2]

Techniques:

Distinguish the following classes of user input bindings:

bindings that are in effect and agree with the shipping defaults for the base
browser
bindings that are in effect but differ from the shipping defaults
bindings that are in effect for this document only (subset of previous class)
bindings no longer in effect because they have been overridden

In association with local (e.g., this page only) and off-default bindings, provide
information about how to work around the override.

Note that user support personnel, particularly remote support personnel, will
need the "departures from shipping defaults" view for orientation.

The above classes may be distinguished by displayed properties in a
combined presentation as well as by filtering to present only a restricted class.

10.3 Allow the user to change and control the input configuration . Users should be
able to activate a functionality with a single-stroke (e.g., single-key, single voice
command, etc.). [Priority 2]

 5 Nov 1999 18:3731

Techniques for User Agent Accessibility Guidelines 1.0

Users should not be required to activate functionalities by navigating through the
graphical user interface (e.g., by moving a mouse to activate a button or by
pressing the "down arrow" key repeatedly in order to reach the desired
activation mechanism. Input configurations should allow quick and direct access
that does not rely on graphical output. For self-voicing browsers, allow the user
to modify what voice commands activate functionalities. Similarly, allow the user
to modify the graphical user interface for quick access to commonly used
functionalities (e.g., through buttons).

Techniques:

User agents that allow users to customize or reconfigure mappings from
keyboard, voice, etc. to user agent functionalities should allow each mapping to
be accompanied by a description so that the user can understand the mapping.
For example, if "Control-P" maps to a print functionality, a short description
would be "Print" or "Print setup".

Profiles
Default values
Device-independent configuration

When using a physical keyboard, some users require single-key access,
others require that keys activated in combination be physically close together,
while others require that they be spaced physically far apart. When allowing
users to configure keyboard access to functionalities, user agents must consider
operating system conventions, author-specified shortcuts, and user preferences.
The user agent’s default configuration should include shortcuts for frequently
performed actions and should respect operating system conventions.

User agents, to allow the user to turn on and off author-specified keyboard
configurations, may offer a checkbox in the keyboard mapping dialog to that
would toggle the support for author-specified keyboard configurations. In
[HTML40] , authors may specify keyboard behavior with the "tabindex" and
"accesskey" attributes.

10.4 Use operating system conventions to indicate the input configuration .
[Priority 2]

For example, on some operating systems, if a functionality is available from a
menu, the letter of the key that will activate that functionality is underlined.

Techniques:

In some operating systems, information about shortcuts is rendered visually
using an underscore under a character in a menu item or button corresponding
to the shortcut key activated with an ALT+character. For menu accelerators the
text in the menu item is often followed by a CNTRL+function key. These are
conventions used by the Sun Java Foundations Classes (refer to [JAVA-TUT])
and Microsoft Foundations Classes for Windows.

32 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

10.5 Avoid default input configurations that interfere with operating system
conventions. [Priority 2]

For example, the default configuration should not include "Alt-F4" or
"Control-Alt-Delete" on operating systems where that combination has special
meaning to the operating system. In particular, default configurations should not
interfere with the mobility access keyboard modifiers reserved for the operating
system. Refer also to guideline 5.

10.6 Allow the user to configure the user agent in named profiles that may be
shared (by other users or software). [Priority 2]

Users must be able to select from among available profiles or no profile (i.e., the
user agent default settings).

Techniques:

Configuration profiles allow individual users to save their user agent settings
and re-apply them easily. This is particularly valuable in an environment where
several people may use the same machine. Profiles may include rendering
preferences as well as user email address, proxy information, etc.

The user should be able to easily transfer profiles between installations of the
same user agent. One way to facilitate this is to follow applicable operating
system conventions for profiles.

Users should be able to switch rapidly between profiles (or the default
settings) and to set a new default profile. This is helpful when:

Several people use the same machine.
One user is being helped by another who may not recognize the
information being displayed using the user’s profile.

User agents may apply a profile when the user logs in. They may also allow
users to apply settings interactively, for example by allowing them to choose
from a list of named profiles in a menu.

Sample profiles (based on common usage scenarios) can assist users in the
initial set up of the user agent. These profiles can serve as models and may be
copied and fine-tuned to meet an individual’s particular needs.

Cascading Style Sheets may be part of a source document or linked
externally. Stand-alone style sheets are useful for implementing user profiles in
public access computer environments where several people use the same
computer. User profiles allow for convenient customization and may be shared
by a group.

10.7 Provide default input configurations for frequently performed operations.
[Priority 3]

Make it easy to use the most frequently requested commands. In particular,
provide convenient mappings to functionalities that promote accessibility such
as navigation of links.

 5 Nov 1999 18:3733

Techniques for User Agent Accessibility Guidelines 1.0

10.8 Allow the user to configure the graphical arrangement of user interface
controls. [Priority 3]

Techniques:

Allow multiple icon sizes (big, small, other sizes).
Allow the user to choose icons and/or text
Allow the user to change the grouping of icons
Allow the user to change the position of control bars, icons, etc. Do not rely
solely on drag-and-drop for reordering tool bar; the user must be able to
configure the user interface in a device-independent manner (e.g., through
a text-based profile).

Guideline 11. Provide accessible product documentation and
help

11.1 Provide a version of the product documentation that conforms to the Web
Content Accessibility Guidelines. [Priority 1]

User agents may provide documentation in many formats, but one must be
accessible as per [WAI-WEBCONTENT] . Alternative content, navigation
mechanisms, and illustrations will all help make the documentation accessible.

Techniques:

Documentation created in HTML should follow the [WAI-WEBCONTENT] .

Electronic documentation created in open standard formats such as HTML
and ASCII can often be accessed in the user’s choice of application such as a
word processor or browser. Accessing documentation in familiar applications is
particularly important to users with disabilities who must learn the functionalities
of their tools and be able to configure them for their needs. Commonly used
applications are also more likely to be compatible with assistive technology.
Electronic documentation should not be provided in proprietary formats.

Users with print impairments may need or desire documentation in alternative
formats such as Braille, large print, or audio tape. User agent manufacturers
may provide user manuals in alternative formats. Documents in alternative
formats can be created by agencies such as Recording for the Blind and
Dyslexic and the National Braille Press.

User instructions should be expressed in an input device-independent
manner. Provide instructions for using or configuring the user agent in a manner
that can be understood by a user of any input device including a mouse or
keyboard. For example, "Select the Home button on the toolbar" or "Select
Home from the Go menu to return to the Home page."

Universal design means that access to features that help accessibility should
be integrated into standard menus. User agents should avoid regrouping access
to accessibility features into specialized menus.

34 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

http://www.nbp.org/
http://www.rfbd.org/
http://www.rfbd.org/

11.2 Document all user agent features that promote accessibility. [Priority 1]
For example, review the documentation or help system to ensure that it
discusses the functionalities addressed by the checkpoints of this document.

Techniques:

Include references to accessibility features in these parts of the
documentation:

1. Indexes. Include terms related to product accessibility in the documentation
index (e.g., "accessibility", "disability" or "disabilities").

2. Tables of Contents. Include terms related to product accessibility in the
documentation table of contents (e.g., features that promote accessibility)

3. Include instructions on how to modify all user configurable defaults and
preferences (e.g, images, video, style sheets, and scripts) as specified by
the documentation.

4. Include a list of all keyboard shortcuts or other input configuration
information in the accessibility section of the documentation.

5. Document the features implemented to conform with these Guidelines.

11.3 Document the default input configuration (e.g., default keyboard bindings).
[Priority 1]

For example, documentation of what user agent features may be activated with
a single keystoke, voice command, or button activation is an important part of
the user interface to users visual impairments, some types of movement
impairments, or multiple disabilities. Without this documentation,these users
may not realize they can accomplish a particular task with a single gesture and
so might unnecessarily avoid that feature of the software. Or they might waste
time and energy using a very inefficient technique to perform a task.

Techniques:

Here is a table showing mappings between Netscape Navigator functions (or
potential functions) and their keyboard shortcuts in Macintosh, Unix, and
Windows versions. If a function exists in the browser but does not have a
shortcut, its corresponding cell is marked with an asterisk(*). If the function does
not exist, it is left blank.

Some entries contain links to special notes. The number in parentheses
following the link is the number of the relevant note.

Netscape Navigator Keyboard Shortcuts

Function
Macintosh (v

4.61)
Unix (v 4.51)

Windows (v
4.7)

Move within a document

 5 Nov 1999 18:3735

Techniques for User Agent Accessibility Guidelines 1.0

Scroll to next
page

Page Down Page Down Page Down

Scroll to previous
page

Page Up Page Up Page Up

Scroll to top * * *

Scroll to bottom * * *

Move between documents

Open a new
document

Command+L Alt+O Ctrl+O

Stop loading a
document

Command+. Esc Esc

Refresh a
document

Command+R Alt+R Ctrl+R

Load previous
document

Command+[
or
Command+Left
Arrow

Alt+Left
Arrow

Alt+Left
Arrow

Load next
document

Command+]
or
Command+Right
Arrow

Alt+Right
Arrow

Alt+Right
Arrow

Navigate elements within a document

Move focus to
next frame

* * *

Move focus to
previous frame

* * *

Move focus to
next active
element (1)

Tab Tab Tab

Move focus to
previous active
element (1)

Shift+Tab Shift+Tab Shift+Tab

Find word in
page

Command+F Alt+F Ctrl+F

Act on html elements

36 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Select a link * * Enter

Toggle a check
box

* *
Shift or
Enter

Activate radio
button

* * Shift

Move focus to
next item in an
option box

* *
Down Arrow
or Right
Arrow

Move focus to
previous item in
an option box

* *
Up Arrow or
Left Arrow

Select item in an
option box

* * Enter

Press a button
(2)

Return Enter Enter

Navigate menus

Activate menu * *

Alt+ the
underlined
letter in the
menu title

Deactivate menu * Esc Esc

Move focus to
next menu item

* * (3) Down Arrow

Move focus to
previous menu
item

* * (3) Up Arrow

Select menu item *
underlined
letter in the
menu item

Enter

Move focus to
submenu

* * (3) Right Arrow

Move focus to
main menu

* * (3) Left Arrow

Navigate bookmarks

 5 Nov 1999 18:3737

Techniques for User Agent Accessibility Guidelines 1.0

View bookmarks
menu

* (4) * Alt+C+B

Move focus to
next item in
bookmarks menu

Down Arrow (4) * Down Arrow

Move focus to
previous item in
bookmarks menu

Up Arrow (4) * Up Arrow

Select item in
bookmarks menu

Return (4) * Enter

Add bookmark Command+D Alt+K Ctrl+D

Edit bookmarks Command+B Alt+B Ctrl+B

Delete current
bookmark (5)

Delete Alt+D Delete

Navigate history list

View history list Command+H Alt+H Ctrl+H

Move focus to
next item in
history list

* * Down Arrow

Move focus to
previous item in
history list

* * Up Arrow

Move focus to
first item in
history list

* * Left Arrow

Select item in
history list

* * Enter (6)

Close history list Command+W Alt+W Ctrl+W

Define view

Increase font size
 (7)

Shift+Command+] Alt+] Ctrl+]

Decrease font
size (7)

Shift+Command+[Alt+[Ctrl+[

Change font
color

* * *

38 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Change
background color

* * *

Turn off
author-defined
style sheets

* * *

Turn on
user-defined
style sheets (8)

? ? ?

Apply next
user-defined
style sheet

? ? ?

Apply previous
user-defined
style sheet

? ? ?

Notes.

