
Technical Committee

Native ATM Services:
Semantic Description

Version 1.0

af-saa-0048.000

February, 1996

Native ATM Services: Semantic Description

ATM Forum Technical Committeeii

(C) 1995 The ATM Forum. All Rights Reserved. No part of this publication may be reproduced in any form or by
any means.

The information in this publication is believed to be accurate as of its publication date. Such information is subject
to change without notice and the ATM Forum is not responsible for any errors. The ATM Forum does not assume
any responsibility to update or correct any information in this publication. Notwithstanding anything to the contrary,
neither The ATM Forum nor the publisher make any representation or warranty, expressed or implied, concerning the
completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind
shall be assumed by The ATM Forum or the publisher as a result of reliance upon any information contained in this
publication.

The receipt or any use of this document or its contents does not in any way create by implication or otherwise:

• Any express or implied license or right to or under any ATM Forum member company’s patent, copyright,
trademark or trade secret rights which are or may be associated with the ideas, techniques, concepts or expressions
contained herein; nor

• Any warranty or representation that any ATM Forum member companies will announce any product(s) and/or
service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody
any or all of the ideas, technologies, or concepts contained herein; nor

• Any form of relationship between any ATM Forum member companies and the recipient or user of this document.

Implementation or use of specific ATM standards or recommendations and ATM Forum specifications will be
voluntary, and no company shall agree or be obliged to implement them by virtue of participation in the ATM
Forum.

The ATM Forum is a non-profit international organization accelerating industry cooperation on ATM technology.
The ATM Forum does not, expressly or otherwise, endorse or promote any specific products or services.

Native ATM Services: Semantic Description

ATM Forum Technical Committee iii

The ATM Forum wishes to especially thank the following individuals who contributed much effort
to the production of this specification:

Jim Harford Chairman of the API Ad-hoc Work Group and directly
responsible for most of the text herein

Bob Callaghan, Editor of this specification

Dean Skidmore
Chairman, ATM Forum SAA Work Group

Native ATM Services: Semantic Description

ATM Forum Technical Committeeiv

This page is intended to be blank.

Native ATM Services: Semantic Description

ATM Forum Technical Committee v

Contents

1. INTRODUCTION 1

1.1 Purpose of Document 1

1.2 Scope of Document 2

1.3 Reference Model 3
1.3.1 Notes for the Reference Model 4

1.4 Normative Versus Informative Text 4

2. API_CONNECTION STATE MACHINE 4

2.1 Motivation 5

2.2 One-Shot State Machine 5

2.3 Terms Used 5

2.4 States of API_connection 6
2.4.1 Null (A0) 6
2.4.2 Initial (A1) 6
2.4.3 Outgoing Call Preparation (A2) 6
2.4.4 Outgoing Call Requested (A3) 6
2.4.5 Incoming Call Preparation (A4) 7
2.4.6 Wait Incoming Call (A5) 7
2.4.7 Incoming Call Present (A6) 7
2.4.8 Incoming Call Requested (A7) 7
2.4.9 Point-to-Point Data Transfer (A8) 8
2.4.10 Point-to-Multipoint Root Data Transfer (A9) 8
2.4.11 Point-to-Multipoint Leaf Data Transfer (A10) 8
2.4.12 Connection Terminated (A11) 8

2.5 Entity-Relationship Diagrams 8
2.5.1 Client-Server modeling 9
2.5.2 Specific ER Diagrams for Each State 9

2.6 Partial State Diagram 18

3. PRIMITIVES 18

3.1 Control Plane 19

3.2 Data Plane 31
3.2.1 Sending Data 32
3.2.2 Receiving Data 33

3.3 Management Plane 35

Native ATM Services: Semantic Description

ATM Forum Technical Committeevi

4. PROCEDURES 38

4.1 PVC Provisioning 39
4.1.1 Establishment 39
4.1.2 Termination 39

4.2 SVC Provisioning 39
4.2.1 Initiating a Call 40
4.2.2 Responding to a Call 41

4.3 Synchronization and Coordination Function 42
4.3.1 NULL_SSCS 43
4.3.2 SSCOP_RELIABLE_SSCS 44
4.3.3 SSCOP_UNRELABLE_SSCS 48

4.4 Specification of SAP Address 48
4.4.1 SAP Address as a Vector 49
4.4.2 SVE Encoding 50

4.5 Registration of a Local SAP Address 52

4.6 Incoming Call Distribution 53

4.7 Compatibility Checking 55

4.8 Negotiation of Parameters 55
4.8.1 Outgoing calls 55
4.8.2 Incoming calls 55

5. REFERENCE DOCUMENTS 55

ANNEX A: CONNECTION ATTRIBUTES 57

A.1 UNI Signaling Related 57

A.2 Local Services 60

ANNEX B: MANAGEMENT VARIABLES 61

B.1 UNI Defined 61

B.2 Native ATM Services Defined 63

ANNEX C: USAGE OF WILDCARDS IN SAPS 64

APPENDIX A: PRAGMATICS OF DATA SEND AND RECEIVE 65

Native ATM Services: Semantic Description

ATM Forum Technical Committee vii

APPENDIX B: MAPPING BETWEEN ATM FORUM SIGNALING MESSAGES
3.1 AND PRIMITIVES 67

B.1 Primitives invoked by the application 67

B.2 Messages received from Network 67

APPENDIX C: EXAMPLE SAP COMBINATIONS 70

C.1 SAPs for Data Link Layer Protocols 70

C.2 SAPs for Network Layer Protocols 70

C.3 SAPs for Higher Layer Protocols and ATM-Aware Applications 71

Native ATM Services: Semantic Description

ATM Forum Technical Committee 1

1. Introduction

1.1 Purpose of Document

This document specifies the semantic definition of ATM-specific services that are available to software programs and
hardware residing in devices on the user side of the ATM User-Network Interface. The ATM environment provides a
wealth of new services to the application developer. This allows enhancements in performance and specification of
network characteristics. Such ATM-specific services are denoted by the term “Native ATM Services”.

“Semantic”, means that this document will describe the services in a way that is independent of any programming
language or operating system environment. Semantic specifications for generic services define various aspects of the
interface to those underlying services, such as:

• request for the underlying service to perform some action

• notification that some event has occurred

• parameters of the requests and notifications

• response codes to the requests and notifications.

This document uses a state machine, entity-relation diagrams, primitives, implementation-specific tips, and other
informative text to accomplish this aim.

The semantic description presented in this document is not an Applications Programming Interface (API). An API is
a set of libraries or interfaces that enable an application to use the language in which it is written to access the
functionality of lower-level modules - such as operating systems, graphical user interfaces, and communications
protocols. The ATM Forum’s interest is in applications being able to access the functionality provided by Native
ATM Services.

This document will advance the development of such APIs that allow access to Native ATM Services. The semantic
description included herein is intended to influence the direction of these emerging APIs. This document addresses
concerns with both interoperability aspects and the proper abstraction of ATM procedures and parameters. Thus, this
semantic description provides a firm engineering foundation and logically precedes any API development. Note that
API development is expected to occur within the ATM Forum, other industry groups, and ATM vendors.

Note also that the semantic description herein is not limited to development of traditional APIs. Rather, this
interface can be applied to any software program or hardware that uses Native ATM Services. Some examples of this
are:

1. operating system kernel interface between Native ATM Services and ATM LAN Emulation

2. operating system kernel interface between Native ATM Services and traditional networking protocols (e.g. IP,
X.25)

3. operating system kernel interface to an ATM device driver, where the device driver contains the implementation of
the Native ATM Services

4. inside a PBX, used for circuit emulation

5. inside an ATM switch, used for vendor applications providing value-added services.

Native ATM Services: Semantic Description

ATM Forum Technical Committee2

1.2 Scope of Document

“Native ATM Services” include the following:

1. data transfer, including both reliable and unreliable data delivery, using the ATM layer and various ATM
adaptation layers

2. provisions for setting up switched virtual circuits (SVC)

3. provisions for setting up permanent virtual circuits (PVC)

4. traffic management considerations, including traffic types and quality of service guarantees

5. Distribution of connections and associated data to the correct application, or entity.

6. provisions for local participation in network management (i.e. ILMI and OAM protocols)

The next section presents a reference model showing the relationships between the various software components in a
device at the user side of the ATM User-Network Interface. In the reference model, the dashed line labeled “Native
ATM SAP” identifies the general scope and interest of this document.

This version of the specification supports version 3.x (3.0 and 3.1) of the ATM Forum’s User-Network Interface
(UNI) Specification. Future versions of this specification will support future versions of the UNI. Not all features
of UNI 3.x are supported by this document. In particular, several limitations are listed below.

• UNI 3.x allows for two levels of ATM bearer service: virtual path (VP) and virtual channel (VC). This
document supports only VC-level service. The support of VP-level service is for further study.

• UNI 3.x allows for AAL type 1, AAL type 3/4, AAL type 5, and a user-defined AAL. This document supports
only AAL Type 1, AAL type 5, and a user-defined AAL. The support for AAL1 and user-defined AAL includes
the control plane (signaling), but the data plane is considered implementation-specific at this time. The support
of the other AAL types (including AAL type 2) is for further study.

• This document supports only the message mode of AAL type 5. Support of AAL type 5 streaming mode is for
further study.

• The procedures in this document do not support a single ATM device being multiple leaves on a same point-to-
multipoint connection. This feature is for further study.

• Some features of UNI 3.0 were changed or obsoleted by UNI 3.1. Where such conflicts exist, this document is
consistent with UNI 3.1.

Motivation for a software interface specification centers on portability of software and reduction of development
expense. In addition, this document addresses end-to-end interoperability issues, such as:

• distribution of an incoming connection to the correct application inside the device on the user side of the UNI

• agreement of what parameters supported in the UNI may be expected by the application

Native ATM Services: Semantic Description

ATM Forum Technical Committee 3

1.3 Reference Model

Figure 1: Reference Model for Native ATM Services (Native ATM SAP)

Data
Transfer SVC PVC Local

Management

Connection and Data
Distribution

Traditional transport &
network protocols

other API libraries

other
services

Native ATM
Library

Applications

Drivers

Network
Interface(s)

Native ATM API
Existing

Transport API(s)

Native
ATM SAP

UNI Services

Native ATM Services: Semantic Description

ATM Forum Technical Committee4

1 .3 .1 Notes for the Reference Model

The notes in this section are intended to help the reader understand the reference model.

1. “Native ATM API” — an API that is specifically tailored to support Native ATM Services.

2. “Existing Transport APIs” — an API that provides application access to an underlying transport layer. Note that
in order to support applications that are aware of an underlying ATM network, the API must be extended to
support Native ATM Services. Examples of existing transport APIs include sockets, XTI, Winsock, Netbios,
etc.

3. “Native ATM Library” — software component that presents the Native ATM API to an application.

4. “other API libraries” — software components that present the transport APIs to the application.

5. “traditional transport & network protocols” — traditional data communications protocols such as X.25, TCP/IP,
SPX/IPX, SNA, Netbui, Appletalk, etc. Note that these protocols may or may not be aware of the underlying
ATM network.

6. “other services” — software components that provide an appearance of some network type other than ATM.
Examples include ATM LAN Emulation, Circuit Emulation, etc.

7. “Connection and Data Distribution” — this component allows multiple applications (software programs and
hardware) to simultaneously use the functions of ATM networks in a native fashion.

8. The direction of the arrows in the diagram are meant to loosely show the relationship between a service provider
and a service user. For example, "Applications" uses the services of "Native ATM API".

1.4 Normative Versus Informative Text

The main body of this specification, plus the annexes, are considered normative text. If a particular implementation
supports a given service (e.g. SVC, PVC, AAL5, AAL1, SSCOP, ILMI, OAM), then access to that service shall be
done in a manner consistent with this specification.

The appendices of this specification are considered informative text.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 5

2. API_connection State Machine

2.1 Motivation

This document describes behavior that is dynamic in nature. The valid actions across the interface to Native ATM
Services change with time. For example, an application may not transfer data to another ATM device until an ATM
call (between the two ATM devices) is setup across the network. In order to accomplish many actions, a certain
sequence of requests and notifications must occur across the interface to Native ATM Services. To be precise, this
document describes the dynamic behavior in terms of a finite state machine.

2.2 One-Shot State Machine

Most finite state machines contain cycles, or return paths, because the object being modeled repeats a similar
sequence of actions. With these kinds of objects, a “dead end” in the state transition path implies a deadlocked state.
The object becomes “stuck” in the deadlocked state and is unavailable for future use. For this reason, the last state in
an operational sequence often returns to some initial state.

The state machine used for Native ATM Services is a “one-shot” state machine. After the last state in the operational
sequence, the state machine remains in state A11 forever.

