
PostScript Printer 
Description File Format 
Specification

Version 4.3   

9 February 1996

Adobe Developer Support

PN LPS5003

 

Adobe Systems Incorporated

Corporate Headquarters
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415)961-4400 Main Number
(415) 961-4111 Developer Support
Fax: (415)961-3769

Adobe Systems Europe B.V.
Europlaza
Hoogoorddreef 54a
1101 BE Amsterdam Z-O, Netherlands
+31-20-6511 200
Fax: +31-20-6511 300

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Japan
Swiss Bank House 7F
4-1-8 Toranomon, Minato-ku
Tokyo 105, Japan
+81-3-3437-8950
Fax: +81-3-3437-8968

R

Software Fro em Ad bo
POST C IPRS T



Copyright  1987-1996 by Adobe Systems Incorporated. All rights reserved. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form 
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior 
written consent of the publisher. Any software referred to herein is furnished under license and may 
only be used or copied in accordance with the terms of such license.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name 
PostScript in the text are references to the PostScript language as defined by Adobe Systems 
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for 
Adobe Systems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers, 
files, and driver programs (respectively) which are written in or support the PostScript language. 
The sentences in this book that use “PostScript language” as an adjective phrase are so constructed to 
reinforce that the name refers to the standard language definition as set forth by Adobe Systems 
Incorporated.

PostScript, the PostScript logo, Display PostScript, Adobe, and the Adobe logo are trademarks of 
Adobe Systems Incorporated which may be registered in certain jurisdictions. Apple, AppleTalk, 
LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc. Other brand or product 
names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, 
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems 
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty 
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any 
and all warranties of merchantability, fitness for particular purposes and noninfringement of third 
party rights. 



iii

Contents

PostScript Printer Description File Format Specification     1

 1    Introduction    1

  1.1    ASCII Code Chart    2
  1.2    Definition of Terms    3

 2    Using PPD Files    5

  2.1    Building a User Interface for Printing    6
  2.2    Inserting Print-Time Features    7
  2.3    Post-Processing    8
  2.4    Error Handling    9
  2.5    Order Dependencies    10
  2.6    Local Customization of PPD Files    11

 3    Format    15

  3.1    General Parsing Summary    15
  3.2    Main Keywords    15
  3.3    Option Keywords    17
  3.4    Syntax of Values    20
  3.5    Translation String Syntax    25
  3.6    Human-Readable Comments    28
  3.7    PostScript Language Sequences    28
  3.8    PPD File Structure    31

 4    Syntax of Specification    32

  4.1    General Syntax    32
  4.2    Sample Keyword Statements    34
  4.3    Elementary Types    36
  4.4    Standard Option Values for Main Keywords    38
  4.5    Summary of Rules for *Default Keywords    40

 5    Keywords    41

  5.1    Creating Your Own Keywords    41
  5.2    Structure Keywords    42
  5.3    General Information Keywords    56
  5.4    Installable Options    65
  5.5    Basic Device Capabilities    68
  5.6    System Management    72
  5.7    Emulations and Protocols    78



iv Contents (9 Feb 1996)

  5.8      Features Accessible Only Through Job Control Language    81
  5.9      Resolution and Appearance Control    84
  5.10    Gray Levels and Halftoning    87
  5.11    Color Adjustment    91
  5.12    Introduction to Media Handling    95
  5.13    Media Option Keywords    96
  5.14    Media Selection    96
  5.15    Information About Media Sizes    102
  5.16    Custom Page Sizes    106
  5.17    Media Handling Features    119
  5.18    Finishing Features    123
  5.19    Imagesetter Features    133
  5.20    Font Related Keywords    136
  5.21    Printer Messages    143
  5.22    Color Separation Keywords    146
  5.23    Symbolic References to Data    149

 6    Sample PPD File Structure    153

  6.1      Level 2 Color Printer    153
  6.2      Level 2 Imagesetter    160
  6.3      Examples of Custom Page Size Code    166

 7    PPD File Summary    176

  7.1      PPD Files for Kanji Products    179

Appendix A: Keyword Categories     181

       A.1    UI Keywords    181
       A.2    Repeated Keywords    182

Appendix B: Registered mediaOption  Keywords     183

       B.1    Components of mediaOption Keywords    184
       B.2    mediaOption Name Tables    186

Appendix C: Character Encodings     199

       C.1    All Encodings Indexed By Byte Code    200
       C.2    Conversions from WindowsANSI Encoding    202
       C.3    Conversions from MacStandard Encoding    204
       C.4    Conversions from ISOLatin1 Encoding    206

Appendix D: Manufacturer’s Prefix List and *Manufacturer Strings     209

Appendix E: Changes Since Earlier Versions     213

       E.1    Changes since Version 4.2, March 29, 1994    213
       E.2    Changes since Version 4.1, April 9, 1993    219
       E.3    Changes since Version 4.0, October 14, 1992    220
       E.4    Changes since Version 3.0, dated March 8, 1989    221

Index     229



1

PostScript Printer Description File 
Format Specification

1 Introduction

PostScript™ printer description files (PPD files) are text files that provide a 
uniform approach to using the diverse features of devices that contain Post-
Script interpreters. Such features include different page sizes, different meth-
ods of paper and film handling, memory size, font availability, and finishing 
features such as duplex printing and stapling. All devices do not have the 
same set of features, and even devices with the same features do not necessar-
ily invoke those features in the same way. PPD files provide applications with 
the necessary information about a device’s features, including the feature 
options, the default settings, how to request the current settings, how to 
change the settings, and other information that might be used for scheduling 
jobs. 

In this specification, the term device means any output device containing a 
PostScript interpreter, such as a printer, imagesetter, or film recorder. Each 
device has a PPD file associated with it. The PPD files for all devices that are 
accessible to a given host computer are stored on that host computer. Appli-
cations on the host computer can then parse PPD files to discover the list of 
features available on a device. PPD files contain structures that allow “blind” 
parsing of a list of features. Applications can parse for these structures with-
out understanding the features they contain. Applications can then build a 
user interface from the list of features found in the PPD file for the selected 
device. 

The PPD file also contains the PostScript language code to invoke each fea-
ture. In this specification, the term output file refers to the file containing the 
PostScript language description of the document composed by the user. 
When a user selects a feature from the user interface, such as manual feed or 
duplex printing, the code for each selected feature is extracted from the PPD 
file and included in the appropriate place in the output file before the output 
file is sent to the device. 

Local customizations to a PPD file can be added at the user site to accommo-
date changes to the printer, such as the addition of fonts or memory, or to 
configure a device a certain way (for example, to always print in duplex).



2 PostScript Printer Description File Format Specification (9 Feb 1996)

There is a close relationship between PPD files and the Adobe Systems docu-
ment structuring conventions (also known as DSC). These comment conven-
tions can be used in an output file to identify the code that invokes device-
specific features. This allows the output file to be redirected from one device 
to another by a spooler or other post-processing software. As an output file is 
routed across a network, a spooler can extract device-specific code by parsing 
for the associated DSC comments. The spooler can then parse the PPD file 
for the new device, extract new device-specific code, and insert that code into 
the output file before routing the file to the new device.

Every piece of code that is extracted from a PPD file and inserted into an 
output file should be enclosed by the appropriate DSC comments. Version 3.0 
of the Document Structuring Conventions specification is documented in 
Appendix G of the PostScript Language Reference Manual, Second Edition. 
Any later versions of this specification can be obtained from the Adobe™ 
Developers Association.

1.1 ASCII Code Chart

The following ASCII characters are referenced repeatedly in this document:

• asterisk, ‘*’ (decimal 42)

• caret, ‘^’ (decimal 94)

• colon, ‘:’ (decimal 58)

• double quote, ‘"’ (decimal 34)

• newline — any combination of carriage return (decimal 13) and line feed 
(decimal 10)

• period, ‘ .’ (decimal 46)

• question mark, ‘?’ (decimal 63)

• slash, ‘/’ (decimal 47)

• space (decimal 32)

• tab (horizontal) (decimal 9)

• open angle bracket, ‘<‘ (decimal 60)

• closing angle bracket, ‘>’ (decimal 62)



1  Introduction  3

1.2 Definition of Terms

This section defines many of the terms used throughout this specification.

There are two basic types of keywords in a PPD file: main keywords and 
option keywords. Main keywords denote a device feature, such as the set of 
available page sizes (*PageSize) or input slots (*InputSlot). 

Option keywords, which modify main keywords, describe the list of available 
options for a feature. For example, the option keywords for the main keyword 
*PageSize describe the available page sizes, such as Letter, Legal, A4, Tabloid, and 
so on. The option keywords for the main keyword *InputSlot describe the avail-
able input slots, such as Upper, Lower, and so on.

Two subsets of the main keyword class are default keywords and query key-
words. Default keywords provide information about the default state of the 
device as shipped from the factory. Default keywords share the root name of a 
main keyword, as in *DefaultPageSize and *PageSize. When discussed as a class 
of keywords, default keywords are also referred to as *Default keywords, 
because *Default is always their prefix. A stand-alone default keyword is one 
that appears in the PPD file without its related main keyword (for example, 
*DefaultResolution without *Resolution).

A query keyword provides a code sequence, which, when downloaded to the 
device, returns information about the current state of the device. This can be 
used by applications to determine the state of a device and perhaps request 
operator intervention (for example, if the appropriate media tray is not 
present). Note that queries can only be used when the physical interface to 
the device permits feedback from the device. Also, queries must be emitted in 
a “query job” that immediately precedes the print job. Among other things, 
this allows spoolers to process queries without processing the actual print job. 
(See the DSC specification for a description of query jobs.) 

Not every main keyword has an associated query keyword. Query keywords 
have been defined only if they are possible and useful, and are completely 
optional.

A statement is a single instance of a main keyword, option keyword (if any), 
and value. There are seven formats for statements:

1. *MainKey

2. *MainKey: StringValue

3. *MainKey: "QuotedValue"

4. *MainKey: ^SymbolValue



4 PostScript Printer Description File Format Specification (9 Feb 1996)

5. *MainKey OptionKey: StringValue

6. *MainKey OptionKey: "InvocationValue"

7. *MainKey OptionKey: ^SymbolValue

Each statement in a PPD file falls into one of these formats. The value types 
are defined in section 3.4.

An entry describes a group of statements that logically belong together. An 
entry usually includes a *Default keyword, several instances of a main keyword 
with different option keywords and values, and a query keyword. An entry 
often also has surrounding structure keywords, which are discussed in section 
5.2. 

There are two general classes of main keywords: informational and UI (for 
User Interface). Informational main keywords provide information about a 
feature, such as how much memory is available or which fonts are resident. 
Such information is usually only useful to an application and does not appear 
in the user interface. UI keywords represent features that would commonly 
appear in a user interface (UI). They provide the code to invoke a user-select-
able feature within the context of a print job; for example, the selection of an 
input tray or manual feed. The entries of UI keywords are surrounded by the 
structure keywords *OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI (see section 5.2).

The line length of any line in a PPD file must be less than or equal to 255 
characters, including line termination characters. Line termination in PPD 
files can consist of any combination of the ASCII characters carriage return 
(decimal 13) and line feed (decimal 10). In this specification, the set of line 
termination characters is referred to as newline.

White space is defined as any combination of the ASCI characters space and 
tab. Newline characters should not be treated the same as white space charac-
ters, because the newline character (or pair of characters) signals termination 
of a statement (exceptions to this rule are noted on a case-by-case basis).

The following 8-bit byte codes are allowed in a PPD file: decimal 32 through 
decimal 255 inclusive, plus decimal 9 (ASCII horizontal tab), decimal 10 
(ASCII line feed), and decimal 13 (ASCII carriage return). However, most 
data types further restrict the allowable byte code range. Characters that fall 
within the allowable range for a particular data type are called in-range byte 
codes. Characters that fall outside the allowable range for a particular data 
type are called out-of-range byte codes.

Printable 7-bit ASCII is the set of byte codes that fall within the range of dec-
imal 32 through decimal 126 inclusive, plus decimal 9 (ASCII horizontal 
tab), decimal 10 (ASCII line feed), and decimal 13 (ASCII carriage return).



2  Using PPD Files  5

A hexadecimal substring is used to represent out-of-range byte codes in cer-
tain data types (see section 3.5). A hexadecimal substring consists of a 
sequence of zero or more pairs of hexadecimal digits, preceded by the < (less 
than) character (decimal ASCII 60) and followed by the > (greater than) char-
acter (decimal ASCII 62). Hexadecimal digits consist of the characters 0 
through 9, a through f, and A through F (case is insignificant). Spaces and 
tabs can be intermixed with the hexadecimal digits and should be ignored. 
Newlines may occur and should be ignored, except in translation strings, 
where they are illegal. See section 3.5 for the treatment of newlines in transla-
tion strings. All other characters should be considered an error. An odd 
number of hexadecimal digits is also an error.

2 Using PPD Files

PPD files can be used during several phases of document production. First, 
during printer installation or setup, the user selects an output device and, 
implicitly or explicitly, a PPD file. The association of the PPD file with the 
printer can be handled by an application, or the user may select the PPD file 
explicitly. An application can then parse the PPD file for a list of optional 
accessories, and display a configuration panel that asks the user which acces-
sories are installed. This information can be used later by a printing applica-
tion to determine which options to display to the user at print time.

Some device features require additional memory or other hardware before 
they can be invoked. For example, a device might need more than the mini-
mum amount of memory to print a legal-size page, or to do color separations, 
or it might need an external device to fold paper. The PPD file will contain 
information for all features that are supported by the device hardware and the 
PostScript interpreter. It is up to the user to install the correct peripherals and 
memory needed to make these features accessible, and to tell the printing 
application that they are available.

Note This specification does not address the uses of PPD files at document compo-
sition time. For information about using a PPD file at document composition 
time, see Technical Note #5117, “Supporting Device Features.”

At print time, the selected PPD file can be used to construct a user interface 
that displays the available features of the requested device, such as duplex 
printing or manual feeding. The default values for those features can be 
obtained from the PPD file. Where applicable, there is also code that can be 
used to determine the current settings of features (known as querying the 
device). After the user selects various printing features, the code to invoke 
those features can be extracted from the PPD file and inserted into the output 
file. 



6 PostScript Printer Description File Format Specification (9 Feb 1996)

Finally, PPD files for other devices can be used by a post-processor, such as a 
spooler, to insert new device-specific code into the output file and route the 
file to a different device. More detail on the use of PPD files in each phase of 
document production is provided in the next few sub-sections.

In this specification, the application that parses the PPD file for device fea-
tures and provides the print panel function is referred to as a print manager. 
Often, it is the same piece of software that converts an application’s internal 
representation of a document to the PostScript language representation of the 
same document. The function of the print manager might be provided by a 
system-level driver, by a separate piece of software, or it might be part of an 
application. 

Among its other duties, the print manager 

• takes input from the user via some user interface, such as a print panel or 
command line, 

• extracts from the PPD file the corresponding code sequences to invoke the 
requested features,

• inserts the code sequences into the appropriate setup section of the output 
file, and 

• surrounds the code sequences with the appropriate DSC comments.

2.1 Building a User Interface for Printing

At print time, a user must be able to select various device features, such as 
paper size or manual feed, through a user interface such as a print panel or a 
command line. The features offered to the user by a print panel can be con-
structed by parsing the PPD file for the selected device, discovering the avail-
able features, and displaying them to the user for selection. For example, the 
PPD file contains a list of paper sizes supported by the device. A user inter-
face can display that list to the user and allow the user to select a paper size 
from the list.

The PPD file also contains information about the default state of the device as 
it is shipped from the factory. The default state of the device can be used as a 
starting point for setting the initial state of the user interface. For example, 
the default state of optional accessories can be used to indicate whether or not 
those accessories are installed, and, therefore, whether or not to display them 
to the user. 

Second, the default state of individual features can be used to determine how 
they are initially displayed. For example, if the default state of the device is to 
print on letter-size paper with manual feed turned off, the user interface could 
initially appear with letter-size paper selected and manual feed not selected. 



2  Using PPD Files  7

This tells the users that if they change nothing, their documents will be 
printed on letter-size paper and the paper will be drawn from a tray other than 
the manual feed tray. The PPD file can thus be used to tell users both what 
they can do and what will happen if they do nothing.

It is important to realize that the defaults in the PPD file do not necessarily 
reflect the current state of the device, as a system manager or a previous job 
could have changed the state of the device. It is also important to realize that 
a print manager is not required to use the PPD defaults as an initial starting 
point for display. Some print managers save the user’s previous job settings 
and use those as initial settings, rather than using the device’s default settings.

2.2 Inserting Print-Time Features

When the user has finished selecting features, the print manager can consult 
the PPD file for additional information, such as

• whether this is a Level 1 or a Level 2 device, so the print manager knows if 
it can generate code that uses Level 2 features

• if it is a Level 1 device, which extensions to the PostScript language are 
supported, if any

• the code sequences that invoke the features the user has selected via the 
user interface

• any additional information that the author of the print manager thinks 
would be useful in generating an efficient output file.

Armed with information, the print manager converts the internal representa-
tion of the document into the PostScript language representation of the docu-
ment. It includes the device-specific code for the features requested by the 
user, and surrounds these feature requests with DSC comments for possible 
later parsing by other applications.

The following example shows a PostScript language output file that describes 
a very small document. The output file does not yet contain DSC comments 
or device-specific code. Throughout this section, this output file will grow as 
DSC comments and device-specific code are added.

/sp /showpage load def

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp



8 PostScript Printer Description File Format Specification (9 Feb 1996)

In the next example, assume that the user requested letter-size paper via some 
user interface. The print manager extracts from the PPD file the device-spe-
cific code to invoke letter-size paper, inserts the code into the output file, 
inserts the appropriate DSC comments, and sends the output file to the output 
device.The following is the example with the DSC comments and the device-
specific code added.

%!PS-Adobe-3.0

%%Title: test.ps

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

%%BeginFeature: *PageSize Letter

statusdict /lettertray get exec

%%EndFeature

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp

%%EOF

When the output file is sent to the output device, the interpreter ignores the 
comments and executes the PostScript language commands, including the 
code sequence that sets up the letter-size input tray.

For most user-selectable features of a device, there is no clear inverse opera-
tion. That is, unsetting, for example, a ledger-size paper tray will typically 
mean establishing a different paper tray as the current paper tray. Explicitly 
setting the device back to its default condition has the same effect; it will 
“undo” the effects of having previously set a given feature. Unless there is a 
specific reason to do so, it is not necessary to reverse the effects of invoking 
device-specific features for any particular print job, since the job server 
should provide that service, returning device features to their default settings 
at the end of each job.

2.3 Post-Processing

In some environments, there might be a post-processor, such as a spooler, 
which also acts as a print manager. In this context, the requested device might 
be unavailable, and the print manager/spooler might need to redirect an 
output file from one device to another. If an output file is to be redirected, the 
print manager parses the DSC comments in the output file, and strips out the 
original device-specific code. It then parses the PPD file of the newly selected 
device, extracts from the new PPD file the device-specific code requested by 
the DSC comments, inserts the device-specific code from the new PPD file 
into the output file, and sends the output file to the new device. 



2  Using PPD Files  9

The following is the example file as it is sent to the new device (note that the 
device-specific code is different):

%!PS-Adobe-3.0

%%Title: test.ps

%%LanguageLevel: 2

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

%%BeginFeature: *PageSize Letter

(<<) cvx exec /PageSize [612 792] (>>) cvx exec setpagedevice

%%EndFeature

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp

%%EOF

2.4 Error Handling

Print managers should include a reasonable level of error-handling, both 
when parsing PPD files and when downloading code from PPD files to a 
device. Examples of possible errors in a PPD file are dangling symbolic ref-
erences (section 5.23) missing information about page sizes (section 5.12, 
section 5.14, and section 5.15), and missing required keywords (beginning of 
section 5).

When querying a device, solicited and unsolicited status messages from the 
device may interrupt the transmission of the query return value. On some 
communication channels, this may cause buffer overflow when the maximum 
number of characters retrievable by the host is exceeded. In such an environ-
ment, the print manager can alleviate the problem by limiting the number of 
queries sent at one time, waiting some period of time (such as 100 millisec-
onds) between queries, and by flushing the communication channel between 
queries.

When inserting invocation code from a PPD file into a job stream, print man-
agers are encouraged to execute such code in a stopped  context to catch any 
errors, and to surround the code with mark  and cleartomark  to ensure that the 
operand stack is cleaned up if an error occurs while executing the code. 



10 PostScript Printer Description File Format Specification (9 Feb 1996)

Here is an example of error-handling code, using the same sample document 
shown in previous examples:

%!PS-Adobe-3.0

%%Title: test.ps

%%LanguageLevel: 2

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

countdictstack[{

%%BeginFeature: *PageSize Letter

(<<) cvx exec /PageSize [612 792] (>>) cvx exec setpagedevice

%%EndFeature

}stopped

cleartomark

countdictstack exch sub dup 0 gt

{

     { end } repeat

}{

     pop

}ifelse

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp

%%EOF

In this example, it is important that this line of code

countdictstack[{

appears before the %%BeginFeature: comment line, and that this line

}stopped

and the lines following it appear after the %%EndFeature line. Otherwise, these 
lines of code could be removed by a print manager replacing the code 
between the %%BeginFeature and %%EndFeature comments.

2.5 Order Dependencies

When a print manager is inserting device-specific code into an output file, the 
order of certain operators with respect to each other is important and must be 
considered. The keywords *OrderDependency and *NonUIOrderDependency, 
described in section 5.2, provide information about the appropriate setup sec-
tion (described in the DSC) and relative ordering of each PostScript invoca-
tion. If a print manager is not coded to read the *OrderDependency and 
*NonUIOrderDependency statements in a PPD file, it must take care of the proper 
ordering of the code fragments by itself. 



2  Using PPD Files  11

Specifically, the following guidelines for ordering should be applied:

• Any resolution invocation (available only on devices where the user can 
change the resolution of the device via software) must occur before any 
media tray or media size selection. This is important because, on many 
devices, the resolution is not set until the tray or size selection occurs, so 
the tray or size selection must occur after the resolution invocation. 

• If both a specific media tray invocation (for example, Upper) and a spe-
cific page region invocation (for example, Letter) occur, the media tray 
invocation should precede the imageable region invocation. Otherwise, the 
tray invocation might override the imageable region invocation.

The following items should occur after media size selection:

• job control requests such as duplex, automatic tray switching, signaturing, 
output bin selection, and finishing features such as folding, binding, and 
stapling

• halftone invocations (including halftone screen setup, transfer functions, 
and accurate screens). This is because the media size invocation will set 
the halftone screen settings to their default settings. Modifications to the 
halftone screens are not confined to the setup sections; they can occur any-
where on a page in the output file.

2.6 Local Customization of PPD Files

A PPD file is a static representation of the features available on a device. It 
contains information on the features available on a device as it is shipped 
from the factory. In general, this will be the minimum amount of memory 
available for that device, the minimum font set, and the maximum list of 
optional accessories, such as paper trays, so that all the necessary invocation 
code is present in the PPD file, even if the accessories are not installed when 
shipped from the factory. Optional accessories will be marked as optional in 
the PPD file and their treatment is discussed in section 5.4.

Once a device is installed, features such as additional memory, paper trays, 
and fonts might be added to the device. In this specification, the term system 
administrator is used to mean the person who adds such features and is 
responsible for the maintenance of the device. In a single-user, single-printer 
environment, the role of system administrator is typically played by the user.

The task of managing a device is a dynamic issue that requires keeping track 
of fonts downloaded to disk, error handlers, RAM-based fonts and procedure 
sets, default device setup, and so forth. This kind of device management is 
beyond the scope of PPD files. However, there are some provisions for cus-
tomizing the information contained in PPD files to adapt them to local 
instances of devices or to specific applications when necessary.



12 PostScript Printer Description File Format Specification (9 Feb 1996)

One approach to system management is for a print manager to parse all of the 
PPD files available on a host system and store the data into a database. The 
print manager (or other utilities) can then query the user or the device or 
watch for system changes and update the database dynamically to reflect 
additional memory, fonts, available trays, and other changeable printer fea-
tures.

A less dynamic approach is provided in this specification by local customiza-
tion files, which contain only the changed or added items and a reference to 
the primary PPD file. In a given computing environment, there is usually one 
PPD file for each type or model of device in use. For example, there may be 
seven Acme FunPrinters in the system, but there is usually only one Acme 
FunPrinter PPD file, which is shared by or copied onto each host computer in 
the system. However, if applications or users want to add to or modify the 
contents of a PPD file, they can create a local customization file for a specific 
instance of a device or for use by a particular application. 

For example, a computing environment might contain a primary PPD file that 
describes a generic Acme FunPrinter. If the FunPrinter in Room 13 has addi-
tional memory, and if the system does not provide utilities for querying the 
user or watching the state of the printer, then the system administrator might 
want to create a local customization file for the FunPrinter in Room 13 that 
reflects the presence of additional memory. (This is better accomplished by 
the use of *InstalledMemory in the primary PPD file, if the print manager sup-
ports it.) Or, if an application developer wants to add application-specific 
entries to a PPD file for a particular printer model, he would do so by creating 
a local customization file that would be used only by that application. For 
example, a color-intensive application might want to parse a PPD file for 
halftone information and add complementary halftone screens to a local cus-
tomization file.

The local customization file should generally contain only entries only for 
items that are changed or added. However, to be understood by applications 
parsing PPD files, the local customization file must conform to the PPD spec-
ification, so in a sense, the local customization file is a minimal PPD file. The 
minimal set of required keywords listed in section 3.8 must be included at the 
beginning of the file, so print managers can recognize it as a PPD file. Other 
keywords that are marked Required in this specification, such as *PageSize, are 
not required in the local customization file, unless they are being customized. 

The customization file should be given a unique name that represents a par-
ticular device (for example, MyPrntr.PPD). The .PPD extension should be 
preserved, with case irrelevant, in case applications or print managers are 
searching for files with that extension. Application developers can also create 
customization files with different extensions, which are read only by their 
application.



2  Using PPD Files  13

The local customization file must contain a reference to the primary PPD file 
in this format:

 *Include: "filename"

where filename is the name of the primary PPD file. This referencing allows a 
system administrator to later replace the primary PPD file without forcing 
users to edit their local customization files. If the new primary PPD file has 
the same name as the old one, it will automatically be referenced by the local 
customization file. 

Before creating a local customization file, a system administrator should 
make sure that computing environment provides support for the concept. 
Some print managers might not process the *Include statement, or the system 
might not provide a way to install both the primary PPD file and the local 
customization file.

When a primary PPD file is included by a local customization file, the pars-
ing details change somewhat. In particular, there might be several instances 
of the same keyword in the “composite” file. In this case, the first instance 
of a given keyword (or, if the keyword takes an option, of a keyword-
option pair) is correct. This enables a parser to ignore subsequent versions 
of the same statement, possibly reducing the parsing time. 

Because the first instance of a keyword is the correct instance, all keywords 
in a local customization file should occur before the *Include statement that 
references the primary PPD file.For example, assuming the primary PPD file 
is called TIMICRO1.PPD, a local customization file might look like this

*% Local Customization File for TI microLaser

*FreeVM: "1907408"

*Include: "TIMICRO1.PPD"

*% end of local customization file

The local customization file might be named TICUSTOM.PPD. A parser 
reading this file would record the value of *FreeVM as shown above, and would 
ignore subsequent occurrences of that keyword in the included PPD file, 
TIMICRO1.PPD.

Note To application developers: The situation in the example above would be 
better handled through proper parsing of the *InstalledMemory keyword, elimi-
nating the need for a local customization file. This example is intended for 
use with parsers that don’t process *InstalledMemory but do process local cus-
tomization files.

If a UI keyword (see section 1.2) occurs in a local customization file, that 
keyword’s entire entry must be present, to avoid confusing a print manager 
with partial entries. For example, to change the value of *DefaultManualFeed, the 
entire *ManualFeed entry must appear, including main keywords, options, 



14 PostScript Printer Description File Format Specification (9 Feb 1996)

query, and the *OpenUI/*CloseUI bracketing. It should also include any 
*OpenGroup/*CloseGroup bracketing, if the *ManualFeed entry is surrounded by 
*OpenGroup/*CloseGroup in the primary PPD file. (See section 5.2 for details on 
the *OpenUI/*CloseUI and *OpenGroup/*CloseGroup keywords.) This means that a 
print manager, when parsing the PPD file, must be prepared to find (and sub-
sequently ignore) multiple instances of a given *OpenUI/*CloseUI entry in the 
combination of the primary PPD file and any local customization files.

Note The concept of “first instance is correct” does not apply to certain keywords 
that normally have multiple instances in a PPD file, and which do not have 
option keywords to distinguish those instances. For example, *UIConstraints and 
*PrinterError occur multiple times in a PPD file, with different values, but with 
no option keyword to distinguish one instance from another. In these cases, 
all instances must be parsed and recorded. This implies that a parser must 
either know the semantics of PPD keywords when parsing, or it must save all 
instances in some form for a later, smarter processor to decide which are 
rightfully multiple instances. See Appendix A for a list of optionless keywords 
that might occur multiple times in a file.

Using and Changing Default Settings

When building a user interface from a PPD file, a print manager can use the 
*Default keywords to choose defaults for the features displayed to the user. For 
example, if the PPD file for the selected device contains this statement:

*DefaultManualFeed: False

then the print manager can indicate in the user interface that manual feeding 
of the media is, by default, turned off, and provide a way for the user to turn 
on manual feeding.