1. In Windows, active elements can be links, text entry boxes, buttons,
checkboxes, radio buttons, etc. In Unix and Macintosh, Tab cycles through
text entry boxes only.

2. In Windows, this works for any button, since any button can gain the focus
using keyboard commands. In Unix and Macintosh, this only applies to the
"Submit" button following a text entry.

3. In Unix, the menus can not be opened with shortcut keys. However, once a
menu is opened it stays opened until it is explicitly closed, which means
that the menus can still be used with shortcut keys to some extent.
Sometimes left and right arrows move between menus and up and down
arrows move within menus, but this does not seem to work consistently,
even within a single session.

4. In Macintosh, you can not explicitly view the bookmarks menu. However, if
you choose "Edit Bookmarks", which does have a keyboard shortcut, you
can then navigate through the bookmarks and open bookmarked
documents in the current window.

5. To delete a bookmark you must first choose "Edit Bookmarks" and then
move the focus to the bookmark you want to delete.

6. In Windows, when you open a link from the history menu using Enter, the
document opens in a new window.

7. All three systems have menu items (and corresponding shortcut keys)
meant to allow the user to change the font size. However, the menu items
are consistently inactive in both Macintosh and Unix. The user seems to be
able to actually change the font sizes only in Windows.

8. It is important to allow users to set their own cascading style sheets (css).
Although Netscape does currently allow the user to override the author’s

 5 Nov 1999 18:3739

Techniques for User Agent Accessibility Guidelines 1.0

choice of foreground color, background color, font, and font size, it does not
allow some of the advanced capabilities that make cascading style sheets
so powerful. For example, a blind user may want to save a series of style
sheets which show only headers, only links, etc., and then view the same
page using some or all of these style sheets in order to orient himself to the
contents and organization of the page before reading any of the actual
content.

11.4 In a dedicated section, document all features of the user agent that promote
accessibility. [Priority 2]

3 Accessibility Topics
This section introduces some general techniques to promote accessibility in user
agent functionality. A list of assistive technologies and browsers designed for
accessibility is available at the WAI Web site (refer to [USERAGENTS]).

3.1 User control of style
To ensure accessibility, users must have final control over certain renderings.

For changing text size, allow font size changes or provide a zoom mechanism.
To hide content, use the ’display’ and ’visibility’ properties of [CSS1] .

Implement CSS ([CSS1] , [CSS2]) including the CSS2 cascade order and user
style sheets. The CSS2 cascade order ensures that user style sheets with
"!important" take precedence over author style sheets, giving users final control.
Style sheets give authors design flexibility while offering users final control over
presentation (refer also to [WAI-WEBCONTENT] , checkpoint 3.3). CSS should be
implemented by user agents that implement CSS for text that it renders. CSS
includes properties for audio, braille (fixed and refreshable), screen, and print
rendering, and all relevant properties for supported output media should be
implemented.

Note that in the CSS cascade order, markup is given less weight than style sheet
rules. Thus, an author may use both presentation markup and style sheets, and user
agents that support style sheets will prefer the latter.

A user style sheet can be implemented through a user interface, which means that
the user may not have to understand how to write style sheets; they are generated
or the user agent acts as though they were. For an example of this, refer to the style
sheets implementation of Amaya ([AMAYA]), which provides a GUI-based interface
to create and apply internal style sheets. The same technique could be used to
control a user style sheet.

40 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

For images, applets, and animations:

Background images may be controlled by the use of local style sheets, and more
effectively if these can be dynamically updated. Animation rate depends on the
players used. User agents that provide native rendering of animation (for example a
movie player, a driver for animated GIF images, or a java machine) should enable
the control of animation rates, or at least allow the user to stop, and to play
frame-by-frame, as well as straight rendering. A user agent could provide control of
the general timing of a presentation, combined with the ability to select from
available tracks manually. An issue to bear in mind is that when animation is
synchronized with audio, a user may need the ability to play the animation
separately from the associated audio.

For time-based presentations:

Implement user controls to start, atop, rewind and pause presentations, and where
multiple tracks are supported, to choose which tracks should be rendered. SMIL
([SMIL]) provides for a number of these features. A SMIL implementation should
provide for direct user control, as well as activation of the controls through a
published API, for developers of assistive technologies.

For user agents rendering audio:

On selecting from among available description tracks. SMIL ([SMIL]) allows users
to specify captions in different languages. By setting language preferences in the
SMIL player, users may access captions (or audio) in different languages.

The G2 player from Real Networks currently allows users to specify which
language they prefer, which can be evaluated in a SMIL document to choose from
among text or audio tracks. Currently only one language can be indicated which
does not permit choosing, for example, English spoken audio with Spanish captions.

The Quicktime player currently permits turning on and off any number of tracks
individually, which can include audio, video, and text.

For user agents rendering video:

Implement the CSS positioning and/or SMIL layout languages. Allow the user to
freeze a presentation, manually move and resize component video tracks (including
captions, subtitles and signed translations) and to apply CSS stylesheets to
text-based presentation and SVG.

For user agents rendering speech:

CSS2 ([CSS2]]) properties for speech can allow users to control speech rate,
volume, and pitch. These can be implemented by allowing the user to write and
apply a local style sheet, or can be automatically generated by means of
(accessible) user controls, which should also be controllable through an API.

User interface:

Allow the user to select large or small buttons and controls (and ensure that
these values are applied consistently across the user interface) @@CMN:
Opera does this.@@

 5 Nov 1999 18:3741

Techniques for User Agent Accessibility Guidelines 1.0

Allow the user to control features such as menu font sizes, or speech rates - this
may be achieved through use of operating system standards.
Allow the user to regroup buttons and controls, and reorder menus (@@CMN:
MS Word does this. This is also related to reconfiguring commands, etc.@@)

3.2 Link techniques

Address broken link handling so that it doesn’t disorient users. For example,
leave viewport as is and notify user.
Provide the user with media-independent information about the status of a link
as the link is chosen. For example, do not rely solely on font styles or color
changes to alert the user whether or not the link has previously been followed.
The user should be able to pick from amongst a list of alert mechanisms (i.e.
color changes, sound clips, status line messages, etc.), and should not be
limited to only one type of alert mechanism.

For assistive technologies: Provide the user with the option to have the
TITLE (if present) or the hyperlink text made available to the user when the
user navigates from link to link.

Alert the user if following a link involves the payment of a fee.
When presenting the user with a list of the hyperlinks contained in a document,
allow the user to choose between "Display links using hyperlink text" or "Display
links by title (if present)", with an option to toggle between the two views.

Provide the user with orientation information about the listed links. For
example, identify a selected link as "Link X of Y", where "Y" is the total
number of links available in the document.

Offer the user a list of links which have been visited and a list of links which
have not yet been visited, or provide a media-independent mechanism to
distinguish between visited and unvisited links. Do _not_ rely on visual or aural
prompts alone to signify the difference between visited and unvisited links.
Offer the user a list of links which are internal (i.e., local to document) and those
which are external, or provide a media-independent mechanism to distinguish
between external and internal links in a list of links. Do _not_ rely on visual or
aural prompts *alone* to signify the difference between internal and external
links.
Use :before from [CSS2] to clearly indicate that something is a link (e.g.,
’A:before { content : "LINK:" }’).
Implement the CSS pseudo-class ’:hover’.

Lynx ([LYNX]) numbers each link and other element and provides information
about the relative position of the section of the document. Position is relative to the
current page and the number of the current page out of all pages. Each page usually
has 24 lines.

Information about link status and other properties can be provided in an
information view such as that provided by Netscape Navigator about how many and
what types of elements are in a document.

42 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

User agents should not consider that all local links (to anchors in the same page)
have been visited when the page has been visited.

User agents may use graphical or aural icons to indicate visited links or broken
links.

Users should be able to:

Configure what information about links they wish presented to them.
Turn on and off automatic rendering of this information when a link is focused.
Get information about a focused link on demand, even if automatic rendering
has been turned off.

3.3 Table techniques
Tables were designed to structure relationships among data. In graphical media,
tables are often rendered on a two-dimensional grid, but this is just one possible
interpretation of the data. On the Web, the HTML TABLE element has been used
more often than not to achieve a formatting effect ("layout tables") rather than as a
way to structure true tabular data ("data tables").

Layout tables cause problems for some screen readers and when rendered,
confuse users. Even data tables can be difficult to understand for users that browse
in essentially one dimension, i.e. for whom tables are rendered serially. The content
of any table cell that visually wraps onto more than one line can be a problem. If only
one cell has content that wraps, there is less problem if it is in the last column. Large
tables pose particular problems since remembering cell position and header
information becomes more difficult as the table grows.

User agents facilitate browsing by providing access to specific table cells and their
associated header information. How headers are associated with table cells is
markup language-dependent.

Tabular navigation is required by people with visual impairments and some types
of learning disabilities to determine the content of a particular cell and spatial
relationships between cells (which may convey information). If table navigation is not
available users with some types of visual impairments and learning disabilities may
not be able to understand the purpose of a table or table cell.

3.3.1 Table rendering

A linear view of tables -- cells presented row by row or column by column -- can be
useful, but generally only for simple tables. Where more complex structures are
designed, allowing for the reading of a whole column from header downward is
important as is carrying the ability to perceive which header belongs to which column
or group of columns if more than one is spanned by that header. It is important for
whole cells to be made available as chunks of data in a logical form. It might be that
a header spans several cells so the header associated with that cell is part of the
document chunk for that and each of the other cells spanned by that header. Inside
the cell, order is important. It must be possible to understand what the relationships

 5 Nov 1999 18:3743

Techniques for User Agent Accessibility Guidelines 1.0

of the items in a cell are to each other.

Properly constructed data tables generally have distinct TH head cells and TD
data cells. The TD cell content gains implicit identification from TH cells in the same
column and/or row.

For layout tables, a user agent can assist the reader by indicating that no
relationships among cells should be expected. Authors should not use TH cells just
for their formatting purpose in layout tables, as those TH cells imply that some TD
cells should gain meaning from the TH cell content.

When a table is "read" from the screen, the contents of multiline cells may become
intermingled. For example, consider the following table:

This is the top left cell This is the top right cell
of the table. of the table.

This is the bottom left This is the bottom right
cell of the table. cell of the table.

If read directly from the screen, this table might be rendered as "This is the top left
cell This is the top right cell", which would be confusing to the user.

A user agent should provide a means of determining the contents of cells as
discrete from neighboring cells, regardless of the size and formatting of the cells.
This information is made available through the DOM [DOM1]).

3.3.2 Cell rendering

Non-graphical rendering of information by a browser or an assistive technology
working through a browser will generally not render more than a single cell, or a few
adjacent cells at a time. Because of this, the location of a cell of interest within a
large table may be difficult to determine for the users of non-graphical rendering.

In order to provide equivalent access to these users, compliant browsers should
provide a means of determining the row and column coordinates of the cell having
the selection via keyboard commands. Additionally, to allow the user of a
non-graphical rendering technology to return to a cell, the browser should allow a
means of moving the selection to a cell based on its row and column coordinates.

At the time the user enters a table, or while the selection is located within a table,
the user agent should allow an assistive technology to provide information to the
user regarding the dimensions (in rows and columns) of the table. This information,
in combination with the summary, title, and caption, can allow the user with a
disability to quickly decide whether to explore the table of skip over it.

Dimensions is an appropriate term, though dimensions needn’t be constants. For
example a table description could read: "4 columns for 4 rows with 2 header rows. In
those 2 header rows the first two columns have "colspan=2". The last two columns
have a common header and two subheads. The first column, after the first two rows,
contains the row headers.