The difference in these two approaches result from differences in the objects being modeled. The first case is used
when modeling an object that can be reused or recycled. Examples of this are communication channels, blood cells
carrying oxygen, or a rental video tape. The second case can be used when modeling an object that has a finite
lifespan. Examples of this are human age progression or consumption by fire.

By design, the state machine used for Native ATM Services models an object with a finite lifespan. The object being
modeled is a connection between two or more parties across an ATM network, which occurs once in time. This
approach is superior to the alternative.

The alternative would have been to model a capacity provided by the ATM device’s operating system to communicate
across the ATM network. In real operating systems, this capacity is typically identified by something analogous to a
UNIX file descriptor. The problem with this approach is that various operating systems and existing APIs attach
different semantics to the capacity identifier. The differences might include ability to share the capacity identifier
across process boundaries, generation of a new capacity identifier when an incoming call is accepted, and the recycling
of a capacity identifier after a connection has been terminated. The differing semantics for capacity identifiers would
have resulted in a state machine that was tied to a particular operating environment or existing API.

Native ATM Services abstracts away from these differences. Instead, the state machine models an object much more
fundamental to ATM communication: an individual connection across the ATM network. The focus of the state
machine is an abstract concept herein called an “API_connection” or “connection”. Note that the definition for
“connection” differs in this document from the use of that term found in the UNI specification. The precise definition
and properties of an API_connection were created in order to describe the interface to Native ATM Services in terms
of a finite state machine. The specific definition for an API_connection is found immediately below.

2.3 Terms Used

• “API_endpoint” or “endpoint” - an object associated with a set of attributes by which an application
communicates with other ATM devices.

Native ATM Services: Semantic Description

ATM Forum Technical Committee6

• “API_connection” or “connection” - a relationship between an API_endpoint and other ATM devices, that has the
following characteristics:

1. Data communication may occur between the API_endpoint and the other ATM devices comprising the
API_connection.

2. Each API_connection may occur over a duration of time only once; the same set of communicating ATM
devices may form a new connection after a prior connection is released.

3. The API_connection may be presently active (able to transfer data), or merely anticipated for the future.

2.4 States of API_connection

2 .4 .1 Null (A0)

There is no association between the API_connection and the API_endpoint that may be used in the future to offer
native ATM service to the application.

2 .4 .2 Initial (A1)

An association now exists between the API_connection and the API_endpoint that may be used to offer native ATM
service to the application.

2 .4 .3 Outgoing Call Preparation (A2)

The application has indicated the intention of placing an outgoing call across the ATM network. Any data structures
that are needed to specify characteristics of the outgoing call must exist while the API_connection is in state A2.
Those data structures are initialized, to the extent possible, when the API_connection enters state A2. The
application is allowed to examine and/or modify some subset of these data structures while in state A2.

2 .4 .4 Outgoing Call Requested (A3)

The application has requested that an outgoing call be placed across the ATM network. The characteristics of the call
are those specified by data structures that were manipulated while the API_connection was in state A2.

State A3 is entered when the application issues a primitive requesting that the outgoing call be established. This
state (A3) can be mapped to the following possible system implementations:

polling: The application polls to determine the status of the requested outgoing call. While polling (and
before receiving a status indication), the API_connection remains in state A3.

blocking: The operating system blocks the application’s process thread, until the outgoing call attempt is
either accepted or rejected by the network. While the application is blocked, the API_connection
remains in state A3.

messaging: The application receives an asynchronous message to indicate either acceptance or rejection of the
outgoing call attempt. While the application is waiting for that message, the API_connection
remains in state A3.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 7

2 .4 .5 Incoming Call Preparation (A4)

The application has indicated the intention of receiving an incoming call across the ATM network. Any data
structures that are needed to queue incoming calls (for the purpose of presenting them to the application) must exist
while the API_connection is in states A4, A5, A6, and A7.

2 .4 .6 Wait Incoming Call (A5)

The application has requested that incoming calls from the ATM network be queued for possible acceptance. The
characteristics of the queue of potential calls are those specified by data structures that were manipulated while the
API_connection was in state A4.

State A5 is entered when the application issues a primitive requesting that incoming calls with the registered SAP be
queued and presented to this application. This state (A5) can be mapped to the following possible system
implementations:

polling: The application polls to determine the presence of an incoming call that has not been presented to
the application. While polling, the API_connection remains in state A5 until the application is
notified of the new incoming call.

blocking: The operating system blocks the application’s process thread, until a new incoming call is present.
While the application is blocked, the API_connection remains in state A5.

messaging: The application receives an asynchronous message to indicate that a new incoming call is present.
While the application is waiting for that message, the API_connection remains in state A5.

2 .4 .7 Incoming Call Present (A6)

An incoming call exists that has not been presented to an application; it is presented to the application for possible
acceptance. While in this state (A6), the Native ATM Services makes available characteristics of the incoming call
that help the application make an accept/reject decision. If parameter negotiation is present, the application can
choose and/or modify the appropriate parameters.

2 .4 .8 Incoming Call Requested (A7)

The application has accepted the incoming call that is at the head of the incoming call queue. However, the call must
be awarded by the network before the call is completely setup and ready for data transfer.

State A7 is entered when the application issues a primitive requesting that the incoming call at the head of the
incoming call queue be accepted. This state (A7) can be mapped to the following possible system implementations:

polling: The application polls to determine the status of the accepted call. While polling (and before
receiving a status indicating the call was either awarded or released), the API_connection remains in
state A7.

blocking: The operating system blocks the application’s process thread, until the accepted call is either
awarded or released. While the application is blocked, the API_connection remains in state A7.

messaging: The application receives an asynchronous message to indicate that the call is either awarded or
released. While the application is waiting for that message, the API_connection remains in state
A7.

Native ATM Services: Semantic Description

ATM Forum Technical Committee8

2 .4 .9 Point-to-Point Data Transfer (A8)

The point-to-point call (either outgoing or incoming) has been set up across the ATM network. The application may
now send and receive data. If any additional states are required for flow control, they will be considered sub-states of
state A8.

2.4 .10 Point-to-Multipoint Root Data Transfer (A9)

The point-to-multipoint call has been set up across the ATM network, with the application being the root node. The
application may now send data. If any additional states are required for flow control, they will be considered sub-
states of state A9. If any additional states are required for the joining and releasing of additional leafs, they will be
considered sub-states of state A9.

2.4 .11 Point-to-Multipoint Leaf Data Transfer (A10)

The point-to-multipoint call has been set up across the ATM network, with the application being a leaf node. The
application may now receive data. If any additional states are required for flow control, they will be considered sub-
states of state A10.

2.4 .12 Connection Terminated (A11)

The connection’s lifespan is completed. This state could have been reached by either:

1. An active connection (API_connection in state A8, A9, or A10) was released.

2. A pending connection (API_connection in state A3 or A7) was released by the network or remote ATM device.

3. A connection was aborted by the application.

There is no longer an association between the API_connection and the API_endpoint that was used to offer native
ATM service to the application.

2.5 Entity-Relationship Diagrams

The following diagrams are entity-relationship diagrams for each state of API_connection. The prime purpose of the
entity-relationship diagrams is to show, for each state:

• the data structures required to implement Native ATM Services

• the information available to the application, through the interface primitives.

In the diagrams, the following conventions are used:

• the rectangles are entities

• the circles are attributes of the attached entities

• the diamonds are relationships between the entities

• the numbers on either side of the diamond denote the cardinality of the relationship (e.g. one-to-one, many-to-
one).

Native ATM Services: Semantic Description

ATM Forum Technical Committee 9

2 .5 .1 Client-Server modeling

Note the cardinality of the relationship between API_endpoint and API_connection. During the early states of the
state transition path, the relationship is one-to-many. This means that many API_connections are “bundled” together
with one API_endpoint. During the later states of the state transition path, the relationship is one-to-one. Thus,
only one API_connection is associated with an API_endpoint.

This is done to model the manner in which client-server programs are written. Typically, a server program will
listen for incoming calls on a single API_endpoint. When an incoming call is accepted, then the server program will
create a child process that communicates with the client program, but communication will involve a new
API_endpoint. Thus, an API_endpoint is created while the API_connection transitions into a data transfer state.

To handle this, the model allows API_connection to change the API_endpoint with which it is associated, during the
life of API_connection. The future API_endpoint with which API_connection will be associated during the data
transfer phase may be unknown during the early states of the state transition path.

As an example, consider that API_connections labeled X, Y, and Z are going to occur some time in the future,
involving a server program listening for incoming calls on API_endpoint 22. The state for API_connections X, Y,
and Z would be state A5; and all of them would be associated with API_endpoint 22. As incoming calls are accepted,
the following state transitions occur:

1. API_connection X moves to state A8 and becomes associated with API_endpoint 23. Connections Y and Z
remain in state A5 and are associated with endpoint 22.

2. API_connection Y moves to state A8 and becomes associated with API_endpoint 24. Connection Z remains in
state A5 and is associated with endpoint 22.

3. API_connection Z moves to state A8 and becomes associated with API_endpoint 25. Any other connections that
will be forked from the server program remain in state A5 are associated with endpoint 22.

2 .5 .2 Specific ER Diagrams for Each State

2 .5 .2 .1 Null (A0)

In this state, there is no association between the API_connection and the API_endpoint that may be used in the future
to offer native ATM service to the application. Also, there is no relationship between the application and the
API_endpoint. Thus, there is no entity-relationship diagram for this state.

2 .5 .2 .2 Initial (A1)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application

controls

Application

n 1

Endpoint talks
through

n1
Connection

Native ATM Services: Semantic Description

ATM Forum Technical Committee10

and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated with a
maximum of one API_endpoint. The significance of this is that many API_connections may share a single
API_endpoint in this state. This is done to model environments where an API_connection acquires a new
API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer states (A8, A9,
A10).

2 .5 .2 .3 Outgoing Call Preparation (A2)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated with a
maximum of one API_endpoint. The significance of this is that many API_connections may share a single
API_endpoint in this state. This is done to model environments where an API_connection acquires a new
API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer states (A8, A9,
A10).

There exist “requested connection attributes” that specify various characteristics of the call to be originated across the
ATM network. These are modeled as an attribute of API_endpoint. The application issues primitives to query or set
the attributes. Examples of these attributes would include AAL type, forward peak cell rate, quality of service class,
and AAL1 clock frequency recovery method.

“SAP”

controls
n1

Connection

Application

nn

n

11

1

Endpoint talks
through

ATM Address

requested
connection
attributes

dial
caller

ID

destination
address

ATM
Address

Native ATM Services: Semantic Description

ATM Forum Technical Committee 11

The API_endpoint is associated with a destination address, which is the complete specification for the software entity
with which the application desires to communicate. The destination address includes both the ATM address of the
target device, plus a “SAP” that allows the call notification to reach the correct software entity within that target
device. See section 4.6 for more information on call distribution within an ATM device. Notice the many-to-one
relationship implies that many API_endpoints can simultaneously be communicating with the same destination
address.

NOTE: The destination address is supplied by the primitive that move the connection from this state to A3..

In cases where the API_endpoint resides in a device known by multiple ATM addresses, there can only be one ATM
address associated with each API_endpoint. The ATM address referenced here will be reported in the “Calling Party
Number” signaling information element. This ATM address might be known implicitly by default, or it could be
explicitly specified by the application. Notice the many-to-one relationship implies that many API_endpoints can
simultaneously be calling from the same ATM address.

2 .5 .2 .4 Outgoing Call Requested (A3)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each API_endpoint
may be associated with a maximum of one API_connection, and vice-versa. The significance of this is that multiple
API_connections may not share a single API_endpoint in this state. This is done to model environments where an
API_connection acquires a new API_endpoint as the API_connection progresses from the early states (call setup) to
the data transfer states (A8, A9, A10).

The attribute of API_endpoint labeled “completion status” displays the status of the application’s request to originate
an outgoing call. This modeling may be useful for operating environments where polling is used to implement this
state.

controls

Application

n 1

Endpoint talks
through

11
Connection

completion
status

Native ATM Services: Semantic Description

ATM Forum Technical Committee12

2 .5 .2 .5 Incoming Call Preparation (A4)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated with a
maximum of one API_endpoint. The significance of this is that many API_connections may share a single
API_endpoint in this state. This is done to model environments where an API_connection acquires a new
API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer states (A8, A9,
A10).

The queue size specifies the number of incoming calls that may be held prior to the application’s acceptance.

The API_endpoint is associated with a local address, which is the complete incoming call distribution specification
for the application. The local address includes both the ATM address of the device housing the application, plus a
“SAP” that allows the call notification to reach the correct application within the target device. See section 4.6 for
more information on call distribution within an ATM device. Notice the one-to-one relationship (“located at”)
implies that only one API_endpoint can receive calls on any given local address.