The defaults listed in the original PPD file reflect the state of the device when 
it is shipped from the factory. If the system administrator wants to set up the 
device differently, the new defaults should be included in the local customiza-
tion files. For example, if the device in the previous example was set up to 
always feed from the manual feed slot, then the local customization file 
should contain the entire *ManualFeed entry, copied from the original PPD file, 
with the value of *DefaultManualFeed changed from False to True:

*OpenUI *ManualFeed: Boolean

*OrderDependency: 20 AnySetup *ManualFeed

*DefaultManualFeed: True

*ManualFeed True: “code”

*ManualFeed False: “code”

*?ManualFeed: “query code”

*CloseUI: *ManualFeed

This allows the print manager to indicate in the user interface that manual 
feeding of the media on this device is, by default, turned on.



3  Format  15

3 Format

The syntax of PPD files is a simple line-oriented format where the options, 
defaults, and invocation strings (PostScript language code sequences that 
change a feature setting) are made available through a regular set of key-
words. 

3.1 General Parsing Summary

The following are parsing rules that apply to the PPD file as a whole:

• Any line that exceeds 255 characters in length is an error.

• Any byte code that is not in the following list is an error: decimal 32 
through decimal 255 inclusive, plus decimal 9 (ASCII horizontal tab), dec-
imal 10 (ASCII line feed), and decimal 13 (ASCII carriage return).

3.2 Main Keywords

All main keywords start with the leading special character * (decimal 42). 
This makes recognition of keywords easier, and reduces the possibility of 
keywords being confused with PostScript language identifiers in code 
sequences. 

Query keywords start with the leading characters *?, differentiated from other 
main keywords by the presence of the ? character (decimal 63). 

Default keywords start with the prefix *Default, as in *DefaultPageSize. Where 
applicable, there is a relationship between the three kinds of main keywords, 
as in *PageSize, *DefaultPageSize, and *?PageSize. However, there is no require-
ment for a *Default keyword to have corresponding main and query keywords 
in a PPD file. A *Default keyword may appear alone if it makes sense.

There is also a relationship between keywords that start with the prefix 
*Param, as in *ParamCustomPageSize, and the associated root keyword 
(*CustomPageSize, in this case). The prefix *Param signifies that this keyword 
documents parameters needed by the root keyword. See *CustomPageSize and 
*ParamCustomPageSize for more explanation.

No single keyword is wholly contained as a substring in another keyword, so 
that line-oriented searching programs such as grep can be used to parse for 
complete keywords, including the * as part of the keyword name. For exam-
ple, there will not be similar keywords such as *Paper and *PaperSize. However, 
*PageSize and *CustomPageSize are legal, because *PageSize is not a substring of 
*CustomPageSize. 



16 PostScript Printer Description File Format Specification (9 Feb 1996)

Since the format is line-oriented, all statements will start at the beginning of a 
line. The * (asterisk) character that begins the main keyword in the statement 
must be in the first column.

Main keywords can contain any printable ASCII characters within the range 
of decimal 33 to decimal 126 inclusive, except for the characters colon and 
slash, which serve as keyword delimiters. Note that space, tab, and newline 
are outside this range. There is no escape mechanism for this prohibition, 
such as using double quotes to surround illegal characters (for example, 
*“Quoted Keyword” is not legal, because of the space in the keyword name).

The basic format of an entry looks like this

*Default< main keyword >:  < option n>

*< main keyword >  < option 1>:  " PostScript language code "

*< main keyword >  < option n>:  " some other PostScript language code "

*?< query keyword >:  " PostScript language query code "

An example entry

*DefaultPageSize: Letter

*PageSize Letter: "lettertray"

*PageSize Legal: "legaltray"

*?PageSize: "save [(Letter)(Legal)] papertray get = flush restore"

The information is represented as tuples. They will typically either be 
2-tuples (keyword/value pairs) or 3-tuples (keyword/option/value triplets). 
Where simple information is supplied, such as the name of the device, a 
simple keyword/value pair is used. Where there are optional parameters, 
3-tuples are used (as in the example above) to provide information about a 
specific option.

The format conveys the possibilities for a feature: the default setting for this 
feature, the current setting, and how to invoke each of the options. By con-
vention, all lines that start with the same keyword will be contiguous in the 
PPD file, to make it easier to parse them. However, there is no mandatory 
order to the lines in an entry; for example, the query could appear above the 
default.

Parsing Summary for Main Keywords

When parsing main keywords, remember

• The absence of a main keyword means that the feature does not exist (or 
does not make sense) on that particular device.

• Certain keywords are required to be present; see the beginning of section 5 
for a list. For parsing, a chain of local customization files and included 
PPD files are considered one file, so most required keywords can appear 



3  Format  17

anywhere in the chain of files and do not have to be repeated in each file in 
the chain. (See section 2.6 for exceptions.) The absence of any of these 
keywords might be considered an error, or the parser might have backup 
strategies for handling their absence.

• If a main keyword is not recognized, the entire statement (including multi-
line code segments) should be skipped. However, read section 5.2 and 
keep in mind that the point of the *OpenUI/*CloseUI structures is to allow new 
main keywords to appear without a print manager explicitly recognizing 
them. The most functionality will be provided to the user if a print man-
ager handles all main keywords that occur within the *OpenUI/*CloseUI struc-
ture, displaying them and invoking their associated code to the best of its 
ability. Unrecognized main keywords that occur outside of the *OpenUI/*Clo-
seUI structure should be skipped.

• A * in the first column denotes the beginning of a main keyword. Any text 
or white space before the * should be considered an error.

• The case of main keywords is significant. For example, *PageSize is distinct 
from *Pagesize. The proliferation of keywords that are the same textually 
except for case is strongly discouraged.

• 40 characters is the maximum length for main keywords.

• Main keywords can contain any printable ASCII characters within the 
range of decimal 33 to decimal 126 inclusive, excluding colon and slash.

• Delimiters for main keywords are space, tab, colon, or newline. After the 
initial * symbol is recognized, all characters through (but not including) the 
next space, tab, colon, or newline character are considered part of the main 
keyword.

• If a main keyword is not terminated with a colon or newline, an option 
keyword can be expected. See section 3.3 for information on option key-
words.

3.3 Option Keywords

Option keywords are provided whenever there are several choices for a par-
ticular feature. For example, there might be many different media sizes listed 
in the *PageSize section. These choices are specified using option keywords. 
The option keyword immediately follows the main keyword, separated from 
it by one or more spaces. For example, in the following statement, the string 
Letter is the option keyword:

*PaperDimension Letter: 612 792



18 PostScript Printer Description File Format Specification (9 Feb 1996)

The list of option keywords is completely extensible by the person building 
the PPD file. This enables a PPD file to be generated for a device, using 
names specified by the device manufacturer, without making constant 
updates to the PPD specification. See section 5.1 for information on keyword 
creation.

The option keywords currently known for each main keyword are described 
in this specification. As new option keywords are added, updates will be gen-
erated. It should be clear, however, that the list of option keywords is never 
complete. That is, a new option keyword can be created at any time. Docu-
menting the option keywords is done to prevent redundancy in naming; it is 
not meant to restrict the list of option keywords available.

Option keywords may contain any printable ASCII characters within the 
range of decimal 33 to decimal 126 inclusive, except for the characters slash 
and colon, which serve as keyword delimiters. Note that space, tab, and new-
line are outside this range.

An option keyword can be the name of a main keyword or of a symbol. The 
following examples all contain valid option keywords in the second field:

*InputSlot Letter: "code"

*OpenUI *InputSlot: PickOne

*SymbolValue ^MySymbol: "code"

An option keyword is terminated by a colon or a slash if there is a translation 
string (see section 3.5 for information on translation strings). There is no 
escape mechanism for the forbidden characters listed above.

Option keywords can have extensions called qualifiers. Qualifiers are 
appended to option keywords with the . (period) character (decimal 
ASCII 46) as a separator. Any number of these qualifiers can be appended to 
an option keyword, as appropriate. For example:

*PageSize Letter

*PageSize Letter.Transverse

*PageSize Letter.2

In this example, qualifiers are used to differentiate between several instances 
of a particular media type that differ only slightly. For example, the .Transverse 
qualifier signifies that Letter differs from Letter.Transverse only in the direction 
that the media is fed into the device.

The numeric qualifier .2 in Letter.2 is called a serialization qualifier. A serial-
ization qualifier is an integer appended to an option keyword to distinguish it 
from an otherwise identical option keyword (for example, a device with two 
letter trays might refer to them as Letter.1 and Letter.2). Qualifiers will be regis-
tered when appropriate, with the exception of serialization qualifiers, which 
make no sense to register.



3  Format  19

Parsing Summary for Option Keywords

For print managers, the rapid extensibility of option keywords implies that a 
print manager should not parse for specific option keywords for two reasons:

• There might be option keywords in the PPD file that are not in this specifi-
cation. New option keywords can be added to PPD files at build time when 
necessary. If a parser only recognizes the option keywords registered in 
this specification, it might limit the feature set that can be offered to the 
user. 

• Certain option keywords might not be present in the PPD file for a given 
device. Manufacturers will inevitably call features by different names and 
use different option keywords to describe those features, so parsing for 
*PageSize Ledger is futile if the PPD file being parsed describes that particu-
lar feature as *PageSize 17x11. Again, this can limit the feature set offered to 
the user, and might cause an error if the parser cannot find a specific 
option keyword.

Rather than parsing for specific option keywords, a print manager should 
parse for main keywords and display all available option keywords found. To 
facilitate easier parsing, all option keywords of a given main keyword (that is 
conceivably part of a user interface) are bracketed by the *OpenUI/*CloseUI key-
words (see section 5.2).

Other things to remember about parsing option keywords:

• An option keyword begins with the first character after white space after a 
main keyword. In other words, if a main keyword is not terminated by a 
colon, but is followed by white space instead, an option keyword will be 
the next non-white-space text encountered.

• The case of option keywords is significant. For example, letter is distinct 
from Letter.

• 40 characters is the maximum length for option keywords, including any 
extensions or qualifiers separated by dots.

• Option keywords can contain any printable ASCII characters within the 
range of decimal 33 to decimal 126 inclusive, except for the characters 
colon and slash, which serve as keyword delimiters. Once the option key-
word is encountered, and before it is properly terminated, a space, tab, or 
newline character should be regarded as an error. 



20 PostScript Printer Description File Format Specification (9 Feb 1996)

• The option keyword is terminated by either a colon or a slash. A slash 
indicates the presence of a translation string. If a translation string is 
present, it is terminated by a colon. White space and slashes are allowed in 
the translation string. A newline encountered before the colon should be 
considered an error. 

3.4 Syntax of Values

The  : (colon) character (decimal 58) is used to separate keywords (and 
options, if any) from values. Any number of tabs and spaces are permitted 
after the colon and before the value. 

A simple key/value pair looks like this 

*MainKeyword:  value

and a 3-tuple typically looks like this:

*MainKeyword option:  value

There are five basic types of values:

• InvocationValue

• QuotedValue

• SymbolValue

• StringValue

• NoValue

InvocationValue

An InvocationValue contains a syntactically correct PostScript language frag-
ment that is usable by the PostScript interpreter. This allows an 
InvocationValue to be extracted from the PPD file and placed directly into the 
output file.

An InvocationValue meets the following conditions:

• Occurs only in statements where there is an option keyword present.

• Starts and ends with the double quote character " (decimal 67).



3  Format  21

• Everything between the double quotes is treated as literal; that is, newlines 
and hexadecimal substrings are allowed and are placed in the output file to 
be passed on to the interpreter. Note that, unlike other values, a newline 
does not terminate an InvocationValue and a slash does not mark the 
beginning of a translation string.

• The following characters are forbidden between the starting and ending 
double quote characters: 

- byte codes outside the range of printable 7-bit ASCII (see section 1.2)

- double quote character " (decimal 67)

There is no escape mechanism or alternate way to represent forbidden 
characters.

QuotedValue

A QuotedValue meets the following conditions:

• Occurs only in statements without  an option keyword, with one excep-
tion: *JCL keywords, which may have both an option keyword and a 
QuotedValue. See section 5.8 for information on *JCL keywords.

• Starts and ends with a double quote character " (decimal 67).

• Between the double quote characters, a QuotedValue consists of a 
sequence of literal and/or hexadecimal substrings (defined in section 1.2). 
A literal substring is a sequence of 8-bit byte codes, as defined in section 
1.2, with the following characters forbidden:

- double quote character " (decimal 67) 

- open angle bracket < (decimal 60) because this character marks the 
beginning of a hexadecimal substring

- closing angle bracket > (decimal 62) because this character marks the 
end of a hexadecimal substring

Note that a QuotedValue is the only type of value in a PPD file that can con-
tain byte codes outside the range of printable 7-bit ASCII. Also, unlike an 
InvocationValue, forbidden literal substring characters in a QuotedValue can 
be represented as hexadecimal substrings, bounded by opening and closing 
angle brackets < (decimal 60) and > (decimal 62) as defined in section 1.2. 

Note To builders of PPD files: If you are concerned about the portability of a PPD 
file across different platforms (for example, Windows and Macintosh), you 
should also use hexadecimal substrings to represent any byte code that is out-



22 PostScript Printer Description File Format Specification (9 Feb 1996)

side the range of printable 7-bit ASCII. Most PPD files are initially built in 
English, using only printable 7-bit ASCII, but when a PPD file is translated 
to another natural language, 8-bit byte codes may be needed. Such byte codes 
are often specific to the platform and to the natural language environment. If 
the file is being translated for a specific platform, the use of 8-bit byte codes 
will probably not be a problem for that platform’s print managers, but if the 
PPD file is supposed to remain portable across platforms, the use of 8-bit 
byte codes may hinder portability.

A print manager parsing a QuotedValue is responsible for converting a hexa-
decimal substring into a sequence of bytes before using them.

• The < and > characters must be represented as hexadecimal substrings if 
they occur in the value as anything other than hexadecimal substring 
delimiters.

• The value can be intermixed literal and hexadecimal substrings. For exam-
ple, the following statements both have valid QuotedValues:

*MainKeyword: "Hi there <ABCDEF> everybody"

*MainKeyword: "<ABCDEF>"

Note To builders of PPD files: PostScript language code should not appear in a 
QuotedValue, but rather in an InvocationValue. If older parsers expecting lit-
eral substrings encounter a hexadecimal substring, which is new as of the 4.0 
specification, errors will probably result.

Note To application developers: 8-bit byte codes were not allowed in PPD files 
prior to the 4.3 specification, but this rule was widely violated when PPD 
files were translated to other natural languages. Most parsers simply pass the 
8-bit byte codes along without rejecting them or attempting to translate them, 
but any parsers that expect only printable 7-bit ASCII may have problems 
with 8-bit byte codes in translated and newer PPD files.

SymbolValue

A SymbolValue is used as pointer to a body of PostScript language code (an 
InvocationValue). A SymbolValue can occur in a statement whether or not 
there is an option keyword present.

A SymbolValue is a value that meets the following conditions:

• Starts with a caret ^ (decimal 94)

• Contains only printable 7-bit ASCII byte codes and is terminated by a 
newline. No white space is allowed.



3  Format  23

• The actual text of the SymbolValue is further constrained by the require-
ments documented in section .

StringValue

A StringValue can occur in a statement whether or not there is an option key-
word present. A value of the form StringValue meets the following condi-
tions:

• The value is not surrounded by the double quote character. 

• The first character of the value cannot be a double quote character, to 
avoid a parser confusing a StringValue with a QuotedValue or an 
InvocationValue. 

• The first character of the value cannot be a caret ^ (decimal 94), to avoid 
confusing a StringValue with a SymbolValue.

• The value is composed of printable 7-bit ASCII byte codes, possibly sepa-
rated by spaces and tabs into multiple components. It is terminated by a 
newline, or by a slash, in the case of a translation string.

• There is no escape mechanism for forbidden characters.

NoValue

A value of type NoValue meets the following conditions:

• There is no option keyword present.

• There is no value present.

• The main keyword stands alone.

Parsing Summary for Values

When parsing values, be aware of the following:

• If there is an option keyword in a statement, and the first non-white-space 
character after the colon is a double quote, " (decimal 67), the value is an 
InvocationValue. The exception to this rule is that if the main keyword 
starts with the string *JCL, the value should be treated like a QuotedValue. 
See section 5.8 for a description of the *JCL keywords.

• If there is an option keyword in a statement, and the first non-white-space 
character after the colon is a caret, ^ (decimal 94), the value is a 
SymbolValue.



24 PostScript Printer Description File Format Specification (9 Feb 1996)

• If there is an option keyword in a statement, and the first non-white-space 
character after the colon is neither a double quote, " (decimal 67) nor a 
caret, ^ (decimal 94), the value is a StringValue.

• If there is no option keyword, and the first non-white-space character after 
the colon is a double quote, " (decimal 67), the value is a QuotedValue.

• If there is no option keyword, and the first non-white-space character after 
the colon is a caret, ^ (decimal 94), the value is a SymbolValue.

• If there is no option keyword, and the first non-white-space character after 
the colon is neither a double quote, " (decimal 67) nor a caret, ^ (decimal 
94), the value is a StringValue.

• The value of a query keyword (one that starts with the characters *?), 
although formatted as a QuotedValue, should be treated as an Invocation-
Value.

• The value of a *Default keyword statement must be a StringValue.

• If a *Default keyword is not stand-alone (defined in section 1.2), the value 
must be a string matching a valid option keyword in the surrounding entry, 
or it may be Unknown. If the *Default keyword is stand-alone, the value must 
be one of the values registered in this specification for the main keyword 
that it would normally accompany, and the value may not be Unknown, as 
that provides no useful information.

• StringValues can contain spaces and tabs, because there might be multiple 
components of a value.

• An InvocationValue or a QuotedValue is terminated by the closing double 
quote, and can be followed by a translation string, indicated by a slash 
after the closing double quote and before the newline. If the value has a 
translation string, the translation string is terminated by a newline.

• A SymbolValue, StringValue, or NoValue is terminated by a newline. 

• When parsing an InvocationValue or a QuotedValue, parsing should con-
tinue until the matching closing double quote is found, even if it crosses a 
line boundary. Line boundaries are considered significant white space 
within an InvocationValue or QuotedValue. That is, lines will not be 
broken in the middle of PostScript language tokens. An InvocationValue 
or QuotedValue is considered a single “token” when parsing PPD files. 

• If an InvocationValue or QuotedValue breaks across a line, the *End key-
word should occur as the next statement in the PPD file after the closing 
double quote delimiter. If it is not found, this is considered a parse error 
with a missing closing delimiter. The *End keyword appears only where an 



3  Format  25

InvocationValue or QuotedValue extends across a line boundary. Care 
should be taken to preserve the line breaks in InvocationValues and 
QuotedValues. This will ensure that comments within code segments will 
end where they were intended to end.

• All characters inside an InvocationValue are treated as literals and are 
placed directly in the output file. Particularly: a slash appearing within the 
double quotes is not treated as a marker for the beginning of the translation 
string, newlines do not terminate the statement, and hexadecimal sub-
strings should not be specially interpreted by the parser. 

• When parsing a QuotedValue, an open angle bracket signifies the begin-
ning of a hexadecimal substring, which is terminated by a closing angle 
bracket. Everything between the angle brackets should be converted to 
byte codes before being used. Any non-hex data between the angle brack-
ets is considered an error, as is an odd number of hex digits. White space 
and newlines between the angle brackets should be ignored.

• A file referenced by the *Include keyword should be treated as though it 
were in-line in the including (local customization) file. Be prepared for 
nested includes. See section 2.6 for discussion on the semantics of 
repeated statements and keywords.

3.5 Translation String Syntax

There are many entries in a PPD file that can be encountered at the user level, 
including main keywords and option keywords displayed as selectable 
choices in a user interface, and messages from the device. Sometimes these 
keywords and device messages can be cryptically worded and must be 
reworded for clarity, or they might need to be translated into another lan-
guage for the user to understand them. 

If keywords and messages changed with each translation of the PPD file to a 
new language, a parsing program would have to be written to recognize the 
keywords in each new language, which would greatly expand the size of the 
parser and the amount of work involved in writing it. Instead, a syntax is pro-
vided for the optional use of translation strings, which are appended to the 
original keywords and messages. Thus, normal keyword searches can be car-
ried out, and the translation strings can optionally be presented to users 
instead of (or in addition to) the keywords.

If a PPD file is translated into several languages, there will be one PPD file 
for each language. In various language versions of a PPD file, only the trans-
lation strings, certain QuotedValues that are used to identify the device, and 
possibly the comments, will differ. All other information, including main 
keywords and option keywords, will remain the same.



26 PostScript Printer Description File Format Specification (9 Feb 1996)

Note To builders of PPD files: The values of the following keywords may be trans-
lated directly, without using a translation string: *Include, *ModelName, 
*NickName, *PCFileName, and *ShortNickName. Because these are QuotedValues, 
they may include 8-bit byte codes.

A translation string can occur after any option keyword or after any type of 
value except a SymbolValue. The value of a *Default keyword may have a 
translation string only if it appears as a stand-alone keyword (see section 1.2), 
such as *DefaultColorSep, or *DefaultResolution without a corresponding *Resolution 
keyword. If the *Default keyword is not stand-alone (if it appears with an asso-
ciated main keyword and option keywords), it does not need a translation 
string and should not have one, because such translation strings, if any, 
should occur with the option keywords, to avoid confusing parsers. See sec-
tion 2.6, section 3.2, and section 4.5 for more information on *Default key-
words.

With closely related statements, such as *PageSize and *PageRegion, it is impos-
sible to predict which statement a print manager will read to get the transla-
tion string for an option keyword. For continuity of results, if a given option 
keyword has a translation string, and that option keyword is used with multi-
ple main keywords and has the same semantics across those keywords, then 
the translation string should be on every occurrence of the option keyword 
and should be identical across occurrences. For example, if the *PageSize 
statement for Letter uses a translation string Portrait Letter, the *PageRegion, 
*PaperDimension, and *ImageableArea statements for Letter should all use the same 
translation string. 

A translation string is detected by the presence of a slash (/) character (deci-
mal 47), and continues until a colon (if the translation string is on an option 
keyword) or a newline (if the translation string is on a value) is encountered. 

The following is an example of the translation string syntax showing both the 
translation from English into French of an option keyword (Ledger) and a 
value (the message “out of paper”):

*LanguageVersion: French

*PageSize Ledger/ Papier Ledger : "statusdict /ledgertray get exec"

*PrinterError: "out of paper"/ Il n’y en a plus de papier.

This example shows the translation of two cryptic values into strings that are 
more meaningful to the user (a “translation” into English):

*LanguageVersion: English

*DefaultColorSep: ProcessBlack.90lpi.1200dpi/ 90 lpi / 1200 dpi

*PrinterError: "CVR OPN"/ cover open

Translation strings in a PPD file are optional. If translation strings are 
present, the translation strings should be used for display to the user, rather 
than displaying the option keywords or messages themselves. If there are no 



3  Format  27

translation strings, the option keywords and values must be displayed directly 
as appropriate. A parser must be especially careful not to confuse a transla-
tion string following an option keyword with the PostScript language 
sequence that follows in the value field, after the colon.

To unambiguously relate natural-language characters to byte codes, an 
encoding is specified for each natural language (such as English or French) 
that can be used in a PPD file. These encodings are described by the key-
words *LanguageVersion and *LanguageEncoding, documented in section 5.3. 

Translation strings may include 8-bit byte codes, such as characters with 
accents. See section 1.2 for the range of byte codes allowed in PPD files. If 
the builder of the PPD file is concerned about file portability across plat-
forms, the byte code range in translation strings should be limited to printable 
7-bit ASCII, with out-of-range byte codes represented by hexadecimal sub-
strings (defined in section 1.2). A translation string can be represented par-
tially or wholly as a hexadecimal substring. A print manager must convert the 
hexadecimal substring to the appropriate sequence of byte codes before dis-
playing the translation string to the user.

The following example shows the Swedish translation string for the printer 
error message “cover open,” using a hexadecimal substring to represent the 
single eight-bit ISOLatin1 character “Odieresissmall.”

*LanguageVersion: Swedish

*PrinterError: "cover open"/lucka <F6>ppen

Here is the same message, with the Swedish translation displayed entirely as 
a hexadecimal substring:

*PrinterError: "cover open"/<6C75636B61 20 F67070656E>

The following characters must be represented as hexadecimal substrings:

• All byte codes outside the valid range, as described in section 1.2. 

• The character colon : (decimal 58, if the translation string is on an option 
keyword.

• The characters < and > (decimal 60 and 62), if they are part of the actual 
text of the translation string.

Parsing Summary for Translation Strings

When parsing option keywords and values, remember:

• The translation string is optional. All parsers should be written to permit 
them without requiring them. If present, translation strings should be used 
for display to the user.



28 PostScript Printer Description File Format Specification (9 Feb 1996)

• If present, the translation string consists of a sequence of literal and/or 
hexadecimal substrings.

• A literal substring is a sequence of in-range byte codes (defined in section 
1.2), except that it cannot contain the following characters: newline, < 
(decimal 60) and > (decimal 62). Additionally, a colon is forbidden when 
the translation string is on an option keyword, because an option keyword 
is terminated by a colon.

• A hexadecimal substring is as defined in section 1.2 except that in a trans-
lation string, a newline in a hexadecimal string is illegal, since a newline 
terminates the translation string.

• The translation string begins with the first character immediately after the 
slash, even if it is white space. Note that the slash and white space charac-
ters are permitted in a literal substring.

• If the translation string occurs before a colon (that is, on an option key-
word), it is terminated by a colon (:) or a newline. However, a newline 
encountered after an option keyword and before the colon will violate the 
syntax of option keywords.

• If the translation string occurs after a colon (that is, on a value), it is termi-
nated by a newline.

• Out-of-range byte codes should be considered an error.

3.6 Human-Readable Comments

Comments are supported in the PPD files using the main keyword ‘*%’. Any-
thing following this main keyword (through the end of the line on which it 
appears) should be ignored by a parsing program. The * character is the same 
introductory symbol used for all main keywords, and the % character is bor-
rowed from PostScript language syntax as its comment character. These com-
ments will begin only in column one, for simplicity.

There can also be comments in any PostScript language code, using the stan-
dard syntax of starting the comment with a %. Comments in code should be 
kept to a minimum, however, to reduce transmission time.

3.7 PostScript Language Sequences

The PostScript language sequences supplied for invoking device features are 
usually represented as InvocationValues. Sometimes they are represented as 
QuotedValues, for example, when they contain binary data.



3  Format  29

For multiple-line InvocationValues or QuotedValues, the main keyword *End 
is used as an extra delimiter to help line-extraction programs (such as grep or 
awk in UNIX). The keyword *End also makes the PPD file more easily read-
able by humans, because the double quote delimiter is sometimes difficult to 
see at the end of a long string of code.

*End is used only when the code requires more than one line in the PPD file. 
In the following two examples, the *PageSize statement fits on one line and 
does not require *End. The *?Smoothing statement is an “extended” code 
sequence that does require *End:

*PageSize Legal: "serverdict begin legaltray end"

*?Smoothing: "save 

[(None)(Light)(Medium)(Dark)]

statusdict /doret {get exec}

stopped { pop pop (Unknown)} if

= flush restore"

*End

The PostScript language sequences supplied in the PPD files are guaranteed 
to work only on the device for which the file was prepared. The sequences 
assume the default state of the interpreter. Only userdict  and systemdict  (and 
globaldict  on Level 2 devices) are assumed to be on the dictionary stack. There 
will be no memory use (save  and restore  are used where appropriate) except as 
in setting frame buffers, where memory use is necessary.

Adobe recommends that the following syntax be used when building PPD 
files

<dict> /foo get exec

rather than

<dict> begin foo end 

This will prevent errors caused by a print manager not cleaning up the dictio-
nary stack properly after catching an error in a stopped context.

Level 2 PostScript language sequences

Sometimes a PostScript language file generated using a PPD file for a given 
device is redirected to another, different device. This can happen if the file is 
stored for later printing and the original device is not available at print time, 
or if files are exchanged between users with different printers, or if an intelli-
gent spooler redirects the file to a more appropriate printing device. Although 
there is absolutely no guarantee that a PostScript language file created for a 



30 PostScript Printer Description File Format Specification (9 Feb 1996)

specific device will work on another device, there is a reasonable chance that 
it will, if the file contains few or no calls to special device features. One or 
more of the following may happen:

• The file causes the PostScript language interpreter in the device to abnor-
mally terminate execution, possibly requiring the device to be reset.

• The file fails to print any pages.

• Features requested by the file, such as duplex or a certain size of paper, are 
not available, so these feature requests are ignored and the file prints on 
the device’s default paper with default feature settings.

• Some requested features exist but their settings have different meanings on 
the current device, so the file prints but the results are unexpected. For 
example, the printing might be darker, or the image might be oriented 
sideways on the paper.

• The file prints correctly because all the feature requests are available and 
the settings have the same semantics, or because there are no feature 
requests and the default page size and default feature settings are accept-
able.

A print manager can guard against the first two cases by executing each fea-
ture request in a stopped context. Thus, a request for a feature that does not 
exist on the current device will effectively be ignored. (See section 2.4 for 
more information on error handling by print managers.) 

In the next two cases, the printed effect may not be exactly what the user 
requested, but at least they'll get something. For example, a file requesting 
duplex printing may be sent to a simplex printer, and depending on the print 
manager, it may print, but only on one side of each page.

To further the aim of printing whenever possible, even when Level 2 code is 
sent to a Level 1 device, the following recommendations should be followed 
when building a PPD file.