44 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Some parts of a table may have 2 dimensions, others three, others four, etc.
Dimensionality higher than 2 are projected onto 2 in a table presentation.

The contents of a cell in a data table are generally only comprehensible in context
(i.e., with associated header information, row/column position, neighboring cell
information etc.). User agents provide users with header information and other
contextual information. Techniques for rendering cells include:

Provide this information through an API.
Render cells as blocks. This may assist some screen readers. Using this
strategy, the user agent might render individual cells with the relevant top and
side headers attached.
Allow navigation and querying of cell/header information. When the selection is
on an individual cell, the user would be able to use a keyboard command to
receive the top and left header information for that cell. The user agent should
appropriately account for headers that span multiple cells.
Allow users to read one table column or row at a time, which may help them
identify headers.
Ignore table markup entirely. This may assist some screen readers. However,
for anything more than simple tables, this technique may lead to confusion.

3.3.3 Cell header algorithm

User agents should use the algorithm to calculate header information provided in the
HTML 4.0 specification ([HTML40] , section 11.4.3).

Since not all tables are designed with the header information, user agents should
provide, as an option, a "best guess" of the header information for a cell. Note that
data tables may be organized top-to-bottom, bottom-to-top, right-to-left, and
left-to-right, so user agents should consider all edge rows when seeking header
information.

Some repair strategies for finding header information include:

Consider that the top or bottom row to contains header information.
Consider that the leftmost or rightmost column in a column group contains
header information.
If cells in an edge row or column span more than one row or column, consider
the following row or column to contain header information as well.

The user may choose the form and amount of this information, possibly
announcing the row heads only once and then the column head or its abbreviation
("abbr") to announce the cell content.

Issues to consider:

1. TH cells on both the left and right of the table need to be considered.
2. For TH cells with "rowspan" set: the content of those TH cells must be

considered for each of the N-1 rows below the one containing that TH content.

 5 Nov 1999 18:3745

Techniques for User Agent Accessibility Guidelines 1.0

3. An internal TH in a row surrounded on either side by TDs has no means to
specify to which (row or column) that TH overrides what existed to its left or
above it.

4. Finding column header cells assumes they are all above the TD cell to which
they apply.

5. A TH with "colspan" set needs to be included in the list of TH for the M-1
columns to the right of the column in which the TH is found.

3.3.4 Table metadata

Users of screen readers or other serial access devices cannot easily glean
information about a page "at a glance". This is particularly difficult when accessing
two-dimensional tables and trying to determine their content. Therefore, contextual
information about tables (available from author-supplied markup or generated by the
user agent) is very important to making them accessible.

Text metadata about tables can come from a number of elements, attributes, the
structure of the table itself, or other sources. Useful information to make available to
users includes:

The number of column groups and columns.
The number of row groups and rows, in particular information about table
headers and footers.
Which rows contain header information (whether at the top or bottom of the
table).
Which columns contain header information (whether at the left or right of the
table).
Whether there are subheads.
How many rows or columns a header spans.
The row/column dimensions of the table.

3.4 Frame techniques
Frames were originally designed for use by graphical user interfaces to allow the
graphical viewport to be broken up into pieces that could change independently
(e.g,. selecting an entry in a table of contents in one frame changes the contents of a
second frame). However Frames can pose problems users who rely on synthesized
speech, refreshable braille, and magnified views. Problems include:

Orientation: What frame am I in? How is the frameset organized? What is the
relationship among frames? What happens in frame B when I select a link in
frame A?
Navigation: How do I get from frame to frame?

To help users, user agents should:

46 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Consider the author’s alternative presentation to frames (e.g., provided by
NOFRAMES in [HTML40]).
Inform the user that they are viewing a frameset.
Provide information about the number of frames in the frameset.
Provide (possibly nested) lists of links to each frame in the frameset. The link
text can be the frame title (given by "title" or "name" if "title" is not present). Or, if
no title or name are available, render the title (e.g., the TITLE element in HTML)
of the document that is loaded into the frame. Other alternative renderings for a
frameset include simply rendering each frame in the frameset sequentially as a
block (e.g., aligned vertically in a graphical environment).
Highlight the current frameset (e.g., with a thick border, by displaying the name
of the current frameset in the status bar, etc.
Provide information about the current frame. Make available frame title for
speech synthesizers and braille devices.
If a page does not have a list of links within in a frame available outside the
frame, make the list available outside the frame.
Allow navigation between frames (forward and backward through the nested
structure, return to global list of links to frames). Note. Recall that the user must
be able to navigate frames through all supported input devices.
Allow navigation to alternative content.
Allow the user to bookmark the current frame.
Inform the user if an action in one frame causes the content of another frame to
change. Allow the user to navigate quickly to the frame(s) that changed.

Frame structure information should be available through the DOM and appropriate
accessibility interfaces. Using DOM and operating specific accessibility API to
expose frame information provides one means for assistive technologies to provide
alternative control of frames and rendering of frame information. The user agent
should fully implement the DOM Level 1 Recommendation ([DOM1]) API related to
frames: HTMLFrameSetElement, HTMLFrameElement, and HTMLIFrameElement.

For people with visual impairments who are enlarge text on the screen to improve
readability, frames become distorted and unusable. Other users with cognitive
disabilities sometimes become disoriented in complex side-by-side frame
configurations. To improve access to frames, user agents should allow frames to be
viewed as a list so the user can identify the number of frames and the functions of
each frame. If no frames information is present it should also be rendered so the
user can optionally use that view of the information.

Consider renderings of the following document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN">
<HTML lang="en">
<HEAD>
 <META http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <TITLE>Time Value of Money</TITLE>
</HEAD>

 5 Nov 1999 18:3747

Techniques for User Agent Accessibility Guidelines 1.0

<FRAMESET COLS="*, 388">
 <FRAMESET ROWS="51, *">
 <FRAME src="sizebtn" marginheight="5" marginwidth="1"
 name="Size buttons" title="Size buttons">
 <FRAME src="outlinec" marginheight="4" marginwidth="4"
 name="Presentation Outline"
 title="Presentation Outline">
 </FRAMESET>

 <FRAMESET ROWS="51, 280, *">
 <FRAME src="navbtn" marginheight="5" marginwidth="1"
 name="Navigation buttons"
 title="Navigation buttons">
 <FRAME src="slide001" marginheight="0" marginwidth="0"
 name="Slide Image" title="Slide Image">
 <FRAME src="note001" name="Notes" title="Notes">
 </FRAMESET>
<NOFRAMES>
<P>List of Presentation Slides</P>

Time Value of Money
Topic Overview
Terms and Short Hand
Future Value of a Single CF
Example 1: FV example:The
NBAŸs new Larry Bird exception
FV Example: NBAŸs Larry
Bird Exception (cont.)
SuperStarŸs Contract
Breakdown
Present Value of a Single
Cash Flow
Example 2: Paying Jr, and
A-Rod
Example 3: Finding Rate of
Return or Interest Rate
Annuities
FV of Annuities
PV of Annuities
Example 4: Invest Early in
an IRA
Example 4 Solution
Example 5: Lotto Fever

Uneven Cash Flows: Example
6:Fun with the CF function
Example 6 CF worksheet inputs
CF inputs continued
Non-Annual Interest
Compounding
Example 7: What rate are
you really paying?
Nominal to EAR Calculator
Continuous Interest Compounding
FV and PV with non-annual
interest compounding
Non-annual annuities

48 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Example 8: Finding Monthly
Mortgage Payment
solution to Example 8

</NOFRAMES>
</FRAMESET>
</HTML>

The following illustrate how some user agents handle this frameset.

First, rendering in Microsoft Internet Explorer 5.0 on a Windows platform:

Rendering by Lynx on Linux:

 Time Value of Money

 FRAME: Size buttons
 FRAME: Presentation Outline
 FRAME: Navigation buttons
 FRAME: Slide Image
 FRAME: Notes

 List of Presentation Slides
 1. Time Value of Money
 2. Topic Overview
 3. Terms and Short Hand
 4. Future Value of a Single CF

 5 Nov 1999 18:3749

Techniques for User Agent Accessibility Guidelines 1.0

 5. Example 1: FV example:The NBA’s new Larry Bird exception
 6. FV Example: NBA’s Larry Bird Exception (cont.)
 7. SuperStar’s Contract Breakdown
 8. Present Value of a Single Cash Flow
 9. Example 2: Paying Jr, and A-Rod
 10. Example 3: Finding Rate of Return or Interest Rate
 11. Annuities
 12. FV of Annuities
 13. PV of Annuities
 14. Example 4: Invest Early in an IRA
 15. Example 4 Solution
 16. Example 5: Lotto Fever
 17. Uneven Cash Flows: Example 6:Fun with the CF function
 18. Example 6 CF worksheet inputs
 19. CF inputs continued
 20. Non-Annual Interest Compounding
 21. Example 7: What rate are you really paying?
 22. Nominal to EAR Calculator
 23. Continuous Interest Compounding
 24. FV and PV with non-annual interest compounding
 25. Non-annual annuities
 26. Example 8: Finding Monthly Mortgage Payment
 27. solution to Example 8

Graphical rendering by Home Page Reader on Windows:

50 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Audio rendering by Home Page Reader on Windows: @@add here@@

User agents may also indicate the number of frames in a document and which
frame is the current frame via the menu bar or popup menus. Users can configure
the user agent to include a FRAMES menu item in their menu bar. The menu bar
makes the information highly visible to all users and is very accessible to assistive
technologies. In the following snapshot, the menu bar indicates the number of
frames and a check next to the name of the frame element indicates which is the
current frame:

 5 Nov 1999 18:3751

Techniques for User Agent Accessibility Guidelines 1.0

3.5 Form techniques

For labels explicitly associated with form controls (e.g., "for" attribute on LABEL
in HTML), make available label information when the user is navigating among
the form controls.
Provide information about what is required for each form control.
Provide information about the order of form controls (e.g., as specified by
"tabindex" in HTML). This is important since users that access forms serially
need to know they have supplied all the necessary information before submitting
the form.

Statement of form submission problems from Gregory Rosmaita:

Point A: As a user, I do not want to be prompted time I submit a form, provided
that I submitted the form by activating its submit button. If, however, I simply hit the
ENTER or the RETURN key from within a FORM control (i.e., rather than explicitly
activating the SUBMIT mechanism), I would like the UA to request confirmation
before submitting the form content.

52 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Point B: As a user, I do NOT want the form content automatically submitted if I
inadvertently press the ENTER or RETURN key.

PROBLEM STATEMENT FOR POINT B:

Inadvertently pressing the RETURN or ENTER key is quite a prevalent
phenomenon amongst users of every level of expertise - especially those who
often find it necessary to switch between user agents. Lynx, for example, uses
the ENTER key within FORMs as a means of exposing drop-down (or pop-up,
depending upon your point of view) SELECT menus. Thus, when one
encounters a SELECT menu using Lynx, one: exposes the content of the menu
by pressing the ENTER key, and then is able to navigate between OPTIONs
using the up and down arrows or via Lynx’s text-search feature. When one finds
the appropriate OPTION, it is selected by pressing ENTER, which causes the
selected item to be displayed in the SELECT menu listbox.

The problems posed by the default "submit on enter" feature of most GUI
browsers, is not limited to the SELECT menu problem outlined above. Lynx (as well
as several other text-based browsers) uses the ENTER/RETURN key as a means of
toggling several FORM controls, such as the selection of checkboxes and radio
buttons.