“SAP”

controls

Application

1

n

1

1

Endpoint talks
through

ATM Address

located at

local
address

n1
Connection

queue
size

Native ATM Services: Semantic Description

ATM Forum Technical Committee 13

2 .5 .2 .6 Wait Incoming Call (A5)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-many. A single
API_endpoint may be associated with multiple API_connections, but each API_connection is associated with a
maximum of one API_endpoint. The significance of this is that many API_connections may share a single
API_endpoint in this state. This is done to model environments where an API_connection acquires a new
API_endpoint as the API_connection progresses from the early states (call setup) to the data transfer states (A8, A9,
A10).

The attribute of API_endpoint labeled “new call status” displays the existence of a new incoming call. This
modeling may be useful for operating environments where polling is used to implement this state.

2 .5 .2 .7 Incoming Call Present (A6)

controls

Application

n 1

Endpoint talks
through

n1
Connection

new call
status

talks
through

11
Connection

Application

1

n

1

1

Endpoint

queue
head

incoming
call

call attributes

controls

Native ATM Services: Semantic Description

ATM Forum Technical Committee14

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each API_endpoint
may be associated with a maximum of one API_connection, and vice-versa. The significance of this is that multiple
API_connections may not share a single API_endpoint in this state. This is done to model environments where an
API_connection acquires a new API_endpoint as the API_connection progresses from the early states (call setup) to
the data transfer states (A8, A9, A10).

The queue that holds incoming calls for the application will have one and only one incoming call at the head of the
queue. There exist “call attributes” that specify various characteristics of the call being received across the ATM
network. These are modeled as an attribute of the entity “incoming call”. The application issues primitives to query
or set the attributes. Examples of these attributes would include AAL type, forward peak cell rate, quality of service
class, and AAL1 clock frequency recovery method. Note that the number of attributes that may be set by the
application are the set of parameters that are negotiated end-to-end: “Broadband low-layer information” is an example.

2 .5 .2 .8 Incoming Call Requested (A7)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each API_endpoint
may be associated with a maximum of one API_connection, and vice-versa. The significance of this is that multiple
API_connections may not share a single API_endpoint in this state. This is done to model environments where an
API_connection acquires a new API_endpoint as the API_connection progresses from the early states (call setup) to
the data transfer states (A8, A9, A10).

The attribute of API_endpoint labeled “completion status” displays the status of the application’s request to accept
an incoming call. This modeling may be useful for operating environments where polling is used to implement this
state.

controls

Application

n 1

Endpoint talks
through

11
Connection

completion
status

Native ATM Services: Semantic Description

ATM Forum Technical Committee 15

2 .5 .2 .9 Point-to-Point Data Transfer (A8)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each API_endpoint
may be associated with a maximum of one API_connection, and vice-versa. The significance of this is that multiple
API_connections may not share a single API_endpoint in this state. This is done to model environments where an
API_connection acquires a new API_endpoint as the API_connection progresses from the early states (call setup) to
the data transfer states (A8, A9, A10).

There exist “connection attributes” that specify various characteristics of the present call. These are modeled as an
attribute of API_endpoint. The application issues primitives to query the attributes. Examples of these attributes
would include AAL type, forward peak cell rate, quality of service class, and AAL1 clock frequency recovery method.

Every API_endpoint in this state is associated with one and only one VCC that carries user data to/from the
application. The VCC may be designated by a VPI and a VCI.

VCI

controls

App

1

n

1

1

Endpoint talks
through

VPI

connection
attributes

user data

VCC

11
Connection

Native ATM Services: Semantic Description

ATM Forum Technical Committee16

2 .5 .2 .10 Point-to-Multipoint Root Data Transfer (A9)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each API_endpoint
may be associated with a maximum of one API_connection, and vice-versa. The significance of this is that multiple
API_connections may not share a single API_endpoint in this state. This is done to model environments where an
API_connection acquires a new API_endpoint as the API_connection progresses from the early states (call setup) to
the data transfer states (A8, A9, A10).

There exist “connection attributes” that specify various characteristics of the present call. These are modeled as an
attribute of API_endpoint. The application issues primitives to query the attributes. Examples of these attributes
would include AAL type, forward peak cell rate, quality of service class, and AAL1 clock frequency recovery method.

Every API_endpoint in this state is associated with one and only one VCC that carries user data to/from the
application. The VCC may be designated by a VPI and a VCI.

A “list of remote leafs” may be modeled as an attribute of API_endpoint. The remote leafs are other ATM devices
that are leafs of a point-to-multipoint call, with the device housing API_endpoint as the root. The application uses
primitives to modify this list, thereby adding and dropping parties of the point-to-multipoint call.

VCI

list of
remote leafs

controls

App

1

n

1

1

Endpoint talks
through

VPI

connection
attributes

user data

VCC

11
Connection

Native ATM Services: Semantic Description

ATM Forum Technical Committee 17

2 .5 .2 .11 Point-to-Multipoint Leaf Data Transfer (A10)

In this state, the application has access to an API_endpoint. Native ATM Services are offered to the application via
the exchange of primitives between the application and the API_endpoint. The relationship between an application
and the API_endpoint is one-to-many; an application may exchange primitives with many API_endpoints, but each
API_endpoint is bound to a maximum of one application.

In this state, the relationship between an API_endpoint and an API_connection is one-to-one. Each API_endpoint
may be associated with a maximum of one API_connection, and vice-versa. The significance of this is that multiple
API_connections may not share a single API_endpoint in this state. This is done to model environments where an
API_connection acquires a new API_endpoint as the API_connection progresses from the early states (call setup) to
the data transfer states (A8, A9, A10).

There exist “connection attributes” that specify various characteristics of the present call. These are modeled as an
attribute of API_endpoint. The application issues primitives to query the attributes. Examples of these attributes
would include AAL type, forward peak cell rate, quality of service class, and AAL1 clock frequency recovery method.

Every API_endpoint in this state is associated with one and only one VCC that carries user data to/from the
application. The VCC may be designated by a VPI and a VCI.

2 .5 .2 .12 Connection Terminated (A11)

There is no entity-relationship diagram for this state.

The lifetime of API_connection is now over. There is no remaining association between an API_endpoint and the
API_connection. Hence, there is no entity-relationship diagram needed for this state.

VCI

controls

App

1

n

1

1

Endpoint talks
through

VPI

connection
attributes

user data

VCC

11
Connection

Native ATM Services: Semantic Description

ATM Forum Technical Committee18

2.6 Partial State Diagram

Below is a partial state diagram for API_connection. The circles are the states and the edges are primitives that cause
transitions between states. These primitives will be described in chapter 3.

A0

A2

A3

A9

A4

A5

A6

A7

A10

A8

A11

A1

ATM_reject_incoming_call

ATM_accept_incoming_call

ATM_arrival_of_incoming_call

ATM_wait_on_incoming_call

ATM_prepare_incoming_call

ATM_P2MP_call_active

ATM_call_release

ATM_abort_connection

ATM_call_release
ATM_call_release

ATM_P2MP_call_active

ATM_P2P_call_active

ATM_P2P_call_active

ATM_connect_outgoing_call

ATM_prepare_outgoing_call

ATM_associate_endpoint

Native ATM Services: Semantic Description

ATM Forum Technical Committee 19

3. Primitives

This section uses the following conventions for the primitives specified herein:

• "IN" - a parameter value supplied by the originator of the primitive (e.g. the caller of a subroutine).

• "OUT" - a parameter value supplied by the recipient of the primitive (e.g. the callee of a subroutine).

• "INOUT" - a parameter value that might be supplied by the primitive's originator, recipient, or both; depending
on the implementation.

• "Request", "Indication", "Response", "Confirm" - these terms are conventionally used by ISO to describe the role
of the primitive.

3.1 Control Plane

ATM_abort_connection Request

Purpose: clear the connection due to abnormal conditions

ATM_abort_connection (

IN endpoint_identifier,

IN cause

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• cause specifies the abnormal condition

Return Values: none

Valid States: A1, A2, A3, A4, A5, A6, A7, A8, A9, A10

State Transitions: the state becomes A11

This primitive ends the association between the API_connection and an API_endpoint.

This primitive is used to terminate a communication endpoint. All connections associated with this
communication endpoint will be aborted and all the resources allocated for the communication endpoint are
released.

Native ATM Services: Semantic Description

ATM Forum Technical Committee20

ATM_accept_incoming_call Response

Purpose: application signals acceptance of the pending incoming call

ATM_accept_incoming_call (

IN endpoint_identifier,

INOUT new_endpoint_identifier

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• new_endpoint_identifier specifies the new endpoint identifier to be associated with this API_connection.
In cases where the parent application provides a new endpoint identifier, this parameter is IN. In case
where the underlying service provides a new endpoint identifier, this parameter is OUT.

Return Values:

SUCCESS

CONNECTION_PREVIOUSLY_ABORTED

Valid States: A6

State Transitions:

• If the return value is SUCCESS, then the API_connection most recently presented to the application moves
to state A7.

• If the return value is CONNECTION_PREVIOUSLY_ABORTED, then the API_connection most recently
presented to the application moves to state A11.

This primitive signals that the application wishes to accept the incoming call that is at the head of the incoming
call queue.

The connection attribute BLLI_SELECTOR is set by the application to one of the following values:

• 0: no “Broadband Low Layer Information” (BLLI) information element should be returned to the calling
party

• 1: the first occurrence of BLLI information element should be returned to the calling party

• 2: the second occurrence of BLLI information element should be returned to the calling party

• 3 - the third occurrence of BLLI information element should be returned to the calling party.

ATM_add_party Request

Purpose: add a leaf to an existing point-to-multipoint call

Native ATM Services: Semantic Description

ATM Forum Technical Committee 21

ATM_add_party (

IN endpoint_identifier,

IN leaf_identifier,

IN leaf_ATM_address

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• leaf_identifier is reference to the ATM device being added to this connection. (NOTE: This value must be
non-zero and less than 32,768.)

• leaf_ATM_address is the ATM address of the ATM device being added to this connection.

Return Values: none

Valid States: A9

State Transitions: none

This primitive allows applications to add new ATM devices to an existing point-to-multipoint call. The new
leaf inherits the traffic parameters already in force for the existing leaf(s) of this connection. Note that data traffic
in a point-to-multipoint connection only flows from the root node to each leaf node.

ATM_add_party_reject Confirm

Purpose: signal that a previous ATM_add_party request was unsuccessful.

ATM_add_party_reject (

IN endpoint_identifier,

IN leaf_identifier,

IN rejection_cause

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• leaf_identifier is a reference to the ATM device that could not be added.

• rejection_cause specifies why the addition of a leaf was rejected.

Return Values: none

Valid States: A9

State Transitions: no transitions

Native ATM Services: Semantic Description

ATM Forum Technical Committee22

ATM_add_party_success Confirm

Purpose: signal that a previous ATM_add_party request was successful.

ATM_add_party_success (

IN endpoint_identifier,

IN leaf_identifier,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• leaf_identifier is reference to the ATM device being added to this connection.

Return Values: none

Valid States: A9

State Transitions: no transitions

ATM_arrival_of_incoming_call Indication

Purpose: notifies the application that a call has arrived

ATM_arrival_of_incoming_call (

IN endpoint_identifier,

)

where

• endpoint_identifier specifies the incoming call queue upon which the call is located.

Return Values: none

Valid States: A5

State Transitions: The API_connection that is presented to the application moves from state A5 to A6. All
other API_connections for this endpoint_identifier remain in state A5.

This primitive signals the application that an incoming call is present in the incoming call queue.

The connection attribute BLLI_SELECTOR is set by Native ATM Services to one of the following values:

• 0: no “Broadband Low Layer Information” (BLLI) information element was present in the incoming call

• 1: the first occurrence of BLLI information element present in the incoming call forms part of the SAP
(over which this call is being received)

Native ATM Services: Semantic Description

ATM Forum Technical Committee 23

• 2: the second occurrence of BLLI information element present in the incoming call forms part of the SAP
(over which this call is being received)

• 3 - the third occurrence of BLLI information element present in the incoming call forms part of the SAP
(over which this call is being received).

ATM_associate_endpoint Request

Purpose: associates an API_endpoint with the potential API_connections that will use that endpoint.

ATM_associate_endpoint (

OUT endpoint_identifier,

)

where

• endpoint_identifier is the newly allocated API_endpoint.

Return Values: none

Valid States: A0

State Transitions: API_connection moves to state A1

This primitive creates an initial association between the API_connection and API_endpoint.

ATM_call_release Request

Purpose: terminates an API_connection that is in an active state (A8, A9, A10) by the application.

ATM_call_release (

IN endpoint_identifier,

IN release_cause,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• release_cause identifies the cause of release.

Return Values: none

Valid States: A8, A9, A10

State Transitions: API_connection moves to state A11

Native ATM Services: Semantic Description

ATM Forum Technical Committee24

ATM_call_release Indication

Purpose: terminates an API_connection because of a network or remote device action.