• Do not use the Level 2 dictionary syntax symbols << and >> directly in 
invocation code when constructing dictionaries. Doing so will cause a 
syntaxerror  if this code is re-directed to a Level 1 device. Such a syntaxerror  
cannot be trapped in a stopped  context by a print manager. The two alterna-
tives are to use the more verbose Level 1 method:

N dict

dup /name1 value1 put

dup /name2 value2 put

...

dup /nameN valueN put



3  Format  31

or to put the more efficient Level 2 method into an executable string:

(<<) cvx exec /name1 value1 /name2 value2

...

/nameN valueN (>>) cvx exec

This second method will avoid the syntaxerror  described above. It will con-
sume a tiny amount of VM, which will be restored by automatic garbage col-
lection on a Level 2 device.

3.8 PPD File Structure

To enable parsing, there is some minimal structure to a PPD file.

The first line of a PPD file must be

*PPD-Adobe: " nnn"

where the value “nnn” is a real number that designates conformance to a ver-
sion of the PPD specification. (See section 5.2 for details on *PPD-Adobe.) 
Files conforming to this version of the specification would have the following 
statement:

*PPD-Adobe: "4.3"

This line is generally followed by comment lines containing copyright and 
licensing restrictions.

Certain keywords are required in a PPD file. Required keywords are marked 
as Required in their individual descriptions in this document, and are listed at 
the beginning of section 5. By convention, the following subset of required 
keywords generally appears immediately after the copyright, in any order, 
except that *ShortNickname must occur before *NickName. This general informa-
tion is often needed by print managers, and parsing the PPD file may be faster 
if the following information is included near the beginning of the file:

*PPD-Adobe *NickName *ModelName
*Product *PSVersion *PCFileName
*FormatVersion *LanguageEncoding *LanguageVersion
*FileVersion *Manufacturer *ShortNickName

The number of bytes in a PPD file is not limited by this specification. How-
ever, certain print managers impose limits on some aspects of a PPD file. 
Builders of PPD files should be aware of the following restrictions:

• In the Windows environment, both PScript 4.x and AdobePS 4.x limit the 
combined total of all invocation code, query code, keywords, options, and 
translation strings in a PPD file to less than or equal to 64KB. Also, the 
number of *OpenUI and *JCLOpenUI entries must be less than 100.



32 PostScript Printer Description File Format Specification (9 Feb 1996)

• In the Macintosh environment, both LaserWriter 8.x and PSPrinter 8.x 
limit the size of each invocation code fragment to less than or equal to 
32KB.

• In the Windows 95 environment, the Image Color Matching (ICM) system 
places additional restrictions on the content of *ModelName, *ShortNickName, 
and *Manufacturer in PPD files for color printers. See the descriptions of 
those keywords for details.

4 Syntax of Specification

Throughout this specification, certain syntactical conventions are followed to 
make things clearer for the reader. 

4.1 General Syntax

The following notation is used to describe keywords.

• Main keywords, option keywords, and actual values always appear in sans 
serif type: *MainKeyword:, True, Null.

• Placeholder items (which will be replaced by an actual value in the PPD) 
appear in sans italic type: mediaOption, invocation.

• Boldface type in prose denotes a PostScript language operator or dictio-
nary key, such as the setpagedevice key PageSize.

• The vertical bar ( | ) character is used to mean “or”, where “or” is an exclu-
sive or. For example, this statement in the PPD file specification

*DefaultManualFeed: True | False

means that this statement in the PPD file will read either 

*DefaultManualFeed: True

or 

*DefaultManualFeed: False

but True and False cannot both appear in this statement. 



4  Syntax of Specification  33

• The ellipsis ( ... ) means that more than one instance of a token can appear, 
separated by white space. For example, this statement in the PPD file spec-
ification

*Extensions: extension ...

means that this main keyword has several possible values, indicating 
which language extensions are supported by the device. Because a device 
can support several language extensions, this keyword can have multiple 
values, separated by white space. 

For example, both of these PPD file statements are valid

*Extensions: FileSystem

*Extensions: CMYK FileSystem Composite

Main keywords that are commonly bracketed with the *OpenUI/*CloseUI key-
words in PPD files are marked in this specification with this symbol (“UI” for 
“user interface”) next to the keyword definition. This does not mean that the 
main keyword must be bracketed by *OpenUI/*CloseUI; it only informs builders 
of PPD files that this keyword is commonly considered to be a UI keyword. 
See section 5.2 for details on *OpenUI/*CloseUI.

A few of the main keywords may require starting an unencapsulated job (for-
merly known as “exiting the server loop”) for correct execution. These have 
been flagged by a dagger in the left margin as shown here. If handling such a 
keyword, the print manager must perform the following tasks:

• declare an unencapsulated job using the DSC comment: 
%!PS-Adobe-3.0 ExitServer

• obtain a password from the user, from system software, or from the key-
word *Password in the PPD file, and put the password on the operand stack

• emit the code from the daggered keyword

• end the job and use the DSC comment %%EOF

Builders of PPD files must ensure that the code contained in the value of a 
daggered keyword does the following:

• checks for the existence and validity of a password on the operand stack

• begins an unencapsulated job by using exitserver  (Level 1) or startjob  (Level 
2)

• performs the function of the daggered keyword (for example, changes the 
resolution or fixes a bug)

UIU I


†



34 PostScript Printer Description File Format Specification (9 Feb 1996)

The code to perform the first two functions can usually be copied from the 
value of the *ExitServer keyword in the PPD file.

4.2 Sample Keyword Statements

The format of section 5, which documents the individual keywords, shows 
the main keyword, the possible option keywords, and a pseudo-code syntax 
to illustrate its value. A main keyword can have either a restricted option key-
word list (option keywords are restricted to those listed), an unlimited option 
keyword list (option keywords can be added at any time), or no option key-
words at all. 

The value type of each keyword (InvocationValue, QuotedValue, 
SymbolValue, StringValue) is recorded in the description of the keyword, 
with the following exceptions:

• Query keywords, which are always of type QuotedValue

• *Default keywords, which are always of type StringValue

Here are examples of what each type of keyword looks like in this specifica-
tion:

*MainKeyword Option1 | Option2: “invocation”

This indicates that for the main keyword *MainKeyword, there is a restricted 
option keyword list consisting of two legal option keywords (Option1 and 
Option2), and the appropriate syntax for the value is a PostScript language 
invocation string enclosed in double quotes. In the PPD file, there would be 
one statement for each main keyword-option keyword pair:

*MainKeyword Option1: "invocation"

*MainKeyword Option2: "different invocation"

A typical example of a restricted option list would be a keyword whose only 
options are True and False:

*Collate True: "(<<) cvx exec /Collate true

(>>) cvx exec setpagedevice"

*End

*Collate False: "(<<) cvx exec /Collate false

(>>) cvx exec setpagedevice"

*End



4  Syntax of Specification  35

*MainKeyword optiontype: “invocation”

This indicates that for the keyword *MainKeyword, there can be many legal 
option keywords. The currently known option keywords will be listed in this 
specification with the main keyword, but others can be added at any time. As 
above, the appropriate syntax for the value of the tuple is a PostScript lan-
guage invocation string enclosed in double quotes. Again, in the PPD file, 
there would be one statement for each main keyword-option keyword pair:

*DifferentKeyword Option 1: "invocation"

...

*DifferentKeyword Option n: "invocation"

For example, the list of page sizes offered by a device is an extensible list:

*OpenUI *PageSize: PickOne

*DefaultPageSize: Letter

*OrderDependency: 30 AnySetup *PageSize

*PageSize Letter: "(<<) cvx exec 

/PageSize [612 792] (>>) cvx exec setpagedevice"

*End

*PageSize Legal: "(<<) cvx exec

/PageSize [612 1008] (>>) cvx exec setpagedevice"

*End

*PageSize Ledger: "(<<) cvx exec

/PageSize [1224 792] (>>) cvx exec setpagedevice"

*End

*?PageSize: “query code to get current /PageSize”

*CloseUI: *PageSize

*MainKeyword: “int”

This main keyword has no option keywords, and the appropriate syntax for 
the value of the tuple is an integer enclosed in double quotes. For example

*FreeVM: "110980"

*?MainKeyword: “query” (returns: keywordOption | Unknown)

This is a query keyword, evidenced by the *? prefix. Its value is a query, as 
defined in section 4.3. The valid return values for this query are documented 
in this specification to the right of the sample query statement; they are not 
part of the statement itself. That is, the PPD file would contain:

*?MainKeyword: “code to perform query”



36 PostScript Printer Description File Format Specification (9 Feb 1996)

*MainKeyword option: “invocation”

*DefaultMainKeyword: keywordOption | Unknown

*?MainKeyword: “query” (returns: keywordOption | Unknown)

Where it makes sense, the main keyword, default keyword, and query key-
word are documented in a block together, as shown here. The valid return 
values for the query keyword are documented to the right of the sample query 
statement.

4.3 Elementary Types

The PPD specification employs various elementary types of expressions. 
These types are defined in this section.

filename
A filename is a QuotedValue and is subject to the rules of QuotedValues. Cur-
rently, filename is used only by the *Include keyword. It can be the name of the 
file itself, or it might be a path to the file. The following are all examples of 
legal filenames:

*Include: "MyDevice.PPD"

*Include: "/home/adobe/PPDfiles/myfile.ppd"

*Include: "My<3C>test<3C>file.ppd"

*Include: "C:\lib\MyDevice.PPD"

In the third example, the filename contains the double quote character, repre-
sented as a hex string. The encoding of a filename is system-dependent and is 
not necessarily portable to other systems. At minimum, the filename or path-
name might have to be edited when porting.

fontname
A fontname is a special case of a string, which is defined in this section. A font-
name is delimited by blanks. Examples of standard fontnames can be found in 
Standard Character Sets and Encoding Vectors, in Appendix E of the Post-
Script Language Reference Manual, Second Edition, and some are listed 
here:

Times-Roman

Helvetica-Bold

NewCenturySchoolbook-Italic

Notice that fontname does not start with a slash character (/) as it does in the 
PostScript language when the font name is specified as a literal.

int
An integer, as used in this specification, is a non-fractional number that has no 
sign. There are practical limitations for an integer’s maximum value, but as a 
default it should range between 0 and 4.295 x 109 (32 bits).



4  Syntax of Specification  37

invocation
An invocation is a sequence of valid PostScript language commands. An invoca-
tion is generally used to perform some manipulation of the device. It can be 
represented either as a QuotedValue or an InvocationValue, depending on the 
keyword described.

JCL
JCL is an arbitrary sequence of valid job control language commands. This 
code is generally used to perform some manipulation of the device outside of 
the control of the PostScript interpreter. It is represented as a QuotedValue 
because it may contain 8-bit byte codes.

option
An option keyword, or simply option, is a string subject to the rules defined in 
section 3.1 and section 3.3. In this specification, the placeholders for option 
keywords are generally preceded by a descriptive qualifier, as in mediaOption 
or trayOption. 

query
A query is a sequence of valid PostScript language commands that requests 
information from the device and returns a string, terminated by a newline, to 
the host via the reverse channel of the device. Translation strings are not 
allowed on the values returned from queries. Valid return values for a query 
are determined as follows:

• If the associated main keyword is a UI keyword (defined in section 1.2), 
the query must return one of the option keywords listed in the PPD file for 
that main keyword, or it can return the string Unknown. For example, if 
*PageSize is a UI keyword, then the *?PageSize query can only return valid 
page size options (such as Letter and Legal, without translation strings) that 
are listed under *PageSize, or it can return Unknown, terminated by a newline.

• If the associated main keyword is not a UI keyword, then the valid return 
values for the query keyword are documented in this specification. For 
examples, see *?FontQuery, *?FontList, *?ImageableArea, *?InsertSheet, and 
*?FileSystem. The return value must be terminated by a newline.

Note To builders of PPD files: Because of its format, the value of a query is a 
QuotedValue, but you should follow the rules for InvocationValues when writ-
ing queries, as the query must be a valid PostScript code fragment.

real
A real number is a fractional number that can be signed or unsigned. There are 
practical limitations on the maximum size of a real, but as a default it should 
range between 3.4 × 10-38 to 3.4 × 10+38. A real in a PPD file will not include 
scientific or exponential notation. That is, the following are all valid:

1.4 -4.2273 .165 0.165



38 PostScript Printer Description File Format Specification (9 Feb 1996)

but the following are not valid:

1.4e-4 -1.45E7 -1.45E+7

string
A string is comprised of any printable characters, but is delimited by white 
space. The length of a string is limited by the 255 characters-per-line limit 
described in section 3.1.

text
A text string may contain any characters that are legal in the value type. For 
example, text in a QuotedValue may contain any character that is legal in a 
QuotedValue, including spaces, hexadecimal substrings, and 8-bit byte codes. 
Individual keywords may further restrict the allowable characters in a text 
string, so text strings cannot be treated uniformly by a print manager. The 
length of a text string is limited by the 255 characters-per-line limit described 
in section 3.1.

4.4 Standard Option Values for Main Keywords

The following option keywords are used with many different main keywords 
and have universal meaning throughout a PPD file.

True

True is used in a PPD file in two ways. When used as the value of a *Default 
keyword, True means that the default state of that particular feature is “on”. 
For example, the following statement means that this device will feed media 
from the manual feed slot unless explicitly told to do otherwise.

*DefaultManualFeed: True

When used as an option to a main keyword, True means that the value of that 
option of the keyword is the PostScript language code required to “turn on” 
or invoke the feature. For example, the following statement contains the code 
to enable the manual feed slot:

*ManualFeed True: "statusdict /manualfeed true put"

False
Like True, False is used throughout a PPD file in two ways. When used as the 
value of a *Default keyword whose value is a boolean True or False, False means 
that the default state of that particular feature is “off.” For example, the fol-
lowing statement means that this device will not feed media from the manual 
feed slot unless explicitly told to do so.

*DefaultManualFeed: False



4  Syntax of Specification  39

When used as an option to a main keyword, False means that the value of that 
option of the keyword is the PostScript language code required to “turn off” 
or deselect the feature. For example, the following statement contains the 
code to deselect the manual feed slot.

*ManualFeed False: "statusdict /manualfeed false put"

None
Like False, None is used to indicate that a certain feature is deselected (off) by 
default, and also to indicate how to deselect (turn off) a feature. False is used 
with boolean features; None is used for features with more than two states. For 
example:

*DefaultFoldType: None

*FoldType None: "code to turn off folding"

*FoldType Saddle: "code to invoke a saddle fold"

*FoldType ZFold: "code to invoke a z-gate fold"

Code associated with a None option will explicitly turn off the feature. In the 
example above, the None option would contain code to invoke “no folding.”

Note None is never used to indicate the absence of a feature. If a feature is absent, 
the feature’s keywords will be omitted from the PPD file. For example, if a 
device does not support manual feed, the manualfeed keywords are omitted 
entirely and *DefaultManualFeed: None is invalid.

Unknown
This string is returned from queries if the correct information can not be 
determined, or none of the valid keywords can be returned. It is also used as a 
value for *Default keywords, to denote that there is no specific default state (for 
example, *DefaultPageSize: Unknown on a device whose page size is not set until 
the user requests a page size). However, a stand-alone *Default keyword should 
never have a value of Unknown, as that provides no useful information for a 
print manager.

Note Like None, Unknown is not used to indicate complete absence of a feature; if a 
feature is absent, the feature’s keywords will be completely omitted from the 
PPD file.



40 PostScript Printer Description File Format Specification (9 Feb 1996)

4.5 Summary of Rules for *Default Keywords

Because information about *Default keywords is distributed throughout the 
preceding part of this document, this section summarizes the rules for *Default 
keywords, both for print manager authors and for builders of PPD files.

• A *Default keyword may appear as part of an entry or by itself. A *Default 
keyword appearing by itself is referred to as a stand-alone *Default keyword 
(see section 1.2). Some *Default keywords are always stand-alone.

• The value of a *Default keyword must be a StringValue (no quotes).

• If a *Default keyword is part of an entry, its value must be one of the options 
of the main keyword in the entry, or it may be Unknown.

• If a *Default keyword is stand-alone, its value must be one of the options 
registered in this specification for the main keyword that it would nor-
mally accompany, or the *Default keyword must have its own set of valid 
values documented in this specification and the value must be one of 
those. A stand-alone *Default keyword may not appear with the value of 
Unknown, as that provides no useful information to a print manager.

• A stand-alone *Default keyword may have a translation string on its value.

• A *Default keyword that is part of an entry may not have a translation string 
on its value, because it is likely that translation strings will occur on the 
option keywords of the main keyword in the entry, and a print manager 
would not know which translation string to use.



5  Keywords  41

5 Keywords

This section contains a description of how builders of PPD files can define 
their own main keywords, followed by documentation of the currently 
defined keywords and a description of their uses. The keywords are grouped 
according to their functionality. Where appropriate, registered option key-
words are documented along with the keywords with which they are associ-
ated. This is to prevent a given combination of main keyword and option 
keyword from having multiple meanings across multiple PPD files.

All keywords are optional in a PPD file, unless noted as Required in the key-
word description. The following keywords are currently required:

*DefaultImageableArea *DefaultPageRegion *DefaultPageSize*
*DefaultPaperDimension *FileVersion *FormatVersion
*ImageableArea *LanguageEncoding *LanguageVersion
*Manufacturer *ModelName *NickName
*PageRegion *PageSize *PaperDimension
*PCFileName *PPD-Adobe *Product
*PSVersion *ShortNickName

Note *Manufacturer is new as of the 4.3 version of this specification. *ShortNickName is 
newly required in the 4.3 version; it was not required in previous versions.

Every feature of the device that can be described by a PPD keyword should 
be included in the PPD file. Inclusion of all relevant keywords in the PPD file 
produces the most complete picture of the device for the print manager and 
user. Builders of PPD files should consider all non-required keywords to be 
recommended for inclusion in the PPD file if they are relevant to the device.

On the other hand, if a feature is not supported by a device, that feature’s 
default, invocation, and query keywords must be omitted from the PPD file. 
To a print manager, absence of a feature in the PPD implies lack of device 
support for that feature. 

5.1 Creating Your Own Keywords

Device manufacturers and other builders of PPD files may create their own 
main keywords by following the rules in this specification. For tracking pur-
poses, such keywords must be named with a prefix unique to the creator. For 
example, Acme Printer Co. might use the prefix "*AC", and their keywords 
would have names like *ACHalftone. The same prefix must be used on all key-
words created by one company. For ease of tracking and guaranteed prefix 
uniqueness, Adobe recommends using the same two-letter prefix already in 
use by the creator for their PPD file names (and *PCFileName). The list of 
assigned prefixes can be found in Appendix D: Manufacturer’s Prefix List 
and *Manufacturer Strings, and updates can be obtained from the address on 
the front cover.



42 PostScript Printer Description File Format Specification (9 Feb 1996)

Keywords created outside of Adobe must not conflict with or duplicate the 
definition of keywords already existing in this specification. To avoid unnec-
essary proliferation of keywords, builders of PPD files should make every 
effort to see if their device’s feature can be defined by an existing keyword, 
before creating a new keyword.

Print managers cannot be expected to know how to deal with an unknown 
keyword, unless the keyword is enclosed by the *OpenUI/*CloseUI construction 
and follows all the rules associated with that construction. See section 5.2 for 
information about *OpenUI and *CloseUI.

Builders of PPD files may also create their own option keywords if necessary. 
No unique prefix is necessary for option keywords, but all rules pertaining to 
option keywords must be followed. Again, every effort should be made to use 
an existing option keyword before defining a new option keyword. See sec-
tion 3.3 for rules pertaining to option keywords. In addition, although it is not 
required, option keywords usually have the first letter capitalized, for better 
readability of the user interface created by a print manager.

5.2 Structure Keywords

The keywords in this section do not invoke any device features. Instead, they 
provide structure to a PPD file and are intended to aid in parsing the PPD file 
and building a user interface.

*PPD-Adobe: “4.3”

Required. This keyword must be the first line in a valid PPD file. The Quoted-
Value of “4.3” signifies that this file conforms to the 4.3 version of this speci-
fication. Conformance to a later version of this specification would be 
indicated by a higher number. A parser can assume that a changed digit to the 
right of the decimal indicates a minor revision to the specification, and the 
file can be safely parsed by older parsers. A change in the digit to the left of 
the decimal indicates a more significant change in the specification, and a file 
that conforms to the newer version of the specification may be incompatible 
with older parsers.

*OpenUI mainKeyword: PickOne | PickMany | Boolean

*CloseUI:  mainKeyword

These keywords allow a parser to differentiate between UI keywords, which 
would typically be displayed in the user interface, and informational key-
words, which would typically not be displayed. *OpenUI and *CloseUI are used 
to bracket all the information about a UI keyword, if that keyword describes 
device features that can be selected by the user. 



5  Keywords  43

For example, the list of page size options offered by the *PageSize keyword 
will be bracketed with *OpenUI/*CloseUI, because the device supports the user 
selection of a page size, but the keyword *Throughput, which describes the 
rated printing capacity of the device, would not be bracketed by *OpenUI/
*CloseUI, because the throughput is not selectable by the user. Query key-
words, *Default keywords, and any other associated keywords, such as *Param- 
keywords and *OrderDependency, are included in the *OpenUI/*CloseUI bracketing 
for convenience and readability. (Adobe strongly recommends that every 
*OpenUI/*CloseUI entry contain an appropriate *OrderDependency statement, so 
that the print manager knows where to emit the code in the output file.)

The StringValue values PickOne, PickMany, and Boolean denote the type of 
option list for this feature.

• PickOne means that, for this feature, the device supports only one choice at 
a time from the list of available options. The print manager can use this 
information when building a user interface, so that when a user selects any 
single choice from the list, the other choices are deselected. An example of 
a PickOne type of list is *PageSize, which displays the list of available page 
sizes. A page must always have a size, and it cannot be two sizes at once. 

The option None has special meaning. Code associated with None explicitly 
deselects the other options in the list. For example, a list of stapling 
options might include None, meaning “do not staple.” If the user selects 
None, the print manager should send the code supplied to disable stapling, 
in case the device is set up to staple by default.

• PickMany means that, for this feature, the device supports one or more 
choices at a time from the list of available options. For example, a device 
might allow two kinds of folding to occur at once. The print manager can 
use this information when building a user interface, so that when a user 
selects any single choice, the other choices in the list are not disabled or 
deselected. 

In a PickMany type of option list, one of the options must be None. The code 
associated with None explicitly deselects all other options in the list. This is 
an exception to the general PickMany rule of allowing more than one choice 
at a time. In a user interface, if a user selects None, all other options for that 
feature should be deselected by the print manager. If a user selects any 
option other than None, then None should be deselected.

• Boolean means that there are only two choices, True and False. This tells a 
print manager that this feature could be displayed as a check box or radio 
buttons, rather than as a menu list. 



44 PostScript Printer Description File Format Specification (9 Feb 1996)

The parameter mainKeyword, which is both the option of the *OpenUI statement 
and the StringValue of *CloseUI, is the keyword whose options are listed 
within the *OpenUI/*CloseUI pair. The value may optionally have a translation 
string to show the manufacturer’s preferred name for the feature. 

Here is a sample entry:

*OpenUI *Smoothing/Smooth Characters: Boolean

*DefaultSmoothing: False

*OrderDependency: 40 AnySetup *Smoothing

*Smoothing True: "invocation code"

*Smoothing False: "invocation code"

*?Smoothing: “query code”

*CloseUI: *Smoothing

Given this entry in a PPD file, the print manager could use this information to 
display a menu, checkbox, or radio buttons labeled “Smooth Characters” 
with two options, True and False.

The *OpenUI/*CloseUI structure provides several benefits:

• It allows a print manager to build a user interface automatically and uni-
formly. The user-selectable options bracketed by *OpenUI/*CloseUI follow a 
certain form. Each entry contains one or more statements consisting of a 
main keyword, option keyword, and a value, which is a code sequence. 
The print manager can display the options, record the user’s selection of 
an option, extract the code for that option, and send the code to the device, 
all without having any semantic knowledge of the feature and its options.

• New options can be added to a main keyword without the print manager 
having to be rewritten to parse for them. Assuming that a print manager 
simply displays the options and executes the associated code, the print 
manager does not need to recognize the option or know anything about the 
code it is sending to the output file.

• New main keywords can be parsed, if they are of the proper form that can 
be enclosed in *OpenUI/*CloseUI. A print manager that parses *OpenUI/*CloseUI 
properly should not parse for a specific main keyword, and should not care 
if a new main keyword is added. Not all new main keywords fall into the 
*OpenUI/*CloseUI category, but if they do, a print manager should read them, 
display their options, and execute the associated code.

Main keywords that are commonly bracketed with *OpenUI/*CloseUI are marked 
in this specification with the UI symbol (shown here) next to the keyword 
definition. Some features that appear in the user interface require extra work 
from the print manager, such as opening a communication channel or 
requesting information from a user. These more complex features are not 

UIU I




5  Keywords  45

amenable to the simplistic syntax of *OpenUI/*CloseUI, so their entries will not 
be bracketed with *OpenUI/*CloseUI, even though they might appear in the user 
interface via special handling by the print manager.

The keywords *JCLOpenUI and *JCLCloseUI provide the same structure for JCL 
keywords. See section 5.8 for their description.

*OpenUI/*CloseUI is provided as a supplementary service designed to assist in 
building a user interface. It is not intended to constrain a print manager or 
other application in any way. If a print manager does not want to display to 
the user a feature marked with *OpenUI/*CloseUI, the print manager can parse 
for that feature’s keyword and not display the feature. Likewise, if a print 
manager wants to display additional features not marked by *OpenUI/*CloseUI, 
the print manager can parse for that feature’s keyword and display the feature 
to the user.

The *OpenUI/*CloseUI provides most of what typically constitutes a user inter-
face, so that a “dumb” parser could construct a reasonable user interface 
simply by reading all the features marked by *OpenUI/*CloseUI and displaying 
them. It is not meant to be a complete user interface design tool.

*OpenGroup: string

*CloseGroup: string

Like *OpenUI/*CloseUI, this pair of keywords is provided to assist in building a 
user interface. Because of the limited physical space of some displays, print 
manager writers often need a way to group certain features behind one “but-
ton” or menu item. A selection of features can be grouped by placing a 
*OpenGroup/*CloseGroup pair around the feature set. If nested groups are needed 
(groups within groups), *OpenSubGroup and *CloseSubGroup must be used. 
*OpenGroup/*CloseGroup may not appear inside the bracketing of another 
*OpenGroup/*CloseGroup pair.

Features in a group are not mutually exclusive; several features can be chosen 
from a group. For example, a group of finishing features might contain sta-
pling, folding, binding, and other features that do not exclude each other. 

The StringValue value of both *OpenGroup and *CloseGroup is a descriptive 
string that represents the name of the group. It is provided for the print man-
ager to display to the user. The group name string must conform to the rules 
for the elementary type string (see section 4.3) and it must be unique; there can 
be only one group or sub-group with a given name. 



46 PostScript Printer Description File Format Specification (9 Feb 1996)

The example below groups all of the finishing features of the device (the 
invocation code is omitted to save space, and the blank lines are only for 
readability): 

*OpenGroup: Finishing

*OpenUI *FoldType: PickOne

*DefaultFoldType: None

*FoldType Saddle: " "

*FoldType None: " "

*CloseUI: *FoldType

*OpenUI *Collate: Boolean

*DefaultCollate: True

*Collate True: " "

*Collate False: " "

*CloseUI: *Collate

*CloseGroup: Finishing

The sample PPD file in section 6.2 shows imagesetter features in a group. 
Another logical group is finishing features. By parsing for the keywords 
*OpenGroup/*CloseGroup, a print manager can display Finishing and Imagesetting to 
the user as buttons or menu items, and all the finishing features and imageset-
ting features can be hidden from the user until they are needed. 

This syntax, like the syntax of *OpenUI/*CloseUI, allows features to be added to 
a group without the print manager needing to know about them. New *OpenUI/
*CloseUI features can be added within an *OpenGroup/*CloseGroup grouping, and 
a print manager that parses for *OpenUI/*CloseUI correctly should be able to 
parse for the new features in the same manner. This enables a print manager 
to add new items to the user interface without the print manager itself having 
to be rewritten.

*OpenSubGroup: string

*CloseSubGroup: string

These keywords are used to designated groups within groups. They can only 
appear within a *OpenGroup/*CloseGroup bracketing keyword pair. Groups may 
be nested to any level with *OpenSubGroup/*CloseSubGroup. The group name 
string must conform to the rules for the elementary type string (see section 
4.3) and it must be unique; there can be only one group or sub-group with a 
given name. See the description of *OpenGroup/*CloseGroup in this section. 



5  Keywords  47

Here is an example of the syntax of these keywords (be aware that the 
*OpenUI/*CloseUI entries are not syntactically complete in this example):

*OpenGroup: ProductionPrinting

*OpenSubGroup: MediaSelection

*OpenUI *PageSize ...

...

*CloseUI: *PageSize

*OpenUI *MediaType ...

...

*CloseUI: *MediaType

*CloseSubGroup: MediaSelection

*OpenSubGroup: Administration

*OpenUI ...

...

*CloseUI

*OpenSubGroup: TopSecret

...may include several *OpenUI/*CloseUI entries

*CloseSubGroup: TopSecret

*OpenUI ...

...

*CloseUI

*CloseSubGroup: Administration

*CloseGroup: ProductionPrinting

The sub-group TopSecret is nested within the sub-group Administration, which is 
nested within the group ProductionPrinting. Note that the Administration group con-
tains a mix of *OpenSubGroup and *OpenUI entries at the same level. 