Moreover, I would like to stress that the "Auto-Submit-On- Enter" feature is not
only quite problematic for one operating in an eyes-free environment, but for those
unaccustomed to using online forms, and for those unfamiliar with a particular user
agent’s default key- bindings for forms, as well as those (like myself and countless
others) who surf the Web using a variety of browsers, often switching from browser
to browser -- ALT- TAB-ing from Lynx32 to MSIE to Opera, for example -- in order to
better comprehend the contents of a page or while attempting to navigate an poorly
structured site or a poorly marked-up form

Point C: As a speech user, I am constantly frustrated and misdirected by the use
of javascript and event handler controlled pseudo-forms, wherein the user is
presented with a menu (in the form of a listbox in GUI browsers), and is redirected to
a different viewport upon selection of an OPTION.

PROBLEM STATEMENT FOR POINT C:

The markup behind such pseudo-forms is a mix of javascript (in particular the
"function switchpage(select)" command) and HTML FORM controls, which
utilize HTML4’s event handler script attributes (in particular the "onchange"
event handler attribute has been defined. An example (gleaned from the
document source for one Web site follows:

 <SELECT NAME="condition" onchange="switchpage(this)">

When such a menu is encountered by a Web surfer who is using speech synthesis
in conjunction with a javascript enabled user agent, his or her instinctual reaction will
be to use the UA’s navigation mechanism (usually the up and down arrows) to
review the available OPTIONs. However, each time a new OPTION is displayed, the

 5 Nov 1999 18:3753

Techniques for User Agent Accessibility Guidelines 1.0

user is abruptly taken to a new viewport. Conversely, if one is using a user agent
that does not support javascript (or has javascript support disabled), then the menu
is displayed, but since there is no SUBMIT mechanism associated with it, there is no
mechanism by which one can use the menu to quickly switch viewports - the
apparent purpose of this type of pseudo-form. And while one can avoid having the
viewport abruptly changed when encountering the menu (at least in the Windows
environment) by using the ALT-LEFT-ARROW keystroke to display the menu in a
drop-down list, (a) very few users know this keystroke, and (b) when one encounters
a listbox on a page in an aural environment, one usually assumes that he or she is
navigating a valid FORM, in which there are no unexpected side effects to perusing
the contents of a SELECT menu using the arrow keys

Note. I have chosen to address the issue of pseudo-forms in this context, for,
although they straddle the boundary between "Form Controls" and Checkpoint 5.8,
pseudo-forms rely on FORM elements for activation This issue has been raised in
the past, particularly by Chris Kreussling.

Techniques:

1. Allow the user to configure the user agent. Choices should include:
"Never Allow Automatic Submission of Form Content " or "Never Submit
{Do Not Prompt}"
"Always Allow Automatic Submission of Form Content" or "Always Submit
Without Prompting"
"Prompt Before Submitting Form Content"

The default setting should be: "Prompt before submitting form content", so as to
allow the user to decide whether or not HTML4 event handling will occur
automatically.

2. Configuration can be determined by prompting the user the first time an event
handled or script-driven FORM is encountered. Choices should include:

"Submit" {optional verbiage: "This Time Only"}
"Do Not Submit" {optional verbiage: "This Time Only"}
"Always Allow Automatic Submission of Form Content" or "Always Submit
Without Prompting"
"Never Allow Automatic Submission of Form Content " or "Never Submit
{Do Not Prompt}"
"Always Prompt Before Submitting Form Content"

If the user chooses "Prompt Before Submitting Form Content", this prompt could
be recycled in an abbreviated fashion. The prompt should include:

"Submit This Time Only"
"Do Not Submit"
"Always Submit and Do Not Ask/Warn Me Again"
"Never Submit and Do Not Ask/Warn Me Again"

Refer also to [WAI-WEBCONTENT] , checkpoint 6.3: Content developers must
ensure that pages are accessible with scripts turned off or in browsers that don’t
support scripts.

54 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

3.6 Script techniques
Certain elements of the document language may have associated event handlers
that are triggered when certain events occur. User agents must be able to identify
those elements with event handlers statically associated (i.e., associated in the
document source, not in a script).

In HTML
All of the attributes beginning with the prefix "on": "onblur", "onchange",
"onclick", "ondblclick", "onkeydown", "onkeypress", "onkeyup", "onload",
"onmousedown", "onmousemove", "onmouseout", "onmouseover",
"onmouseup", "onreset", "onselect", "onsubmit", and "onunload".

3.7 Abbreviations and acronyms
User agents should make available information about abbreviation and acronym
expansions. For instance, in HTML, look for abbreviations specified by the ABBR
and ACRONYM elements. The expansion may be specified with the "title" attribute.

To provide expansion information, user agents may:

Allow the user to configure that the expansions be used in place of the
abbreviations,
Provide a list of all abbreviations in the document, with their expansions (a
generated glossary of sorts)
Generate a link from an abbreviation to its expansion.
Allow the user to query the expansion of a selected or input abbreviation.
If an acronym has no specified expansion, user agents may look up in a
glossary of acronyms for that page for another occurrence. Less reliably, the
user agent may look for possible expansions (e.g., in parentheses) in
surrounding context.

4 Appendix: Accessibility features of some operating
systems
Several of the more popular mainstream operating systems now include a common
suite of built-in accessibility features that are designed to assist individuals with
varying abilities. Despite operating systems differences, the built-in accessibility
features use a similar naming convention and offer similar functionalities, within the
limits imposed by each operating system (or particular hardware platform).

The following is a list of built-in accessibility features from several platforms:

StickyKeys
These allow users to perform a multiple simultaneous key sequence by pressing
and releasing each key in sequential order. StickyKeys is designed to work with
only those keys defined as modifier keys. Modifier keys are pressed in

 5 Nov 1999 18:3755

Techniques for User Agent Accessibility Guidelines 1.0

combination with other keys, to change the outcome of the second (or more)
pressed keys. For example, the SHIFT key is defined as a modifier key, since it
is commonly used to create upper case characters. Each operating system or
hardware platform typically defines a set of keys which can act as modifier keys.
The most common modifier keys include SHIFT, CONTROL, and ALTERNATE.

MouseKeys
These allow users to move the mouse cursor and activate the mouse button(s)
from the keyboard.

RepeatKeys
These allow users to set how fast a key repeats (e.g., sometimes referred to as
typematic rate) when the key is held pressed (e.g., Repeat Rate), and also
allows control over how quickly the key starts to repeat after the key has been
pressed (e.g., delay Until Repeat). Key repeating may also be eliminated.

SlowKeys
These instruct the computer not to accept a key as pressed until it has been
pressed and held down for a specific user adjustable length of time.

BounceKeys
These prevent extra characters from being typed if the user bounces (e.g.,
tremor) on the same key when pressing or releasing it.

ToggleKeys
These provide an audible indication for the status of keys that have a toggled
state (e.g., keys that maintain status after being released). The most common
toggling keys include Caps Lock, Num Lock, and Scroll Lock.

SoundSentry
These monitor the operating system and applications for sounds, and attempt to
provide a graphical indication when a sound is being played. Older versions of
Sound Sentry may have flashed the entire display screen for example, while
newer versions of SoundSentry provide the user with a selection of options,
such as flashing the active window or flashing the active window caption bar.

The next three built in accessibility features are not as commonly available as the
above group of features, but are included here for definition, completeness, and
future compatibility.

ShowSounds
These are user setting or software switches that are available for the operating
system and application (including user agents) APIs to read, to notify them that
the user wishes audio information to also be presented in a graphical format.

High Contrast
These automatically change the display fonts and colors to choices which
should provide for easier reading.

TimeOut
These allow the built-in accessibility features to automatically turn off if the
computer is unused for a specified length of time, and is intended for use when
the computer is in a public setting (e.g., library). TimeOut might also be referred
to as reset or automatic reset.

56 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

The next accessibility feature listed here is not considered to be a built in
accessibility feature (since it only provides an alternate input channel) and is
presented here only for definition, completeness, and future compatibility.

SerialKeys
These allow a user to perform all keyboard and mouse functions from an
external assistive device (such as communication aid) communicating with the
computer via a serial character stream (e.g., serial port, IR port, etc.) rather than
or in conjunction with, the keyboard, mouse, and other standard input
devices/methods.

Microsoft Windows 95, Windows 98, and Window NT 4.0
For information about Microsoft keyboard configurations (Internet Explorer, Windows
95, Windows 98, and more), refer to [MS-KEYBOARD] .

The following accessibility features can be adjusted from the Accessibility Options
Control Panel:

StickyKeys: modifier keys include SHIFT, CONTROL, and ALTERNATE.
Keyboard Mappings: 5 consecutive clicks of Shift key turns on/off StickyKeys.
FilterKeys: grouping term for SlowKeys, RepeatKeys, and BounceKeys. Shift
key held down for 8 seconds turns on/off SlowKeys and RepeatKeys.
MouseKeys: Left shift + left alt + numlock, turns on/off.
ToggleKeys: Numlock key held for 5 seconds, turns on/off ToggleKeys
SoundSentry:
ShowSounds:
Automatic reset: term used for TimeOut
High Contrast: left shift + left alt + print screen, turns on/off High Contrast.
SerialKeys:

Other keyboard shortcuts:

6 consecutive clicks of Control key turns on/off screen reader numeric keypad.
6 consecutive clicks of Alt key reserved for future use.

The Keyboard Response Group (KRG) contains three functions: RepeatKeys,
SlowKeys, and BounceKeys. The KRG can be turned on from the keyboard with the
pre-stored user default settings. There should also be an emergency activation
scheme to turn the KRG on in some minimal configuration for those times or for
those users who cannot operate the computer keyboard without a particular KRG
function (e.g., SlowKeys). Note. SlowKeys and BounceKeys are mutually exclusive.
In other words, if the acceptance delay for SlowKeys is some value other than "0",
then the delay value for BounceKeys must be "0". SlowKeys and BounceKeys can
both be "0", or in effect off, while RepeatKeys is on, or either SlowKeys or
BounceKeys can be on with RepeatKeys. Therefore the following KRG combinations
can be set by the user:

 5 Nov 1999 18:3757

Techniques for User Agent Accessibility Guidelines 1.0

RepeatKeys alone,
SlowKeys alone,
BounceKeys alone,
SlowKeys and RepeatKeys,
BounceKeys and RepeatKeys

The common modifier for activation of the KRG is to press and hold the right
VK_SHIFT key for 8 seconds (note, emergency activation when the right VK_SHIFT
key is held for 12 or 16 seconds.

Additional accessibility features available in Windows 98:

Magnifier
This is a windowed, screen enlargement and enhancement program used by
persons with low vision to magnify an area of the graphical display (e.g., by
tracking the text cursor, focus, etc.). Magnifier can also invert the colors used by
the system within the magnification window.

Accessibility Wizard
This is a setup tool intended to assist a person with making choices which
setting up the accessibility features on a workstation.

Apple Macintosh Operating System
The following accessibility features can be adjusted from the Easy Access Control
panel (Note: Apple convention uses a space within the accessibility feature names.)

Sticky Keys: modifier keys include the SHIFT, OPEN APPLE (COMMAND),
OPTION (ALT) and CONTROL keys.
Slow Keys
Mouse Keys

The following accessibility features can be adjusted from the Keyboard Control
Panel.

Key Repeat Rate (e.g., part of RepeatKeys)
Delay Unit Repeat (e.g., part of RepeatKeys)

The following accessibility feature can be adjusted from the Sound or Monitors
and Sound Control Panel (depends upon which version of the OS).