ATM_call_release (

IN endpoint_identifier,

IN release_cause,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• release_cause identifies the cause of release.

Return Values: none

Valid States: A3, A7, A8, A9, A10

State Transitions: API_connection moves to state A11

ATM_connect_outgoing_call Request

Purpose: initiates a call across the ATM network

ATM_connect_outgoing_call (

IN endpoint_identifier,

 IN destination_SAP,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• destination_SAP is the address of the target ATM device and target entity within the ATM device. See
section 4.4 for more information on SAP addresses.

Return Values: none

Valid States: A2

State Transitions: API_connection moves to state A3

This primitive causes the underlying ATM protocols to attempt set up of an outgoing call.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 25

ATM_drop_party Request

Purpose: remove an ATM device from a point-to-multipoint call.

ATM_drop_party (

IN endpoint_identifier,

IN leaf_identifier,

IN drop_cause

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• leaf_identifier specifies the ATM device being dropped.

• drop_cause specifies the reason for dropping.

Return Values: none

Valid States: A9

State Transitions: no state transitions

This primitive allows applications to drop a leaf node from a point-to-multipoint connection.

ATM_drop_party Indication

Purpose: an ATM device (leaf of point-to-multipoint call) released the connection.

ATM_drop_party (

IN endpoint_identifier,

IN leaf_identifier,

IN drop_cause

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• leaf_identifier specifies the ATM device that dropped off of the connection.

• drop_cause specifies the reason for dropping.

Return Values: none

Valid States: A9

Native ATM Services: Semantic Description

ATM Forum Technical Committee26

State Transitions: no state transitions

This primitive notifies an application that a remote leaf node dropped off a point-to-multipoint connection.

ATM_get_local_port_info Request

Purpose: obtain necessary information related to an ATM physical port

ATM_get_local_port_info (

IN port_number,

OUT address_list

OUT line_rate

)

where

• port_number identifies a physical UNI attachment.

• address_list is a list of ATM addresses that are valid for the port number.

• line_rate is the maximum cell rate supported by the ATM port in cells per second.

Return Values:

SUCCESS

INVALID_PORT_NUMBER

NO_VALID_ADDRESSES

Valid States: not applicable

State Transitions: not applicable

This primitive reports the result of ILMI address registration, as specified in section 5.8 of the UNI.

ATM_P2MP_call_active Confirm

Purpose: signal that the point-to-multipoint call is now in active state

ATM_P2MP_call_active (

IN endpoint_identifier,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 27

Return Values: none

Valid States: A3, A7

State Transitions: If the API_connection was in state A3, then the new state will be A9. If the
API_connection was in state A7, then the new state will be A10.

ATM_P2P_call_active Confirm

Purpose: signal that the point-to-point call is now in active state

ATM_P2P_call_active (

IN endpoint_identifier,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

Return Values: none

Valid States: A3, A7

State Transitions: API_connection moves A8.

ATM_prepare_incoming_call Request

Purpose: sets up incoming call distribution tables

ATM_prepare_incoming_call (

IN endpoint_identifier,

IN local_SAP,

IN queue_size

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• local_SAP is the address of this ATM device and application entity. See section 4.4 for a discussion on
SAP addresses.

• queue_size specifies the depth of the incoming call queue.

Return Values:
SUCCESS
SAP_ALREADY_USED

Native ATM Services: Semantic Description

ATM Forum Technical Committee28

Valid States: A1

State Transitions: API_connection moves to state A4

This primitive allows applications to associate an API_endpoint with a local address. The intent of the 2nd
parameter is to specify an address that can be used to identify a unique API_endpoint.

ATM_prepare_outgoing_call Request

Purpose: sets up data structures that hold the characteristics of the outgoing call

ATM_prepare_outgoing_call (

IN endpoint_identifier,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

Return Values: none

Valid States: A1

State Transitions: API_connection moves to state A2.

ATM_query_connection_attributes Request

Purpose: to obtain an attribute value of the connection

ATM_query_connection_attributes (

IN endpoint_identifier,

IN attribute_name,

OUT attribute_value,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• attribute_name identifies the attribute.

• attribute_value is the value of attribute.

Return Values:
SUCCESS
ATTRIBUTE_DOES_NOT_EXIST

Native ATM Services: Semantic Description

ATM Forum Technical Committee 29

Valid States: A2, A6, A8, A9, A10

State Transitions: no state transitions

This primitive allows applications to query connection attributes. The attribute_name parameter specifies the
name of the attribute (e.g. QoS, peak cell rate). The attribute_value parameter contains the query result.

NOTE: Native ATM Services must provide access to as many as three instances of the connection attributes
found in the “Broadband Low Layer Information” information element. One convenient way to do this is to use
connection attribute BLLI_SELECTOR to select which of the three instances is being queried. Such
implementations should default BLLI_SELECTOR to a value of 1 when API_connection transitions from state
A1 to A2.

ATM_reject_incoming_call Response

Purpose: signals that the application does not accept the incoming call

ATM_reject_incoming_call (

IN endpoint_identifier,

IN rejection_cause

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• rejection_cause specifies why the connection is being rejected.

Return Values: none

Valid States: A6

State Transitions: API_connection moves to state A11

This primitive signals that the application wishes to reject the incoming call that is at the head of the incoming
call queue.

ATM_set_connection_attributes Request

Purpose: to modify an attribute value of the connection

Native ATM Services: Semantic Description

ATM Forum Technical Committee30

ATM_set_connection_attributes (

IN endpoint_identifier,

IN attribute_name,

IN attribute_value,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• attribute_name identifies the attribute.

• attribute_value is the desired value of attribute.

Return Values:
SUCCESS
ATTRIBUTE_DOES_NOT_EXIST
CAN_NOT_MODIFY
INVALID_VALUE

Valid States: A2, A6

State Transitions: no state transitions

This primitive allows applications to modify connection attributes. The attribute_name parameter specifies the
name of the attribute (e.g. QoS, peak cell rate). The attribute_value parameter contains the desired new value.

NOTE: Native ATM Services must provide access to as many as three instances of the connection attributes
found in the “Broadband Low Layer Information” information element. One convenient way to do this is to use
connection attribute BLLI_SELECTOR to select which of the three instances is being manipulated. Such
implementations should default BLLI_SELECTOR to a value of 1 when API_connection transitions from state
A1 to A2.

ATM_wait_on_incoming_call Request

Purpose: activates the incoming call distribution function for this endpoint.

ATM_wait_on_incoming_call (

IN endpoint_identifier,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

Return Values: none

Valid States: A4

State Transitions: All API_connections associated with this endpoint move to state A5

Native ATM Services: Semantic Description

ATM Forum Technical Committee 31

This primitive causes the application to wait for an incoming call to enter the incoming call queue.

Native ATM Services: Semantic Description

ATM Forum Technical Committee32

3.2 Data Plane

There are three major approaches to the implementation of the data transfer primitives:

• polling

• blocking

• messaging

Another issue is the location of the data. The data bound for the application could exist in:

• memory space that the operating system kernel manages

• memory space that the application manages

• hardware (e.g. the ATM adapter card, the video card, the sound card, a private data bus)

It is possible that there is a total hardware path between the ATM function and an application implemented in
hardware. In this case, the data plane primitives are realized in hardware.

Implementation choices are outside the scope of this document. However, for completeness, this section considers
the differing semantics associated with these different implementation approaches. See Appendix A for a discussion
of pragmatic issues concerning these primitives.

NOTE: the data plane primitives to support AAL1 and User defined AAL traffic are implementation specific at this
time. This topic is for further study.

3 .2 .1 Sending Data

ATM_send_data Request

Purpose: to send data on the API_connection

ATM_send_data (

IN endpoint_identifier,

IN data_source,

OUT sending_result

)

Native ATM Services: Semantic Description

ATM Forum Technical Committee 33

where

• endpoint_identifier specifies the connection to which this primitive applies.

• data_source describes the data. For example, it could be a buffer location and amount of data, or even a
collection of buffers. As another example, it could be an instance of the application’s data to be
transmitted across the ATM network.

• sending_result is a status indication. In some implementations, it is simply SUCCESS or FAILURE.
In other implementations, it could be the amount of data transferred.

Return Values:
SUCCESS
NO_CONNECTION

Valid States: A8, A9

State Transitions: no state transition

3 .2 .2 Receiving Data

Only one of the following implementations needs to be supported in a conforming system.

3 .2 .2 .1 Polling Implementation

ATM_receive_data Request

Purpose: to receive data on the API_connection

ATM_receive_data (

IN endpoint_identifier,

INOUT data_receptor,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• data_receptor:

Before this primitive is invoked, data_receptor describes where the received data should be placed. After
this primitive returns, data_receptor describes the data.

For example, before the primitive is invoked, data_receptor could be a buffer location and buffer size.
After the primitive returns, data_receptor would be a buffer location and amount of data.

As another example, before the primitive is invoked, data_receptor could be a character string of zero
length and a maximum string size. After the primitive returns, data_receptor would be a character string.

Native ATM Services: Semantic Description

ATM Forum Technical Committee34

Return Values:
SUCCESS
DATA_NOT_PRESENT
NO_CONNECTION

Valid States: A8, A9, A10

State Transitions: no state transition

3 .2 .2 .2 Blocking Implementation

ATM_receive_data Request

Purpose: to receive data on the API_connection

ATM_receive_data (

IN endpoint_identifier,

INOUT data_receptor,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• data_receptor:

Before this primitive is invoked, data_receptor describes where the received data should be placed. After
this primitive returns, data_receptor describes the data.

For example, before the primitive is invoked, data_receptor could be a buffer location and buffer size.
After the primitive returns, data_receptor would be a buffer location and amount of data.

As another example, before the primitive is invoked, data_receptor could be a character string of zero
length and a maximum string size. After the primitive returns, data_receptor would be a character string.

Return Values:
SUCCESS
NO_CONNECTION

Valid States: A8, A9, A10

State Transitions: no state transition

Native ATM Services: Semantic Description

ATM Forum Technical Committee 35

3 .2 .2 .3 Messaging Implementation

ATM_receive_data Indication

Purpose: to receive data on the API_connection

ATM_receive_data (

IN endpoint_identifier,

IN receive_data

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• receive_data describes the data. Consider the following examples for this parameter:

1. a buffer location and the amount of data

2. an instance of the data (received across the ATM network) traversing a bus from the ATM
hardware to some other hardware device

3. an indication to an implementation-specific "receive handler" (see below) that the data either has
been or is in the process of being received across the ATM network.

Return Values: none

Valid States: A8, A9, A10

State Transitions: no state transition

In some cases, a “receive handler” would be installed in the system. An environment-specific function is
performed to install the receive handler. The receive handler becomes the recipient of the ATM_receive_data
primitive. Additionally, the sending application could include application-defined control information in an AAL
frame and the application-defined receive handler could interpret this control information.

Native ATM Services: Semantic Description

ATM Forum Technical Committee36

3.3 Management Plane

ATM_confirm_loopback Confirm

Purpose: confirms completion of loopback test

ATM_confirm_loopback (

IN endpoint_identifier,

IN correlator

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• correlator allows the management application to match this confirmation to a previous
ATM_initiate_loopback request.

Return Values: none

When this confirmation is received, it means that the loopback test was successful. If no confirmation to a
corresponding ATM_intiate_loopback is received, then the loopback test failed.

ATM_indicate_error Indication

Purpose: indicates an error was detected among the managed objects.

ATM_indicate_error (

IN error_code,

IN endpoint_identifier,

)

where

• error_code is the error that occurred.

• endpoint_identifier specifies the connection to which this primitive applies, when error_code is identifies
an error that is associated with a single connection. Otherwise, the value of endpoint_identifier is
unspecified.

Return Values: none

Error_Code Values:

Note that these are network-oriented error messages. They arise from errors detected over the UNI.

NOTE: these values are for further study

Native ATM Services: Semantic Description

ATM Forum Technical Committee 37

ATM_indicate_fault_alert Indication

Purpose: indicates reception of an OAM alarm signal

ATM_indicate_fault_alert (

IN endpoint_identifier,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

Return Values: none

ATM_initiate_loopback request

Purpose: initiates a loopback test to the nearest switch or the far end point of a connection.

ATM_initiate_loopback (

IN endpoint_identifier,

IN loopback_extent,

IN correlator,

)

where

• endpoint_identifier specifies the connection to which this primitive applies.

• loopback_extent specifies nearest switch loopback or end-to-end loopback.

• correlator is a value that will be returned with the ATM_confirm_loopback primitive.

Return Values: none

ATM_query_mgmt_variable Request

Purpose: queries the value of the specified management variable.

Native ATM Services: Semantic Description

ATM Forum Technical Committee38

ATM_query_mgmt_variable (

IN variable_name,

IN table_index,

OUT variable_value,

)

where

• variable_name identifies the managed object.