The result of this might be that the print manager would display a panel with 
a button or menu item labeled ProductionPrinting. Selecting ProductionPrinting 
would produce a menu or a button panel advertising MediaSelection and 
Administration. Selecting MediaSelection would display two *OpenUI choices 
*PageSize and *MediaType for the user. Selecting Administration would display two 
*OpenUI choices and a button or menu item labeled TopSecret, which, when 
selected, would display more buttons or menu items.



48 PostScript Printer Description File Format Specification (9 Feb 1996)

*OrderDependency: real section mainKeyword optionKeyword

*NonUIOrderDependency: real section mainKeyword optionKeyword

These keywords provide a partial ordering of the fragments of device-specific 
code in a PPD file. This allows a print manager to output the code in the cor-
rect order, so that later fragments will not undo the effects of earlier frag-
ments. See section 2.5 for information about why order dependencies exist.

*OrderDependency is used only with UI keywords (keywords surrounded by the 
*OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI keywords). *OrderDependency must 
occur inside the *OpenUI/*CloseUI or *JCLOpenUI/*JCLCloseUI bracketing for that 
keyword. 

*NonUIOrderDependency is used only with the few non-UI keywords that emit 
code. For example, *CustomPageSize is not a UI keyword because it requires 
user input, which is not accommodated by the *OpenUI choices of PickOne, 
PickMany, and Boolean. Yet *CustomPageSize typically would appear in a user 
interface specially built by a print manager, and when selected by the user, 
*CustomPageSize emits code fragments. A print manager needs to know the 
order in which these code fragments should be emitted, relative to all other 
code fragments. *NonUIOrderDependency provides that information for non-UI 
keywords.

Although *OrderDependency and *NonUIOrderDependency are not required key-
words, to ensure correct results during printing, Adobe strongly recommends 
that every *OpenUI/*CloseUI entry and every *JCLOpenUI/*JCLCloseUI entry con-
tain a *OrderDependency statement and that all non-UI keywords that emit code 
have an associated *NonUIOrderDependency statement.

The value is a StringValue with multiple components separated by white 
space. Each component is defined identically for both keywords. The value of 
real specifies the relative order in which this code should be emitted. It defines 
the ordering across all device-specific code fragments within a section 
(defined later). The absolute values of the order numbers are not important, 
only their values relative to other order numbers within the same section. 
Within a section, code assigned a lower number should be emitted before code 
assigned a higher number. Multiple code fragments in a single section can be 
assigned the same order number. If the order numbers assigned to two code 
fragments are equal, the code fragments can be emitted in either order. Code 
fragments that do not have an *OrderDependency or *NonUIOrderDependency state-
ment should be emitted after all fragments that do have ordering numbers.



5  Keywords  49

The value of section describes where in the job the code fragment can be emit-
ted. The possible values for section correspond to the sections of a document 
file, as defined by the Adobe Document Structuring Conventions, version 3.0. 
Valid values for section are as follows:

• ExitServer—This code makes a change to the device that will take effect at 
the start of the next job. This code should be sent as a separate job, before 
the job it will affect. The correct password (the value of *Password) must be 
supplied before this invocation.

• Prolog—This code supplies resources that must be in the Prolog section of 
a document.

• DocumentSetup—This code must be emitted in the Document Setup section, 
after the %%BeginSetup comment

• PageSetup—This code must be emitted in the Page Setup section after the 
%%BeginPageSetup comment and before the page level save .

• JCLSetup—This code provides job level control for devices that support a 
job control language. This code must be emitted after the code emitted by 
*JCLBegin and before the code emitted by *JCLToPSInterpreter.

• AnySetup—This code must be emitted in either the Document Setup or 
Page Setup section and must follow the rules defined for the values 
DocumentSetup or PageSetup accordingly.

Note To builders of PPD files: Use AnySetup as the section name if there is no spe-
cific reason to specify PageSetup or DocumentSetup. This lets a print manager 
make the most efficient decision about where to emit the code fragment. How-
ever, to be labeled AnySetup, the code fragment must work correctly when 
emitted in either section,

The values of mainKeyword and optionKeyword specify a statement in the PPD file 
that emits device-specific code, which must be emitted in the order defined 
by section and order. The parameter optionKeyword will be omitted if mainKeyword 
has no option keyword. The optionKeyword may be omitted if the code frag-
ments for all option keywords for the given feature have the same classifica-
tion and ordering (this is the common case).



50 PostScript Printer Description File Format Specification (9 Feb 1996)

The following example specifies that the code to change the resolution must 
be emitted before the code to change the input slot (these entries are not syn-
tactically complete):

*OpenUI *Resolution: PickOne

*OrderDependency: 10 AnySetup *Resolution

*DefaultResolution: 1200dpi

*Resolution 2504dpi: "..."

*Resolution 1200dpi: "..."

*?Resolution:"..."

*CloseUI: *Resolution

*OpenUI *InputSlot: PickOne

*OrderDependency: 20 AnySetup *InputSlot

*DefaultInputSlot: Upper

*InputSlot Upper: "..."

*InputSlot Lower: "..."

*?InputSlot: “...”

*CloseUI: *InputSlot

Note Builders of PPD files for Level 2 devices can facilitate optimized perfor-
mance by assigning the same *OrderDependency section and order number to as 
many keywords as possible. A print manager can then bundle all of the code 
fragments that have the same values for section and order into one setpagedevice  
call, by redefining setpagedevice  to collect the key-value pairs into a single 
dictionary that is then executed with a single real setpagedevice  call. Very few 
keywords require a different order number on Level 2 devices, so keywords 
should be assigned the same order number unless there is some reason to 
assign a different order number. If a given code fragment would cause differ-
ent results when executed alone than it would when bundled with other 
parameters (in any order) into a single setpagedevice  call, that code fragment 
should be assigned a separate order number. For example, if the code frag-
ments for *ManualFeed and *Duplex are both emitted in the AnySetup section, and 
the result of emitting the code fragments separately, like this:

<</ManualFeed true>> setpagedevice

<</Duplex true>> setpagedevice

produces the same result as emitting the code fragments together, like this:

<</ManualFeed true /Duplex true>> setpagedevice

or in a different order, like this:

<</Duplex true /ManualFeed true>> setpagedevice

then *ManualFeed and *Duplex can be given the same order number. Otherwise, 
if any one of these methods gives a different result than the other methods, 
*ManualFeed and *Duplex should be assigned different (and appropriate) order 
numbers.



5  Keywords  51

Code fragments ordered by either *NonUIOrderDependency or *OrderDependency 
should be considered to be a single set; that is, their order numbers within a 
section are relative to each other. For example, a code fragment with a 
*NonUIOrderDependency order number of 20 and a section of PageSetup would be 
emitted before a code fragment with a *OrderDependency order number of 30 
and a section of PageSetup.

*QueryOrderDependency: real mainKeyword optionKeyword

If there are device queries accompanying a print job, all such queries must be 
emitted in a “query job”, which immediately precedes the print job. Among 
other things, this allows spoolers to process the queries without processing 
the actual print job. (See the DSC for a description of query jobs.) In some 
cases, the query job must also contain the invocation code from certain main 
keywords, emitted before certain queries, in order for the query response to 
be accurate. For example, changing the resolution of the device can affect the 
amount of free VM, so to obtain a more accurate estimate of free VM, the 
device resolution code should be emitted in the query job before querying for 
free VM. 

*QueryOrderDependency identifies main keywords whose invocation code needs 
to be emitted in the query job, before any queries, in order for the query 
response to be accurate. If a print manager queries for any of the following 
items: free VM, device resolution, available fonts (and there may be others), 
any invocation code referenced by *QueryOrderDependency should be emitted in 
the query job before any of these queries are emitted.

The structure of *QueryOrderDependency is very similar to the structure of 
*OrderDependency, although there is no section parameter because the entire 
query job is considered to be a single section. The value is a StringValue with 
multiple components separated by white space. The parameter real specifies 
the relative order in which this invocation code should be emitted within the 
query job. Code with a lower order number should be emitted before code 
with a higher order number. If two main keywords have the same 
*QueryOrderDependency order number, their code fragments may be emitted in 
either order relative to each other. All invocation code from main keywords 
flagged by *QueryOrderDependency should be emitted before any queries are 
emitted. 

The parameter mainKeyword will be a valid UI keyword (defined in section 1.2) 
or a valid non-UI keyword can be constrained by *NonUIConstraints (see the 
description of *NonUIConstraints for a list of legal keywords). The parameter 
optionKeyword will be a valid option for that main keyword. If the main key-
word has no options, the parameter optionKeyword will be omitted. The parame-
ter optionKeyword may be omitted if all of the options for the main keyword 



52 PostScript Printer Description File Format Specification (9 Feb 1996)

would otherwise have the same order number (this is usually the case). The 
*QueryOrderDependency statement for a given UI keyword should be within the 
*OpenUI/*CloseUI bracketing for that keyword. For example:

*OpenUI *Resolution: PickOne

*OrderDependency: 10 AnySetup *Resolution

*QueryOrderDependency: 10 *Resolution

*Resolution 600dpi: "..."

*Resolution 1200dpi: "..."

*?Resolution: "..."

*CloseUI: *Resolution

This tells the print manager that the invocation code for the resolution chosen 
by the user should be emitted in the query job, before any queries, and then 
emitted again in the print job. There is no relationship between the order 
numbers of *OrderDependency and *QueryOrderDependency.

*UIConstraints: keyword1 option1 keyword2 option2

This keyword, whose value is a StringValue with multiple components sepa-
rated by white space, denotes exclusionary relationships between pairs of 
device features. It tells a print manager which device features cannot be sup-
ported together, allowing the print manager to prevent the selection of both 
features at once in the user interface. For example, a device might forbid 
duplex printing when feeding from the envelope tray, or perhaps A4 size 
paper can only be fed from the upper slot, which would be expressed as a 
constraint between the A4 page size and all input slots other than the upper 
slot. 

*UIConstraints can also be used to express the relationship between an optional 
hardware component and the user-selectable features it enables. For example, 
the presence of an envelope feeder would enable printing on envelopes, or the 
presence of an extra memory board might enable higher resolution settings, 
but the absence of these optional components would prevent the display and 
use of their associated features. See section 5.4 for a description of the 
InstallableOptions group and how it interacts with *UIConstraints.

A print manager can use the information found in a *UIConstraints statement to 
make constrained choices unavailable to the user, either by “graying out” or 
removing these items from the print panel, or by some other method appro-
priate to the user interface. To obtain consistent behavior from print manag-
ers, *UIConstraints may only be used between pairs of UI main keywords 
(keywords whose entries are surrounded by the *OpenUI/*CloseUI or *JCLOpenUI/
*JCLCloseUI keyword pairs). Since all UI keywords are presented to the user as 
choices in a user interface, their behavior is consistent; when they are con-
strained, that choice should not be offered to the user. For information on 



5  Keywords  53

constraining non-UI keywords, see the description of *NonUIConstraints in this 
section. If either of the keywords in the constraint pair is a non-UI keyword, 
you must use *NonUIConstraints.

The syntax of *UIConstraints is that the first keyword-option pair invalidates the 
second keyword-option pair. That is, if the first keyword-option pair is 
invoked, the device will not allow the second keyword-option pair to be 
invoked. 

Constraints on UI features are reciprocal, so there will be two statements for 
each pair of features. One statement tells you that FeatureA-Option1 con-
strains FeatureB-Option5, and the other statement tells you that 
FeatureB-Option5 constrains FeatureA-Option1. The PPD file builder must 
ensure that both statements appear, for the benefit of print managers that do 
not enforce automatic reciprocity. If one of the reciprocal statements is miss-
ing, a print manager should operate as if it were present.

For example, a device might not allow transparencies to be output into the 
upper output bin, because transparency stock is too stiff to go through the 
convoluted paper path leading to the upper output bin. The *UIConstraints entry 
would look like this:

*UIConstraints: *MediaType Transparent  *OutputBin Upper

*UIConstraints: *OutputBin Upper *MediaType Transparent

The semantics of this in a user interface might be as follows: When the media 
type Transparent has been selected, the output bin labeled Upper is not available. 
The reverse is also true; when the output bin labeled Upper has been selected, 
the media type Transparent is not available. 

Each feature or both features may also be specified without any options. For 
example, a constraint might take this form:

*UIConstraints: *FeatureA *FeatureB Option1

If no option is specified for Feature A, then Feature B is unconstrained until 
some option of the first feature, other than None or False, is selected. At that 
point, Option 1 of Feature B becomes constrained. For example:

*UIConstraints: *StapleWhen *MediaType Transparent

The semantics of this are as follows: If any option for *StapleWhen, other than 
None or False, is selected, transparent media cannot be selected.

Likewise, this format is legal:

*UIConstraints: *FeatureA Option1 *FeatureB



54 PostScript Printer Description File Format Specification (9 Feb 1996)

If no option is specified for Feature B, and Option 1 of Feature A is selected, 
the constraint forces the selection of the None or False option of Feature B. For 
example:

*UIConstraints: *MediaType Transparent *Staple

If transparent media is selected, no *Staple options can be selected, except for 
None or False.

Finally, it is legal to omit options for both Feature A and Feature B. This 
means that if the option selected for Feature A is None or False, Feature B is 
unconstrained, but if any other option of Feature A is selected, the only valid 
options for Feature B are None or False.

It is illegal to omit an option for Feature B if it is a PickOne style without a 
None option, because that effectively disables all options of Feature B. It is 
also illegal to omit an option for Feature A if it is a style without a None style, 
because it effectively disables the specified option of Feature B for all cases.

Print managers must be careful to avoid permanently excluding the selection 
of a feature that is constrained by other features. For example, if selecting a 
page size of A4 disables the selection of the Lower input slot, how will the 
user select the Lower input slot when they want to switch to a different page 
size? The user could try selecting each page size, hoping to find one that 
works with the Lower slot. A better choice would be for the print manager to 
allow the selection of constrained items, but to automatically modify the 
other component(s) of the constraint (and inform the user), or to warn the 
user of the conflict and ask the user to resolve it.

Note To builders of PPD file: *UIConstraints is used only between pairs of main key-
words. Do not write constraints between the various options of a single main 
keyword. For example, do not write a constraint between *PageSize Letter and 
*PageSize Legal. Options are already constrained against each other by their 
PickOne or Boolean type, so additional constraints are unnecessary and illegal.

*NonUIConstraints: keyword1 option1 keyword2 option2

This keyword works exactly like *UIConstraints except that it is used with non-
UI keywords (keywords not surrounded by *OpenUI/*CloseUI or *JCLOpenUI/
*JCLCloseUI). Please see the description of *UIConstraints for the complete syntax 
and semantics of *NonUIConstraints. All of the rules specified for *UIConstraints 
apply to *NonUIConstraints, except where noted in this description.



5  Keywords  55

*NonUIConstraints must be used if either the constraining or constrained key-
word is a non-UI keyword. For example, here is a UI keyword constraining a 
non-UI keyword:

*NonUIConstraints: *InputSlot Upper *CustomPageSize True

This indicates that if the user has chosen the Upper input tray, a custom page 
size cannot be requested.

The semantics of *NonUIConstraints are that a constrained feature is “not avail-
able”. Because non-UI keywords are not consistent in behavior, the exact 
action taken is up to the print manager. Advice to the print manager encoun-
tering a constrained non-UI keyword might be “don’t do what you would nor-
mally do”. For example, for keywords such as *CustomPageSize and *InsertSheet, 
which require a print manager to display a specialized user interface, that 
interface should not be displayed or should be grayed out.

The following keywords are the only non-UI keywords that can appear in a 
*NonUIConstraints statement:  *CustomPageSize, *LeadingEdge, *UseHWMargins, 
*InsertSheet, *FaxSupport, and *SetResolution. More keywords may be added to this 
list in future versions of this specification, after an analysis to determine the 
impact on existing applications.

Note To application developers: In a future edition of this specification, *Font will 
be added to the list of keywords which can be constrained by *NonUIConstraints. 
See the description of *Font for a discussion of how application authors 
should handle this pending change.

*NonUIConstraints are not automatically reciprocal. If the reciprocal constraint 
makes sense, it will be included in the PPD file, and a print manager should 
honor it, but if a reciprocal constraint is missing, a print manager should not 
attempt to create and enforce such a constraint.

*Include: “filename”

This allows the explicit inclusion of another PPD file (or partial file) into the 
current PPD file. The QuotedValue filename is the name of the file to be 
included. See section 4.3 for details on the syntax of filename and section 2.6 
for details on including one PPD file within another.

*End

This keyword is used to close multiple-line InvocationValues and 
QuotedValues. The double quotes are still used to delimit the code sequence, 
but as an extra parsing check and for added human readability, the *End key-
word is included after the closing double quote of a multiple-line PostScript 
language sequence. The keyword itself is of type NoValue.



56 PostScript Printer Description File Format Specification (9 Feb 1996)

5.3 General Information Keywords

The keywords in this section provide general information about the PPD file 
and the device it describes. The keywords in this section do not invoke any 
device features.

*FileVersion: “string”

Required. This keyword identifies the version number of the PPD file itself. It 
is used only to distinguish between releases of the same file, not to distin-
guish one file from another. 

The value, a QuotedValue, is a string of the form “1.0”. A standard version 
numbering scheme is employed. For major changes to the device and the 
PPD file, including upgrading the PPD file to match a new version of the 
PPD File Format Specification, the entire number will be incremented to the 
next whole number (for example, from 1.0 to 2.0). For minor fixes to the PPD 
file (including typographical errors), the integer to the right of the decimal 
will be incremented (for example, from 1.0 to 1.1 and from 1.9 to 1.10). This 
permits the various versions of a PPD file to be identical in most ways 
(including file name) but still be distinguished from one another. All released 
PPD files will initially have the string “1.0” in this field.

*FormatVersion: “string”

Required. This provides the version number of the PPD file format specifica-
tion to which the PPD file conforms. It is retained primarily for backward 
compatibility, as the newer keyword *PPD-Adobe provides both the information 
that this file is a PPD file and the specification version to which the file con-
forms.

The value, a QuotedValue, is a string of the form “1.0.” For a PPD file to con-
form to the version of the specification detailed in this document, the value of 
*FormatVersion must be “4.3”. If a PPD file is updated to reflect changes in the 
PPD File Format Specification, this statement should be changed to match 
the new specification version number.

*LanguageEncoding: encodingOption

Required. This keyword complements and partially supersedes the older 
*LanguageVersion keyword. *LanguageEncoding identifies the encoding (mapping 
from natural language characters to byte codes) used in the human-readable 
comments, translation strings, and certain QuotedValues such as the value of 
*NickName. The encoding of any part of the PPD file other than these strings is 
system-dependent.



5  Keywords  57

*LanguageEncoding does not identify the natural language of the PPD file; that is 
the role of the *LanguageVersion keyword. In most cases, a parser needs only to 
parse the *LanguageEncoding keyword, and *LanguageVersion can be ignored. The 
value of *LanguageEncoding contains the information needed to allow a parser 
to convert text strings from the encoding used in the PPD file to the encoding 
used on the host system.

If *LanguageEncoding is present, its value overrides the default encoding 
implied by the *LanguageVersion keyword.

The values of encodingOption, a StringValue, are as follows:

• ISOLatin1—Uses the ISOLatin1 encoding

• ISOLatin2—Uses the ISOLatin2 encoding

• ISOLatin5—Uses the ISOLatin5 encoding

• JIS83-RKSJ—Uses the RKSJ (informally known as “Shift JIS”) encoding 
and the JIS X0208-1983 character set

• MacStandard—Uses Macintosh® standard encoding

• WindowsANSI—Uses Windows® ANSI encoding, as defined by Microsoft® 
for use in the Windows operating system

• None—The encoding is not specified.

Appendix C provides tables to convert between the ISOLatin1, MacStandard, and 
WindowsANSI encodings. See section 3.5 for details on translation string syn-
tax.

Note To builders of PPD files: If the initial PPD file is built in English, the value of 
*LanguageEncoding is ISOLatin1. If you are building the file in another language, 
or if you are translating the file to another language, change the values of 
*LanguageVersion and *LanguageEncoding to reflect that language.

*LanguageVersion: languageOption

Required. This identifies the natural language used in the PPD file. For sim-
plicity, the valid values of languageOption are the English words for the natural 
languages. The value of languageOption (for instance, French or German) affects 
only the human-readable comments, translation strings, and certain Quoted-
Values such as the value of *NickName. The encoding (mapping from natural 
language characters to byte codes) of any part of the PPD file other than these 
strings is system-dependent.



58 PostScript Printer Description File Format Specification (9 Feb 1996)

The *LanguageEncoding keyword specifies the encoding for the strings men-
tioned above. If *LanguageEncoding is absent, the encoding of these strings can 
be deduced from the value of *LanguageVersion. The currently registered values 
for languageOption, which is a StringValue, and their corresponding encodings 
(defined under *LanguageEncoding) are:

Table 1  Values for languageOption and their encodings

languageOption encoding

English ISOLatin1

Chinese None

Danish ISOLatin1

Dutch ISOLatin1

Finnish ISOLatin1

French ISOLatin1

German ISOLatin1

Italian ISOLatin1

Japanese JIS83-RKSJ

Norwegian ISOLatin1

Portuguese ISOLatin1

Russian None

Spanish ISOLatin1

Swedish ISOLatin1

Turkish varies; check value of *LanguageEncoding

*Manufacturer: "text"

Required. This QuotedValue provides the name of the company that manu-
factured the device. If a device is OEM'ed from one manufacturer to another, 
this name will be the name of the manufacturer who is marketing the device 
under their own name. A given manufacturer must use the same name string 
in each of their PPD files. For example, the name must not be "Acme Printer 
Co." in one PPD file and just "Acme" in another. Also, the string must be 
unique among manufacturers; two or more manufacturers may not use the 
same string. Appendix D provides the current list of known manufacturer 
strings.

This keyword gives print managers a way to group together several devices 
provided by one manufacturer. Given a set of PPD files, a print manager can 
provide a list of manufacturers for the user to choose from, and then provide a 
list of PPD files available from the chosen manufacturer.



5  Keywords  59

Note To builders of PPD files: For ease of sorting and display by a print manager, 
we recommend leaving out unnecessary words like “Incorporated,” “Com-
pany,” “Ltd.”, and “Corporation” when creating this string. The purpose of 
this keyword is for a print manager and a user to be able to distinguish one 
manufacturer from another, not to provide a complete account of the manu-
facturer's full legal name.

Note To builders of PPD files: In order for the Windows 95 Image Color Matching 
(ICM) system to match InterColor Consortium (ICC) color characterization 
profiles to devices and drivers, the first 4 characters (or until a space or 
hyphen is found, whichever comes first) of *Manufacturer must be a unique 
string, which must match the value of the icHeader.manufacturer tag in the ICC 
profile. Practically speaking, this means that in addition to the entire string 
being unique among manufacturers, the first 4 characters of *Manufacturer must 
also be unique, at least for color printers that have ICC profiles in the Win-
dows 95 system. See the Microsoft document “Image Color Matching and 
Printer Drivers in Windows 95” for details on how color profiles are matched 
to devices and drivers. See Appendix D for a list of currently known 
icHeader.manufacturer profile tags.

*ModelName: “text”

Required. This value, a QuotedValue, is a string created by the builder of the 
PPD file that represents the common name of the device. It must be unique 
for a given model of device. Because *Product is not always unique or descrip-
tive, *ModelName is used by print managers to identify a PPD file for a specific 
device model. For example:

*Product: "(LaserPrinter)"

*ModelName: "Acme SuperPrinter Turbo v2011.108"

Because *ModelName is used as a base for the PPD file name in some environ-
ments, certain punctuation characters are illegal. The value of *ModelName can 
contain only the following characters, whose decimal values are defined here 
or in section 1.1: alphanumeric characters, space, period, slash, hyphen (dec-
imal 45), and plus (decimal 43). No other punctuation characters are allowed.

Because *ModelName describes a unique printer model, and because it may be 
used as a filename in some environments, there should be only one 
*ModelName statement per PPD file. If a PPD file describes two or more mod-
els, that fact should be reflected in the value of *ModelName. For example:

*ModelName: “Acme FunPrinter or NiftyPrinter”

If the product is a PostScript language cartridge or other external add-on 
device, include that fact in the name. For example, “Acme PostScript Cartridge for 
FunPrinter III”.



60 PostScript Printer Description File Format Specification (9 Feb 1996)

Note To builders of PPD files: As a guideline, *ModelName should contain the manu-
facturer’s name followed by the device’s name. In order for the Windows 95 
Image Color Matching (ICM) system to match InterColor Consortium (ICC) 
color characterization profiles to devices, the *ModelName string must exactly 
match the string used to generate the value of the icHeader.model tag in the ICC 
profile. In addition, under certain circumstances some print managers 
assume that the first 4 characters (or until a space or hyphen is found) of 
*ModelName will be the name of the manufacturer and will match the 
icHeader.manufacturer tag in the ICC profile. Practically speaking, this means 
that the first 4 characters of *ModelName must match the first 4 characters of 
*Manufacturer, at least for color printers that have ICC profiles in the Windows 
95 system. Finally, because some print managers use *ShortNickName instead of 
*ModelName for ICC profile matching, and the builder of the PPD file doesn’t 
know which print manager will be used, *ModelName should match 
*ShortNickName to ensure consistent ICC profile matching. See the Microsoft 
document “Image Color Matching and Printer Drivers in Windows 95” for 
details on how color profiles are matched to devices and drivers and how the 
ic.model profile tag is generated.

*NickName: “text”

Required. This QuotedValue is the local name for the device. It is unique for 
an instance of a device model. It is used primarily at the user interface level 
when selecting a device or to distinguish between two otherwise indistin-
guishable devices (for example, if a single controller is used to drive more 
than one type of marking engine). 

There may be only one *NickName in a PPD file. If the PPD file is valid for 
more than one product, that fact must be reflected in the *NickName value, as in 
*ModelName. Initially, the value of *NickName is usually the same as the value of 
*ModelName, but it can be edited in a local customization file if necessary, 
whereas *ModelName should not be changed. Alternatively, the value may have 
a translation string for localization.

Note that the value of *NickName, as a QuotedValue, can include hexadecimal 
substrings. These substrings should be translated to natural language charac-
ters according to the values of *LanguageEncoding and/or *LanguageVersion. 

The length of the value of *NickName is unrestricted, except for line length. For 
situations where the length of the nickname must be restricted, see the 
description of *ShortNickName.



5  Keywords  61

*PCFileName: “string”

Required. This value, a QuotedValue, provides the name of the PPD file as it 
would appear in a PC environment. This name must be eight characters fol-
lowed by a dot and a three character suffix. It is provided in the PPD file so 
that a PPD file with a longer name, transferred from another platform, can be 
renamed to a unique PPD filename appropriate to the PC environment.

The file naming scheme employed by Adobe Systems for these PPD files is 
an attempt at a mnemonic name as constricted by the DOS operating system. 
The naming scheme is partially algorithmic. Filenames and the keyword 
*PCFileName are constructed as follows:

• The first 2 characters designate the manufacturer. A list of manufacturer 
prefixes is kept by Adobe Systems to ensure uniqueness of names. Please 
refer to Appendix D: Manufacturer’s Prefix List and *Manufacturer 
Strings for the current prefix list.

• The next 6 characters consist of a string that uniquely identifies the device 
model.

• The suffix of the file is “.PPD”.

• For consistent readability and to minimize confusion of letters with num-
bers, only capital (uppercase) letters are used.

Note To builders of PPD files: If a released PPD file is changed, but the product 
itself has not changed, the PPD file name (and *PCFileName) will not change. 
Examples of this type of change to a PPD file include, but are not limited to, 
fixing a typographical error in the PPD file, fixing an incorrect value for 
*FreeVM, fixing feature code that was not tested properly and has been found 
to be incorrect, adding or changing translation strings, changing the names 
of option keywords, removing a keyword that was never supported by the 
device, and fixing incorrect information in a *Font statement.

If a released PPD file is changed because the product itself has changed, the 
upgraded product must be issued a new PPD file with a new name. Any new 
features must be thoroughly tested. If the "old" and "upgraded" products are 
substantially the same product, marketed under similar names, Adobe recom-
mends keeping the filenames substantially the same, but using the 8th charac-
ter of the new filename as a version number for the file. For example, if the 
Acme SpiffyPrinter is upgraded with more memory, you might change 
ACSPIFFY.PPD to ACSPIFF2.PPD. Using the 8th character as a version 
number is a recommendation of common practice, but is not a requirement of 
this specification. If the "old" and "upgraded" products are substantially dif-
ferent, or marketed under different names, you should give the new PPD file a 
unique name that corresponds as closely as possible to the name under which 
the product is marketed.



62 PostScript Printer Description File Format Specification (9 Feb 1996)

Examples of filenames constructed according to the naming scheme:

APLWIIG1.PPD Apple LaserWriter IIg v2011.113

DPLZ9601.PPD Dataproducts LZR 960 v2010.105

OKOL8701.PPD Okidata OL870 v2013.108

TKPHZR21.PPD Tektronix Phaser II PXi v2010.116

TKPHZR22.PPD Tektronix Phaser II PXi v2011.108

XR_88121.PPD Xerox 8812 v2012.016

When a PPD file is translated into another language, Adobe recommends that 
you keep the same file name, but isolate the different language-version files 
from each other through directory structures or other physical isolation tech-
niques. Different language versions of PPD files are essentially interchange-
able at the software level, but need to be organized separately at the user 
level.