Adjusting the volume to off or mute causes the Macintosh to flash the title bar
whenever the operating system detects a sound (e.g., SoundSentry)

Additional accessibility features available for the Macintosh OS:

CloseView
This is a full screen, screen enlargement and enhancement program used by
persons with low vision to magnify the information on the graphical display, and

58 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

it can also change the colors used by the system.
SerialKeys

This is available as freeware from Apple and several other Web sites.

AccessX, X Keyboard Extension (XKB), and the X Window
System
(Note: AccessX became a supported part of the X Window System X Server with the
release of the X Keyboard Extension in version X11R6.1)

The following accessibility features can be adjusted from the AccessX graphical
user interface X client on some DEC, SUN, and SGI operating systems. Other
systems supporting XKB may require the user to manipulate the features via a
command line parameter(s).

StickyKeys: modifier keys are platform-dependent, but usually include the
SHIFT, CONTROL, and META keys.
RepeatKeys:
SlowKeys:
BounceKeys:
MouseKeys:
ToggleKeys:

DOS (Disk Operating System)
The following accessibility features are available from a freeware program called
AccessDOS, which is available from several Internet Web sites including IBM,
Microsoft, and the Trace Center, for either PC-DOS or MS-DOS versions 3.3 or
higher.

StickyKeys: modifier keys include the SHIFT, CONTROL, and ALTERNATE
keys.
Keyboard Response Group: grouping term for SlowKeys, RepeatKeys, and
BounceKeys
MouseKeys:
ToggleKeys:
SoundSentry (incorrectly name ShowSounds):
SerialKeys:
TimeOut:

Testing UA operation with platform standards
Ensure your UA can be operated using the standard interfaces on the target
platform(s). Some example tests include:

 5 Nov 1999 18:3759

Techniques for User Agent Accessibility Guidelines 1.0

All functional UI components must be keyboard accessible and therefore, must
be operable by software or devices that emulate a keyboard. (Use SerialKeys
[see Appendix 8] and/or voice recognition software to test keyboard event
emulation.) Individuals with varying physical abilities should be able to access
your UA using a SerialKeys device or using voice recognition, provided it is
keyboard accessible.
All functional UI components must track selection and focus. Individuals who
have low vision and use screen magnification software should be able to follow
highlighted item(s) (e.g., selection), text input location (e.g., sometimes referred
to as the "caret"), and any control or component with focus, if your UA exposes
these properties correctly.
All functional UI components must provide readable "text" names or labels, even
when not visible. Providing this type of information in your UA along with the
prior two examples, means that individuals who are blind and accessing your
UA using screen reading software and/or a Braille output device should be able
to operate and navigate within it.
All functional UI components which convey important information using sound,
also need to provide alternate, parallel visual representation of the information
for individuals who are deaf, hard of hearing, or operating your UA in a noisy or
silent environment where the use of sound isn’t practical.
Establish quality control and assurance processes for consistency of access
strategies across software releases.

5 Appendix: Loading assistive technologies for DOM
access
There are several methods for developers to accomplish this. Most of these methods
fall into four categories:

1. Launch the entire AT inside the address space of the (UA) browser
2. Launch some part of the AT, a piece of stub code, a DLL, a Browser Helper

Object [special DLL], etc., inside the address space of the (UA) browser
3. Write your own combined UA/AT (e.g., pwWebSpeak)
4. Out-of-process access to the DOM

These methods are ordered as developments within a rapidly changing technology
with the most recent advances/methods listed first.

Loading assistive technologies for direct access to User Agent
DOMs
Note. This method and the method described in the next section are very similar.
What differs is the amount of, or capability of, the AT that actually gets loaded in the
same process or address space as the User Agent.)

60 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

Access to application specific data across process boundaries might be costly in
terms of performance. Therefore, user agents may wish to provide a mechanism to
load the entire assistive technology (AT), into the process space of the application as
a separate thread with direct access to the DOM.

Determining the Assistive Technologies to load

One technique is to store a reference to an assistive technology in a system registry
file or, in the case of Jave, a properties file. Registry files are common among many
operating system platforms.

In Windows you have the system registry file. On OS/2 you have the system.ini
file and on distributed network client networks you often have a system registry
server that an application running on the network client computer can query.

In Java 2, the existence of an "accessibility.properties" file causes the system
event queue to examine the file for assistive technologies required for loading. If the
file contains a property called "assistive_technologies", it will load all registered
assistive technologies and start them on their own thread in the Java Virtual Machine
that is a single process. An example entry for Java is as follows:

 assistive_technologies=com.ibm.sns.svk.AccessEngine

In Windows, a similar technique could be followed by storing the name of a
Dynamic Link Library (DLL) for an assistive technology in a designated assistive
technology key name, AT pair. An example entry for Windows could be as follows:

 HKEY_LOCAL_MACHINE\Software\Accessibility\DOM
 "ScreenReader, VoiceNavigation"

Attaching the Assistive Technologies to the DOM.

Once the assistive technology is determined from the registry, any user agent on the
given operating system can now determine if an assistive technology needs to be
loaded with their application and load it.

On a non-Java platform, a technique to do this would be to create a separate
thread with a reference to the User Agent’s DOM using a Dynamic Link Library
(DLL). This new thread will load the DLL and call a specified DLL entry name with a
pointer to the DOM interface. The assistive technology’s task will then run until such
time as is necessary to end communication with the DOM.

Once loaded, the assistive technology can monitor the DOM as needed. The
assistive technology has the option of communicating with a main assistive
technology of its own and process the DOM as a caching mechanism for the main
AT application or be used as a bridge to the DOM for the main assistive technology.

In the future, it will be necessary to provide a more comprehensive reference to
the application that not only provides direct access to it’s client area DOM, but also
multiple DOM’s that it is processing and an event model for monitoring them.

 5 Nov 1999 18:3761

Techniques for User Agent Accessibility Guidelines 1.0

Example Technique: Java’s Direct Access

Java is a working example where the direct access to application components is
performed in a timely manner. Here, an assistive technology running on a separate
thread monitors GUI events such as focus changes. Focus changes give the AT
notification of which component object has focus. The AT can communicate directly
with all components in the application by walking the parent/child hierarchy and
connecting to each component’s methods and monitor events directly. In this case
an AT has direct access to component specific methods as well as those provided
for by the Java Accessibility API. There is no reason that a DOM interface to UA
components could not be provided

In Java 1.1.x, Sun’s Java access utilities load an assistive by monitoring the Java
awt.properties file for the presence of assistive technologies and loads them as
shown in the following code example:

import java.awt.*;
import java.util.*;

String atNames = Toolkit.getProperty("AWT.assistive_technologies",null);
if (atNames != null) {
 StringTokenizer parser = new StringTokenizer(atNames," ,");
 String atName;
 while (parser.hasMoreTokens()) {
 atName = parser.nextToken();
 try {
 Class.forName(atName).newInstance();
 }
 catch (ClassNotFoundException e) {
 throw new AWTError("Assistive Technology not found: " + atName);
 }
 catch (InstantiationException e) {
 throw new AWTError("Could not instantiate Assistive" +
 " Technology: " + atName);
 }
 catch (IllegalAccessException e) {
 throw new AWTError("Could not access Assistive" +
 " Technology: " + atName);
 } catch (Exception e) {
 throw new AWTError("Error trying to install Assistive" +
 " Technology: " + atName + " " + e);
 }
 }
}

In the above code example, the function Class.forName(atName).newInstance()
creates a new instance of the assistive technology. The constructor for the assistive
technology will then be responsible for monitoring application component objects by
monitoring system events.

In the following code example, the constructor for the assistive technology "Access
Engine," adds a focus change listener using Java accessibility utilities. When the
assistive technology is notified of an objects gaining focus it has direct access to that
object. If the Object, o, implemented a DOM interface the assistive technology would

62 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

now have direct access to the DOM in the same process space as the application.

 import java.awt.*;
 import javax.accessibility.*;
 import com.sun.java.accessibility.util.*;
 import java.awt.event.FocusListener;

 class AccessEngine implements FocusListener {
 public AccessEngine() {
 //Add the AccessEngine as a focus change listener
 SwingEventMonitor.addFocusListener((FocusListener)this);
 }

 public void focusGained(FocusEvent theEvent) {
 // get the component object source
 Object o = theEvent.getSource();
 // check to see if this is a DOM component
 if (o instanceof DOM) {
 ...
 }
 }
 public void focusLost(FocusEvent theEvent) {
 // Do Nothing
 }
 }

In this example, the assistive technology has the option of running standalone or
acting as a cache for a bridge that communicates with a main assistive technology
running outside the Java virtual machine.

Loading part of the assistive technologies for direct access to
User Agent DOMs
Access to application specific data across process boundaries might be costly in
terms of performance. Therefore, user agents may wish to provide a mechanism to
load part of the assistive technology (AT) into the process space of the application
as a separate thread, with direct access to the DOM, to provide the specific
functionality they require. This could consist of a piece of stub code, a DLL, a
Browser Helper Object, etc. An example of how to do this follows.

Browser Helper Objects

In order to attach to a running instance of Internet Explorer 4.0, you can use a
"Browser Helper Object." A "Browser Helper Object" is a DLL that will attach itself to
every new instance of Internet Explorer 4.0 (only if you explicitly run iexplore.exe).
You can use this feature to gain access to the object model of a particular running
instance of Internet Explorer. You can also use this feature to get events from an
instance of Internet Explorer 4.0. This can be tremendously helpful when many
method calls need to be made to IE, as each call will be performed much more
quickly than the out of process case.

 5 Nov 1999 18:3763

Techniques for User Agent Accessibility Guidelines 1.0

There are some requirements when creating a Browser Helper Object

The application that you create must be an in-proc server (that is, DLL).
This DLL must implement IObjectWithSite.
The IObjectWithSite::SetSite() method must be implemented. It is through this
method that your application receives a pointer to Internet Explorer’s IUnknown.
(Internet Explorer actually passes a pointer to IWebBrowser2 but the
implementation of SetSite() receives a pointer to IUnknown.) You can use this
IUnknown pointer to automate Internet Explorer or to sink events from Internet
Explorer.
It must be registered as a Browser Helper Object as described above.

For more information, please check out:
http://support.microsoft.com/support/kb/articles/Q179/2/30.asp.
http://msdn.microsoft.com/library/techart/bho.htm

Java Access Bridge

In order for native Windows ATs to gain access to Java applications without the
creating a Java native solution Sun Microsystems provides the "Java Access
Bridge." This bridge is loaded as an AT as described in section 6.1.3. The bridge
uses a Java Native Invocation (JNI) to Dynamic Link Library) (DLL) communication
and caching mechanism that allows a native assistive technology to gather and
monitor accessibility information in the Java environment. In this environment, the
AT determines that a Java application or applet is running and communicates with
the Java Access Bridge DLL to process accessibility information about the
application/applet running in the Java Virtual Machine.

Loading assistive technologies "as" the User Agent with
access to the DOMs
Specialized user agents might also include the necessary assistive technology as
part of their interface, and thus provide possibly the best of both worlds. An example
would be pwWebSpeak, from The Productivity Works (refer to [PRODWORKS]).

Loading assistive technologies for indirect access to User
Agent DOMs
Access to application specific data across process boundaries or address space
might be costly in terms of performance. However, there are other reasons to
consider when accessing the User Agent DOM that might lead a developer to wish
to access the DOM from their own process or memory address space. One obvious
protection this method provides, is that if the User Agent application fails, it doesn’t
disable the user’s AT as well. Another consideration would be legacy systems,
where the user relies on their AT for access to other applications as well as the User
Agent, and thus would have their AT loaded all the time, not just for accessing the
User Agent.