• table_index identifies the table location when this variable is located in a table. For variables not located
in a table, this parameter is ignored.

• variable_value is the value of the managed object.

Return Values:
SUCCESS
VARIABLE_NOT_SUPPORTED
INDEX_OUT_OF_RANGE
VARIABLE_DOES_NOT_EXIST

ATM_set_mgmt_variable Request

Purpose: modifies the value of the specified management variable

ATM_set_mgmt_variable (

IN variable_name,

IN table_index,

IN desired_value,

)

where

• variable_name identifies the managed object.

• table_index identifies the table location when this variable is located in a table. For variables not located
in a table, this parameter is ignored.

• desired_value is the desired value of the managed object.

Return Values:
SUCCESS
VARIABLE_NOT_SUPPORTED
INDEX_OUT_OF_RANGE
VARIABLE_DOES_NOT_EXIST
CAN_NOT_MODIFY
INVALID_VALUE

Native ATM Services: Semantic Description

ATM Forum Technical Committee 39

4. Procedures

4.1 PVC Provisioning

These procedure shall be limited to trusted applications, such as a management application. General user applications
that use a PVC shall only receive an indication that a PVC is active.

4 .1 .1 Establishment

The management application shall perform the following steps in order to provision a PVC:

1. Choose an unused table entry in the atmfVccGroup.

2. Using the ATM_set_mgmt_variable primitive, set all the parameters for this table entry of the
atmfVccGroup except for atmfVccOperStatus. It is presumed that atmfVccOperStatus has the value unknown or
localDown.

3. Using the ATM_set_mgmt_variable primitive, set atmfVccOperStatus in atmfVccGroup to
localUpEnd2endUnknown. This is a signal to native ATM services to perform all locally required setup of the
VC. This includes hardware register manipulation and buffer allocation. During this time
atmfVccEndpointIdentifier shall be assigned by native ATM services. The value for atmfVccOperStatus will
retain the value of unknown or localDown until the initialization of the VC is complete. After the initialization
is completed atmfVccOperStatus is set to localUpEnd2endUnknown by Native ATM services.

4. Using the ATM_query_mgmt_variable primitive, poll and query atmfVccOperStatus in atmfVccGroup until
the value is localUpEnd2endUnknown.

5. Using the ATM_query_mgmt_variable primitive, obtain the value for atmfVccEndpointIdentifier and pass it
to the entity that is to use this PVC.

4 .1 .2 Termination

The management application shall perform the following steps in order to terminate a PVC:

1. Using the ATM_set_mgmt_variable primitive, set atmfVccOperStatus in atmfVccGroup to localDown.
This is a signal to native ATM services to perform all locally required teardown of the VC. This includes
hardware register manipulation and buffer deallocation.

Native ATM Services: Semantic Description

ATM Forum Technical Committee40

4.2 SVC Provisioning

4 .2 .1 Initiating a Call

4 .2 .1 .1 Establishment

The application first acquires a local connection endpoint with which primitives may be exchanged that offer native
ATM services. This is done via the ATM_associate_endpoint primitive. The endpoint_identifier that is
returned from this primitive is used in the future to identify the newly acquired connection endpoint.

Next, the application must signal its intent to initiate an outgoing call. The application does this via the
ATM_prepare_outgoing_call primitive. In response to the primitive, the connection endpoint creates data
structures that initially hold default values for various connection attributes. Examples of connection attributes
include the AAL type, forward peak cell rate, and QOS class; for a complete listing see Annex A. The application
may examine any of these default connection attributes via the ATM_query_connection_attributes primitive.
In addition, the application may optionally modify some of these attributes via the
ATM_set_connection_attributes primitive. Depending on the implementation, each of these attributes may or
may not be settable by the application. Also, the value to which the application attempts to set a given connection
attribute may be modified by the connection endpoint, due to local resource constraints or the local implementation
of Native ATM Services.

The application can optionally select additional data plane services. The default is that no additional data plane
service is provided beyond AAL5. The only such additional option supported at this time is the SSCOP protocol;
SSCOP adds reliability to the ATM connection. Option selection is performed via the SSCS connection attribute.

If the application wishes to place a point-to-multipoint call, then the application signals this to the connection
endpoint by setting the CONNECT_CONFIG connection attribute to reflect this. The default for
CONNECT_CONFIG shall be to select a point-to-point call. When a point-to-multipoint connection is selected,
then Native ATM Services will enforce a reverse bandwidth of zero and indicate a leaf identifier of zero in the Q.2931
network messages.

When the application is satisfied that the connection attributes, as represented by the connection endpoint, conform to
the application’s requirements, then a call is placed across the ATM network. The application initiates this via the
ATM_connect_outgoing_call primitive. Included as a parameter of this primitive is destination_SAP. The
destination SAP is the ATM address of the remote ATM device plus the additional information allowing the call to
reach the correct target software entity within the remote ATM device.

Native ATM Services places the call across the ATM network to the target ATM device. If a point-to-point call
attempt is successful, then Native ATM Services signals the application via an ATM_P2P_call_active
primitive. If a point-to-multipoint call attempt is successful, then Native ATM Services signals the application via
an ATM_P2MP_call_active primitive. In the event that the call attempt was unsuccessful, then Native ATM
Services signals the application via an ATM_call_release primitive. This primitive includes the cause for the
lack of success.

4 .2 .1 .2 Adding and Removing Leafs

For point-to-multipoint calls, the application originating the call has the ability to add and remove additional parties
of the call. In this section, the originating application is referred to as the “root” of the call; all other participants of
the call are referred to as “leafs”.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 41

To add a leaf, the root issues an ATM_add_party primitive. The parameters for this primitive include the ATM
address of the leaf, plus a leaf_identifier, which is used to identify the leaf in future primitives that affect that leaf.
Note that the application is responsible for generating values of leaf_identifier. If the leaf is successfully added to the
point-to-multipoint call, then the application is notified of this via the ATM_add_party_success primitive.
Otherwise, the application is notified that the request to add a leaf failed, via the ATM_add_party_reject
primitive.

To remove a leaf, the root issues an ATM_drop_party (request) primitive. Included as a parameter of this
primitive the root’s reason for removing the leaf.

If a leaf decides to remove itself from a point-to-multipoint call, then Native ATM Services notifies the application
via the ATM_drop_party (indication) primitive. Included as a parameter of this primitive is the leaf’s reason
for removing itself. This primitive would also be used in the case of the ATM network deciding to remove the leaf.

4 .2 .1 .3 Termination

When the application wishes to terminate the connection, then the application invokes the ATM_call_release
(request) primitive. If the remote ATM device or the ATM network terminates the connection, then the application
is notified of this via the ATM_call_release (indication) primitive.

4 .2 .2 Responding to a Call

4 .2 .2 .1 Establishment

The application first acquires a local connection endpoint with which primitives may be exchanged that offer Native
ATM Services. This is done via the ATM_associate_endpoint primitive. The endpoint_identifier that is
returned from this primitive is used in the future to identify the newly acquired connection endpoint.

Next, the application must signal its intent to respond to an incoming call. The application does this via the
ATM_prepare_incoming_call primitive. Included as parameters of this primitive are the ATM address of the
local ATM device, plus the SAP information allowing call notification to reach the application. During the
processing of this primitive, Native ATM Services ensures that no other application is using the same SAP.

The application then issues the ATM_wait_on_incoming_call primitive to request that incoming calls be
queued and presented to the application. When such an incoming call does arrive, the connection endpoint notifies
the application via the ATM_arrival_of_incoming_call primitive.

The application must make a decision as to whether or not to accept the call. The application may examine the
connection attributes of the newly arrived incoming call via the ATM_query_connection_attributes primitive.
In addition, the application may modify a small number of attributes via the ATM_set_connection_attributes
primitive.

If the application decides to accept the call, the application invokes the ATM_accept_incoming_call primitive.
Otherwise, the application rejects the call via the ATM_reject_incoming_call primitive.

Even if call has been accepted, the application must wait for the ATM network to award the call. After an incoming
point-to-point call has been awarded, the application is notified via the ATM_P2P_call_active primitive. After
an incoming point-to-multipoint call has been awarded, the application is notified via the
ATM_P2MP_call_active primitive. If an error occurred during the awarding of the call, then the application is
notified via the ATM_call_release primitive.

Native ATM Services: Semantic Description

ATM Forum Technical Committee42

4 .2 .2 .2 Termination

When the application wishes to terminate the connection, then the application invokes the ATM_call_release
(request) primitive. If the remote ATM device or the ATM network terminates the connection, then the application
is notified of this via the ATM_call_release (indication) primitive.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 43

4.3 Synchronization and Coordination Function

This section describes the synchronization and coordination function (SCF) that Native ATM Services performs
between the control and data planes. This service is related to and can be selected via the local service connection
attribute SSCS that is modified with the ATM_set_connection_attribute primitive.

data plane control plane

AAL AAL-5

data SSCS control SSCS

signaling

SCF

Native ATM SAP

4 .3 .1 NULL_SSCS

In this case, the data plane protocol stack for Native ATM Services includes the SAR function and CPCS layer
(AAL5, AAL1, or a user-defined AAL). The only function that SCF performs is to maintain the state of
API_connection and verify that the ATM_send_data and ATM_receive_data primitives are issued in the
appropriate states.

Native ATM Services: Semantic Description

ATM Forum Technical Committee44

data plane control plane

AAL AAL-5

control SSCS

signaling

SCF

Native ATM SAP

null

4 .3 .2 SSCOP_RELIABLE_SSCS

In this case, the data plane protocol stack for Native ATM Services includes the SAR function, the CPCS layer
(AAL type 5 only), and the SSCOP protocol. The SCF is defined below. Note that this option is only
available for point-to-point connections.

"SSCOP" in this discussion is restricted to an instance of the SSCOP protocol that provides reliability in the
data plane; it has nothing to do with the instance of SSCOP that provides a similar service for the signaling
protocol. Note that the only SSCOP signals used by SCF are: AA-ESTABLISH, AA-RELEASE, AA-DATA,
and MAA-ERROR.

data plane control plane

AAL-5

control SSCS

signaling

SCF

Native ATM SAP

SSCOP

AAL-5

Native ATM Services: Semantic Description

ATM Forum Technical Committee 45

4 .3 .2 .1 Connection Establishment

After ATM_connect_outgoing_call is invoked, the SCF in the ATM device initiating the ATM call
shall establish an SSCOP connection in the following manner:

1. After the Q.2931 CONNECT message is received from the ATM network, the SCF will invoke
the AA-ESTABLISH (request) signal to the SSCOP function. Parameter SSCOP-UU shall be
null. Parameter BR shall be YES.

2. The SCF shall wait for an AA-ESTABLISH (confirm) signal from the SSCOP function.
Parameter SSCOP-UU shall be ignored.

3. Native ATM Services then indicates that the connection is in state A8, via
ATM_P2P_call_active primitive.

SCF SSCOP signaling ATM networkapp

After ATM_accept_incoming_call is invoked, the SCF in the ATM device receiving the ATM call
shall establish an SSCOP connection in the following manner:

1. After the Q.2931 CONNECT_ACK message is received from the ATM network, the SCF
continues to wait.

2. The SCF shall wait for an AA-ESTABLISH (indication) signal from the SSCOP function.
Parameter SSCOP-UU shall be ignored.

3. The SCF will invoke the AA-ESTABLISH (response) signal to the SSCOP function. Parameter
SSCOP-UU shall be null. Parameter BR shall be YES.

Native ATM Services: Semantic Description

ATM Forum Technical Committee46

4. Native ATM Services then indicates that the connection is in state A8, via
ATM_P2P_call_active primitive.

SCF SSCOP signaling ATM networkapp

4 .3 .2 .2 Data Transfer

When the ATM_send_data primitive is issued, the SCF will invoke an AA-DATA (request) signal to the
SSCOP function. When the SSCOP function signals AA-DATA (indication) signal to SCF, then the
ATM_receive_data primitive is completed. Parameter SN from SSCOP is ignored.

SCF SSCOP ATM networkapp

Native ATM Services: Semantic Description

ATM Forum Technical Committee 47

4 .3 .2 .3 Connection Termination

If the ATM_call_release (request) primitive is issued, the SCF invokes an AA-RELEASE (request)
signal to the SSCOP function. Parameter SSCOP-UU shall be null. After this, the ATM device sends a
Q.2931 RELEASE message to the ATM network. If the instantiation of SSCOP requires any cleanup, this
should be performed after the SCF has requested the Q.2931 RELEASE message to be sent.

Note that depending on a race condition, an SSCOP ENDAK PDU may or may not arrive across the ATM
network before the Q.2931 RELEASE_COMPLETE message. This SSCOP ENDAK PDU should be
ignored.