*Product: “(text)”

Required. This QuotedValue corresponds exactly to the product string of the 
device. On Level 1 devices, it is the value returned by the code sequence

statusdict /product get exec == flush end

and on Level 2 devices, the value is returned by this code sequence

product == flush

There can be more than one instance of the *Product keyword if the PPD file is 
valid for more than one product. For example, if two devices have identical 
PPD files, they can be combined into a single PPD file with the following two 
statements

*Product: "(LaserPrinter)"

*Product: "(LaserPrinterII)"

and *ModelName, *NickName, and *ShortNickName would reflect the fact that the 
PPD file is valid for two products, like this:

*ModelName: “Acme LaserPrinter or LaserPrinterII”

*PSVersion: “(string) int”

Required. This QuotedValue is composed of two parts. The string in paren-
theses is the version number of the PostScript interpreter, as returned by the 
code sequence

version == flush



5  Keywords  63

The integer following the parentheses is the interpreter’s revision number. On 
Level 2 devices, this number is returned by the code sequence

revision == flush

On Level 1 devices, the revision number is returned by the code sequence

statusdict /revision get exec == flush 

The values are presented in PostScript language form so that they can be 
compared with the actual values in the device to determine whether or not the 
PPD file matches the device.

There can be more than one instance of the *PSVersion keyword if the PPD file 
is valid for more than one version (and revision) of the interpreter. For exam-
ple, if, for a given device, the PPD files for interpreter version 2011 revision 
108 and interpreter version 2011 revision 120 are identical, they can be com-
bined into one PPD file with the following statements:

*PSVersion: "(2011) 108"

*PSVersion: "(2011) 120"

Matching a PPD file to a device request

*PSVersion can be used by a print manager to match a particular version of a 
PPD file to a request for that file. However, in general, a PPD file for an older 
version of an interpreter can be safely used with a newer version of the inter-
preter, and vice versa. Interpreter upgrades are often based on performance 
and bug fixes that don’t affect the PPD file. Likewise, a match between the 
version number in the PPD file and the version number of the interpreter is 
not necessarily significant. For example, a manufacturer might use a single 
controller to drive several different marking engines. In this case, separate 
PPD files should be built to describe each controller-engine combination. 
However, the product name, version, and revision number all describe only 
the controller, and thus would be the same in each PPD file. 

For example, imagine a controller called SuperRIP, which can drive two dif-
ferent engines called the S2500 and the S7000. The SuperRIP controller con-
tains interpreter version 2012, and the product name is always “SuperRIP,” 
regardless of which engine is attached to the controller. In this case, there 
would be two PPD files: one for the combination of SuperRIP and the S2500 
engine, and one for the combination of SuperRIP and the S7000 engine. 
These PPD files might be called, respectively, SU2500_1.PPD and 
SU7000_1.PPD.



64 PostScript Printer Description File Format Specification (9 Feb 1996)

 The relevant statements in SU2500_1.PPD would look like this:

*PSVersion: (2012) 1

*Product: "(SuperRIP)"

*NickName: "SuperRIP with S2500 v.2012"

and the relevant statements in SU7000_1.PPD would look like this

*PSVersion: (2012) 1

*Product: "(SuperRIP)"

*NickName: "SuperRIP with S7000 v.2012"

These two PPD files, while matching in *Product and *PSVersion, are differenti-
ated by their *NickName statements and their filenames. A print manager trying 
to choose the correct PPD file for a device must take all these things into 
account, or it can simply ask the user to select the correct file.

*ShortNickName: “text”

Required. This keyword is identical to the semantics and syntax of the 
*NickName keyword, but the length of the string value is limited to 31 or fewer 
characters. Common practice is to make it the same as *NickName, but without 
the PostScript interpreter version number. This keyword is provided to over-
come certain string length restrictions in some host environments. The value, 
a QuotedValue describing the device, must be unique within the set of PPD 
files on the local system. That is, there should not be two different PPD files 
with the same value for *ShortNickName. There may be only one instance of 
*ShortNickName per PPD file. Due to limitations in certain print managers, 
*ShortNickName must appear in the PPD file before *NickName.

Note *ShortNickName was not required in previous versions of this specification. It is 
required in files that conform to the 4.3 specification.

Note To builders of PPD files: As a guideline, *ShortNickName should contain the 
manufacturer’s name followed by the device’s name. In order for the Win-
dows 95 Image Color Matching (ICM) system to match InterColor Consor-
tium (ICC) color characterization profiles to devices, the PScript 4.x print 
manager requires that the *ShortNickName string exactly match the string used 
to generate the value of the icHeader.model tag in the ICC profile. In addition, 
under certain circumstances some print managers assume that the first 4 
characters (or until a space or hyphen is found) of *ShortNickName will be the 
name of the manufacturer and will match the icHeader.manufacturer tag in the 
ICC profile. Practically speaking, this means that the first 4 characters of 
*ShortNickName must match the first 4 characters of *Manufacturer, at least for 
color printers that have ICC profiles in the Windows 95 system. Finally, 
because some print managers use *ModelName instead of *ShortNickName for 
ICC profile matching, and the builder of the PPD file doesn’t know which 
print manager will be used, *ModelName should match *ShortNickName to ensure 



5  Keywords  65

consistent ICC profile matching. See the Microsoft document “Image Color 
Matching and Printer Drivers in Windows 95” for details on how color pro-
files are matched to devices and drivers and how the ic.model profile tag is 
generated.

5.4 Installable Options

Most printers ship in some standard, minimal configuration but accept 
optional features or accessories, usually sold separately. These installable 
options can be paper trays, envelope feeders, memory modules, and so on. 
The PPD specification provides a way to describe these accessories, to label 
them as optional and initially not installed, and a way to install them later. 
Thus an application can list the installable options in its user interface, but 
can display them in some special way (for instance, grayed out) to indicate 
that the basic configuration does not support them. 

Additionally, a customization file can be created to reflect a specific printer, 
and within that customization file, certain accessories can be marked as 
installed, so that applications can then allow them to be selected from the 
user interface. The PPD specification also offers a way for an application to 
query the user for this configuration information, which can be used to 
update an application’s internal database.

Without this information, an application might display all installable options, 
whether they are installed or not, and risk having the user select an option that 
is not installed and get errors or unexpected results.

Syntax and Use

The *OpenGroup structure keyword (described in section 5.2) is used to denote 
the beginning of the installable options group. The option keyword 
InstallableOptions describes this special group. InstallableOptions is a registered 
option keyword that should not be used as an option for any other group in a 
PPD file. Like other values, it can have a translation string attached for clar-
ity. 

For example:

*OpenGroup: InstallableOptions/Options Installed

The InstallableOptions group contains one entry for each optional accessory that 
the printer can accept. Each entry consists of an *OpenUI/*CloseUI keyword pair, 
which surrounds the choices for the accessory. Within the entry, the *Default 
keyword initially denotes the state of the accessory in the minimal configura-
tion; that is, whether it is installed or not when the device leaves the factory. 
If the state of the accessory can be determined by querying the PostScript 



66 PostScript Printer Description File Format Specification (9 Feb 1996)

interpreter, there may also be query code, which a print manager operating in 
a bidirectional environment could use to update its information about the 
device’s configuration.

Because there is no need for them to have meaningful names, the main key-
words used within the *OpenUI/*CloseUI entries consist of the generic string 
*Option followed by an integer; for example, *Option1, *Option2. Each installable 
option (each *OpenUI entry) must have a unique main keyword name. The 
*UIConstraints section then maps the generic *Option keywords to the actual PPD 
feature entries. For example:

*OpenGroup: InstallableOptions/Options Installed

*OpenUI *Option1/Envelope Feeder: Boolean

*DefaultOption1: False

*Option1 True/Installed: ""

*Option1 False/Not Installed: ""

*CloseUI: *Option1

*CloseGroup: InstallableOptions

*UIConstraints: *Option1 False *InputSlot Envelope

The *UIConstraints statement tells a print manager that if *Option1 is False (the 
envelope feeder is not installed), then the Envelope option of the *InputSlot key-
word is not available for selection by the user.

It is also legal to have a named keyword within the InstallableOptions group. 
This might be done for a keyword whose effect is important enough or com-
plex enough that a print manager might want to generate a separate configu-
ration panel for that keyword. A named keyword might also be used where 
that keyword needs to be matched to other keywords by some method other 
than *UIConstraints. In either case, the print manager needs to be able to recog-
nize that keyword. For an example, see the discussion of *InstalledMemory in 
section 5.6 and later in this section. In general, the use of the generic key-
words is recommended, to discourage special casing by print managers, key-
word proliferation, and additional documentation.

A print manager can use the InstallableOptions group in at least two ways. First, 
at printer installation or configuration time, a print manager can create a con-
figuration panel based on the information found in the InstallableOptions group. 
On this configuration panel the print manager posts the optional accessories 
listed, using the PickOne and Boolean values of the *OpenUI entries to determine 
whether an accessory requires a menu of choices or a boolean check box that 
denotes whether or not an accessory is installed. The user then informs the 
print manager which printer accessories are installed by selecting from the 
menus or checking the check boxes for each optional accessory. The print 
manager then stores this information in an internal database and later uses it 
to decide which options to offer the user at print time.



5  Keywords  67

Second, a user or application might permanently configure the print manager 
by providing a local customization file that contains *Default settings that 
reflect the installation of accessories.

 For example, a local customization file might contain the following:

*OpenUI *Option1/Envelope Feeder: Boolean

*DefaultOption1: True

*CloseUI: *Option1

From this entry, a print manager can record that the value of *Option1 is cur-
rently True and use that information, in conjunction with the *UIConstraints 
entry in the base PPD file, to later decide which other options to offer to the 
user at print time. If the author of the print manager does not want to offer a 
configuration panel that interacts with the user, the print manager can be 
coded so that it looks at the *Default setting and treats it as if it were a selection 
from the user. Instead of querying the user for configuration information, the 
print manager relies on the *Default settings to be correct. This method is per-
haps simpler to implement, but is less flexible for the user and requires that 
the user or some application edit a local customization file to record the con-
figuration information.

Most *OpenUI entries in the InstallableOptions group are Boolean choices, as 
shown in the previous examples, but PickOne entries are equally legal. For 
example, the following entry provides a short list of mutually exclusive 
choices (the user can install 2MB or 4MB of memory, but not both at once). 
This is also an example of using a named keyword instead of a generic main 
keyword:

*OpenGroup: InstallableOptions

*OpenUI *InstalledMemory/Memory Configuration: PickOne

*DefaultInstalledMemory: None

*InstalledMemory None/Basic Memory: ""

*InstalledMemory 2Meg/2Meg Memory Upgrade: ""

*InstalledMemory 4Meg/4Meg Memory Upgrade: ""

*CloseUI: *InstalledMemory

*CloseGroup: InstallableOptions

*UIConstraints: *InstalledMemory None *Smoothing Medium

*UIConstraints: *InstalledMemory None *Smoothing Dark

*UIConstraints: *InstalledMemory 2Meg *Smoothing Dark

This *UIConstraints entry tells a print manager that if None has been selected for 
*InstalledMemory, then neither the Medium nor Dark options of the *Smoothing key-
word are available, and if 2Meg has been selected for *InstalledMemory, then only 
the Dark option of *Smoothing is not available. This provides a way for the print 
manager to present various options to the user based on the amount of 
memory installed in the printer.



68 PostScript Printer Description File Format Specification (9 Feb 1996)

The InvocationValues of the main keywords are typically null quotes because 
no code is invoked during configuration; the print manager is simply record-
ing information either from the user or from the *Default statements. However, 
in some cases, there may be actual PostScript code between the quotes, per-
haps to perform some type of job setup related to the device’s configuration. 
In that case, the *OpenUI entry must also contain an *OrderDependency statement, 
so that the print manager knows where to insert the code in the job stream.

5.5 Basic Device Capabilities

The keywords in this section provide information about the device’s basic 
capabilities.

*ColorDevice: True | False

This keyword indicates whether or not the device physically outputs color. 
See *Extensions for information about black and white devices that support the 
color extensions to the PostScript language. The value is of type StringValue.

*DefaultColorSpace: colorspaceOption

This keyword indicates the default native color space of the device. The 
native color space is the color space that all colors are converted into before 
rendering. The currently registered values for colorspaceOption (a StringValue) 
are

• CMY—This device uses the cyan-magenta-yellow color space as its native 
color space.

• CMYK—This device uses the cyan-magenta-yellow-black color space as its 
native color space.

• RGB—This device uses the red-green-blue color space as its native color 
space.

• Gray—This device uses a gray-scale native color space.

*Extensions: extensionOption ...

This keyword indicates that this device supports the PostScript language 
extensions listed. One or more extensions may be listed, separated by white 
space. Operators specific to each extension are documented in Appendix A of 
the PostScript Language Reference Manual, Second Edition. 



5  Keywords  69

The currently registered values for extensionOption (a StringValue) are

• DPS—This device contains a PostScript Level 1 implementation that also 
supports the Display PostScript™ Extensions.

• CMYK—This device contains a PostScript Level 1 implementation that also 
supports the Color Extensions

• Composite—This device contains a PostScript Level 1 implementation that 
also supports the Composite Font Extensions

• FileSystem—This device contains a PostScript Level 1 implementation that 
also supports the File System Extensions

*FaxSupport: faxOption...

If the device can act as a facsimile (fax) device, this keyword lists the various 
fax-related capabilities of the device. One or more capabilities can be listed, 
separated by white space.

 Currently, the only registered value (a StringValue) is

• Base—This device can encode the rasterized version of a document in fax 
format and transmit the fax to another fax device. 

*FileSystem: True | False

This StringValue indicates whether or not the PostScript device has the capa-
bility for a writable file system. Normally this means the presence of a hard 
disk or SCSI controller on the device. This information can be used by a print 
manager to determine the capability for internal file system support. Note 
that some devices might have the capability for a file system but might not in 
fact have a disk installed (in this case the value for this keyword would be 
True, but the associated query would return False). The *?FileSystem query can 
be used to dynamically determine whether or not a file system is actually 
present. If the device has no capability of having a file system, this statement 
will be omitted.

*?FileSystem: “query”

This query will return True if a writable file system is currently online, False if 
not, and Unknown if the state cannot be determined. The results of this query 
do not convey any information about whether or not the disk is initialized, or 
how many free pages there are. If this device cannot support a file system, 
this statement will be omitted.



70 PostScript Printer Description File Format Specification (9 Feb 1996)

*LanguageLevel: “int”

This QuotedValue designates the PostScript language level supported by the 
PostScript interpreter in this device. If the value is 2, the PostScript inter-
preter in this device supports all PostScript Level 2 features. If the value is 1 
or if this keyword is not present, the PostScript interpreter supports all Post-
Script Level 1 features. See *Extensions for further information.

*Throughput: “int”

This QuotedValue is the nominal throughput in pages per minute. It repre-
sents the marking engine’s rated capacity for throughput. It might be used to 
determine the fastest of a number of devices if there are many to choose from, 
but should not be construed as any kind of “benchmark” figure. 

In the case of roll-fed machines, the number indicates the number of 8-1/2 
inch sections of media that can be fed in one minute by the marking engine. 
In the case of duplex devices, which can print on both sides of the paper, the 
number indicates the number of pages that can be printed in one minute in 
simplex (one-sided) mode. If the value is fractional, it is rounded up to the 
nearest number (it must be 1 or larger).

*TTRasterizer: rasterizerOption

This keyword indicates whether or not this device contains software to create 
font bitmaps from Type 42 (TrueType™) font outlines. If the device does con-
tain such “rasterizer” software, the rasterizerOption indicates whether the 
software is built into the device, is downloadable, or other details. 

The currently registered values (of type StringValue) for rasterizerOption are

• None—This device does not contain a Type 42 rasterizer and the device is 
not capable of receiving a downloaded rasterizer.

• Accept68K—This device does not contain a Type 42 rasterizer, but the device 
can accept a downloaded rasterizer that is 68000-compatible. A driver 
wishing to download a rasterizer should also query the current state of free 
VM on the device to determine whether there is enough memory to accept 
the rasterizer.

• Type42—This device contains a Type 42 rasterizer in ROM.

• TrueImage—This device contains a TrueImage rasterizer, which accepts the 
TrueImage version of a TrueType font.



5  Keywords  71

*?TTRasterizer: “query”

This query returns the rasterizerOption corresponding to the device’s capa-
bility regarding Type 42 rasterizer software. The value returned must be one 
of the rasterizerOptions listed under *TTRasterizer or it will be Unknown. If 
Accept68K is returned by this query, a parser should also query the current state 
of free VM to determine whether there is enough memory to download the 
rasterizer. 

*1284Modes channelOption: mode...

The StringValue of this keyword describes the level of compliance of each 
communication channel with the IEEE 1284-1994 specification, IEEE Stan-
dard Signaling Method for a Bidirectional Parallel Peripheral Interface for 
Personal Computers. It tells which communication modes are supported, on a 
per-channel basis. For example:

*1284Modes Parallel: Compat Nibble

The channelOption must match one of the channel names listed under *Source. 
(See section 5.21 for information on *Source.) More than one mode may be 
listed in the value field, separated by white space, meaning multiple modes 
are supported on that channel. The mode definitions are taken from the 1284-
1994 specification, and are as follows:

• Compat—Compatibility mode (unidirectional host-to-peripheral parallel 
communication). Many older devices support only this mode.

• Nibble—4-bit reverse (peripheral-to-host) communication

• Byte—8-bit reverse (peripheral-to-host) communication

• ECP—Extended Capabilities Port (8-bit bidirectional)

• EPP—Enhanced Parallel Port (8-bit bidirectional)

Currently, the only channel described by the 1284-1994 specification is 
Parallel, but other channels may add support in the future, so other channel 
options are permitted. There may also be variations of Parallel on a device, 
such as ParallelB for a second parallel channel.



72 PostScript Printer Description File Format Specification (9 Feb 1996)

*1284DeviceID: "text" 

For a device that is compliant with the IEEE 1284-1994 specification men-
tioned under *1284Modes, the QuotedValue of this keyword provides the 
Device ID string returned by the device. For example:

         *1284DeviceID: "MFG:Acme;MODEL:SuperSpiffy;COMMAND SET: POSTSCRIPT,PJL,PCL”

If the device does not return a valid string in response to a request for 
Device ID, this statement will be omitted from the PPD file.

5.6 System Management

*PatchFile: “invocation”

This represents a (perhaps large) PostScript language sequence that is a 
downloadable patch to ROM code, which must be downloaded outside the 
server loop, into initial VM. It is represented as a QuotedValue. It can be used 
if there are any known bugs in existing PostScript devices or to provide some 
initial state to all jobs. A program that is managing a PostScript device should 
make every attempt to guarantee that this information is resident in the Post-
Script interpreter’s memory before any jobs are run. 

Code in a patch file must adhere to certain requirements. These restrictions 
are intended to ensure that this patch code will only execute on the printer for 
which it was intended, and will not execute if it has already been executed on 
this particular printer (to conserve memory space and avoid possible con-
flicts). A conforming patch file must do the following:

• Check a unique key to see if the patch has already been downloaded to the 
printer.

• Compare the product , version , and revision  strings on the printer to the 
values of the *Product and *PSVersion statements in the PPD file to make sure 
that this patch will be downloaded only to the printer for which it was 
written.

• If downloading the patch, define or set a unique key in a dictionary or oth-
erwise indicate the patch’s presence, so that its existence can be checked 
later.

Please see the comments on daggered keywords at the end of section 4.1 for a 
list of the additional responsibilities of the builder of the PPD file and of print 
manager authors.

†

† This keyword requires the *Password value to be supplied in front of the invocation.



5  Keywords  73

*?PatchFile: “query”

This query checks the key set by the code in *PatchFile and returns True if the 
patch file is present behind the server loop, and False if it is not. This allows a 
print manager to decide whether it is necessary to download the patch file 
outside the server loop as a separate job. The patch file’s presence is deter-
mined by the presence or absence of a certain key in a dictionary, or by any 
other method that the implementor of the patch file chooses. If a patch file is 
implemented, a patch file query must be provided.

*JobPatchFile int: “invocation”

Like *PatchFile, this is used to download a PostScript language sequence to 
apply a bug fix or to set up an initial state for a job, but it does not require a 
password and is not downloaded outside the server loop. Its code should be 
attached to the beginning of the job and the pair of files should be down-
loaded as one job. The option keyword is provided so that multiple patch files 
for a device may be numbered.

*FreeVM: “int”

This keyword gives the maximum amount of memory available for use by a 
PostScript language job in the product’s minimal memory configuration. The 
QuotedValue is the integer returned by the PostScript language sequence

vmstatus exch sub == pop

or, on a Level 2 device,

2 vmreclaim vmstatus exch sub == pop

executed immediately after the device is first powered on. 

For a print manager, *FreeVM does not necessarily reflect the current amount 
of VM available on the device, since either more memory may have been 
added or VM may have been used up by downloaded fonts or other resources. 
It should be regarded as a maximum limit of free VM in the minimal memory 
configuration, rather than as a measure of current availability. Historically, 
*FreeVM has been used by print managers to determine which of several 
devices has more memory built into it. Because *FreeVM is generated using the 
product’s minimal memory configuration, it is of limited use on devices that 
support additional memory modules. In that case, the combination of 
*InstalledMemory and *VMOption is more useful for determining how much 
memory might be available.



74 PostScript Printer Description File Format Specification (9 Feb 1996)

*VMOption vmOption: “int”

This keyword provides potential values of the *FreeVM keyword with various 
optional memory (VM) configurations installed. The values are obtained by 
inserting each additional memory module, one at a time, and recording the 
value returned by the code fragment listed in the description of *FreeVM. 

The vmOption None denotes the basic, standard memory configuration, with no 
additional memory upgrades. The other vmOptions must match the vmOptions in 
the *InstalledMemory entry, and are generally of the form 2Meg or 2MB, denoting 
the size of the total installed memory. The value, although in the form of an 
InvocationValue, must be an integer.

A PPD file with a *VMOption entry must also have a *FreeVM statement. At least 
one *VMOption statement must contain the same value as the *FreeVM statement.

For example, the following entry indicates that the standard configuration 
contains 100,000 bytes of free memory at boot time, while the upgrade called 
2Meg provides 1,100,000 bytes of free memory:

*FreeVM: "100000"

*VMOption None/Standard: "100000"

*VMOption 2Meg: "1100000"

*VMOption is used with *InstalledMemory to determine how much memory is 
installed and how much VM is available as a result. See the description of 
*InstalledMemory for an explanation.

Note To builders of PPD files: PPD files with *FormatVersion statements greater than 
4.1 should not have *UIConstraints between an installable memory module and 
*VMOption. This method is obsolete. Instead, there should be *InstalledMemory 
entries in the InstallableOptions group for each additional amount of memory. 
*InstalledMemory is automatically linked to *VMOption by the use of identical 
option keywords, so there is no need for *UIConstraints on *VMOption.

*InstalledMemory vmOption: "invocation"

*DefaultInstalledMemory : vmOption | Unknown

*?InstalledMemory:  “query” (returns: vmOption | Unknown)

*InstalledMemory is used to link the amount of physical memory in the device 
with the amount of available VM. The string vmOption must match a valid 
vmOption listed under *VMOption. *DefaultInstalledMemory indicates the default 
amount of memory installed. *?InstalledMemory returns a vmOption that corre-
sponds to the current memory configuration. Note that this is not the amount 
of free VM, but an indicator of the physical memory installed. 

UIU I




5  Keywords  75

This entry would typically appear in the InstallableOptions group. If the 
*?InstalledMemory query is present and a bidirectional communication channel 
is available, the print manager can use the *?InstalledMemory query to ask the 
device how much memory is installed. If a bidirectional communication 
channel is not available, the print manager can use *InstalledMemory to ask the 
user how much memory is installed. (See section 5.4 for a description of the 
InstallableOptions group.) The print manager would then match the user’s choice 
of an option for *InstalledMemory (or the string returned by *?InstalledMemory) to 
the same option of *VMOption to find out how much VM is available.

For example, in a unidirectional environment, the print manager could read 
the following entry and add it to a configuration panel, asking the user to 
select which memory module had been installed in their printer:

*OpenGroup: InstallableOptions

*OpenUI *InstalledMemory: PickOne

*DefaultInstalledMemory: 2MB

*InstalledMemory 2MB/Standard: " "

*InstalledMemory 3MB/3 MB Upgrade: " "

*InstalledMemory 4MB/4 MB Upgrade: " "

*CloseUI: *InstalledMemory

*CloseGroup: InstallableOptions

The print manager could then take the user’s selection (let’s say it was 4MB) 
and search the following statements to find out how much VM would be pro-
vided by the 4MB option:

*VMOption 2MB: "1234567"

*VMOption 3MB: "2345678"

*VMOption 4MB: "3456789"

This provides a rough method of obtaining an updated value for *FreeVM. 
While this value still may not reflect the true amount of VM available, due to 
resource downloading, in a communications environment where the print 
manager cannot query the printer for the actual amount of VM available, this 
provides something closer to the truth.

In most cases, the invocation value for *InstalledMemory will be null; that is, 
there will be no code between the quotes (like most values in the 
InstallableOptions group). However, in some cases, the invocation value might 
contain code, in which case the print manager should treat it as normal invo-
cation code. If there is actual code in the quotes, the *InstalledMemory entry 
must have an *OrderDependency statement specifying where the code should be 
emitted. The *InstalledMemory keyword can also occur outside the 
InstallableOptions group. 



76 PostScript Printer Description File Format Specification (9 Feb 1996)

*Reset: “invocation”

This QuotedValue is a PostScript language sequence that will perform a 
“soft” restart of the PostScript interpreter. It can be used by a printing man-
ager to reboot the device under some circumstances. Please see the comments 
on daggered keywords at the end of section 4.1 for a list of the additional 
responsibilities of the builder of the PPD file and of print manager authors.

*Password: “invocation”

This QuotedValue provides the password required to persistently set values in 
initial VM on the device. It is used in conjunction with the *ExitServer keyword 
and other keywords that are flagged with the dagger. See section 2.6 for 
details on local customization for instructions on changing this password for 
a specific device.

*ExitJamRecovery True | False: "invocation"

*DefaultExitJamRecovery:  True | False | Unknown

*?ExitJamRecovery:  "query" (returns: True | False | Unknown)

This keyword provides the code to invoke the “exit jam recovery” feature. If 
True, pages that jam in the exit path are reprinted. If False, jammed pages are 
not reprinted, which may result in a performance improvement because more 
overlapping of page processing is possible. *DefaultExitJamRecovery denotes the 
default state. *?ExitJamRecovery returns the current state.

*ExitServer: “invocation”

This QuotedValue provides the appropriate PostScript language sequence to 
exit the job server loop (on a Level 1 device, this code would typically use the 
exitserver  operator, and on a Level 2 device, the startjob  operator). This should 
be used carefully, if at all, by a print manager. Its purpose is to make changes 
to device memory permanent until the device is turned off. It is usually only 
used to apply bug fixes or to change the system defaults on a device. The 
value of *Password or the current password input by a user must precede this 
invocation. Please see the comments on daggered keywords at the end of sec-
tion 4.1 for a list of the additional responsibilities of the builder of the PPD 
file and of print manager authors.

†

UIU I


† This keyword requires the *Password value to be supplied in front of the invocation.

†



5  Keywords  77

*SuggestedJobTimeout:  "int"

This QuotedValue provides the time, in seconds, that the device manufacturer 
suggests for the value of the user parameter JobTimeout  (Level 2) or the argu-
ment to setjobtimeout  (Level 1). This value may be the default value set in the 
device at the factory, or it may be an alternative to the factory-set value, pro-
vided for performance or other reasons. This keyword is intended for print 
managers that allow the user to change the job timeout value; it provides an 
initial value for display to the user.

*SuggestedManualfFeedTimeout:  "int"

This QuotedValue provides the time, in seconds, that the device manufacturer 
suggests for the value of the page device parameter ManualFeedTimeout  (Level 
2) or the argument to setmanualfeedtimeout  (Level 1). This value may be the 
default value set in the device at the factory, or it may be an alternative to the 
factory-set value, provided for performance or other reasons. This keyword is 
intended for print managers that allow the user to change the manualfeed 
timeout value; it provides an initial value for display to the user.

*SuggestedWaitTimeout:  "int"

This QuotedValue provides the time, in seconds, that the device manufacturer 
suggests for the value of the user parameter WaitTimeout  (Level 2) or the argu-
ment to setwaittimeout  (Level 1). This value may be the default value set in the 
device at the factory, or it may be an alternative to the factory-set value, pro-
vided for performance or other reasons.This keyword is intended for print 
managers that allow the user to change the wait timeout value; it provides an 
initial value for display to the user.

*PrintPSErrors: True | False          

This StringValue indicates to a print manager whether or not the device man-
ufacturer thinks that PostScript interpreter error information should be 
printed on the device. Printing interpreter error information is appropriate on 
some devices, but not on others. If True, the device manufacturer suggests that 
printing interpreter error information is appropriate for this device. A print 
manager may, of course, let the user override this suggested setting; this key-
word is intended to provide default behavior for a print manager, and a value 
for initial display to the user if the behavior is to be changed.

Note To builders of PPD files: As a rule of thumb, *PrintPSErrors is usually set to True 
for cut-sheet devices and False for roll-fed devices.



78 PostScript Printer Description File Format Specification (9 Feb 1996)

*DeviceAdjustMatrix: “[ transformation matrix ]”

This QuotedValue provides a device-specific transformation matrix to com-
pensate for any anamorphic scaling or offset problems inherent in the under-
lying mechanical marking device. If the device has no such problems, the 
value of *DeviceAdjustMatrix is the identity matrix [1 0 0 1 0 0], and the entire 
statement will be omitted from the PPD file. 