64 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

http://msdn.microsoft.com/library/techart/bho.htm
http://support.microsoft.com/support/kb/articles/Q179/2/30.asp

There are several ways to gain access to the User Agent’s DOM. Most User
Agents support some kind of external interface, or act as a mini-server to other
applications running on the desktop. Internet Explorer is a good example of this, as
IE can behave as a component object model (COM) server to other applications.
Mozilla, the open source release of Navigator also supports cross platform COM
(XPCOM).

An example of using COM to access the IE Object Model can be seen in the code
snippet below. This is an example of how to use COM to get a pointer to the
WebBrowser2 module, which in turn allows you to get a interface/pointer to the
document object, or IE DOM for the Web page in view.

 /* first, get a pointer to the WebBrowser2 control */
 if (m_pIE == NULL) {
 hr = CoCreateInstance(CLSID_InternetExplorer,
 NULL, CLSCTX_LOCAL_SERVER, IID_IWebBrowser2,
 (void**)&m_pIE);

 /* next, get a interface/pointer to the document in view,
 this is an interface to the document object model (DOM)*/

 void CHelpdbDlg::Digest_Document() {
 HRESULT hr;
 if (m_pIE != NULL) {
 IDispatch* pDisp;
 hr = m_pIE->QueryInterface(IID_IDispatch, (void**) &pDisp);
 if (SUCCEEDED(hr)) {

 IDispatch* lDisp;
 hr = m_pIE->get_Document(&lDisp);
 if (SUCCEEDED(hr)) {

 IHTMLDocument2* pHTMLDocument2;
 hr = lDisp->QueryInterface(IID_IHTMLDocument2,
 (void**) &pHTMLDocument2);
 if (SUCCEEDED(hr)) {

 /* with this interface/pointer, IHTMLDocument2*,
 you can then work on the document */
 IHTMLElementCollection* pColl;
 hr = pHTMLDocument2->get_all(&pColl);
 if (SUCCEEDED(hr)) {

 LONG c_elem;
 hr = pColl->get_length(&c_elem);
 if (SUCCEEDED(hr)) {
 FindElements(c_elem, pColl);
 }
 pColl->Release();
 }
 pHTMLDocument2->Release();
 }
 lDisp->Release();
 }
 pDisp->Release();

 5 Nov 1999 18:3765

Techniques for User Agent Accessibility Guidelines 1.0

 }
 }
 }
 }

For more information on using COM with IE, please visit the Microsoft Web
site:http://www.microsoft.com/com/default.asp

For more information on using XPCOM with Mozilla, please visit the Mozilla Web
site: http://www.mozilla.org/

For a working example of the method described in 6.1.4, please visit the following
web site and review HelpDB, developed as a testing tool for web table navigation:
http://trace.wisc.edu/world/web/document_access/

6 Appendix: Assistive Technology Functionalities
This informative appendix describes some functionalities for assistive technologies
to promote accessibility.

Orientation

1. Indicate the row and column dimensions of a selected table. Note. User agents
should consider multidimensional tables, headers and footers, and multiple
header levels. Refer also to checkpoint 5.3.

2. Describe a selected element’s position within larger structures (e.g., numerical
or relative position in a document, table, list, etc.). For example: tenth link of fifty
links; document header 3.4; list one of two, item 4.5; third table, three rows and
four columns; current cell in third row, fourth column; etc. Allow users to get this
information on demand (e.g., through a keyboard shortcut). Provide this
information on the status line on demand from the user.

3. Provide information about form structure and navigation (e.g., groups of
controls, control labels, navigation order, and keyboard configuration). For
instance, provide information about controls with explicitly associated labels (the
"for" attribute of LABEL in HTML), about which keys activate the form controls
(the "accesskey" attribute in HTML), about the serial navigation order of the
form controls (the"tabindex" attribute in HTML), and about control groups (the
FIELDSET and OPTGROUP elements in HTML). Refer also to checkpoint 1.3
and checkpoint 7.4.

4. Enable announcing of information regarding title, value, grouping, type, status
and position of specific focused elements.

Metadata
Metadata of all sorts: titles, dimensions, dates, relationships, etc. promotes
accessibility by providing additional context to users. Text metadata is particularly
useful since it can be rendered graphically, as braille, and as speech.

66 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

http://trace.wisc.edu/world/web/document_access/
http://www.mozilla.org/
http://www.microsoft.com/com/default.asp

For information about elements and attributes that convey metadata in HTML,
refer to the index of elements and attributes in [WAI-WEBCONTENT-TECHS] .
For information about elements and attributes that convey metadata in SMIL,
refer to the index of attributes in the W3C Note "Accessibility Features of SMIL"
([SMIL-ACCESS]).
With CSS, authors can generate content with the ’:before’ and ’:after’
pseudo-elements. For more information, refer to [CSS-ACCESS] .

One useful form of metadata is content summary information. Provide information,
for example, about the number of links, forms, tables, images, significant words, etc.

For example, this information will help a user get an impression about the purpose
of each frame in a frameset. For example, if the content of a frame has many links,
but few significant words, then the frame is probably an index of some kind. Content
with many significant words is probably a text page. Content with only a couple of
pictures and few significant words or links is probably for decoration.

Synthesized speech
Tools that work with synthesized speech do not always pronounce text correctly.
Therefore, they should provide additional context so that users can understand
content. Techniques include:

Spelling words
Indicating punctuation, capitalization, etc.
Allowing users to reply words alone and in context.
Using auditory nuances - including pitch, articulation model, volume, and
orientation - to convey meaning the way fonts, spacing, and borders do in
graphical media.
Generating context. For example, a user agent might speak the word "link"
before a link, "header" before the text content of a header or "item 1.4" before a
list item.
Rendering text according in the appropriate natural language.

 5 Nov 1999 18:3767

Techniques for User Agent Accessibility Guidelines 1.0

7 Appendix: Terms and Definitions
Active element

Active elements constitute a user interface for the document. They have
associated behaviors that may be activated (or "triggered") either through user
interaction or through scripts. Which elements are active depends on the
document language and whether the features are supported by the user agent.
In HTML documents, for example, active elements include links, image maps,
form controls, element instances with a value for the "longdesc" attribute, and
element instances with associated scripts (event handlers) explicitly associated
with them (e.g., through the various "on" attributes).
An active element’s behavior may be triggered through any number of
mechanisms, including the mouse, keyboard, an API, etc. The effect of
activation depends on the element. For instance, when a link is activated, the
user agent generally retrieves the linked resource. When a form control is
activated, it may change state (e.g., check boxes) or may take user input (e.g., a
text field). Activating an element with a script assigned for that particular
activation mechanism (e.g., mouse down event, key press event, etc.) causes
the script to be executed.
Most systems use the focus to designate the active element the user wishes to
trigger.

Applicable checkpoint
If a user agent offers a functionality, it must ensure that all users have access to
that functionality or an equivalent alternative. Thus, if the user agent supports
keyboard input, it must support accessible keyboard input. If the user agent
supports images, it must ensure access to each image or an alternative
equivalent supplied by the author. If a user agent supports style sheets, it must
implement the accessibility features of the style sheet language. If the user
agent supports frames, it must ensure access to frame alternatives supplied by
the author.
Not all user agents support every content type, markup language feature, input
or output device interface, etc. When a content type, feature, or device interface
is not supported, checkpoints with requirements related to it do not apply to the
user agent. Thus, if a user agent supports style sheets at all, all checkpoints
related to style sheet accessibility apply. If a user agent does not support style
sheets at all, the checkpoints do not apply.
The applicability of checkpoints related to markup language features is
measured similarly. If a user agent supports tables, it must support the
accessibility features of the language related to tables (or images, or frames, or
video, or links, etc.). The Techniques Document includes information about the
accessibility features of W3C languages such as HTML, CSS, and SMIL.
The following summarizes criteria for applicability. A checkpoint applies to a
user agent unless:

The checkpoint definition states explicitly that it only applies to a different
class of user agent.
The checkpoint includes requirements about a content type (script, image,

68 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

video, sound, applets, etc.) that the user agent does not recognize at all.
The checkpoint includes requirements about a content type that the user
agent recognizes but does not support natively .
The checkpoint refers to the properties of an embedded object (e.g., video
or animation rate) that may not be controlled or accessed by the user
agent.
The checkpoint includes requirements about an unsupported markup
language or other technology (e.g., style sheets, mathematical markup
language, synchronized multimedia, metadata description language, etc.)
The checkpoint refers to an unsupported input or output device interface.
Note that if the interface is supported at all, it must be supported accessibly.

Assistive Technology
Software or hardware that has been specifically designed to assist people with
disabilities in carrying out daily activities. Assistive technology includes
wheelchairs, reading machines, devices for grasping, alternative computer
keyboards or pointing devices, etc. In the area of Web Accessibility, common
software-based assistive technologies include assistive technologies, which rely
on other user agents for input and/or output. These include:

screen magnifiers, which are used by people with visual impairment to
enlarge and change colors on the screen to improve readability of text and
images.
screen readers, which are used by people who are blind or with reading
disabilities to read textual information through speech or braille displays.
alternative keyboards, which are used by people with movement
impairments to simulate the keyboard.
alternative pointing devices, which are used by people with movement
impairments to simulate mouse pointing and button activations.

Configure
To set user preferences. This may be done through the user agent’s user
interface, through configuration files, by scripts, etc.

Continuous Equivalent Track
A continuous equivalent track presents an equivalent alternative to another track
(generally audio or video) and is synchronized with that track. Continuous
equivalent tracks convey information about spoken words and non-spoken
sounds such as sound effects. A continuous text track presents closed
captions. Captions are generally rendered visually by being superimposed over
a video track, which benefits people who are deaf and hard-of-hearing, and
anyone who cannot hear the audio (e.g., when in a crowded room). A collated
text transcript combines (collates) captions with text descriptions of video
information (descriptions of the actions, body language, graphics, and scene
changes of the video track). These text equivalents make presentations
accessible to people who are deaf-blind and to people who cannot play movies,
animations, etc.
One example of a non-text continuous equivalent track is an auditory
description of the key visual elements of a presentation. The description is
either a prerecorded human voice or a synthesized voice (recorded or

 5 Nov 1999 18:3769

Techniques for User Agent Accessibility Guidelines 1.0

generated on the fly). The auditory description is synchronized with the audio
track of the presentation, usually during natural pauses in the audio track.
Auditory descriptions include information about actions, body language,
graphics, and scene changes.
A video track that shows sign language is another example of a continuous
equivalent track.

Control
User control of the user agent - interface, behavior, styles, etc. - means that the
user can choose preferred behavior from a set of options. For instance, control
of colors means that the user can choose from available colors, within the limits
offered by the operating system or user agent.
The term "control" also means "user interface component" or "form component"
in this document. Which meaning is intended should be apparent from context.

Device Independence
The ability to make use of software via any input or output device API provided
by the operating system and used by the user agent. User agents should follow
operating system conventions and use standard APIs for device input and
output.

Documentation
Documentation includes all product documentation, notably installation
instructions, the help system, and all product manuals.

Documents, Elements, and Attributes
A document may be seen as a hierarchy of elements. Elements are defined by
a language specification (e.g., HTML 4.0 or an XML application). Each element
may have content, which generally contributes to the document’s content.
Elements may also have attributes that take values. An element’s rendered
content is that which a user agent renders for the element. This may be what
lies between the element’s start and end tags, the value of an attribute (c.f. the
"alt", "title", and "longdesc" attributes in HTML), or external data (e.g., the IMG
element in HTML). Rendering is not limited to graphical displays alone, but also
includes audio (speech and sound) and tactile displays (braille and haptic
displays).
Since rendered content is not always accessible, authors must specify
alternative equivalents for content that user agents must make available to
users or software that require it (in place of and/or in addition to the "primary"
content). Alternative representations may take a variety of forms including
alternative text, closed captions, and auditory descriptions . The Techniques
Document ([UA-TECHNIQUES]) describes the different mechanisms authors
use to supply alternative representations of content. Please also consult the
Web Content Accessibility Guidelines ([WAI-WEBCONTENT] and
([WAI-WEBCONTENT-TECHS] .