SCF SSCOP signaling ATM networkapp

As a result of the previous scenario, the peer SCF on the other end of the ATM connection will receive an
AA-RELEASE (indication) signal from the SSCOP function. (The other possibility of the race condition --
a Q.2931 RELEASE being received first -- will be covered below.) When the SCF receives an AA-
RELEASE (indication) signal from the SSCOP function, and the SOURCE parameter indicates that the peer
user requested the release, then SCF will simply indicate to the application that the connection is no longer
available. It is assumed that a Q.2931 RELEASE message will arrive shortly from the ATM network.
After the Q.2931 RELEASE message is received, the SCF cleans up any resources from the instantiation of
the SSCOP function.

SCF SSCOP signaling ATM networkapp

Native ATM Services: Semantic Description

ATM Forum Technical Committee48

The ATM device may receive an unexpected Q.2931 RELEASE message from the ATM network. This
could be the result of the race condition presented in the first flow diagram of this section, or else the ATM
network terminates the connection. In these cases, SCF issues a ATM_call_release (indication)
primitive and cleans up any resources from the instantiation of the SSCOP function.

SCF SSCOP signaling ATM networkapp

If the SCF receives an AA-RELEASE (indication) with the SOURCE parameter indicating the local
SSCOP has terminated the connection, or MAA-ERROR signal from the SSCOP function; then SCF
issues a ATM_call_release (indication) primitive and sends a Q.2931 RELEASE message to the
ATM network. If the instantiation of SSCOP requires any cleanup, this should be performed after the SCF
has requested the Q.2931 RELEASE message to be sent.

SCF SSCOP signaling ATM networkapp

4 .3 .3 SSCOP_UNRELABLE_SSCS

The SCF for this SSCS is for further study.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 49

4.4 Specification of SAP Address

In this document, a “SAP” (service access point) is used for the following purposes:

1. When the application initiates an outgoing call to a remote ATM device, a destination_SAP specifies the ATM
address of the remote device, plus further addressing that identifies the target software entity within the remote
device.

2. When the application prepares to respond to incoming calls from remote ATM devices, a local_SAP specifies the
ATM address of the device housing the application, plus further addressing that identifies the application within
the local device.

NOTE: The preceding explanation refers to a single destination SAP. This is a simplification; Native ATM
Services actually supports up to three destination SAPs. For a discussion of this, see section 4.6.

4 .4 .1 SAP Address as a Vector

The SAP address may be expressed as a vector, (ATM_addr, ATM_selector, BLLI_id2, BLLI_id3, BHLI_id), where:

• ATM_addr corresponds to the 19 most significant octets of a device’s 20-octet ATM address (private ATM
address structure) or the entire E.164 address (E.164 address structure)

• ATM_selector corresponds to the least significant octet of a device’s 20-octet ATM address (private ATM address
structure only)

• BLLI_id2 corresponds to a set of octets in the Q.2931 BLLI information element that identify a layer 2 protocol

• BLLI_id3 corresponds to a set of octets in the Q.2931 BLLI information element that identify a layer 3 protocol

• BHLI_id corresponds to a set of octets in the Q.2931 BHLI information element that identify an application (or
session layer protocol of an application)

4 .4 .1 .1 SAP Vector Element (SVE)

Each element of the SAP vector is called a SAP Vector Element, or SVE. Each SVE semantically consists of a
SVE_tag, SVE_length, and SVE_value field, as defined below. The method used to realize this is implementation
specific.

• SVE_tag determines the interpretation of the SVE. There are three values defined: PRESENT, ABSENT, and
ANY. The value of PRESENT means that the SVE_value field contains valid data, which may be compared
against corresponding octets found in the Q.2931 SETUP message. The value of ABSENT means that the
SVE_value field is invalid, and the corresponding octets in the Q.2931 SETUP message are not present. The
value of ANY means that the SVE_value field is invalid, and that the corresponding octets in the Q.2931
SETUP message may either be not present or assume any value.

 The parameter destination_SAP in primitive ATM_connect_outgoing_call has these special restrictions:

1. An SVE_tag of ANY is not allowed for any SVE.

2. An SVE_tag of ABSENT is not allowed for the SVE that conveys the ATM address.

3. For private ATM addresses, the SVE_tag for the ATM selector byte is PRESENT; for public ATM
addresses, the SVE_tag for the ATM selector byte is ABSENT.

• SVE_length contains the size, in bytes, of the SVE_value field. Note that if the value of SVE_tag is ABSENT
or ANY, then SVE_length shall contain a value of zero.

Native ATM Services: Semantic Description

ATM Forum Technical Committee50

• SVE_value, when valid, contains a value to be compared against corresponding octets found in the Q.2931
SETUP message. For example, the SVE_value field for the ATM_selector SVE may be compared against the
Q.2931 Called Party Number information element. As another example, the SVE_value field for the BHLI_id
SVE may be compared against the Q.2931 BHLI information element.

4 .4 .2 SVE Encoding

This section specifies the mapping between the SVE_value field and the corresponding Q.2931 information element,
for each of the five SVE types. See the preceding section for the encoding of the SVE_tag and SVE_length fields.

In the mappings listed below, the following conventions are used:

• to label bytes of the SVE_value field: the first byte is called “1”, the second byte is called “2”, and so on

• to label octets of the Q.2931 information element: the same label specified in Q.2931 is used.

4 .4 .2 .1 ATM_addr SVE

• Byte 1 of the SVE_value field corresponds to octet 5 of the Q.2931 “Called Party Number” information element
(“Type of number” and “Addressing/Number plan identification”). Note that this determines whether the ATM
address uses private ATM address structure or E.164 address structure.

• When the ATM address uses the private ATM address structure, then bytes 2 - 20 of the SVE_value field
correspond to octets 6 through the next-to-last octet of the Q.2931 “Called Party Number” information element.

When the ATM address uses the E.164 address structure, then bytes 2 - N of the SVE_value field correspond to
octets 6 and beyond of the Q.2931 “Called Party Number” information element.

4 .4 .2 .2 ATM_selector SVE

When the ATM address uses the private ATM address structure, then byte 1 of the SVE_value field corresponds to the
last octet of the Q.2931 “Called Party Number” information element.

When the ATM address uses the E.164 address structure, then the SVE_value field cannot exist; the SVE_tag field for
the SVE must equal ABSENT or ANY.

4 .4 .2 .3 BLLI_id2 SVE

In this case, there are two options for the structure of the SVE_value.

1. Option 1

• Byte 1 of the SVE_value field corresponds to octet 6 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 2 protocol”). Note that for this option, the value of this
byte must not correspond to User Specified (b’10000’).

2. Option 2

• Byte 1 of the SVE_value field corresponds to octet 6 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 2 protocol”). Note that for this option, the value of this
byte must correspond to User Specified (b’10000’).

• Byte 2 of the SVE_value field corresponds to octet 6a of the Q.2931 “Broadband Low Layer Information”
information element (“User specified layer 2 protocol information”).

Native ATM Services: Semantic Description

ATM Forum Technical Committee 51

 NOTE: This option must be restricted to experimental applications. Uniqueness of these values cannot be
guaranteed in a non-experimental ATM environment.

4 .4 .2 .4 BLLI_id3 SVE

In this case, there are five options for the structure of the SVE_value.

1. Option 1

• Byte 1 of the SVE_value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 3 protocol”). Note that for this option, the value of this
byte must not correspond to ISO/IEC TR 9577 (b’01011’) or User Specified (b’10000’).

2. Option 2

• Byte 1 of the SVE_value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 3 protocol”). Note that for this option, the value of this
byte must correspond to User Specified (b’10000’).

• Byte 2 of the SVE_value field corresponds to octet 7a of the Q.2931 “Broadband Low Layer Information”
information element (“User specified layer 3 protocol information”).

 NOTE: This option must be restricted to experimental applications. Uniqueness of these values cannot be
guaranteed in a non-experimental ATM environment.

3. Option 3

• Byte 1 of the SVE_value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 3 protocol”). Note that for this option, the value of this
byte must correspond to ISO/IEC TR 9577 (b’01011’).

• Byte 2 of the SVE_value field corresponds to octets 7a and 7b of the Q.2931 “Broadband Low Layer
Information” information element (“Initial Protocol Identifier”). Note that for this option, the value of
this byte must not correspond to IEEE 802.1 SNAP (b’10000000’).

4. Option 4

• Byte 1 of the SVE_value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 3 protocol”). Note that for this option, the value of this
byte must correspond to ISO/IEC TR 9577 (b’01011’).

• Byte 2 of the SVE_value field corresponds to octets 7a and 7b of the Q.2931 “Broadband Low Layer
Information” information element (“Initial Protocol Identifier”). Note that for this option, the value of
this byte must correspond to IEEE 802.1 SNAP (b’10000000’).

• Bytes 3 - 7 of the SVE_value field correspond to octets 8.1- 8.5 of the Q.2931 “Broadband Low Layer
Information” information element (“OUI” and “PID”).

5. Option 5

• Byte 1 of the SVE_value field corresponds to octet 7 of the Q.2931 “Broadband Low Layer Information”
information element (“User information layer 3 protocol”). Note that for this option, the value of this
byte must correspond to ISO/IEC TR 9577 (b’01011’).

Native ATM Services: Semantic Description

ATM Forum Technical Committee52

• Byte 2 of the SVE_value field corresponds to octets 7a and 7b of the Q.2931 “Broadband Low Layer
Information” information element (“Initial Protocol Identifier”) is not present. Therefore, SVE_length
equals 1.

 NOTE: This option is an exception case of BLLI_Id3 that does not identify a layer 3 protocol. The semantic
meaning of this option is that each frame in the data plane will contain a header identifying the layer 3
protocol for that frame.

 NOTE: This option is equivalent to SVE_tag value of ABSENT except for when the vector is used to
specify a destination SAP.

4 .4 .2 .5 BHLI_id SVE

In this case, there are three options for the structure of the SVE_value.

1. Option 1

• Byte 1 of the SVE_value field corresponds to octet 5 of the Q.2931 “Broadband High Layer Information”
information element (“High Layer Information Type”). Note that for this option, the value of this byte
must correspond to ISO (b’0000000’).

• Bytes 2 - 9 of the SVE_value field correspond to octets 6 - 13 of the Q.2931 “Broadband High Layer
Information” information element (“High Layer Information”).

2. Option 2

• Byte 1 of the SVE_value field corresponds to octet 5 of the Q.2931 “Broadband High Layer Information”
information element (“High Layer Information Type”). Note that for this option, the value of this byte
must correspond to User Specific (b’0000001’).

• Bytes 2 - 9 of the SVE_value field correspond to octets 6 - 13 of the Q.2931 “Broadband High Layer
Information” information element (“High Layer Information”).

 NOTE: This option must be restricted to experimental applications. Uniqueness of these values cannot be
guaranteed in a non-experimental ATM environment.

3. Option 3

• Byte 1 of the SVE_value field corresponds to octet 5 of the Q.2931 “Broadband High Layer Information”
information element (“High Layer Information Type”). Note that for this option, the value of this byte
must correspond to Vendor-Specific (b’0000011’).

• Bytes 2 - 8 of the SVE_value field correspond to octets 6 - 12 of the Q.2931 “Broadband High Layer
Information” information element (“High Layer Information”).

Native ATM Services: Semantic Description

ATM Forum Technical Committee 53

4.5 Registration of a Local SAP Address

This section specifies the actions taken by Native ATM Services for the purposes of registering a local SAP address
by an application through the ATM_prepare_incoming_call() primitive.

Native ATM Services must maintain knowledge about all local SAP addresses registered by all applications. When a
new SAP is being registered, Native ATM Services must search for a match with all currently registered SAPs and
accept the new SAP only when no match is found. If a match is found, Native ATM Services must reject the SAP
with a return value of SAP_ALREADY_USED.

A match between two SAPs occurs when all the SVEs match according to the rules in the table below. A “registered
vector” may be defined as the result of mapping any SAP address currently registered with Native ATM Services into
the structure as specified in section 4.4.1. A “new vector” may be defined as the result of mapping the SAP address
which the application is attempting to register into the structure as specified in section 4.4.1.

New SVE Registered SVE

SVE_tag =
ABSENT

SVE_tag =
PRESENT

SVE_tag =
ANY

SVE_tag = ABSENT Match No Match Match

SVE_tag =
PRESENT

No Match Match if Values Match 1 Match

SVE_tag = ANY Match Match Match

Notes

1. For a more precise specification – the SVE_value field of the new vector is compared to the SVE_value field of
the registered vector; if the values equal each other, then there is a match.

Native ATM Services does not allow multiple overlapping SAPs to be registered at the same time. The use of
overlapping SAPs is for further study. However, this does not preclude, wild card SAPs which use the ANY value in
SVE_tag field.