A system administrator might need to add *DeviceAdjustMatrix to a local custom-
ization file for a particular device to compensate for slight shrinkage or mag-
nification caused by motor speeds, media thicknesses, and so on. See section 
2.6 for information on local customization files.

Note The *ImageableArea figures given in the PPD files will no longer be exactly 
accurate if the device matrix is adjusted. Bear in mind, if this field is 
changed, any operations sensitive to the page boundaries might have to be 
recomputed slightly, or the results might be off the page.

5.7 Emulations and Protocols

The keywords in this section provide information about emulators and proto-
cols supported by the device. 

*Protocols: protocolOption ...

This provides a StringValue that indicates the protocols supported by this 
device. One or more protocols can be listed, separated by white space. Valid 
values for protocolOption are:

• BCP—This device supports the Adobe binary communications protocols, as 
documented in section 3 of Technical Note #5009, Adobe Serial and Par-
allel Communications Protocols Specification, available from the Adobe 
Developers Association. The binary communications protocol provides a 
clear channel on a serial or parallel line and is used to transparently pass 
certain control characters that might be contained in binary data. On a 
clear channel, switching between the PostScript language and certain emu-
lators can be accomplished transparently using language commands from 
within a job.

• PJL—This device can support multiple printer languages, including the 
PostScript language. Hewlett Packard’s printer job language (PJL) pro-
vides a means of switching between languages. This device supports the 
PJL language switching sequences that begin and end PostScript language 
jobs. 



5  Keywords  79

Note PPD files that conform to specification version 4.1 and higher and that con-
tain this statement will also contain the *JCL keywords that provide the appro-
priate PJL language switching sequences. In version 4.0 PPD files, the *JCL 
keywords do not exist and the print manager must provide the appropriate 
PJL commands.

• TBCP—This device supports the tagged binary communications protocol, 
as documented in section 4 of Technical Note #5009, Adobe Serial and 
Parallel Communications Protocols Specification, available from the 
Adobe Developers Association.

*Emulators: emulatorOption ...

This keyword provides a StringValue that enumerates the emulators that can 
be invoked from within a PostScript language job on this device. The value 
consists of one or more emulatorOption keywords, separated by white space.

For each emulatorOption listed under *Emulators, there must also be correspond-
ing main keywords that describe the command sequence necessary to start 
and stop the emulator named emulatorOption. These main keywords are formed 
by concatenating the strings *StartEmulator_ and *StopEmulator_ with the 
emulatorOption string. This odd syntax allows the values to be QuotedValues.

For example:

*Emulators: hplj proprinter

*StartEmulator_hplj: "code"

*StopEmulator_hplj: "code"

*StartEmulator_proprinter: "code"

*StopEmulator_proprinter: "code"

An emulatorOption must appear in a *Emulators statement before the correspond-
ing *StartEmulator_ and *StopEmulator_ keywords appear. 

The currently registered option keywords for emulatorOption are

• diablo630—Diablo 630

• decppl3—Digital ANSI-Compliant Printing Protocol (level 3)

• hpgl—Hewlett Packard Graphics Language

• hplj—Hewlett Packard LaserJet and LaserJet Plus (HP-PCL)

• proprinter—IBM ProPrinter

• ti855—Texas Instruments 855



80 PostScript Printer Description File Format Specification (9 Feb 1996)

*StartEmulator_emulatorOption: “invocation”

This QuotedValue provides the PostScript language code to invoke the emu-
lator named emulatorOption, from within the current job. The invocation is rep-
resented as a QuotedValue in case the invocation code contains 8-bit control 
characters, which must be represented as hexadecimal substrings. This key-
word is formed by concatenating the string *StartEmulator_ with the string from 
the list of valid emulatorOptions listed under *Emulators.

The code in the QuotedValue must end with a space or newline, so that the 
final PostScript language token is executed. Any data sent by the print man-
ager following the invocation code will be executed by the named emulator. 
For example:

*Emulators: hplj

*StartEmulator_hplj: "currentfile 

/hpcl statusdict /emulate get exec "

*End

Before invoking any emulators, a clear channel must be established. See the 
description of the keyword *Protocols for more information about establishing 
a clear channel.

Note Before beginning an emulation, most emulators will erase the current page, 
initialize the graphics state, and clear the operand and execution stacks.

*StopEmulator_emulatorOption: “hexadecimal data” 

This QuotedValue provides the data needed to exit the emulator named 
emulatorOption and return to PostScript interpretation. The invocation is repre-
sented as a QuotedValue because typically the code contains control charac-
ters, which must be represented as hexadecimal substrings.These 
hexadecimal substrings should be parsed by the print manager, and the appro-
priate 8-bit characters should be sent to the device. 

This keyword is formed by concatenating the string *StopEmulator_ with the a 
string from the list of valid emulatorOptions listed under *Emulators. For example:

*Emulators: hplj

*StartEmulator_hplj: "currentfile 

/hpcl statusdict /emulate get exec "

*End

*StopEmulator_hplj: "<1B7F>0"



5  Keywords  81

5.8 Features Accessible Only Through Job Control Language

On some devices, certain features can be accessed only through a job control 
language (JCL), which is managed independently from the PostScript lan-
guage interpreter. Keywords pertaining to such features are referred to 
throughout this document as “*JCL keywords”. A typical job that accesses cer-
tain features via JCL code would contain these components in this order:

• the code from *JCLBegin, which starts the JCL job

• the code, if any, to change the desired feature, such as *JCLResolution or 
*JCLFrameBufferSize

• the code from *JCLToPSInterpreter, which invokes the PostScript interpreter

• the PostScript language job

• the code from *JCLEnd, which ends the job and returns the device to its idle 
state, awaiting further JCL commands.

If a feature can be selected either through the PostScript interpreter or 
through JCL, the device manufacturer should decide which method is pre-
ferred and should use only one method in the PPD file. Although it is legal to 
include both the PostScript and JCL methods of invoking a feature in the 
PPD file, it is not recommended for the following reasons:

• The result is undefined. For example, if a user sets the resolution using 
*JCLResolution and later sets the resolution differently using *Resolution, the 
resolution result will depend on the order in which the print manager per-
forms the operations and on how the two methods interact in the device.

• A print manager, parsing blindly for *JCLOpenUI and *OpenUI, may offer the 
user two methods of changing the resolution on the same print panel, 
which would be confusing.

*JCLBegin:  "JCL"

*JCLToPSInterpreter:  "JCL"

*JCLEnd:  "JCL"

These QuotedValues provide the JCL commands to bracket one or more 
PostScript language jobs into one printed document. The job is emitted in the 
order shown in the introduction to this section. If any of the *JCL- keywords 
are present in a PPD file, then these three keywords must all be present.



82 PostScript Printer Description File Format Specification (9 Feb 1996)

Here is an example of these keywords, using Hewlett Packard’s PJL as the 
JCL:

*JCLBegin: "<1B>%-12345X@PJL JOB<0A>"

*JCLToPSInterpreter: "@PJL ENTER LANGUAGE = POSTSCRIPT <0A>"

*JCLEnd: "<1B>%-12345X@PJL EOJ<0A><1B>%-12345X"

*JCLOpenUI mainKeyword: PickOne | PickMany | Boolean

*JCLCloseUI: mainKeyword

These keywords are identical to the *OpenUI/*CloseUI keywords (see section 5.2 
for a description), except that they are used to enclose only *JCL keywords. 
Like keywords for other selectable features, JCL keywords affect the user 
interface, and as such must be presented to the user in a consistent fashion. 
All JCL keywords that provide the user with selectable features will be 
enclosed in the *JCLOpenUI/*JCLCloseUI keywords. If a print manager does not 
wish to offer selection of features via JCL to the user, the parser can simply 
skip all sections of the PPD file that are bracketed by *JCLOpenUI/*JCLCloseUI.

*JCLFrameBufferSize  frameBufferOption: "JCL"

*DefaultJCLFrameBufferSize : frameBufferOption | Unknown

*?JCLFrameBufferSize :  "query" (returns: frameBufferOption | Unknown)

*JCLFrameBufferSize provides the JCL code to change the frame buffer size. 
Note that requesting a larger frame buffer size means that less memory is 
available for resources such as downloaded fonts. 

Although the value looks like an InvocationValue, the *JCL keywords have 
special parsing rules and such values are treated like QuotedValues. This is 
because the values may contain out-of-range byte codes in hexadecimal 
strings, which the print manager must translate before emitting to the job 
stream.

The values for frameBufferOption are device-specific. One of the options must be 
Off, with a corresponding QuotedValue that sends the JCL code to turn off the 
ability to set the frame buffer size. The results of this action are device-
dependent. Other possibilities for options include any of the media size 
options supported by the device, with the corresponding JCL code requesting 
the frame buffer size appropriate for that media size. See section 5.13 for a 
description of media option keywords.



5  Keywords  83

Note On some devices, setting the frame buffer size may cause the device’s memory 
to be reinitialized, removing anything that had previously been downloaded 
outside the server loop (at save level 0). For example, downloaded fonts, pat-
terns, prologs, forms, and other downloaded resources would be removed 
from the device’s memory.

Here is an example of the frame buffer size keywords in a PPD file:

*JCLOpenUI *JCLFrameBufferSize/Frame Buffer Size: PickOne

*DefaultJCLFrameBufferSize: Letter

*OrderDependency: 20 JCLSetup *JCLFrameBufferSize

*JCLFrameBufferSize Off: '@PJL SET PAGEPROTECT = OFF<0A>'

*JCLFrameBufferSize Letter: '@PJL SET PAGEPROTECT = LTR<0A>'

*JCLFrameBufferSize Legal: '@PJL SET PAGEPROTECT = LGL<0A>'

*JCLCloseUI: *JCLFrameBufferSize

*DefaultJCLFrameBufferSize indicates the default frame buffer size set by a JCL 
command. *?JCLFrameBufferSize returns a string denoting the current frame 
buffer size set by a JCL command. If it is never possible to determine the 
frame buffer size, the *?JCLFrameBufferSize query will be omitted.

*JCLResolution  resolutionOption: "JCL"’

*DefaultJCLResolution :  resolutionOption | Unknown

*?JCLResolution :  “query” (returns: resolutionOption | Unknown)

*JCLResolution provides the JCL code to change the resolution. There is one 
statement for each resolution supported by the device. For a complete expla-
nation of resolutionOption and its possible values, see the description of 
*DefaultResolution in section 5.9.

Although the value looks like an InvocationValue, the *JCL keywords have 
special parsing rules and such values are treated like QuotedValues. This is 
because the values usually contain out-of-range byte codes in hexadecimal 
strings, which the print manager must translate before emitting into the job 
stream.

Note On some devices, setting the resolution may cause the device’s memory to be 
reinitialized, removing anything that had previously been downloaded out-
side the server loop (at save level 0). For example, downloaded fonts, pat-
terns, prologs, forms, and other downloaded resources would be removed 
from the device’s memory.



84 PostScript Printer Description File Format Specification (9 Feb 1996)

Here is a typical entry, using PJL as the JCL:

*JCLOpenUI *JCLResolution/Resolution Settings: PickOne

*DefaultJCLResolution: 300dpi

*OrderDependency: 10 JCLSetup *JCLResolution

*JCLResolution 300dpi/300 DPI: "@PJL SET RESOLUTION = 300<0A>"

*JCLResolution 600dpi/600 DPI: "@PJL SET RESOLUTION = 600<0A>"

*JCLCloseUI: *JCLResolution

*DefaultJCLResolution indicates the default resolution set by a JCL command. 
*?JCLResolution returns a string denoting the device resolution set by a JCL 
command. If it is never possible to determine the resolution, this query will 
be omitted.

5.9 Resolution and Appearance Control

This section contains keywords that control the resolution and related appear-
ance characteristics of the device.

*DefaultResolution: resolutionOption | Unknown

This statement provides the default resolution of the device. The resolution is 
measured in dots (spots) per linear inch, in both x and y dimensions, in Post-
Script default user space. The value resolutionOption must be a string either of 
the form 300dpi or of the form 300x300dpi, or it can be Unknown if the resolution 
cannot be determined at power-up. If *DefaultResolution is part of an entry, the 
value of resolutionOption appearing here must be a valid resolution listed under 
*SetResolution or *Resolution.

If the format of resolutionOption is 300x300dpi, this signifies that the device sup-
ports anamorphic resolution; that is, the resolution in the x dimension can be 
different from the resolution in the y dimension. For example, a printer might 
support a resolution of 300x600dpi. The first number denotes the resolution in 
the x dimension; the second number denotes the resolution in the y dimen-
sion. The “x” in the middle is a convenient separator, and the dpi signifies 
“dots per inch.” This format should be used only for a device that supports 
anamorphic resolution.

The format 300dpi is a shorthand form of 300x300dpi and means that the resolu-
tion is the same in both the x and y dimensions (the device does not support 
anamorphic resolution). This is the most common format found in PPD files.



5  Keywords  85

The format of resolutionOption used by *DefaultResolution must be used consis-
tently wherever a resolutionOption appears. The two formats 300dpi and 
300x300dpi cannot be intermixed in a PPD file.

Note Builders of PPD files: If the device has only one resolution, *DefaultResolution 
may appear by itself, without *Resolution, *SetResolution, or any *OpenUI/*CloseUI 
bracketing. See section 3.2 and section 4.5 for information on stand-alone 
default keywords.

*Resolution resolutionOption: “invocation”

For devices that support resolution changes from within a PostScript lan-
guage job, this keyword will provide the proper InvocationValue for each res-
olution supported by the device. There can be several of these statements, if 
the PostScript device supports multiple selectable resolutions. The string 
resolutionOption is of the form specified in the *DefaultResolution statement. Print 
managers need to ensure that any resolution changes occur before the page 
size is selected.

Note To builders of PPD files: *Resolution does not require a password to precede 
the invocation. If a device requires a password to change the resolution, the 
PPD file should contain *SetResolution, instead of *Resolution.

*SetResolution resolutionOption: “invocation”

For devices that support resolution changes from software and require that 
the resolution be changed “outside the server loop,” in initial virtual memory, 
this keyword will provide the proper InvocationValue for each resolution sup-
ported by the device. There can be several of these statements, if the Post-
Script device supports multiple selectable resolutions. The string 
resolutionOption is of the form specified under *DefaultResolution. Print managers 
need to ensure that any resolution changes occur before the page size is 
selected. Please see the comments on daggered keywords at the end of sec-
tion 4.1 for a list of the additional responsibilities of the builder of the PPD 
file and of print manager authors.

Note To builders of PPD files: *SetResolution should be present only in the PPD files 
of devices that require a password to change the resolution. Devices that do 
not require a password to change the resolution should use *Resolution.

UIU I


†

† This keyword requires the *Password value to be supplied in front of the invocation.



86 PostScript Printer Description File Format Specification (9 Feb 1996)

*?Resolution: “query” (returns: resolutionOption | Unknown)

This query returns a string denoting the current resolution of the device. The 
returned value will be a string in the format specified by *DefaultResolution, 
including the string “dpi”, or it will be Unknown. The resolution returned must 
be a valid resolution listed under *SetResolution or *Resolution, if those entries 
are present. Upon device power-up, downloading the *?Resolution code to the 
device should return the value of *DefaultResolution.

*Smoothing smoothOption: “invocation”

*DefaultSmoothing: smoothOption | Unknown

*?Smoothing: “query” (returns: smoothOption | Unknown)

*Smoothing provides the InvocationValues to invoke various levels of “smooth-
ing” the edges of text and graphics after they have been rendered by the 
device. This is also sometimes referred to as “bit smoothing,” “anti-aliasing,” 
or “resolution enhancement,” Option keywords describe the level of smooth-
ing. One of the options must be None or False to turn off smoothing. 

The currently registered values for smoothOption are:

• None—No smoothing.

• Light—Turn on light smoothing.

• Medium—Turn on medium smoothing

• Dark—Turn on dark smoothing

• True—Turn on smoothing (for a device that has only a binary setting).

• False—Turn off smoothing (for a device that has only a binary setting).

*DefaultSmoothing denotes the default state of the smoothing mechanism. 
*?Smoothing returns a string that denotes the current state of the smoothing 
mechanism.

UIU I




5  Keywords  87

*BitsPerPixel depthOption: “invocation”

*DefaultBitsPerPixel: depthOption | Unknown

*?BitsPerPixel: “query” (returns: depthOption | Unknown)

*BitsPerPixel provides the InvocationValues to select various gray-scale levels 
or color depths. depthOption is a string that denotes the number of bits per pixel 
that should be used to represent a color when rendering the job on the device. 
The currently registered values for depthOption are:

• None, Off, False—Used to represent the lowest number of bits per pixel, 
which is typically 1.

• On, True—Used with Off and False respectively when this feature has only 
two states. Represents the highest number of bits per pixel available.

• 2—Use 2 bits per pixel.

• 4—Use 4 bits per pixel.

• 8—Use 8 bits per pixel.

*DefaultBitsPerPixel denotes the default state of color depth. *?BitsPerPixel returns 
a string that denotes the current color depth. 

5.10 Gray Levels and Halftoning

*AccurateScreensSupport: True | False

This StringValue indicates whether or not the device supports Adobe’s 
Accurate Screens technology. The value is True if accurate screens are sup-
ported, otherwise it is False. The accurate screens feature is documented in 
section 6.4 of the PostScript Language Reference Manual, Second Edition. 

*ContoneOnly True | False

This StringValue indicates the continuous tone capabilities of the device. This 
keyword only appears if the device can reproduce color (including grayscale) 
as continuous tones. True means the device can reproduce color and grayscale 
only as continuous tones; it cannot halftone. False means the device can repro-
duce color and grayscale either as continuous tones or halftones. The absence 
of this keyword means that the device cannot produce continuous tones at all, 
but can only produce halftones. An application can use this information to 
decide whether or not to download special halftone dictionaries, or whether 
to even offer this capability to the user. There is no point in downloading half-
tone dictionaries if *ContoneOnly is True.

UIU I




88 PostScript Printer Description File Format Specification (9 Feb 1996)

*DefaultHalftoneType: int

This StringValue is the integer value of HalftoneType  in the default Halftone  dic-
tionary. This keyword applies only to Level 2 devices. This keyword is 
present only if the device is capable of halftoning and if the default state of 
the device is to produce halftones rather than continuous tone color. 
(*ContoneOnly:True and *DefaultHalftoneType may not appear in the same file.)

*DefaultHalftoneType provides a hint to the print manager about the accuracy of 
the values for *ScreenFreq, *ScreenAngle, and *DefaultScreenProc. See their descrip-
tions for further information.

*ScreenAngle: “real”

*ScreenFreq: “real”

*DefaultScreenProc: spotOption

These keywords provide the default halftone screen angle, frequency, and 
spot function, respectively. On Level 1 devices, these values are the angle, 
frequency, and proc arguments returned by the currentscreen  operator after pow-
ering on the device. On Level 2 devices, only a type 1 halftone dictionary can 
be easily represented by these keywords. Therefore, if the value of 
*DefaultHalftoneType is 1, or if *DefaultHalftoneType is not present, these values are 
the Frequency, Angle, and SpotFunction entries in the default Halftone  dictionary. 
If the value of *DefaultHalftoneType is anything other than 1, the values of 
*ScreenAngle, *ScreenFreq, and *DefaultScreenProc may be meaningless and applica-
tion authors may not want to rely on them for anything important.

Note To builders of PPD files: Although these are not required keywords, 
* ScreenFreq, *ScreenAngle, and *DefaultScreenProc should be present even for 
contone-only devices, because many applications have come to depend on 
their presence, even though their values may be useless on a particular 
device. You should assume that some applications will execute setscreen  with 
the values provided by *ScreenFreq, *ScreenAngle, and *DefaultScreenProc. To pre-
pare for this, if the value of *DefaultHalftoneType is anything other than 1, you 
should put reasonable values for angle, frequency, and spotOption in the key-
words above. If you don’t know what values to use, try 45 for angle, 60 for 
frequency, and Dot for spotOption, and make sure that *ScreenProc Dot is defined in 
the PPD file.

Note Some older PPD files for Level 2 devices may need to have these values cor-
rected. Prior to the 4.3 version of this specification, there was no requirement 
that these values represent the Frequency, Angle , and SpotFunction  entries in the 
default Halftone  dictionary in a Level 2 device, and if sethalftone  was use to set 
these values, the currentscreen  operator used to build the PPD files would not 
have returned the correct values.



5  Keywords  89

*ScreenAngle and *ScreenFreq are QuotedValues, and *DefaultScreenProc is a 
StringValue. For *DefaultScreenProc, the spotOption must correspond to one of the 
options listed under *ScreenProc.

*ResScreenFreq resolutionOption: "real"

*ResScreenAngle resolutionOption: "real"

On devices with user-settable resolution, the halftone screen frequency and 
angle may be changed by the device when the resolution is changed by the 
user. These keywords provide the halftone screen frequency and angle that is 
applied by the device for each settable resolution. The option must be a valid 
resolutionOption listed under *Resolution, *SetResolution, or *JCLResolution in the PPD 
file for this device. There should be one *ResScreenFreq and *ResScreenAngle 
statement for each settable resolution. See section 5.9 for an explanation of 
the format of resolutionOption.

On Level 2 devices, only a type 1 halftone dictionary can be easily repre-
sented by these keywords. Therefore, for a Level 2 device, if the value of 
*DefaultHalftoneType is anything other than 1, these keywords should be omitted 
from the PPD file.

*ScreenProc spotOption: “ { procedure } ”

This InvocationValue provides a procedure body that is suitable for use as a 
“spot function” with the setscreen  or sethalftone  (Level 2) operator. The 
spotOption represents the name of the spot function. These options are used to 
specify an alternate shape for the halftone spot. There can be one or more of 
these spot shape options in a PPD file.

These spot options are used by the *ScreenProc keyword to set the halftone 
screen spot function. Any of these options can also have a .Inverse qualifier, 
which would invert the color of the spot function, or it can have a serializa-
tion qualifier to distinguish it from other options. 

The currently registered values for spotOption are:

• Dot—This keyword represents a standard dot-shaped halftone screen func-
tion. This is the default shape for the halftone cell on many PostScript lan-
guage implementations, and basically consists of small, black, roughly 
circular spots that vary in size with the gray level. This keyword also 
encompasses more sophisticated functions that also produce circular dots 
(for example, as found on higher-resolution devices), but which might 
slightly differ from the most basic dot screen.



90 PostScript Printer Description File Format Specification (9 Feb 1996)

• Line—This keyword represents a line screen halftone function. Gray levels 
will be rendered by parallel lines that vary in thickness according to the 
gray level.

• Ellipse—This keyword provides an “elliptical spot” screen, which is similar 
to a dot screen except that the dots are elliptical rather than circular.

• Cross—This provides a “crosshatch” screen halftone function.

• Mezzo—This provides a pseudorandom “mezzotint” screen function for the 
halftone mechanism.

• DiamondDot—This provides a screen in which low gray levels produce round 
dots, medium gray levels produce diamond-shaped dots, and high gray 
levels produce negative dots. This screen produces smoother transitions 
among medium gray levels.

*Transfer transferOption: “ { procedure } ”

*DefaultTransfer: Null | Factory

*Transfer provides InvocationValues for possible transfer functions, which may 
be invoked with the operators settransfer , setcolortransfer , and sethalftone  (Level 
2 only). A transfer function is a procedure that corrects for the characteristics 
of a particular marking engine or display technology to obtain “true” optical 
gray or color densities. A transfer function is expected to return accurate 
results at the 10% increments and should return reasonable values at any 
point between 0 and 1. 

Since transfer functions are inherently specific to an instance of a type of 
device, any transfer functions should be entered into a local customization 
file for a specific device. Most PPD files will ship without any transfer func-
tions defined for a class of devices.

Note To print manager authors: When transfer functions are used at the PostScript 
language level, always concatenate the transfer function with the existing 
one, rather than replacing it. See section 6.3 of the PostScript Language Ref-
erence Manual, Second Edition for more information about transfer functions 
and their uses.

The currently registered values for transferOption are:

• Null—This is provided to indicate a null procedure body for the transfer 
function. A null procedure body is represented in the PostScript language 
as a pair of curly braces, { }.



5  Keywords  91

• Factory—For a monochrome device that ships from the factory with a built-
in non-null transfer function, this option lists the transfer function built 
into the device.

• Normalized—For a monochrome device, this provides a normalized transfer 
function to obtain “true” optical gray densities. For a color device, the Nor-
malized option provides the transfer function to correct the gray values on 
an RGB device and the black colorant on a CMYK device.

• Red—For a color device, this provides a normalized transfer function to 
correct the red colorant on an RGB device or the cyan colorant on a 
CMYK device.

• Green—For a color device, this provides a normalized transfer function to 
correct the green colorant on an RGB device or the magenta colorant on a 
CMYK device.

• Blue—For a color device, this provides a normalized transfer function to 
correct the blue colorant on an RGB device or the yellow colorant on a 
CMYK device.

Any of these transfer option keywords can also have the .Inverse qualifier or a 
serialization qualifier to distinguish it from other options. Inversion is typi-
cally performed by appending 1 exch sub  to the existing transfer function, but 
an inverse normalized function can be much more complex.

On monochrome devices, *DefaultTransfer provides the built-in transfer func-
tion, as returned by the currenttransfer  operator immediately after powering up 
the device. Most devices ship with a null default transfer function. 

5.11 Color Adjustment

This section contains keywords used to adjust colors on color devices.

*BlackSubstitution True | False: “invocation”

*DefaultBlackSubstitution: True | False | Unknown

*?BlackSubstitution: “query” (returns: True | False | Unknown)

*BlackSubstitution provides the InvocationValue to invoke black substitution. 
When True, it indicates that the printer should substitute process black ink for 
any pixel that is marked in composite black (cyan, magenta, and yellow inks 
all requested), to produce a better black. *DefaultBlackSubstitution denotes the 
default state of the black substitution feature. *?BlackSubstitution returns True if 
black substitution is currently invoked and False if it is not.

UIU I




92 PostScript Printer Description File Format Specification (9 Feb 1996)

*ColorModel colormodelOption: “invocation”

*DefaultColorModel: colormodelOption | Unknown

*?ColorModel: “query” (returns: colormodelOption | Unknown)

*ColorModel provides InvocationValues to select different native color models 
to be used by the device for imaging. The native color model is the color 
model to which all colors are converted before rendering. *DefaultColorModel 
denotes the default native color model of the device. *?ColorModel returns the 
current native color model. The currently registered values for colormodelOption 
are

• CMY—Cyan-magenta-yellow color model.

• CMYK—Cyan-magenta-yellow-black color model.

• RGB—Red-green-blue color model.

• Gray—Gray-scale color model.

*ColorRenderDict dictOption: “invocation”

On Level 2 color devices, manufacturers can supply built-in color rendering 
dictionaries (CRDs) to calibrate the device colors for different rendering 
intents, different types of paper, different halftone screens, or for other pur-
poses. This keyword lists the CRDs that are built into the device and provides 
the InvocationValue code to invoke each CRD referred to by dictOption. There 
will be one instance of this keyword for each built-in color rendering dictio-
nary. The invocation code sets up the named CRD to be the current CRD, 
which will affect all imaging done after this code appears in the output file.

In devices with interpreter versions below 2015, CRD names were arbitrary 
strings. In devices with interpreter versions of 2015 and later, CRDs must be 
named according to Adobe’s CRD naming conventions. For more informa-
tion on naming and using color rendering dictionaries, see section 5.4, CRD 
Selection Based on Rendering Intent, in the PostScript Language Reference 
Manual Supplement for Version 2015, available from the Adobe Developers 
Association. 

The dictOption name will be a concatenation of rendering intent, device setup, 
and halftone names, separated by dots:

renderingintent.devicesetup.halftone

UIU I




5  Keywords  93

The name will also typically have a translation string. For example:

*ColorRenderDict Saturated.6x6Transparency.Dot/Saturated Color, 600x600 dpi, Transparency, Dot: 

"/Saturated.6x6Transparency.Dot /ColorRendering findresource setcolorrendering"

*End

An application might provide the list of built-in CRDs to the user for selec-
tion, so a meaningful translation string is important. See *RenderingIntent, 
*PageDeviceName, and *HalftoneName for more information on the components of 
a CRD name.

In addition, if a user wants to supply new CRDs that are not built into the 
device, new instances of this keyword can be added to a local customization 
PPD file for a given device. This is rarely used because it greatly increases 
the size of the PPD file. For a new CRD in a local customization file, the 
*ColorRenderDict code would have to create the CRD, fill it with the appropriate 
values for color calibration, and invoke the CRD with setcolorrendering . If the 
CRD is to be made available for future use as a resource, the appropriate 
defineresource  code and any other necessary procedures must also be included.

Note To application developers: There is a close relationship between the current 
device setup (page device), the current halftone dictionary, and the appropri-
ate CRD. The *ColorRenderDict code does not take these things into account. 
Application developers who wish to use *ColorRenderDict should ensure that the 
appropriate halftone and device setup are invoked correctly before executing 
the *ColorRenderDict code, or the results will be unpredictable. Better yet, appli-
cations should use findcolorrendering  to find and set up the appropriate CRD.

*RenderingIntent: string

This keyword provides the list of rendering intents supported by the device. 
At minimum, all of the intents named in the built-in CRDs must appear here, 
as StringValues. These should correspond to the first component of each 
dictOption listed under *ColorRenderDict. The manufacturer may also choose to 
list any additional built-in intents.