Events and scripting
When certain events occur (loading or unloading events, mouse press or hover
events, keyboard events, etc.), user agents often perform some task (e.g.,
execute a script). For instance, in most user agents, when a mouse button is
released over a link, the link is activated and the linked resource retrieved. User

70 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

agents may also execute author-defined scripts when certain events occur. The
script bound to a particular event is called an event handler. Note. The
interaction of HTML, style sheets, the Document Object Model [DOM1] and
scripting is commonly referred to as "Dynamic HTML" or DHTML. However, as
there is no W3C specification that formally defines DHTML, this document will
only refer to event handlers and scripts.

Focus
The user focus designates an active element in a document. A viewport has at
most one focus. When several viewports co-exist, each may have a focus, but
only one is active, called the current focus. The current focus is generally
presented (e.g., highlighted) in a way that makes it stand out.

Highlight
Any mechanism used to emphasize selected or focused content. Visual
highlight mechanisms include dotted boxes, underlining, and reverse video.
Synthesized speech highlight mechanisms may include altering voice pitch or
volume.

Input Configuration
Every user agent functionality available to the user is mapped to some user
interface mechanism, including menus, buttons, keyboard shortcuts, voice
commands. The default input configuration is the mapping the user finds after
installation of the software. The documentation should tell users what
functionalities are available and the user interface should remind users of the
current mapping to the user interface and allow them to figure out quickly how to
use the appropriate software features.

Insertion point
The insertion point is the location where document editing takes place. The
insertion point may be set by the user (e.g., by a pointing device or the keyboard
editing keys) or through an application programming interface (API). A viewport
has at most one insertion point. When several viewports co-exist, each may
have an insertion point, but only one is active, called the current insertion
point
The insertion point is generally rendered specially (e.g., on the screen, by a
vertical bar or similar cursor).

Native support
A user agent supports a feature natively if it does not require another piece of
software (e.g., plug-in or external program) for support. Native support does not
preclude more extensive support for accessibility by assistive technologies , so
user agents must still make information available through APIs.

Natural Language
Spoken, written, or signed human languages such as French, Japanese,
American Sign Language, and braille. The natural language of content may be
indicated in markup (e.g., by the "lang" attribute in HTML ([HTML40] , section
8.1) or by HTTP headers.

Properties, Values, and Defaults
A user agent renders a document by applying formatting algorithms and style
information to the document’s elements. Formatting depends on a number of

 5 Nov 1999 18:3771

Techniques for User Agent Accessibility Guidelines 1.0

factors, including where the document is rendered: on screen, paper, through
speakers, a braille device, a mobile device, etc. Style information (e.g., fonts,
colors, voice inflection, etc.) may come from the elements themselves (e.g.,
certain style attributes in HTML), from style sheets, or from user agent settings.
For the purposes of these guidelines, each formatting or style option is
governed by a property and each property may take one value from a set of
legal values. (The term "property" in this document has the meaning ascribed in
the CSS2 Recommendation [CSS2] .) A reference to "styles" in this document
means a set of style-related properties.
The value given to a property by a user agent when it is started up is called the
property’s default value. User agents may allow users to change default values
through a variety of mechanisms (e.g., the user interface, style sheets,
initialization files, etc.).
Once the user agent is running, the value of a property for a given document or
part of a document may be changed from the default value. The value of the
property at a given moment is called its current value. Note that changes in the
current value of a property do not change its default value.
Current values may come from documents, style sheets, scripts, or the user
interface. Values that come from documents, their associated style sheets, or
via a server are called author styles. Values that come from user interface
settings, user style sheets, or other user interactions are called user styles.

Recognize
A user agent is said to recognize markup, content types, or rendering effects
when it can identify (through built-in mechanisms, DTDs, style sheets, headers,
etc) the information. For instance, HTML 3.2 user agents may not recognize the
new elements or attributes of HTML 4.0. Similarly, a user agent may recognize
blinking content specified by elements or attributes, but may not recognize that
an applet is blinking. The Techniques Document ([UA-TECHNIQUES])
discusses some content that affects accessibility and should be recognized as
such.

Selection
The user selection generally specifies a range of content (text, images, etc.) in a
document. The selection may be structured (based on the document tree) or
unstructured (e.g., text-based). Content may be selected through user
interaction, scripts, etc. The selection may be used for a variety of purposes: for
cut and paste operations, to designate a specific element in a document, to
identify what a screen reader should read, etc.
The user selection may be set by the user (e.g., by a pointing device or the
keyboard) or through an application programming interface (API). A viewport
has at most one user selection. When several viewports co-exist, each may
have a user selection, but only one is active, called the current user selection.
The user selection is usually presented in a way the stands out (e.g., highlighted
). On the screen, the selection may be highlighted using colors, fonts, graphics,
or other mechanisms. Highlighted text is often used by assistive technologies to
indicate through speech or braille output what the user wants to read. Most
screen readers are sensitive to highlight colors. Assistive technologies may

72 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

provide alternative presentation of the selection through speech, enlargement,
or refreshable braille display.

Text transcript
A text transcript is a text equivalent of audio information that includes spoken
words and non-spoken sounds such as sound effects. Refer also to continuous
equivalent track .

Spawned Viewport
Viewports that are created by the user agent process. This refers to viewports
that display content and does not include, for example, messages or prompts to
the user.

Standard Device APIs
Operating systems are designed to be used by default with devices such as
pointing devices, keyboards, voice input, etc. The operating system (or
windowing system) provides standard APIs for these devices that should be
used by user agents and other software for input and output to those devices.
For example, for desktop computers today, user agents are expected to use the
mouse and keyboard APIs for input. For touch screen devices or mobile
devices, standard input APIs may include stylus, buttons, voice, etc. The display
and sound card are considered standard ouput devices for a graphical desktop
computer environment and each has a standard API. Note. What is considered
"standard" for a particular environment will change over time.

User-initiated and User Agent-initiated
User-initiated actions result from user input to the user agent. User
Agent-initiated actions result from scripts, operating system conditions, or
built-in user agent behavior.

User Agent
A user agent is an application that retrieves and renders Web resources,
including text, graphics, sounds, video, images, and other objects. An user
agent may require additional software to handle some types of content. For
instance, a browser may run a separate program or plug-in to render sound or
video. The additional software is also considered a user agent. User agents
include graphical desktop browsers, multimedia players, text browsers, voice
browsers, and assistive technologies such as screen readers, screen
magnifiers, speech synthesizers, onscreen keyboards, and voice input software.

Views, Viewports, and Point of Regard
User agents may handle different types of source information: documents,
sound objects, video objects, etc. The user perceives the information through a
viewport, which may be a window, frame, a piece of paper, a panner, a
speaker, a virtual magnifying glass, etc. A viewport may contain another
viewport (e.g., nested frames, plug-ins, etc.).
User agents may render the same content in a variety of ways; each rendering
is called a view. For instance, a user agent may allow users to view an entire
document or just a list of the document’s headers. These are two different views
of the document.
The view is how source information is rendered and the viewport is where it is
rendered. Both the current focus and the current user selection must be in the

 5 Nov 1999 18:3773

Techniques for User Agent Accessibility Guidelines 1.0

same viewport, called the current viewport. The current viewport is generally
highlighted when several viewports co-exist.
Generally, viewports give users access to all rendered information, though not
always at once. For example, a video player shows a certain number of frames
per second, but allows the user to rewind and fast forward. A graphical browser
viewport generally features scrollbars or some other paging mechanism that
allows the user to bring the rendered content into the viewport.
The content currently available in the viewport is called the user’s point of
regard. The point of regard may be a two dimensional area (e.g., for graphical
rendering) or a single point (e.g., for aural rendering or voice browsing). User
agents should not change the point of regard unexpectedly as this can disorient
users.

74 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

8 Acknowledgments
Many thanks to the following people who have contributed through review and
comment: Paul Adelson, James Allan, Denis Anson, Kitch Barnicle, Harvey
Bingham, Olivier Borius, Judy Brewer, Bryan Campbell, Kevin Carey, Wendy
Chisholm, David Clark, Chetz Colwell, Wilson Craig, Nir Dagan, Daniel Dardailler, B.
K. Delong, Neal Ewers, Geoff Freed, John Gardner, Al Gilman, Larry Goldberg, Glen
Gordon, John Grotting, Markku Hakkinen, Earle Harrison, Chris Hasser, Kathy
Hewitt, Philipp Hoschka, Masayasu Ishikawa, Phill Jenkins, Jan Kärrman (for help
with html2ps), Leonard Kasday, George Kerscher, Marja-Riitta Koivunen, Josh
Krieger, Catherine Laws, Greg Lowney, Scott Luebking, William Loughborough,
Napoleon Maou, Charles McCathieNevile, Karen Moses, Masafumi Nakane, Mark
Novak, Charles Oppermann, Mike Paciello, David Pawson, Michael Pederson, Helen
Petrie, David Poehlman, Michael Pieper, Jan Richards, Hans Riesebos, Joe Roeder,
Lakespur L. Roca, Gregory Rosmaita, Lloyd Rutledge, Liam Quinn, T.V. Raman,
Robert Savellis, Rich Schwerdtfeger, Constantine Stephanidis, Jim Thatcher, Jutta
Treviranus, Claus Thogersen, Steve Tyler, Gregg Vanderheiden, Jaap van Lelieveld,
Jon S. von Tetzchner, Willie Walker, Ben Weiss, Evan Wies, Chris Wilson, Henk
Wittingen, and Tom Wlodkowski,

 5 Nov 1999 18:3775

Techniques for User Agent Accessibility Guidelines 1.0

http://www.tdb.uu.se/~jan/html2ps.html

9 References
For the latest version of any W3C specification, please consult the list of W3C
Technical Reports.

[CSS1]
"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds., 17 December
1996, revised 11 January 1999. This CSS1 Recommendation is
http://www.w3.org/TR/1999/REC-CSS1-19990111.

[CSS2]
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs,
eds., 12 May 1998. This CSS2 Recommendation is
http://www.w3.org/TR/1998/REC-CSS2-19980512.

[CSS-ACCESS]
"Accessibility Features of CSS", I. Jacobs, J. Brewer, The latest version of this
W3C Note is available at http://www.w3.org/TR/CSS-access.

[DOM1]
"Document Object Model (DOM) Level 1 Specification", V. Apparao, S. Byrne,
M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C.
Wilson, and L. Wood, eds. The 1 October 1998 DOM Level 1 Recommendation
is http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001

[DOM2]
"Document Object Model (DOM) Level 2 Specification", L. Wood, A. Le Hors, V.
Apparao, L. Cable, M. Champion, J. Kesselman, P. Le Hégaret, T. Pixley, J.
Robie, P. Sharpe, C. Wilson, eds. The DOM2 specification is a Working Draft at
the time of publication.