NOTE: An implementation may optionally allow a special SAP with ANY as the SVE_tag of every SVE. This
SAP violates the above rules, but could be allowed as a special case. This SAP can be registered by only one
application on an end system. It receives indication of all calls not distributed to other SAPs (see next section for the
description of incoming call distribution).

Native ATM Services: Semantic Description

ATM Forum Technical Committee54

4.6 Incoming Call Distribution

This section specifies actions taken by native ATM services for the purposes of call distribution to the correct entity
at the destination ATM device.

An entity shall be identified by a SAP address. A SAP address shall only identify one entity. An entity may be
identified by more than one SAP address. A “registered vector” may be defined as the result of mapping the valid
address registered by an entity into the structure as specified in section 4.4.1. An entity shall register a SAP address
by issuing the ATM_prepare_incoming_call primitive.

An “incoming vector” is defined as the result of mapping the incoming call’s Q.2931 information elements into the
structure as specified in section 4.4.1. Native ATM Services supports up to three incoming vectors for a single
incoming call:

• The “first choice” incoming vector’s elements are generated from the following Q.2931 information elements:
“Called Party Number”, “Broadband High Layer Information”, and the first occurrence (if any) of “Broadband Low
Layer Information”.

• The “second choice” incoming vector’s elements are generated from the following Q.2931 information elements:
“Called Party Number”, “Broadband High Layer Information”, and the second occurrence of “Broadband Low
Layer Information”. If only one occurrence of “Broadband Low Layer Information” is present, then there is no
second choice incoming vector.

• The “third choice” incoming vector’s elements are generated from the following Q.2931 information elements:
“Called Party Number”, “Broadband High Layer Information”, and the third occurrence of “Broadband Low Layer
Information”. If no more than two occurrences of “Broadband Low Layer Information” is present, then there is
no third choice incoming vector.

When an incoming call arrives, the list of registered vectors is searched for a match with the first choice, then second
choice, then third choice incoming vectors. A match between a registered vector and one of the incoming vectors
occurs when all of the SVEs match according to the rules in the following table. If a registered vector is found that
matches one of the incoming vectors, then the entity corresponding to the vector shall be notified of the incoming
call via the ATM_arrival_of_incoming_call primitive. If a registered vector is not found, the ATM native
services rejects the call with a cause value 88 (incompatible destination).

Incoming SVE Registered SVE

SVE_tag =
ABSENT

SVE_tag =
PRESENT

SVE_tag =
ANY

SVE_tag = ABSENT Match No Match Match

SVE_tag =
PRESENT

No Match Match if Values Match 1 Match

Notes

1. For a more precise specification – the SVE_value field of the incoming vector is compared to the SVE_value field
of the registered vector; if the two values are equal, then there is a match.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 55

4.7 Compatibility Checking

The ATM Forum Technical Committee User-Network Interface (UNI) Specification Version 3.1 Annex B describes
the compatibility checking that is required for an incoming connection.

Call distribution uses some of the parameters that must be checked for compatibility. The parameters of an
incoming call will be checked against the parameters registered by applications. If there is a match, the connections
will be offered to that application via the ATM_arrival_of_incoming_call primitive. If there is no match, the call
shall be cleared.

The application shall perform compatibility checking, according to the specified procedure in UNI 3.x, while the
connection is in state A6. If this procedure determines that the connection is not compatible, the application shall
reject the connection using the ATM_reject_incoming_call primitive; otherwise it may accept the connection via the
ATM_accept_incoming_call primitive.

4.8 Negotiation of Parameters

The ATM Forum Technical Committee User-Network Interface (UNI) Specification Version 3.1 Annex C describes
negotiation for Broadband Low Layer Information (BLLI). Annex F describes negotiation for the ATM Adaptation
Layer (AAL). These procedures are supported by Native ATM Services.

As part of the BLLI negotiation, the application initiating the call can specify up to three destination SAPs. These
SAPs are composed of the following:

• The first choice destination SAP is completely specified by the destination_SAP parameter of the
ATM_connect_outgoing_call primitive.

• The second choice destination SAP contains the ATM_addr SVE, ATM_selector SVE, and BHLI_id SVE from
the destination_SAP parameter of the ATM_connect_outgoing_call primitive. The BLLI_id2 SVE and
BLLI_id3 SVE are obtained from the second instance of the connection attributes located in the “Broadband Low
Layer Information” information element.

• The third choice destination SAP contains the ATM_addr SVE, ATM_selector SVE, and BHLI_id SVE from the
destination_SAP parameter of the ATM_connect_outgoing_call primitive. The BLLI_id2 SVE and
BLLI_id3 SVE are obtained from the third instance of the connection attributes located in the “Broadband Low
Layer Information” information element.

4 .8 .1 Outgoing calls

While the outgoing connection is in state A2, all negotiable parameters may be set using the
ATM_set_connection_attributes primitive. This includes the setting of up to 3 BLLI choices.

After the connection is in state A8 or A9, the results of negotiation may be obtained via the
ATM_query_connection_attributes primitive.

4 .8 .2 Incoming calls

While incoming connection is in state A6, the proposed values for negotiable parameters may be read via the
ATM_query_connection_attributes primitive. If alternate values are required, they are set via the
ATM_set_connection_attributes primitive. If nothing is set, the proposed values shall be used for the connection.
This includes the first proposed value for BLLI.

Native ATM Services: Semantic Description

ATM Forum Technical Committee56

5. Reference Documents

The following documents are referred to within this document. They define various aspects of the ATM layers that
are being abstracted.

I.361 B-ISDN ATM layer specification

I.362 B-ISDN ATM Adaptation Layer (AAL) Functional Description

I.363 B-ISDN ATM Adaptation Layer (AAL) Specification

Q.2100 B-ISDN Signaling ATM Adaptation Layer Overview Description

Q.2110 B-ISDN - Adaptation Layer - Service Specific Connection Oriented Protocol (SSCOP)

Q.2130 B-ISDN Signaling ATM Adaptation Layer - Service Specific Coordination Function for Support of
Signaling at the User-to-Network Interface (SSCF at UNI)

UNI ATM User-Network Interface Specification, version 3.0 and 3.1

Native ATM Services: Semantic Description

ATM Forum Technical Committee 57

ANNEX A: Connection Attributes

A.1 UNI Signaling Related

The items listed in the table below are attributes of connections across ATM networks. In general, these attributes
are manipulated using the ATM_query_connection_attributes and ATM_set_connection_attributes primitives.

Item Set in
State

Q.2931 Encoding Notes

A2 A6 Information
Element

Octet

AAL_TYPE X 5

AAL1_SUBTYPE X 6.1

AAL1_CBR_RATE X 7.1

AAL1_MULTIPLIER X 8.1 - 8.2

AAL1_CLOCK_RECOVERY_TYPE X 9.1

AAL1_ERROR_CORRECTION X ATM Adaptation 10.1

AAL1_STRUCTURED_DATA_
TRANSFER

X Layer Parameters 11.1 - 11.2

AAL1_PARTIALLY_FILLED_
CELLS

X 12.1

AAL5_FWD_MAX_SDU X X 6.1 - 6.2

AAL5_BAK_MAX_SDU X X 7.1 - 7.2

AAL5_SSCS_TYPE X 8.1 1

USER_DEFINED_AAL_INFO X X 6 - 6.3

FWD_PCR_CLP0 X 5.1 - 5.3

FWD_PCR_CLP1 X ATM Traffic 7.1 - 7.3

BAK_PCR_CLP0 X Descriptor 6.1 - 6.3

BAK_PCR_CLP1 X 8.1 - 8.3

Native ATM Services: Semantic Description

ATM Forum Technical Committee58

Item Set in
State

Q.2931 Encoding Notes

A2 A6 Information
Element

Octet

FWD_SCR_CLP0 X 9.1 - 9.3

FWD_SCR_CLP1 X 11.1 - 11.3

BAK_SCR_CLP0 X 10.1 - 10.3

BAK_SCR_CLP1 X ATM Traffic 12.1 - 12.3

FWD_MBS_CLP0 X Descriptor 13.1 - 13.3

FWD_MBS_CLP1 X 15.1 - 15.3

BAK_MBS_CLP0 X 14.1 - 14.3

BAK_MBS_CLP1 X 16.1 - 16.3

BEST_EFFORT X 17

FWD_TAGGING X 18.1

BAK_TAGGING X 18.1

BEARER_CLASS X 5

TRAFFIC_TYPE X Broadband 5a

TIME_REQ X Bearer Capability 5a

CLIPPING_IND X 6

CONNECT_CONFIG X 6

APPL_ID_TYPE Broadband High 5 2

APPL_ID Layer Information 6 - 13 2

BLLI_SELECTOR X X 3

LAYER_2_ID X Broadband Low 6 2, 4

LAYER_2_MODE X X Layer Information 6a 4

LAYER_2_WINDOW_SIZE X X 6b 4

Native ATM Services: Semantic Description

ATM Forum Technical Committee 59

Item Set in
State

Q.2931 Encoding Notes

A2 A6 Information
Element

Octet

LAYER_2_USER_ID X 6a 2, 4

LAYER_3_ID X 7 2, 4

LAYER_3_MODE X X 7a 4

LAYER_3_PACKET_SIZE X X Broadband Low 7b 4

LAYER_3_WINDOW_SIZE X X Layer Information 7c 4

LAYER_3_USER_ID X 7a 2, 4

LAYER_3_IPI_ID X 7a - 7b 2, 4

LAYER_3_OUI_ID X 8.1 - 8.3 2, 4

LAYER_3_PID_ID X 8.4 - 8.5 2, 4

CALLED_ADDR_FORMAT Called Party 5 2

CALLED_ADDR Number 6 etc. 2

CALLED_SUBADDR_TYPE X Called Party 5

CALLED_SUBADDR X Subaddress 6 etc.

CALLING_ADDR_FORMAT X 5

CALLING_ADDR X Calling Party 6 etc.

PRESENTATION_IND X Number 5a

SCREENING_IND X 5a

CALLING_SUBADDR_TYPE X Calling Party 5

CALLING_SUBADDR X Subaddress 6 etc.

CAUSE_CODING 2 5, 6

CAUSE_LOCATION Cause 5 5, 6

CAUSE_VALUE 6 5, 6

Native ATM Services: Semantic Description

ATM Forum Technical Committee60

Item Set in
State

Q.2931 Encoding Notes

A2 A6 Information
Element

Octet

CAUSE_DIAGNOSTICS Cause 7 etc. 5, 6

FWD_QOS_CLASS X Quality of Service 5

BAK_QOS_CLASS X Parameter 6

NETWORK_ID X Transit Network
Selection

6 etc.

Notes:

1. This connection attribute is encoded at octet 9.1 for UNI 3.0.

2. This connection attribute is set via the ATM_connect_outgoing_call primitive.

3. This connection attribute does not appear in a Q.2931 message; it is used to select the choice of BLLI that other
primitives operate on. See primitives ATM_query_connection_attributes,
ATM_set_connection_attributes, ATM_arrival_of_incoming_call, and
ATM_accept_incoming_call for the semantics of this attribute.

4. This connection attribute is conceptually an array of three elements, to support BLLI negotiation.

5. This connection attribute is set via the ATM_abort_connection, ATM_call_release, and
ATM_reject_incoming_call primitives.

6. This connection attribute is conceptually an array of two elements, to support two independent suppliers of this
information.

A.2 Local Services

Item Set in
State

Values Notes

A2 A6

SSCS (Service Specific Convergence
Sublayer)

X X NULL,
SSCOP_RELIABLE,
SSCOP_UNRELIABLE

1

Notes:

1. This selects the services that native ATM services supplies in the data plane for AAL5.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 61

ANNEX B: Management Variables

B.1 UNI Defined

The semantic meaning and codings of these management variables may be found in ATM User Network Specification
Chapter 4.