Here is an example, listing the four standard rendering intents:

*RenderingIntent: AbsoluteColorimetric 

*RenderingIntent: RelativeColorimetric 

*RenderingIntent: Saturation 

*RenderingIntent: Perceptual

For more information on the name components of color rendering dictionar-
ies, see section 5.4, CRD Selection Based on Rendering Intent, in the Post-
Script Language Reference Manual Supplement for Version 2015, available 
from the Adobe Developers Association.



94 PostScript Printer Description File Format Specification (9 Feb 1996)

*PageDeviceName: string

This keyword provides the list of device setups (page device names) sup-
ported by the device. At minimum, all of the device setups named in the built-
in CRDs must appear here, as StringValues. These should correspond to the 
second component of each dictOption listed under *ColorRenderDict. The manu-
facturer may also choose to list any additional built-in page device names. 
These page device names must correspond either to instances of the 
setpagedevice  key PageDeviceName , or to the list of names returned by the built-
in procedure GetPageDeviceName , or the list may include all of the above 
names.

For example:

*PageDeviceName: 6x6Transparency

*PageDeviceName: 3x3Transparency

*PageDeviceName: Paper

For more information on the name components of color rendering dictionar-
ies, see section 5.4, CRD Selection Based on Rendering Intent, in the Post-
Script Language Reference Manual Supplement for Version 2015, available 
from the Adobe Developers Association.

*HalftoneName: string

This keyword provides the list of halftone names supported by the device. At 
minimum, all of the halftones named in the built-in CRDs must appear here, 
as StringValues. These should correspond to the third component of each 
dictOption listed under *ColorRenderDict. The manufacturer may also choose to 
list any additional built-in halftone names. These halftone names must corre-
spond either to instances of the Halftone  dictionary key HalftoneName , or to the 
list of names returned by the built-in procedure GetHalftoneName , or the list 
may include all of the above names.

For example:

*HalftoneName: ScatterDot

*HalftoneName: QuadDot

For more information on the name components of color rendering dictionar-
ies, see section 5.4, CRD Selection Based on Rendering Intent, in the Post-
Script Language Reference Manual Supplement for Version 2015, available 
from the Adobe Developers Association.

Note *RenderingIntent, *PageDeviceName, and *HalftoneName may be useful to an appli-
cation that wishes to download a new CRD without immediately invoking it 
(*ColorRenderDict immediately invokes the new CRD). In that case, the applica-
tion or user must provide the contents of the new CRD and the code to down-



5  Keywords  95

load it to the device, name it properly, define it as a resource, and perform 
any other necessary procedures. These keywords provide components for the 
new CRD name.

5.12 Introduction to Media Handling

PPD files are most commonly used to take advantage of the different media 
sizes supported by a device. There are many devices on the market and many 
different sizes and types of media and finishing features supported on each 
device. The actual invocation code for a particular type of media often varies 
from one device to another—it might require the use of the operator 
setpageparams  on one device, setpapertray  on another, and setpagedevice  on a 
third. The keywords in the next several sections are used to address the issues 
of choosing the input media, selecting a method of output, and requesting 
various finishing features.

In many instances, what the user wants is “please print this on ledger paper,” 
where the user does not care from which tray the paper comes. For this situa-
tion, there is a keyword, *PageSize, whose corresponding invocation code 
selects a tray that contains the requested size of paper. Unless there are spe-
cial media handling needs, print managers should use the *PageSize keyword 
to request media.

For more control over the media handling capabilities, there are keywords for 
directly selecting the input slots, the output bins, the output order of the 
pages, the imageable area of a given page, and finishing features, such as sta-
pling. Each of these has a specific use that might be needed beyond the notion 
“please give me ledger paper.” For instance, if the manual feed feature is 
used, the *PageRegion keyword should be used to set up an imageable area for 
the manually fed sheet of paper.

Note The author of a print manager should assume that all media handling 
requests (requests for a particular page size, media tray, and so on) will ini-
tiate a new, blank page. That is, assume that a request for a media handling 
feature will clear the frame buffer and perform the equivalent of the 
PostScript language operators initgraphics  and erasepage . This does not 
happen on all PostScript Level 1 devices, but is true for all PostScript Level 2 
devices, and to be safe, you should assume it will happen on all Level 1 
devices. Print managers should ensure that all media handling requests are 
placed in the output file before any page manipulation is performed, before 
any marks are made on the page, and outside of any page-level save.

A primary use of a PPD file is for a print manager to be able to determine a 
list of all supported media types and to be able to determine the salient fea-
tures of each page size (for example, the media dimensions and the imagea-
ble area). This list can then be displayed to the user in a user interface, or 
consulted by the print manager when a user requests a certain page size.



96 PostScript Printer Description File Format Specification (9 Feb 1996)

In addition to the keywords that supply invocation code for the various media 
types, there are keywords that provide information about each media size. For 
example, the physical media dimensions are described by the *PaperDimension 
keyword, and the actual area of the page which is “writable” by the Post-
Script language interpreter is described by the *ImageableArea keyword.

5.13 Media Option Keywords

In a PPD file, each type of media is described by an option keyword. The 
same option keyword is used with several different main keywords to 
describe different aspects of a given media type. For example, the statements 
*PageSize Letter, *PaperDimension Letter, and *ImageableArea Letter all address differ-
ent characteristics of a letter-size page.

Tables of the currently registered media option keywords, sorted by both 
name and size, can be found in Appendix B: Registered mediaOption Key-
words. The media option names in those tables can be substituted for any 
occurrence of the placeholder word mediaOption anywhere in this specification.

Additional media option keywords can be added to the list of registered 
option keywords at any time. To ensure that the set of device features is not 
artificially limited, a print manager should parse the PPD file for the com-
plete list of option keywords in a main keyword entry, rather than parsing for 
specific option keywords. See section 5.1 for more information about the 
extensibility of option keywords and the rules for creating new ones.

With closely related statements, such as the media handling keywords, it is 
impossible to predict which statement a print manager will read to get the 
translation string for an option keyword. For continuity of results, if a 
mediaOption of one main keyword has a translation string, and that mediaOption 
is used with multiple main keywords and has the same semantics across those 
keywords, then the translation string should be on every occurrence of the 
mediaOption and should be identical across occurrences. For example, if the 
*PageSize statement for Letter uses a translation string Portrait Letter, then the 
*PageRegion, *PaperDimension, and *ImageableArea statements for Letter should all 
use the same translation string Portrait Letter. 

5.14 Media Selection

The keywords in this section allow the user to control the selection of media 
by specifying characteristics such as page size, input slot, media type, media 
color, and other attributes.



5  Keywords  97

*InputSlot inputSlotOption: “invocation”

*DefaultInputSlot: inputSlotOption | Unknown

*?InputSlot: “query” (returns: inputSlotOption | Unknown)

*InputSlot provides the InvocationValue to select media by specifying the name 
of the input tray in which the media is located, rather than the page size or 
other characteristics of the media. For example, the media can be selected by 
specifying the upper or the lower slot and accepting whatever is found there. 
The most common use of this keyword is to select a media tray that contains 
letterhead or other special paper. There will be one statement for each soft-
ware-selectable input slot. *DefaultInputSlot provides the name of the default 
input slot. *?InputSlot returns the name of the current input slot.

Any arbitrary strings that appropriately describe the devices’s input slots are 
valid inputSlotOptions. The following list documents commonly used 
inputSlotOptions. For Windows print managers, Microsoft has defined C lan-
guage constructs called #defines, which are used to match Windows applica-
tion requests for input slots to the inputSlotOption names in PPD files. If one 
exists, the appropriate #define is listed in the inputSlotOption description, for use 
by print managers. Builders of PPD files are encouraged to use these standard 
inputSlotOption names so that Windows print managers can correctly match 
application requests to input slots:

• Lower—This is used for any tray which has no particular distinguishing fea-
ture other than it is lower than another tray similar to it.
#define: DMBIN_LOWER 

• Middle—This designates a tray that is between other trays. See Lower. 
#define: DMBIN_MIDDLE 

• Upper—This designates a tray that is above other trays. See Lower. 
#define: DMBIN_UPPER

• Rear—This designates a tray at the rear of the device.

• Envelope—This denotes an envelope tray. #define: DMBIN_ENVELOPE 

• Cassette—This keyword can be used where Upper, Middle, and Lower make 
little sense (for example, if there is only one input slot, or if the printer is a 
roll-fed device). Since many print managers display the choices of input 
slot and manual feed on a single menu, Cassette provides differentiation for 
the user between the paper or film cassette and the manual feed slot, if one 
exists. #define: DMBIN_CASSETTE

• LargeCapacity—This is used to refer to a large capacity media tray, such as an 
input paper tray that can hold more than one ream of paper.
#define: DMBIN_LARGECAPACITY 

UIU I




98 PostScript Printer Description File Format Specification (9 Feb 1996)

• AnySmallFormat—This is used to indicate a media tray that can hold any of 
the smaller format medias. This includes any media size that is up to (and 
including) 11 inches on the longer side. #define: DMBIN_SMALLFMT 

• AnyLargeFormat—This option allows selection of a “universal” media tray 
that can contain any of the large format media sizes (those with one 
dimension greater than 11 inches).#define: DMBIN_LARGEFMT

Option keywords may also combine other attributes such as *MediaType or 
*ManualFeed with *InputSlot. For example:

*InputSlot ManualPaper: “code”

*InputSlot ManualTransparency: “code”

The code fragments would select the manual feed slot and set up the printer 
(perhaps adjusting color densities) to print on paper or transparency, respec-
tively. 

Note To builders of PPD files: If features are combined into an option keyword as 
shown above, the relevant feature keyword should usually be omitted, to 
avoid presenting the user with two different ways to choose a feature. In this 
example, the *ManualFeed and *MediaType entries should be omitted, since the 
use of *InputSlot allows selection of those features. Likewise, if *InputSlot Manual 
is present, the *ManualFeed entry should be omitted, to avoid providing two 
methods of invoking the manual feed slot. Use common sense and test the 
PPD file with print managers to make sure a feature is not presented in multi-
ple ways, confusing the user.

Note To builders of PPD files: The *InputSlot entry is not required. However, even if 
there is only one input slot, a minimal *InputSlot entry is usually included. This 
allows the manufacturer to dictate the slot name (as an option keyword or 
translation string) for a print manager to display, rather than using the print 
manager’s default choice of a slot name. Cassette is the most commonly used 
name for single-slot or roll-fed devices. For example:

*OpenUI *InputSlot: PickOne

*OrderDependency: 20 AnySetup *InputSlot

*DefaultInputSlot: Cassette

*InputSlot Cassette: ""

*CloseUI: *InputSlot

There is no need to include the *?InputSlot query, since it provides no useful 
information and increases the size of the PPD file, but it can be included, 
with code that simply flushes back the string Cassette. For example:

*?InputSlot: “save (Cassette) = flush restore”



5  Keywords  99

*ManualFeed True | False: “invocation”

*DefaultManualFeed: True | False | Unknown

*?ManualFeed: “query” (returns: True | False | Unknown)

*ManualFeed provides the InvocationValue to turn manual feed on (True) and off 
(False). *DefaultManualFeed denotes the default state of the manualfeed mecha-
nism. *?ManualFeed returns the current state of the manual feed mechanism. 

Some manufacturers prefer to handle the manual feed slot as a regular input 
slot, naming one of the *InputSlot options Manual or ManualFeed and invoking 
manual feeding in the code for that option. In this case, *ManualFeed should not 
be present, as that would cause a print manager to offer the user two different 
methods of choosing manual feed, which would be confusing.

Note To builders of PPD files: The existence of *ManualFeed as a separate feature is 
an historic anomaly. Adobe recommends that you omit *ManualFeed and 
instead include *InputSlot Manual or *InputSlot ManualFeed. This provides a cleaner 
interface for print managers, which usually regard the manual feed slot as 
just another input slot. It also means that you don’t have to write *UIConstraints 
between *ManualFeed and every *InputSlot option, thus reducing both the size of 
the PPD file and the time it takes to build it.

*PageSize mediaOption: “invocation”

*DefaultPageSize: mediaOption | Unknown

*?PageSize: “query” (returns: mediaOption | Unknown)

Required. *PageSize provides the InvocationValue to invoke supported page 
sizes. *DefaultPageSize indicates the default page size set by the device when it 
is first powered up. Since there can be only one default page size, this value 
should be the same as the value of *DefaultPageRegion, *DefaultImageableArea, and 
*DefaultPaperDimension. *?PageSize returns the media option corresponding to the 
current page size, and is not required if it is not possible to write such a query.

The *PageSize invocations will establish both an input slot and a frame buffer 
(an area in device memory to hold the imageable region of the page). The 
exception to this is on roll-fed devices, such as imagesetters, where there are 
no selectable input slots and the invocation will only set up the frame buffer.

*PageSize should be used by a print manager for the common case of a request 
for a certain size of media, with no special handling of media requested (for 
example, the user says, “give me legal size paper,” but does not care which 
tray is used). *PageSize is intended to be used in all but very specific circum-
stances (such as when using manual feed or when directly controlling a 
media tray).

UIU I


UIU I




100 PostScript Printer Description File Format Specification (9 Feb 1996)

Note To print manager authors: An invocation string supplied by *PageSize will 
usually override an invocation string supplied by *PageRegion. Therefore, if, 
for some reason, both a *PageRegion invocation and a *PageSize invocation for 
a single page are going into the output file, the *PageRegion invocation must 
come after the *PageSize invocation to achieve the expected results.

Note To builders of PPD files: In a PPD file for an imagesetter, the invocation 
strings for *PageSize and *PageRegion are usually identical. On devices that 
support multiple page sizes, the value of *DefaultPageSize will often be Unknown, 
as it may be impossible to predict which media tray will be inserted or desig-
nated as the default tray. Also, read the end of section 5.13 for a discussion of 
translation strings on media option keywords.

Currently registered values for mediaOption may be found in Appendix B: Reg-
istered mediaOption Keywords

*PageRegion mediaOption: “invocation”

*DefaultPageRegion: mediaOption | Unknown

Required. The InvocationValues of *PageRegion set the imageable area to the 
appropriate media type without explicitly specifying the source of the media. 
It is intended to be used in conjunction with manual feed so that the imagea-
ble area is appropriate for the media to be fed. It is also used instead of the 
*PageSize invocations when the user specifies an input tray and a page size (for 
example, Upper Tray, Letter Size), because the *PageSize invocations gener-
ally select an input tray and would override the user’s previous selection of a 
specific input tray.

*DefaultPageRegion indicates the default imageable area (in terms of media 
options) for the device when powered on. Since there can be only one default 
page size, this value should be the same as the value of *DefaultPageSize, 
*DefaultImageableArea, and *DefaultPaperDimension.

Note To print manager authors: *PageSize should be used to select a particular size 
of paper, *PageRegion should be used to select a particular imageable area for 
manualfeed, and *InputSlot should be used to select a specific media tray. 
*InputSlot is documented in section 5.17.

Note To builders of PPD files: In a PPD file for an imagesetter, the invocation 
strings for *PageSize and *PageRegion are usually identical. On devices that 
support multiple page sizes, the value of *DefaultPageRegion will often be 
Unknown, as it may be impossible to predict which media tray will be inserted 
or designated as the default tray. Also, read the end of section 5.13 for a dis-
cussion of translation strings on media option keywords.

UIU I




5  Keywords  101

*MediaType typeOption: “invocation”

*DefaultMediaType: typeOption | Unknown

*?MediaType: “query” (returns: typeOption | Unknown)

*MediaType provides the InvocationValue to select media by some characteris-
tic other than size (or in addition to size). The typeOptions are product-depen-
dent strings that describe the media. For example, a user might be able to 
select letterhead paper by specifying Letterhead as a media type. This method 
usually requires prior device setup, so that the device knows how to access a 
certain type of media. *DefaultMediaType provides the default media type. 
*?MediaType returns the current media type. 

*MediaColor colorOption: “invocation”

*DefaultMediaColor: colorOption | Unknown

*?MediaColor: “query” (returns: colorOption | Unknown)

*MediaColor provides InvocationValues to select media by color. The 
colorOptions are product-dependent strings that describe the available colors of 
media, such as Blue and Buff. This method usually requires prior device setup, 
so that the device knows how to access a certain color of media. 
*DefaultMediaColor provides the default media color. *?MediaColor returns the cur-
rent media color.

*MediaWeight weightOption: “invocation”

*DefaultMediaWeight: weightOption | Unknown

*?MediaWeight: “query” (returns: weightOption | Unknown)

*MediaWeight provides InvocationValues to select media by weight. The 
weightOptions are product-dependent strings that describe the available media 
weights. This method of media selection usually requires prior device setup, 
so that the device knows how to access a certain weight of media. 
*DefaultMediaWeight provides the default media weight. *?MediaWeight returns the 
current media weight.

UIU I


UIU I


UIU I




102 PostScript Printer Description File Format Specification (9 Feb 1996)

5.15 Information About Media Sizes

The keywords in this section provide information about the media sizes that 
are available on the device. They do not invoke any device features.

*ImageableArea mediaOption: “llx lly urx ury”

*DefaultImageableArea: mediaOption | Unknown

Required. *ImageableArea provides the bounding box of the imageable area for 
the page size named mediaOption. There will be one statement for each named 
page size supported by the device. *DefaultImageableArea provides the 
mediaOption name of the default imageable area. Since there can be only one 
default page size, this value should be the same as the value of 
*DefaultPageSize, *DefaultPageRegion, and *DefaultPaperDimension.

The bounding box value of *ImageableArea is given as four real numbers, repre-
senting the x and y coordinates of the lower left and upper right corners of the 
region, respectively, in the PostScript language default user space coordinate 
system. The x and y axes of a given page size correspond to the x and y axes 
of that page size in the *PaperDimension entry.

The imageable region is defined as the part of the page where marks can actu-
ally be made. On many devices, there are margins imposed by the media 
transport mechanism in the marking engine that might prevent marks from 
being made close to the edges of the media. The *ImageableArea entry will 
supply a region that represents a “reliable” area of the page in which marks 
can be made. This might exactly correspond to the clipping path set by the 
PostScript interpreter. The value is represented as an InvocationValue.

On some devices, the imageable area of a given page size varies as a result of 
the current resolution, amount of memory, the direction of paper feed, and 
other factors. For example, the imageable area of a Legal size page might be 
smaller at higher resolutions on a printer with variable resolution, or it might 
be shifted left or right depending on whether the page was fed long-edge-first 
or short-edge-first. In PPD files where the imageable area of a given page 
size can vary depending on other factors, the imageable area recorded for that 
page size will be the intersection of all possible imageable areas for that page 
size. While this means that the imageable area available in the current config-
uration might actually be larger than the imageable area shown in the PPD 
file, it at least guarantees that the available imageable area will not be smaller 
than that shown in the PPD file, and all marks made within the given imagea-
ble area will be visible.



5  Keywords  103

Note To builders of PPD files: On devices that support multiple page sizes, the 
value of *DefaultImageableArea will often be Unknown, as it may be impossible to 
predict which media tray will be inserted or designated as the default tray. 
Also, read the end of section 5.13 for a discussion of translation strings on 
media option keywords.

*?ImageableArea: “query” (returns: “llx lly urx ury” | Unknown)

This query returns a string composed of four real numbers representing the 
bounding box of the imageable area, as defined under *ImageableArea. Since it 
is virtually impossible to determine hardware restrictions from software poll-
ing, this query will usually return the default clipping region for the page size 
in effect. In general, it is better for a print manager to use the values supplied 
by the *ImageableArea statements, since they can be adjusted by hand for partic-
ular hardware constraints. 

*PaperDimension mediaOption: “real real”

*DefaultPaperDimension: mediaOption | Unknown

Required. The InvocationValue of *PaperDimension lists the physical dimen-
sions of a particular media size, independent of the imageable area of the 
page. There are only two numbers specified, which represent the width (in the 
x dimension) and height (in the y dimension) of the media, respectively, in 
PostScript default units. The x and y axes of a given page size correspond to 
the x and y axes of that page size in the *ImageableArea entry.

*DefaultPaperDimension provides the mediaOption name of the default physical 
media dimension. Since there can be only one default page size, this value 
should be the same as the value of *DefaultPageSize, *DefaultPageRegion, and 
*DefaultImageableArea.

Note To builders of PPD files: On devices that support multiple page sizes, the 
value of *DefaultPaperDimension will often be Unknown, as it may be impossible to 
predict which media tray will be inserted or designated as the default tray. 
Also, read the end of section 5.13 for a discussion of translation strings on 
media option keywords.

*RequiresPageRegion inputSlotOption: True | False

This keyword provides a StringValue that indicates, for each input slot, 
whether or not the *PageRegion invocation code must be sent with the *InputSlot 
invocation code when the user requests media from that input slot. For exam-
ple, if the device cannot sense what page size is installed in a given input slot, 



104 PostScript Printer Description File Format Specification (9 Feb 1996)

any invocation of that input slot must be followed by an invocation of the 
appropriate *PageRegion code to set up the requested frame buffer and imagea-
ble area for the page. 

Therefore, if the device cannot sense the page size in a given input slot, the 
*PageRegion code is required, and the value of *RequiresPageRegion will be True 
for that slot. The *PageRegion code may be required for any reason. If the 
*PageRegion code is not required for a given slot, then the value of 
*RequiresPageRegion for that slot will be False. 

The option keyword inputSlotOption must be a valid inputSlotOption listed in the 
*InputSlot entry in the PPD file. For example:

*InputSlot Lower: "code"

*InputSlot Envelope: "code"

...

*RequiresPageRegion Lower: False

*RequiresPageRegion Envelope: True

An additional special option keyword All means that the statement applies to 
all media sources on the device. For example:

*RequiresPageRegion All: False

This statement indicates that the *PageRegion code is never required after an 
input slot invocation.

 If *RequiresPageRegion for any slot (or all slots) is omitted from a PPD file, it is 
assumed to be False for those slots. That is, the *PageRegion code should not be 
invoked after an input slot invocation.

*LandscapeOrientation: Plus90 | Minus90 | Any

Every print manager makes assumptions about the location of the origin of 
default user space on the physical page. When a user selects landscape orien-
tation, a print manager must rotate and translate the origin of default user 
space on the page. On certain printers, the orientation of the physical page is 
dictated by either physical markings on the printer case, or by instructions in 
the user manual. This dictated orientation might be incompatible with the 
print manager's assumptions about the orientation of the physical page. This 
is not significant for blank paper, but for pre-marked paper, such as letter-
head, 3-hole-punched paper, or envelopes, the printed output might appear 
upside-down with respect to the letterhead, punch holes, envelope flap, or 
other pre-markings on the page.

This keyword, whose StringValue is determined from knowledge of the 
printer's markings and instructions, provides a hint to a print manager about 
which way it should rotate and translate the page, for the printed output to be 



5  Keywords  105

compatible with the page feeding instructions on the printer or in the printer's 
user manual. If this keyword is present, it means that the printer requires the 
use of the transformations listed below for the correct printing results to 
occur.

The values have the following meanings:

• Plus90—This means that the print manager should perform the functional 
equivalent of the following fragment of PostScript language code:

90 rotate 0 pagewidth neg translate

where pagewidth is the width of the page in default user space. For exam-
ple, on a letter-size page in portrait mode, after this transformation has 
been performed, the default user space would look like this:

• Minus90—This means that the print manager should perform the functional 
equivalent of the following fragment of PostScript language code:

90 neg rotate pageheight neg 0 translate

where pageheight is the height of the page in default user space. For exam-
ple, on a letter-size page in portrait mode, after this transformation has 
been performed, the default user space would look like this:

+x


+y


+x


+y




106 PostScript Printer Description File Format Specification (9 Feb 1996)

• Any—This means that no hint is provided and the driver can follow its 
normal assumptions, but the results might be incorrect for certain printers.

*LandscapeOrientation should appear only in the PPD files of printers in which 
the orientation of page feeding is dictated by printer markings or the printer's 
user manual. If this keyword is missing, assume that Any is the default value.

Note If a printer treats envelopes differently from paper (for example, when an 
envelope size is requested, the printer performs its own rotations and transla-
tions to print “correctly” on the envelope), this keyword might not provide 
any assistance and the printing results might still be incorrect.

5.16 Custom Page Sizes

Some devices support user-defined or custom page sizes by allowing the user 
to supply the page dimensions and other characteristics, rather than selecting 
from a list of pre-defined page sizes. The keywords in this section support 
that capability.

Custom page sizes are handled differently depending on whether the media is 
roll-fed or cut-sheet. Some devices accept both roll-fed and cut-sheet media. 
With roll-fed media, such as a roll of film or paper, the media is larger than 
the page size requested by the user. The requested page size is positioned 
somewhere on the larger physical media, and the imageable area may be 
assumed to be identical to the requested page size, which means the entire 
page area is imageable.

When using cut-sheet media, the user is expected to supply an individual 
sheet of the requested physical size, often in a tray that adjusts to different 
sizes. The page size requested by the user is identical to the physical page 
size. However, due to media handling hardware requirements, the imageable 
area may be smaller than the requested page size. The unimageable margin 
area required by the hardware is described by the keyword *HWMargins.



5  Keywords  107

Custom Page Size Parameters

The location and orientation of the page image on the media and of the initial 
PostScript coordinate system depends on the combination of the custom page 
size parameters. Custom page size and orientation parameters are specified 
relative to the media feed direction. For roll-fed media, the media feed direc-
tion is parallel to the length of the roll of media, as shown in Figure 1:

Figure 1  Media feed direction on roll-fed media

For cut-sheet media, media feed direction is the direction in which media is 
fed into the device, as shown in Figure 2.

Figure 2  Media feed direction on cut-sheet media

media feed direction





roll-fed media

(capstan imagesetter)


roll-fed media

(drum imagesetter)


long-edge feed short-edge feed

media feed direction



108 PostScript Printer Description File Format Specification (9 Feb 1996)

Custom page sizes are defined in terms of the following parameters: 

• Width—This indicates the width of the page perpendicular to the direction 
of media feed, in PostScript default units. 

• Height— This indicates the height of the page parallel to the direction of 
media feed, in PostScript default units. 

• WidthOffset—This indicates the amount, in PostScript default units, to offset 
the image perpendicular to the direction of media feed. The direction of 
the offset is in the direction of increasing y in user space when Orientation 
(defined below) is 0. A negative number indicates an offset in the direction 
of decreasing y in user space when Orientation is 0.

• HeightOffset—This indicates the amount, in PostScript default units, to offset 
the image parallel to the direction of media feed. The direction of the 
offset is in the direction of increasing x in user space when Orientation 
(defined below) is 0. A negative number indicates an offset in the direction 
of decreasing x in user space when Orientation is 0.

• Orientation—This indicates the orientation of the image with respect to the 
media feed direction. Devices support a subset of four possible integer val-
ues. In orientation 0, the x axis in user space decreases in the media feed 
direction. The y axis therefore increases 90 degrees counterclockwise rela-
tive to increasing x, perpendicular to media feed direction. Orientations 1, 
2, and 3 are rotated 90, 180, and 270 degrees (respectively) counterclock-
wise from orientation 0. 

Note that Orientation does not provide a method of requesting a specific orien-
tation of the physical page relative to the device. That is, Orientation does not 
request short-edge feed or long-edge feed of the physical page; it only 
requests a specific orientation of the image relative to the device. It is up to 
the user to feed the paper into the device in a direction that is compatible with 
the image they have requested.

The Orientation parameter can be used in several ways: 

• If the device supports it, Orientation can be used in the *CustomPageSize code 
to request a specific image orientation from the device. Most roll-fed 
devices support this; most cut-sheet devices do not.

• For cut-sheet media, the primary use for the Orientation parameter is for the 
print manager to calculate the imageable area of the page, using the values 
provided by *HWMargins. See the description of *HWMargins for details.

• Orientation may also be used by the print manager in offering the user a pic-
torial representation of the image on the page.



5  Keywords  109

Figure 3 shows the interaction between Width, Height and Orientation. Although 
this figure depicts roll-fed media, the same principles apply to cut-sheet 
media. Note that Width and Height are always defined with respect to the media 
feed direction. For a given Width and Height, two values of Orientation will pro-
duce a landscape (y < x) coordinate system and two values of Orientation will 
produce a portrait (x < y) coordinate system.

Figure 3  Interaction of Width, Height, and Orientation

*CustomPageSize True: “invocation”

This InvocationValue provides the code to set up a custom page size. The 
print manager is responsible for obtaining five parameters from the user and 
placing them on the operand stack in the correct order before executing the 
invocation code. The parameters are Width, Height, WidthOffset, HeightOffset, and 
Orientation, as described earlier. The order in which these parameters must be 
placed on the stack is described under *ParamCustomPageSize. 

Because *CustomPageSize emits code, there must be a *NonUIOrderDependency 
statement for *CustomPageSize. There may be *NonUIConstraints between 
*CustomPageSize and *InputSlot or other features.

The *CustomPageSize code can be quite complex. See section 6.3 for several 
examples of complete custom page size entries on various types of devices.

Note On a roll-fed device, the actual orientation of a page might not match the 
request, due to device configuration. For example, an imagesetter manufac-
turer might configure a product to conserve media by rotating a page auto-
matically so that it feeds long-edge first, if the requested page size will fit that 
way. The *CustomPageSize invocation code cannot be expected to override such 
behavior.