[HTML40]
"HTML 4.0 Recommendation", D. Raggett, A. Le Hors, and I. Jacobs, eds. The
24 April 1998 HTML 4.0 Recommendation is
http://www.w3.org/TR/1998/REC-html40-19980424

[HTML32]
"HTML 3.2 Recommendation", D. Raggett, ed. The HTML 3.2 Recommendation
is http://www.w3.org/TR/REC-html32

[MATHML]
"Mathematical Markup Language", P. Ion and R. Miner, eds. The 7 April 1998
MathML 1.0 Recommendation is
http://www.w3.org/TR/1998/REC-MathML-19980407

[MICROPAYMENT]
"Common Markup for micropayment per-fee-links", T. Michel, ed. The latest
version of this W3C Working Draft is available at
http://www.w3.org/TR/Micropayment-Markup.

[RFC2119]
"Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997.

[SMIL]
"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", P.

76 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/TR/1998/REC-smil-19980615
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/Micropayment-Markup/
http://www.w3.org/TR/1998/REC-MathML-19980407
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/WD-DOM-Level-2
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/CSS-access
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/1999/REC-CSS1-19990111
http://www.w3.org/TR
http://www.w3.org/TR

Hoschka, editor. The 15 June 1998 SMIL 1.0 Recommendation is
http://www.w3.org/TR/1998/REC-smil-19980615

[SMIL-ACCESS]
"Accessibility Features of SMIL", M-R. Koivunen, I. Jacobs. The latest version of
this W3C Note is available at http://www.w3.org/TR/SMIL-access.

[UA-CHECKLIST]
An appendix to this document lists all of the checkpoints, sorted by priority. The
checklist is available in either tabular form (at
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-19991105/full-checklist) or
list form (at
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-19991105/checkpoint-list).

[UA-TECHNIQUES]
"Techniques for User Agent Accessibility Guidelines 1.0", J. Gunderson, I.
Jacobs, eds. This document explains how to implement the checkpoints defined
in "User Agent Accessibility Guidelines 1.0". The draft of the Techniques
Document available at the time of this document’s publication is
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105. The
latest draft of the techniques is available at
http://www.w3.org/TR/WAI-USERAGENT-TECHS/

[WAI-AUTOOLS]
"Authoring Tool Accessibility Guidelines", J. Treviranus, J. Richards, I. Jacobs,
C. McCathieNevile, eds. The latest Working Draft of these guidelines for
designing accessible authoring tools is available at
http://www.w3.org/TR/WD-WAI-AUTOOLS/

[WAI-WEBCONTENT]
"Web Content Accessibility Guidelines 1.0", W. Chisholm, G. Vanderheiden, and
I. Jacobs, eds. The 5 May 1999 Recommendation is
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505

[WAI-WEBCONTENT-TECHS]
"Techniques for Web Content Accessibility Guidelines 1.0", W. Chisholm, G.
Vanderheiden, and I. Jacobs, eds. The latest version of this document is
available at http://www.w3.org/TR/WAI-WEBCONTENT-TECHS

[XML]
"Extensible Markup Language (XML) 1.0.", T. Bray, J. Paoli, C.M.
Sperberg-McQueen, eds. The 10 February 1998 XML 1.0 Recommendation is
http://www.w3.org/TR/1998/REC-xml-19980210

10 Services
Note. W3C does not guarantee stability for any of the following references outside of
its control. These references are included for convenience.

[ALTIFIER]
The Altifier Tool for generates "alt" text intelligently.

[AMAYA]
Amaya is W3C’s testbed browser/editor.

 5 Nov 1999 18:3777

Techniques for User Agent Accessibility Guidelines 1.0

http://www.w3.org/Amaya
http://www.vorburger.ch/projects/alt/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/WAI-WEBCONTENT-TECHS
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
http://www.w3.org/TR/WD-WAI-AUTOOLS/
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-TECHS-19991105
http://www.w3.org/TR/WAI-USERAGENT-TECHS
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-19991105/checkpoint-list
http://www.w3.org/TR/1999/WD-WAI-USERAGENT-19991105/full-checklist
http://www.w3.org/TR/SMIL-access

[APPLE-HI]
Information on accessibility guidelines for Macintosh applications. Information
on Apple’s scripting model can be found at tn1095 and tn1164. Refer also to the
Inside Macintosh chapter devoted to Interapplication Communication.

[BHO]
Browser Helper Objects: The Browser the Way You Want It, D. Esposito,
January 1999.

[CCPP]
Composite Capability/Preference Profiles (CC/PP): A user side framework for
content negotiation, F. Reynolds, J. Hjelm, S. Dawkins, and S. Singhal, eds.
This W3C Note describes a general yet extensible framework for describing
user preferences and device capabilities. The latest version is available at
http://www.w3.org/TR/NOTE-CCPP/.

[ED-DEPT]
"Requirements for Accessible Software Design", US Department of Education,
version 1.1 March 6, 1997.

[EITAAC]
"EITAAC Desktop Software standards", Electronic Information Technology
Access Advisory (EITAAC) Committee.

[IBM-ACCESS]
"Software Accessibility" IBM Special Needs Systems.

[ICCCM]
"The Inter-Client communication conventions manual". A protocol for
communication between clients in the X Window system.

[ICE-RAP]
"An ICE Rendezvous Mechanism for X Window System Clients", W. Walker. A
description of how to use the ICE and RAP protocols for X Window clients.

[JAVA-ACCESS]
"IBM Guidelines for Writing Accessible Applications Using 100% Pure Java", R.
Schwerdtfeger, IBM Special Needs Systems.

[JAVAAPI]
Information on Java Accessibility API can be found at Java Accessibility Utilities.

[JAVA-CHECKLIST]
"Java Accessibility Guidelines and Checklist". IBM Special Needs Systems.

[JAVA-TUT]
"The Java Tutorial. Trail: Creating a GUI with JFC/Swing". An online tutorial that
describes how to use the Swing Java Foundation Class to build an accessible
User Interface.

[LYNX]
The Lynx Browser.

[MSAA]
Information on active accessibility can be found at the Microsoft WWW site on
Active Accessibility.

[MS-ENABLE]
Information on accessibility guidelines for Windows applications.

78 5 Nov 1999 18:37

Techniques for User Agent Accessibility Guidelines 1.0

http://www.microsoft.com/enable/dev/apps.htm
http://www.microsoft.com/enable/msaa/develop.htm
http://www.microsoft.com/enable/msaa/develop.htm
http://lynx.browser.org/
http://java.sun.com/docs/books/tutorial/uiswing/
http://www.austin.ibm.com/sns/accessjava.html
http://www.sun.com/access/
http://www.austin.ibm.com/sns/snsjavag.htm
http://trace.wisc.edu/docs/x_win_andice/x_andice.htm
http://ftp.x.org/pub/R6.3/xc/doc/specs/ICCCM/
http://www.austin.ibm.com/sns/accesssoftware.html
http://trace.wisc.edu/docs/eitacc_desktop_software_standards/desktop_software_standards.htm
http://ocfo.ed.gov/coninfo/clibrary/software.htm
http://www.w3.org/TR/NOTE-CCPP/
http://www.w3.org/TR/NOTE-CCPP/
http://msdn.microsoft.com/library/techart/bho.htm
http://developer.apple.com/techpubs/mac/IAC/IAC-2.html
http://developer.apple.com/technotes/tn/tn1164.html
http://developer.apple.com/technotes/tn/tn1095.html
http://developer.apple.com/techpubs/mac/HIGuidelines/HIGuidelines-2.html

[MS-KEYBOARD]
Information on keyboard assistance for Internet Explorer and MS Windows.

[MS-SOFTWARE]
"The Microsoft Windows Guidelines for Accessible Software Design". Note. This
page summarizes the guidelines and includes links to the full guidelines in
various formats (including plain text).

[NOTES-ACCESS]
"Lotus Notes Accessibility Guidelines" IBM Special Needs Systems.

[PRODWORKS]
The Productivity Works.

[SUN-DESIGN]
"Designing for Accessibility", Eric Bergman and Earl Johnson. This paper
discusses specific disabilities including those related to hearing, vision, and
cognitive function.

[SUN-HCI]
"Towards Accessible Human-Computer Interaction", Eric Bergman, Earl
Johnson, Sun Microsytems 1995. A substantial paper, with a valuable print
bibliography.

[TRACE-REF]
"Application Software Design Guidelines" compiled by G. Vanderheiden. A
thorough reference work.

[USERAGENTS]
List of Alternative Web Browsers. This list is maintained by WAI.

[WHAT-IS]
"What is Accessible Software", James W. Thatcher, Ph.D., IBM, 1997. This
paper gives a short example-based introduction to the difference between
software that is accessible, and software that can be used by some assistive
technologies.

[XGUIDELINES]
Information on accessibility guidelines for Unix and X Window applications. The
Open Group has various guides that explain the Motif and Common Desktop
Environment (CDE) with topics like how users interact with Motif/CDE
applications and how to customize these environments. Note. In X, the terms
client and server are used differently from their use when discussing the Web.

 5 Nov 1999 18:3779

Techniques for User Agent Accessibility Guidelines 1.0

http://www.opengroup.org/
http://www.opengroup.org/
http://www.opengroup.org/publications/catalog/mo.htm
http://www.austin.ibm.com/sns/software.html
http://www.w3.org/WAI/References/Browsing
http://trace.wisc.edu/docs/software_guidelines/software.htm
http://www.sun.com/tech/access/updt.HCI.advance.html
http://www.sun.com/tech/access/software.guides.html
http://www.prodworks.com/
http://www.austin.ibm.com/sns/accessnotes.html
http://www.microsoft.com/enable/dev/guidelines/software.htm
http://www.microsoft.com/enable/training/keyboard.htm

	Techniques for User Agent Accessibility Guidelines 1.0
	W3C Working Draft 5-November-1999
	Abstract
	Status of this document
	Table of Contents
	1 Introduction
	1.1 Priorities

	2 User Agent Accessibility Guidelines
	Guideline 1. Support input and output device-independence
	Guideline 2. Ensure user access to all content
	Guideline 3. Allow the user to turn off rendering or behavior that may reduce accessibility
	Guideline 4. Ensure user control over styles
	Guideline 5. Observe operating system conventions and standard interfaces
	Guideline 6. Implement open specifications and their accessibility features
	Guideline 7. Provide navigation mechanisms
	Guideline 8. Help orient the user
	Guideline 9. Notify the user of content and viewport changes
	Guideline 10. Allow the user to configure the user agent
	Guideline 11. Provide accessible product documentation and help

	3 Accessibility Topics
	3.1 User control of style
	3.2 Link techniques
	3.3 Table techniques
	3.3.1 Table rendering
	3.3.2 Cell rendering
	3.3.3 Cell header algorithm
	3.3.4 Table metadata

	3.4 Frame techniques
	3.5 Form techniques
	3.6 Script techniques
	3.7 Abbreviations and acronyms

	4 Appendix: Accessibility features of some operating systems
	Microsoft Windows 95, Windows 98, and Window NT 4.0
	Apple Macintosh Operating System
	AccessX, X Keyboard Extension †XKB‡, and the X Window System
	DOS †Disk Operating System‡
	Testing UA operation with platform standards

	5 Appendix: Loading assistive technologies for DOM access
	Loading assistive technologies for direct access to User Agent DOMs
	Determining the Assistive Technologies to load
	Attaching the Assistive Technologies to the DOM.
	Example Technique: Java's Direct Access

	Loading part of the assistive technologies for direct access to User Agent DOMs
	Browser Helper Objects
	Java Access Bridge

	Loading assistive technologies "as" the User Agent with access to the DOMs
	Loading assistive technologies for indirect access to User Agent DOMs

	6 Appendix: Assistive Technology Functionalities
	Orientation
	Metadata
	Synthesized speech

	7 Appendix: Terms and Definitions
	8 Acknowledgments
	9 References
	10 Services