MIB Group and Variable 3 .
0

3 .
1

Table
Entry

atmfPhysicalGroup

atmfPortIndex X X X

atmfPortTransmissionType X X X

atmfPortMediaType X X X

atmfPortOperStatus X X X

atmfPortSpecific X X X

atmfPortMyIfName X X

atmfMyIpNmAddress X

atmfMyOsiNmNsapAddress X

atmfAtmLayerGroup

atmfAtmLayerIndex X X X

atmfAtmLayerMaxVPCs X X X

atmfAtmLayerMaxVCCs X X X

atmfAtmLayerConfiguredVPCs X X X

atmfAtmLayerConfiguredVCCs X X X

atmfAtmLayerMaxVpiBits X X X

atmfAtmLayerMaxVciBits X X X

atmfAtmLayerUniType X X X

Native ATM Services: Semantic Description

ATM Forum Technical Committee62

MIB Group and Variable 3 .
0

3 .
1

Table
Entry

atmfAtmLayerUniVersion X X

atmfAtmStatsGroup

atmfAtmStatsIndex X X X

atmfAtmStatsReceivedCells X X X

atmfAtmStatsDroppedReceivedCells X X X

atmfAtmStatsTransmittedCells X X X

atmfVccGroup

atmfVccPortIndex X X X

atmfVccVpi X X X

atmfVccVci X X X

atmfVccOperStatus X X X

atmfVccTransmitTrafficDescriptorType X X X

atmfVccTransmitTrafficDescriptorParam1 X X X

atmfVccTransmitTrafficDescriptorParam2 X X X

atmfVccTransmitTrafficDescriptorParam3 X X X

atmfVccTransmitTrafficDescriptorParam4 X X X

atmfVccTransmitTrafficDescriptorParam5 X X X

atmfVccReceiveTrafficDescriptorType X X X

atmfVccReceiveTrafficDescriptorParam1 X X X

atmfVccReceiveTrafficDescriptorParam2 X X X

atmfVccReceiveTrafficDescriptorParam3 X X X

atmfVccReceiveTrafficDescriptorParam4 X X X

Native ATM Services: Semantic Description

ATM Forum Technical Committee 63

MIB Group and Variable 3 .
0

3 .
1

Table
Entry

atmfVccReceiveTrafficDescriptorParam5 X X X

atmfVccTransmitQoSClass X X X

atmVccReceiveQoSClass X X X

B.2 Native ATM Services Defined

atmfVccEndpointIdentifier This element is an extension of atmfVccEntry defined in the
atmfVccGroup of UNI 3.0 Chapter 4. Its purpose is to correlate a
VCC with an API_endpoint.

NOTE: this is a table entry and requires an index parameter.

Native ATM Services: Semantic Description

ATM Forum Technical Committee64

Annex C: Usage of Wildcards in SAPs

This annex describes the care that must be taken when using “wildcards” to specify SAPs. A “wildcard” is defined as
an SVE (SAP vector element) with a tag of ANY. The use of wildcards in a SAP offers flexibility to an application
developer. However, this feature shall optionally be used only after the following implications are understood:

• The destination_SAP parameter of the ATM_connect_outgoing_call primitive may not contain any
wildcards.

• When an application successfully registers a SAP with a wildcard, the SAP occupies a large number of the
available SAP combinations, based on the matching rules in section 4.5. Thus, careless use of wildcards may
preclude other desired applications from registering their SAPs.

• When an application registers a SAP containing a wildcard, the application implies that it supports all specific
values for the matching SVE of an incoming vector (including the ABSENT tag) on an incoming call.

• Once an application has accepted an incoming call on an endpoint associated with a wildcard SAP, the
application must support and employ the protocols specified by the incoming vector that matched the
application’s registered SAP.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 65

Appendix A: Pragmatics of Data Send and Receive

Fundamental issues in sending data are:

1. identifying the location for outgoing data,

2. determining when the source location(s) may be reused, and

3. recognizing/handling sender overflow.

The most common way to specify the data source is to provide the location of a buffer (e.g. via a pointer) and
amount of data to send starting from that location. Alternatively, the source data may be specified as an immediate
operand to the send operation, i.e., the data is contained on the stack or in a register.

The source buffer cannot be reused until either the data has been deemed sent (or the attempt aborted) or the data has
been copied to another buffer. Thus returning from a send operation does not necessarily mean the data has actually
been sent. Depending on the communication protocol, (in the case of AAL type 5, depending on assured vs.
unassured modes), the data might not be deemed sent until it is known to be successfully received at the destination.
Typically, a send operation blocks until the source data is copied or mapped to an intermediate buffer (e.g. in the
operating system/network driver). An implementation could also block until the data is deemed sent, but since this
incurs latency waiting for the network this usually has poor performance. Yet other possibilities are to poll until the
reuse is indicated or to asynchronously interrupt/notify/callback the application to permit buffer reuse.

Sender overflow may occur if the network is not able to send data as fast as an application(s) can transfer data via send
operations. In particular, intermediate buffers in the operating system/network driver may overflow. This is an
important issue for UBR (unspecified bit rate) traffic: the network capacity devoted to such a connection can change at
any time. Thus no amount of sender rate preplanning or buffer size can prevent overflow. Furthermore, the ABR
connection capacity can change rapidly. Consequently, implementations may provide a feedback mechanism for
indicating and controlling sender overflow. (Of course, a particular implementation is free to simply drop data while
an overflow condition exists, but this is not a satisfactory solution for all applications.) Fundamental ways to
accomplish this feedback are by blocking (e.g. on a send call), polling (either explicitly or based on some value
returned by a send call), or interrupt/notification/callback to the application. It is often effective to tie the source
generation rate to the availability of buffers for reuse.

Fundamental issues in receiving data are:

1. identifying the location for depositing incoming data,

2. indicating arrival of data to the application, and

3. recognizing/handling receiver overflow.

Typically, the operating system/network driver chooses a temporary intermediate location in operating system
memory for the incoming data. However, it is also possible for the application to specify a location for the incoming
data. For example, the application can indicate a memory range that can be transferred to the operating
system/network driver as a buffer.

The application can determine the arrival of data via polling or blocking until the data arrives. Alternatively, the
application can be informed of data arrival via an interrupt/notification/callback. In polling or blocking, once data has
arrived it is transferred via copying or mapping to a location pre-specified by the application in the receive operation.
In the case of interrupt/notification/callback, the application can provide a location at the time of such an event to
which the data it is transferred via copying or mapping.

Native ATM Services: Semantic Description

ATM Forum Technical Committee66

Receiver overflow may occur if the application is not able to retrieve (or use data) as fast as the network receives it.
As with sender overflow, intermediate buffers in the operating system/network driver may overflow. This is an
important issue for UBR (unspecified bit rate) traffic: the network could deliver data at any point; moreover, the
application may not be scheduled. Unless the application is guaranteed to attempt to receive data at regular intervals
(e.g. via a timer) and the connection PCR (peak cell rate) is set appropriately, it is possible that receiver overflow
occurs. Receiver overflow is also an issue for CBR (constant bit rate) connections, unless the application can be
guaranteed to be scheduled regularly and consume data. Since the application may not be scheduled and thus not able
to consume and thereby replenish the intermediate buffers, there should be an interrupt/notification/callback
mechanism for receiver overflow feedback.

For guaranteed connection rates (e.g. CBR), underflow may also be an issue. Sender underflow arises when there is
insufficient data available for the network to send. For CBR connections, sender underflow may result in a violation
of the guaranteed rate to the destination application. Likewise, receiver underflow arises when there may not be
sufficient data available for the application.

Finally, it is very common to use operating system/network driver memory as a intermediate buffer for sending and
receiving. Various work has explored eliminating the overhead of this approach by obtaining the source data directly
from application memory and storing incoming network data directly into application memory.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 67

Appendix B: Mapping between ATM Forum signaling
messages 3.1 and primitives

This annex presents the mapping between the UNI 3.x messages provided by the signaling and the Native ATM
Services primitives.

B.1 Primitives invoked by the application

The left column of the following table contains the Native ATM Services primitives and in the right column the
resulting signaling messages. The Native ATM Services primitives refer to request or response primitives.

Native ATM Services
primitives

ATM Forum signaling
messages

ATM_abort_connection RELEASE

ATM_accept_incoming_call CONNECT

ATM_add_party ADD PARTY

ATM_associate_endpoint None (local significance)

ATM_call_release RELEASE

ATM_connect_outgoing_call SETUP

ATM_drop_party DROP PARTY

ATM_prepare_incoming_call None (local significance)

ATM_prepare_outgoing_call None (local significance)

ATM_query_connection_attributes None (local significance)

ATM_reject_incoming_call RELEASE

ATM_set_connection_attributes None (local significance)

ATM_wait_on_incoming_call None (local significance)

Messages indicated in the ATM Forum signaling message column without correspondence primitive in the Native
ATM Services primitives column should not be generated by the application.

Native ATM Services: Semantic Description

ATM Forum Technical Committee68

B.2 Messages received from Network

The left column of the following table contains the signaling messages and in the right column the resulting Native
ATM Services primitives. The Native ATM Services primitives refer to indication or confirm primitives.

ATM Forum signaling
messages

Native ATM Services
primitives

CALL PROCEEDING None

CONNECT ATM_P2P_call_active or

ATM_P2MP_call_active

CONNECT ACKNOWLEDGE ATM_P2P_call_active or

ATM_P2MP_call_active

SETUP ATM_arrival_of_incoming_call

RELEASE ATM_call_release

RELEASE COMPLETE None

STATUS None 1

STATUS INQUIRY None

RESTART ATM_call_release

RESTART ACKNOWLEDGE None

ADD PARTY Invalid under the restrictions in this specification

ADD PARTY ACKNOWLEDGE ATM_add_party_success

ADD PARTY REJECT ATM_add_party_reject

DROP PARTY ATM_drop_party

DROP PARTY ACKNOWLEDGE None

1 This depends on the cause information element. In some cases, this message may imply the release of
the connection.

Native ATM Services: Semantic Description

ATM Forum Technical Committee 69

Signaling messages that correspond to ‘None’ (in the Native ATM Services primitives column) do not generate a
primitive that reaches the application.

Native ATM Services: Semantic Description

ATM Forum Technical Committee70

Appendix C: Example SAP Combinations

This appendix provides examples of users of Native ATM Services can be specify SAPs. This is not meant to
restrict implementations, but rather to provide helpful guidance.

C.1 SAPs for Data Link Layer Protocols

Characteristics

This group of SAPs is used when the destination of the connection is a Data Link Layer protocol entity. This
provides support for the transport of several network protocols over a single VC, which may be cost effective when
the cost of a VC is a consideration. Examples of these data link protocols include LLC (Logical Link Control) and
PPP (Point-to-Point Protocol).

Semantic Definition

The SAP address consists of the ATM address, including the selector byte, and the identification of a Layer 2 protocol

Specific Coding

The Layer 2 protocol specification is encoded in the following way:

ATM_addr.SVE_tag = PRESENT

ATM_addr.SVE_value = the ATM address, minus the selector byte

ATM_selector.SVE_tag = PRESENT (private ATM address) or ABSENT (E.164 address)

ATM_selector.SVE_value = the selector byte (from the private ATM address)

BLLI_id2.SVE_tag = PRESENT

BLLI_id2.SVE_value = the identification of the layer 2 protocol

BLLI_id3.SVE_tag = ABSENT

BHLI_id.SVE_tag = ABSENT

C.2 SAPs for Network Layer Protocols

Characteristics

This group of SAPs is used when the destination of the connection is a Network or Transport Layer protocol entity,
or a service transport entity. This provides support for a single network or transport protocol, or a single service
transport over a single VC. Examples of these network protocols include X.25 and IP. Examples of transport
protocols are TCP and TP4. Examples of service transport entities are ATM LAN emulation and ATM Circuit
emulation.

Semantic Definition

The SAP address consists of the ATM address, including the selector byte, and the specification of a Layer 3
protocol.

Specific Coding

The Layer 3 protocol specification is encoded in the following way:

ATM_addr.SVE_tag = PRESENT

Native ATM Services: Semantic Description

ATM Forum Technical Committee 71

ATM_addr.SVE_value = the ATM address, minus the selector byte

ATM_selector.SVE_tag = PRESENT (private ATM address) or ABSENT (E.164 address)

ATM_selector.SVE_value = the selector byte (from the private ATM address)

BLLI_id2.SVE_tag = ANY

BLLI_id3.SVE_tag = PRESENT

BLLI_id3.SVE_value = the identification of the layer 3 protocol (options 1 - 3 only)

BHLI_id.SVE_tag = ABSENT

C.3 SAPs for Higher Layer Protocols and ATM-Aware
Applications

Characteristics

This group of SAPs is used when the destination of the connection is an ATM-aware application, or more properly,
the session layer of an application. This provides for the transport of a single application’s data over a single VC.

Semantic Definition

The SAP address consists of the ATM address, including the selector byte, identification of the layer-2 protocol used
(if present), identification of the layer-3 protocol used (if present), and the identification of the higher layer protocol
or an ATM-aware application.

Specific Coding

The ATM-aware application specification is encoded in the BHLI information element.

ATM_addr.SVE_tag = PRESENT

ATM_addr.SVE_value = the ATM address, minus the selector byte

ATM_selector.SVE_tag = PRESENT (private ATM address) or ABSENT (E.164 address)

ATM_selector.SVE_value = the selector byte (from the private ATM address)

BLLI_id2.SVE_tag = ABSENT or PRESENT

BLLI_id2.SVE_value = identification of the layer 2 protocol (if tag = PRESENT)

BLLI_id3.SVE_tag = ABSENT or PRESENT

BLLI_id3.SVE_value = identification of the layer 3 protocol (if tag = PRESENT)

BHLI_id.SVE_tag = PRESENT

BHLI_id.SVE_value = the identification of the ATM-aware application