0




1




2




3


Width > Height,

Orientation:


+y


+x

0,0




0




1




2




3


Height > Width,

Orientation:


+y


+x

0,0


+y


+x


0,0


+y


0,0


+y


+x


0,0


media feed

direction


+y


+x


0,0

+y


+x

0,0


+y


+x


0,0


+x


Width


Height




110 PostScript Printer Description File Format Specification (9 Feb 1996)

Note To be compatible with existing parsers, *CustomPageSize conforms to the 
syntax of other True/False keywords, but there is no reason to ever have a 
*CustomPageSize False statement, since there is no sensible corresponding invo-
cation code.

*ParamCustomPageSize paramOption: order type min max

This provides the allowable types and ranges for each of the custom page size 
parameters (paramOption) required by the invocation code of the *CustomPage-
Size statement. There must be one *ParamCustomPageSize statement for each of 
the custom page parameters: Width, Height, WidthOffset, HeightOffset, and Orienta-
tion. Like any option keyword, these options can have translation strings, 
allowing a print manager a more meaningful string to display to the user. 

For example:

*ParamCustomPageSize Width: 1 points 1 792

*ParamCustomPageSize Height: 2 points 1 5184

*ParamCustomPageSize WidthOffset: 3 points 0 791

*ParamCustomPageSize HeightOffset: 4 points 0 0

*ParamCustomPageSize Orientation: 5 int 0 1

The value is a StringValue with multiple components separated by white 
space. The value of order indicates the order in which the parameter named by 
paramOption must be placed on the stack and passed to the *CustomPageSize 
code. A parameter with an order of “1” is placed on the stack first, followed 
by a parameter with an order of “2”, and so on. An application program is 
responsible for obtaining these parameters from the user and putting them on 
the stack in the correct order before invoking the *CustomPageSize code.

The type of each parameter is either int, real, or points, where points means a real 
number of PostScript default units. The print manager or application is 
responsible for converting user-supplied values into the correct type. For 
example, a value of points tells an application that, although the units might be 
obtained from the user in any form offered by the application, such as inches 
or millimeters, they must be translated to PostScript interpreter’s default units 
(1/72 inch) before they are placed on the stack.

The allowable range for each parameter is expressed as min and max, repre-
senting the minimum and maximum acceptable numbers, inclusive, with the 
minimum value first. The type of min and max must match the type value for 
that parameter. For example, if type is int, then min and max must both be inte-
gers. A print manager should use the minimum and maximum values for each 
parameter to ensure that the user provides parameters in the valid range. 



5  Keywords  111

If the device does not support offsetting the image on the media, the min and 
max range values for WidthOffset or HeightOffset (or both, if offsetting is not sup-
ported in either direction) will both be 0 (zero). The print manager can use 
this information to limit or disable user selection of the offsetting feature.

*MaxMediaWidth :  "real" 

*MaxMediaHeight :  "real" 

On devices that support custom page sizes, these QuotedValue statements 
indicate the maximum media width and height allowed by the device when a 
custom page size is requested. Both *MaxMediaWidth and *MaxMediaHeight are 
expressed in PostScript default units. *MaxMediaWidth is measured perpendicu-
lar to the media feed direction and *MaxMediaHeight is measured parallel to the 
media feed direction.

A print manager must ensure that the sum of Width plus WidthOffset does not 
exceed the value of *MaxMediaWidth. Likewise, it must ensure that the sum of 
Height plus HeightOffset does not exceed the value of *MaxMediaHeight. 

*?CurrentMediaWidth: “query”

*?CurrentMediaHeight:  "query" 

The absolute maximum width and height of media supported by the device 
can be obtained from the values of *MaxMediaWidth and *MaxMediaHeight respec-
tively. However, some devices support different sizes of media cassettes, so 
the current maximum width or height might be less than the absolute maxi-
mum width or height respectively. *?CurrentMediaWidth returns a real number 
specifying the maximum width, in PostScript default units, of the currently 
installed media. *?CurrentMediaHeight returns a real number specifying the max-
imum height, in PostScript default units, of the currently installed media.

If these queries are available, a print manager can use them to replace the 
values of *MaxMediaWidth and *MaxMediaHeight in the print manager’s internal 
data structures with the value returned by the query. The print manager can 
then proceed with range-checking as described under *MaxMediaWidth and 
*MaxMediaHeight.

*CenterRegistered: True | False

This keyword provides a StringValue that tells whether the device registers 
the film or paper stock from the center or from the edge of the scan. If a 
device uses center-registering, it is up to the user or the application to provide 
the correct value for WidthOffset, to move the image to the beginning edge of 
the stock. For example, on a center-registered device, if the user installs 10-



112 PostScript Printer Description File Format Specification (9 Feb 1996)

inch wide stock on a 12-inch wide transport mechanism, either the user or the 
application must provide a 1-inch WidthOffset to get the image to start at the 
edge of the stock. On a device that does not use center-registering, this addi-
tional calculation is unnecessary.

*LeadingEdge edgeOption: “ “

*DefaultLeadingEdge:  edgeOption

*LeadingEdge allows the user to tell the print manager how the current input 
slot has been configured to feed the page. This is both an assertion of how an 
input slot is set up (for cut-sheet media) and a partial request for page image 
orientation (for roll-fed media). See Responsibilities of a Print Manager 
Regarding Custom Page Sizes at the end of this section for a description of 
how the print manager can use this information to determine the orientation 
and imageable area of the page. *LeadingEdge should be displayed as a PickOne 
menu and should follow the rules for PickOne keywords, although it is not sur-
rounded by *OpenUI/*CloseUI (see the description of *OpenUI/*CloseUI for informa-
tion on PickOne). The value of *DefaultLeadingEdge provides a default state for the 
print manager to display. 

The options for edgeOption are:

• Short—The currently selected input slot expects the page to be fed short-
edge first, or the user would like the page image printed short-edge first on 
roll-fed media.

• Long—The currently selected input slot expects the page to be fed long-
edge first, or the user would like the page image printed long-edge first on 
roll-fed media. On roll-fed media, this is often also called transverse or 
media saving.

• PreferLong—The currently selected input slot has been configured to rotate 
the page image to correspond to long-edge feed if  the page will fit that 
way. That is, if Width is less than Height (which would normally produce a 
short-edge feed), and if Height is less than or equal to *MaxMediaWidth, the 
device will rotate the page image to be long-edge feed. If Width is less than 
Height and Height is greater than the value of *MaxMediaWidth, the page will 
remain short-edge feed.

• Forced—The device performs no page image rotation. The user can request 
a custom page size whose Width and Height define it as short-edge feed, and 
if the device is configured for long-edge feed, the short-edge feed image 
will be printed on the long-edge feed page, so clipping will probably 
occur. Likewise, a long-edge feed image can be printed on a short-edge 
feed page, with clipping equally likely to occur.



5  Keywords  113

• Unknown—Nothing is known about the leading edge, so Orientation and the 
imageable area cannot be calculated accurately.

Only the options that are supported by the device will be listed. If a particular 
input slot places restrictions on the choice of leading edge, there will be 
*NonUIConstraints between *LeadingEdge and *InputSlot or *ManualFeed. For exam-
ple, this device supports only Short and Long for *LeadingEdge, and supports 
only short-edge feed from the manual feed slot:

*LeadingEdge Short: ““

*LeadingEdge Long: ““

*DefaultLeadingEdge: Short

*NonUIConstraints: *ManualFeed True *LeadingEdge Long

*NonUIConstraints: *LeadingEdge Long *ManualFeed True

Note that *LeadingEdge does not control the device in any direct way; it is an 
assertion from the user to the print manager about how the device has been 
configured, and it aids the print manager in determining the value of the 
Orientation parameter. This keyword is in the form of an InvocationValue for 
convenience, but the InvocationValue quotes will be empty. This keyword 
will not be surrounded by *OpenUI/*CloseUI because it requires extra action on 
the part of a print manager and is therefore not suitable for blind parsing. A 
*NonUIOrderDependency statement is not necessary, as no code will be down-
loaded from this keyword.

Note To print manager authors: Some print managers provide leading-edge con-
trol in the form of a two-state checkbox labeled Transverse. In that case, an 
empty box (Transverse Off) should cause *LeadingEdge to be set to Short, and a 
checked box (Transverse On) should cause *LeadingEdge to be set to Long.

Note To builders of PPD files: See section 6.3 for examples of how to determine 
which *LeadingEdge options are supported on a device and how to write 
*NonUIConstraints entries for *LeadingEdge. Be careful, when writing the 
*NonUIConstraints entries, to not exclude all options at once. At any given time, 
at least one option for *LeadingEdge must be available to the user.

Cut-Sheet Keywords

The following keywords apply only to devices that can accept cut-sheet pages 
or can treat roll-fed pages as if they were individual sheets, imaging within an 
area smaller than the requested page size.

*HWMargins: left bottom right top

This keyword describes how much space around the outer edge of the page 
cannot be imaged because of hardware restrictions. A print manager can use 
this information to calculate the imageable area and tell a user when the 
entire requested custom page size cannot be printed upon, or to show the user 



114 PostScript Printer Description File Format Specification (9 Feb 1996)

which part of the page can be imaged. For non-custom page sizes, the key-
word *ImageableArea provides the same information (in the form of imageable 
area, rather than non-imageable area) for each supported page size. See 
Responsibilities of a Print Manager Regarding Custom Page Sizes at the end 
of this section for a description of how the print manager can use *HWMargins. 

The StringValue of this keyword is composed of multiple components, sepa-
rated by white space. The components are real numbers of PostScript default 
units, and are defined in default user space as follows:

top = distance, in PostScript default units, from the top edge of the page to 
the nearest beginning of imageable area. The top edge is the edge of the 
page that enters the printer first (the leading edge in the direction of media 
feed).

right, left, and bottom are similarly defined, as shown in Figure 4. This is a top 
view; you are looking down at the paper going into the device.

Figure 4  Margins of *HWMargins

For example, a printer might have an adjustable tray that accepts several sizes 
of paper, but the printer always needs 1 inch along the sides and 1/2 inch at 
the top and bottom to handle paper of any size. The *HWMargins statement to 
describe this would be

*HWMargins: 72 36 72 36

Any or all of the values may be 0 (zero). If the margin requirements of the 
printer vary with the paper size (for example, if the printer needs a 1 inch 
margin to handle some page sizes, and a 2 inch margin to handle other page 
sizes), the values of *HWMargins will reflect the largest margin required by the 
printer (in this case, the 2 inch margin). For some page sizes, this might pro-

media feed
direction

right

left

top

bottom

short-edge feed

bottom
top

left

right

long-edge feed 

device



5  Keywords  115

vide a smaller imageable area than is actually achievable by the printer, but at 
least it guarantees that marks made within the indicated imageable area will 
be visible on the page.

This keyword will be present only if the device supports custom page sizes 
and has hardware-imposed margins or can be configured to behave as though 
it has hardware-imposed margins, imaging in an area that is smaller than the 
requested page size. 

Note To builders of PPD files: Typically, PPD files for devices that accept only cut-
sheet media will have *HWMargins. Typically, PPD files for devices that accept 
only roll-fed media will not have *HWMargins. Devices that accept only roll-fed 
media are usually able to image over the entire requested page area; any 
restrictions on page size due to hardware control mechanisms are described 
by *MaxMediaWidth and *MaxMediaHeight. However, if the device supports both 
roll-fed media and cut-sheet media, or if the device supports only roll-fed 
media but can be configured to image within a smaller area as if the pages 
were individual sheets, *HWMargins will be needed in the PPD file. See the 
description of *UseHWMargins in this section.

Note Because of varying margin widths, the interaction of custom page sizes with 
duplexing (or other operations that may shift the image on the page) on cut-
sheet media is unpredictable. 

*UseHWMargins True | False: “ ”

*DefaultUseHWMargins: True | False

The presence of *UseHWMargins indicates a device that can switch between 
imaging over the entire page area (typical roll-fed media behavior) and imag-
ing only in the area dictated by *HWMargins (typical cut-sheet media behavior). 
*UseHWMargins allows the user to tell the print manager how to define the 
imageable area of the requested custom page size. Although not surrounded 
by *OpenUI/*CloseUI, *UseHWMargins should be displayed and treated as a Boolean 
feature. (See *OpenUI/*CloseUI for a description of Boolean.)*DefaultUseHWMargins 
provides a default state for *UseHWMargins for the print manager to display. 
True means the print manager should treat the requested page as a cut-sheet 
page with hardware-imposed margins, and should use *HWMargins to calculate 
the imageable area of the page. False means the print manager should treat the 
requested page as a roll-fed page, imaging over the entire area of the page. 

Note that *UseHWMargins does not control the device in any way; it is merely a 
request from the user to the print manager for a specific action. The print 
manager should warn the user that the device must be set up properly to 
achieve the correct result, as many devices require user interaction at the 
device’s front panel to establish cut-sheet behavior vs. roll-fed behavior.



116 PostScript Printer Description File Format Specification (9 Feb 1996)

This keyword is in the form of an InvocationValue for convenience, but the 
InvocationValue quotes will be empty. A *NonUIOrderDependency statement is 
not necessary, as no code will be downloaded from this keyword. This key-
word will not be surrounded by *OpenUI/*CloseUI because it requires extra 
action on the part of a print manager and is therefore not suitable for blind 
parsing. If cut-sheet behavior is only available through certain input slots, 
there will be *NonUIConstraints between *UseHWMargins and *InputSlot or 
*ManualFeed. If the device cannot provide both types of imaging (entire page 
area vs. smaller imageable area), this keyword will be omitted. If 
*UseHWMargins is present, *HWMargins must also be present.

Note To print manager authors: If *HWMargins is missing from the PPD file, assume 
that all four values are zero. If *HWMargins is present and *UseHWMargins is 
missing, assume that *HWMargins should always be used.

Note To builders of PPD files: Usually, *UseHWMargins will not be present in PPD 
files for devices that accept only cut-sheet media, because such devices can 
image only within the smaller area imposed by *HWMargins, so there is no 
choice for the user to make about using *HWMargins. Likewise, *UseHWMargins 
(and *HWMargins) will not usually be present in PPD files for devices that 
accept only roll-fed media, because such devices usually cannot impose a 
smaller imageable area on the requested page size.*UseHWMargins will usually 
be needed only in the PPD file of a device that supports both roll-fed and cut-
sheet media, or a device that supports only roll-fed media but can be config-
ured to image within a smaller area as if the pages were individual sheets, or 
a device that supports only cut-sheet media but can be configured to image 
across the entire page area. In these cases, there is a choice of imaging meth-
ods and the user must tell the print manager about the device’s current con-
figuration or how the page should be imaged.



5  Keywords  117

Responsibilities of a Print Manager Regarding Custom Page Sizes

If *UseHWMargins is present, it should be offered as a two-state menu or check-
box in the custom page size user interface. *LeadingEdge, if present, should be 
offered as a PickOne type of menu. Throughout the user selection process, the 
print manager must consult any *NonUIConstraints statements for *UseHWMargins, 
*CustomPageSize, and *LeadingEdge.

If *UseHWMargins is True, the print manager should warn the user that the device 
may require setup at the device’s front panel. If *UseHWMargins is not present 
and *LeadingEdge is changed by the user from its default state, the print man-
ager should warn the user that the device may require adjustment of the input 
trays.

When obtaining the values for Width, Height, WidthOffset, HeightOffset, and 
Orientation from the user, the print manager must

• convert the value to the appropriate units listed under *ParamCustomPageSize 
for that parameter, if necessary. For example, Width and Height may be 
obtained from the user in inches or millimeters and must be converted to 
points before any further calculations occur.

• ensure that each value falls within the appropriate range listed under 
*ParamCustomPageSize for that parameter. If the range is limited to a single 
choice (for example, the range for Orientation may be 0..0), the print man-
ager might wish to prevent the user from typing values in that field in the 
user interface.

• if *CenterRegistered is True, the print manager should warn the user to pro-
vide the correct value for WidthOffset if the installed media is narrower than 
the transport mechanism.

•  ensure that the sum of Width plus WidthOffset does not exceed the value of 
*MaxMediaWidth. Likewise, it must ensure that the sum of Height plus 
HeightOffset does not exceed the value of *MaxMediaHeight.

Emitting the correct *CustomPageSize parameters in the correct order can be 
complicated. Here are the key points that must be considered:

• If *LeadingEdge is Short, Long, or PreferLong, the device will rotate the page 
image in device space so that the long axis is parallel to the long axis of 
the physical page. To calculate the imageable area correctly, the print man-
ager must generate Width and Height so that they match the physical page 
orientation. If the user sets *LeadingEdge to Long, Width must be greater than 
or equal to Height. Likewise, if the user sets *LeadingEdge to Short, Height must 
be greater than or equal to Width. Depending on how the print manager pre-



118 PostScript Printer Description File Format Specification (9 Feb 1996)

sents the dimensions of the page to the user, the print manager may have to 
perform some manipulation on the dimensions to produce the correct Width 
and Height before placing them on the operand stack.

• If *LeadingEdge is PreferLong: If  Width ≥Height, or if Width < Height and Height ≤ 
*MaxMediaWidth, the print manager should behave as if *LeadingEdge is Long 
when consulting Table 2. If Width < Height and Height >*MaxMediaWidth, the 
print manager should behave as if *LeadingEdge is Short when consulting 
Table 2. 

• If *LeadingEdge is Forced, the print manager must accept the values of Width 
and Height as provided by the user, and set *LeadingEdge accordingly for its 
internal use. If Width < Height, *LeadingEdge should be Short. If Width ≥ Height, 

*LeadingEdge should be Long. The print manager may also wish to warn the 
user that if the device is not set up accordingly, the choice of Forced may 
result in the clipping and apparent rotation of the image.

• If *LeadingEdge is Unknown, see the note after Table 3.

• Unless the print manager lets the user enter Orientation directly, the print 
manager must deduce the value of Orientation from a combination of user 
requests, as shown in Table 2.

• Most print managers restrict the choices for Orientation to 0 and 1, and must 
choose accordingly from Table 2. To offer the user a choice of 2 or 3 for 
Orientation, the print manager must offer a user interface that allows the user 
to choose all four orientations pictorially or by entering the value directly.

Once the value of Orientation has been determined, the print manager can 
decide whether or not it is necessary to calculate and display the imageable 
area, using the following algorithms: 

• If *HWMargins is not present or if *UseHWMargins is False, the page will be 
imaged over its entire imageable area, so no imageable area calculations 
are necessary. The print manager may skip to the last step in this section.

• If *HWMargins is present and *UseHWMargins is not present or is True, and all 
*NonUIConstraints conflicts have been resolved, then the print manager can 
calculate the imageable area of the custom page size and show a pictorial 
to the user. Using Orientation as a key, the print manager can use Table 3 to 

Table 2  Determining the value of Orientation

User chooses: Dimensions Portrait (x < y) Landscape (y < x)

*LeadingEdge: Long Width > Height Orientation = 0 or 2 Orientation = 1 or 3

*LeadingEdge: Short Height > Width Orientation = 1 or 3 Orientation = 0 or 2



5  Keywords  119

calculate the imageable area. The imageable area is expressed as the x and 
y coordinates of the lower left and upper right corners of the imageable 
area. These coordinates are referred to as llx, lly, urx, and ury, respectively. top, 
bottom, left, and right are defined in the description of *HWMargins. 

Note Previous versions of this specification, which did not use Orientation to deter-
mine the correspondence of image edge to page edge, recommended using the 
simpler but less accurate method of subtracting the largest of the four 
*HWMargins values from each edge of the page. This method may produce a 
much smaller imageable area than the device is capable of handling, but it 
does guarantee that all marks made in the calculated imageable area will be 
visible. For maximum user satisfaction, print managers should be written to 
use the newer, more accurate method, using Orientation as a key. However, if 
*LeadingEdge is Unknown, the print manager cannot calculate Orientation and 
must resort to a fallback position such as described above.

Finally, the print manager must ensure that the parameters are placed on the 
operand stack in the proper order (documented by *ParamCustomPageSize) and 
followed by the invocation code from *CustomPageSize.

5.17 Media Handling Features

The keywords in this section provide handling of media other than media 
selection, such as output attributes.

*OutputBin binOption: “invocation”

*DefaultOutputBin: binOption | Unknown

*?OutputBin: “query” (returns: binOption | Unknown)

*OutputBin provides the InvocationValue to select different output paths for 
media. *DefaultOutputBin denotes the default output path. *?OutputBin returns a 
string denoting the current output path. If the device does not provide soft-
ware-selectable output paths, these keywords will be omitted.

Table 3  Using Orientation and *HWMargins to determine imageable area

Orientation ll x ll y urx ury

0 top left Height minus bottom Width minus right

1 left bottom Width minus right Height minus top

2 bottom right Height minus top Width minus left

3 right top Width minus left Height minus bottom

UIU I




120 PostScript Printer Description File Format Specification (9 Feb 1996)

The currently registered values for binOption are: 

• Upper—This refers to an output bin located above any other output bins. 

• Lower—This refers to an output bin located below any other output bins. 

• Rear—This designates an output bin located to the rear of the device.

Note To builders of PPD files: Although older PPD files (and the tools that built 
them) often included *DefaultOutputBin, it provides no useful information to a 
print manager unless the complete *OutputBin entry is also present. If the 
output bins are not software-selectable, omit these keywords.

*OutputOrder orderOption: “invocation”

*DefaultOutputOrder: orderOption | Unknown

*?OutputOrder: “query” (returns: orderOption | Unknown)

*OutputOrder provides the InvocationValue to invoke a specific page stacking 
order for the duration of the current job. On many devices, the output order is 
tied to the selection of the output bin. On some devices, invoking a new page 
stacking order will cause a new output bin to be selected. On other devices, a 
new output bin must be explicitly selected. *DefaultOutputOrder indicates the 
default page stacking order of the default output bin. *?OutputOrder returns a 
string denoting the current page stacking order of the current output bin.

The currently registered values for orderOption are:

• Normal—This keyword indicates that if the pages are transmitted to the 
device in 1-n order, they will be in 1-n order when they are picked up from 
the output tray. This usually, but not always, means that the output pages 
are stacked face down in the output tray. 

• Reverse—This keyword indicates that if the pages are transmitted to the 
device in 1-n order, they will be in n-1 order when they are picked up from 
the output tray (the last page will be on the top of the stack). This usually, 
but not always, means that the output pages are stacked face up in the 
output tray.

Note To builders of PPD files: *DefaultOutputOrder can be used by a print manager to 
determine in which order to send the pages of the job, so it should usually be 
included in the PPD file even when the output order cannot be changed. If 
*DefaultOutputOrder is stand-alone, its value must be Normal or Reverse. See the 
note under Unknown in section 4.4, and section 4.5.

UIU I




5  Keywords  121

*PageStackOrder binOption: Normal | Reverse

This is an informational statement that indicates the page stacking order of 
each output bin. It is useful only if the device has multiple software-select-
able output bins. The option keyword binOption must be a valid option key-
word listed under *OutputBin. The StringValues Normal and Reverse have the 
same meaning as defined under *OutputOrder. 

There is an implicit assumption that the stacking order of a given bin cannot 
be changed. This keyword is useful in determining either which output path 
to select (to get the proper page ordering) or in which order the pages should 
be sent from the host (to utilize the stacking order of the chosen output path). 
This keyword will not be present if the device has only one output bin.

*TraySwitch True | False: “invocation”

*DefaultTraySwitch: True | False | Unknown

*?TraySwitch: “query” (returns: True | False | Unknown)

*TraySwitch provides the InvocationValue to turn automatic tray switching on 
(True) and off (False). Automatic tray switching is provided by some devices 
with multiple input trays, so that when one input tray runs out of media, 
another tray with the same type of media can be automatically used. 
*DefaultTraySwitch denotes the default state of the automatic tray switching 
mechanism. *?TraySwitch returns the current state of tray switching.

*Signature signatureOption: “invocation”

*DefaultSignature: signatureOption | Unknown

*?Signature: “query” (returns: signatureOption | Unknown)

*Signature provides the InvocationValue to invoke signature options. Signatur-
ing is the automatic ordering of virtual pages on physical pages, so that the 
output, when properly folded and collated, will have all the virtual pages in 
the proper order. *DefaultSignature denotes the default state of the automatic sig-
nature feature. *?Signature returns a string denoting the current state of the 
automatic signature feature.

One of the signatureOptions must be None or False, to turn off the automatic sig-
nature feature. Other option keywords might include the number of virtual 
images per physical page. The currently registered values for signatureOption 
are:

• True—Turn on the signature option.

• False—Turn off the signature option.

UIU I


UIU I




122 PostScript Printer Description File Format Specification (9 Feb 1996)

*Duplex duplexOption: “invocation”

*DefaultDuplex: duplexOption | Unknown

*?Duplex: “query” (returns: duplexOption | Unknown)

*Duplex provides the InvocationValue to control the duplex (two-sided print-
ing) feature. *DefaultDuplex denotes the default state of the duplex feature. 
*?Duplex returns a string denoting the current state of the duplexing mecha-
nism.

The currently registered values for duplexOption are listed below. One of the 
options must be None or False, for “no duplexing” (that is, produce simplex or 
one-sided printing). Tumbling is defined in section 4.11 of the PostScript 
Language Reference Manual, Second Edition. Briefly, to print a book, where 
the binding is along the left edge, the user selects NoTumble. To print a calen-
dar, bound along the top edge so that successive pages are flipped upward, 
the user selects Tumble. Tumble is also referred to as “HeadToToe.”

• DuplexTumble—Print on both sides of the paper and tumble the images while 
printing.

• DuplexNoTumble—Print on both sides of the paper but do not tumble the 
images.

• SimplexTumble—Print on only one side of the paper, but tumble the images 
while printing.

• None—Print the image on one side of the paper and do not tumble succes-
sive images (this is “normal” one-sided printing, equivalent to 
SimplexNoTumble).

*OutputMode modeOption: “invocation”

*DefaultOutputMode: modeOption | Unknown

*?OutputMode: “query” (returns: modeOption | Unknown)

*OutputMode provides the InvocationValues to invoke different output modes. 
Output modes might be caused by mechanical variations in the printer, such 
as varying print-head direction or speed. The valid values for modeOption are 
strings that describe the level of output quality (for example, Draft or 
LetterQuality). *DefaultOutputMode denotes the default output mode. *?OutputMode 
returns a string denoting the current output mode.

UIU I


UIU I




5  Keywords  123

5.18 Finishing Features

This section documents finishing features, which typically affect a document 
after it has been printed or imaged. For the convenience of print managers, all 
finishing features in a PPD file should be grouped by *OpenGroup/*CloseGroup. 
For a complete example, refer to the sample PPD files in section 6.

*Collate collateOption: “invocation”

*DefaultCollate: collateOption | Unknown

*?Collate: “query” (returns: collateOption | Unknown)

*Collate provides the InvocationValue to control collating. Collating is defined 
as follows: for three copies of a three-page document, collated pages are pro-
duced in the order 1-2-3-1-2-3-1-2-3, while uncollated pages are produced in 
the order 1-1-1-2-2-2-3-3-3. One of the options must be None or False, to turn 
off collating. 

The currently registered values for collateOption are

• True—Turn on collation.

• False—Turn off collation.

*DefaultCollate denotes the default state of the collator mechanism. *?Collate 
returns a string denoting the current state of the collator mechanism. 

*FoldType foldOption: “invocation”

*DefaultFoldType: foldOption | Unknown

*?FoldType: “query” (returns: foldOption | Unknown)

*FoldType provides the InvocationValue to control which type of fold is 
invoked, if any. *DefaultFoldType denotes the default type of fold. *?FoldType 
returns a string denoting the current type of fold.

The following are the current foldOptions. Many of these folds are illustrated by 
Figure G.3 in Appendix G of the PostScript Language Reference Manual, 
Second Edition.

ZFold Saddle DoubleGate LeftGate
RightGate Letter XFold None

UIU I


UIU I




124 PostScript Printer Description File Format Specification (9 Feb 1996)

One of the options must be None or False, to turn off folding. Builders of PPD 
files should include the following *UIConstraints statements to disable *FoldType 
unless *FoldWhen has been invoked with a value other than None:

*UIConstraints: *FoldWhen None *FoldType

*UIConstraints: *FoldType None *FoldWhen

*FoldWhen foldOption: “invocation”

*DefaultFoldWhen: foldOption | Unknown

*?FoldWhen: “query” (returns: foldOption | Unknown)

*FoldWhen provides the InvocationValue to control when a job is folded, if 
folding has been invoked. *DefaultFoldWhen denotes the default state of when 
the job will be folded. *?FoldWhen returns a string denoting the current state of 
*FoldWhen. The following foldOptions are used with the *FoldWhen keyword to 
determine when the document should be folded:

• None—Do not fold.

• DeviceDeactivation—Fold immediately after the device has been deactivated.

• EndOfJob—Fold when the last page has joined the other pages in the job, so 
the entire job can be folded together. The notion of “job” is explained in 
section 3.7.7 of the PostScript Language Reference Manual, Second 
Edition.

• EndOfSet—Fold when the last page has joined the other pages in the set, so 
the entire set can be folded together. The definition of “set” depends on 
whether the document is collated. For a definition of “set,” see NumCopies  
and Collate  in Table 4.11 of the PostScript Language Reference Manual, 
Second Edition.

• EndOfPage—Fold after each showpage  or copypage .

One of the options must be None or False, to turn off folding. Builders of PPD 
files should include the following *UIConstraints statements to disable *FoldType 
unless *FoldWhen has been invoked with a value other than None:

*UIConstraints: *FoldWhen None *FoldType

*UIConstraints: *FoldType None *FoldWhen

UIU I




5  Keywords  125

*Sorter sortOption: “invocation”

*DefaultSorter: sortOption | Unknown

*?Sorter: “ query” (returns: sortOption | Unknown)

*Sorter provides the InvocationValue to invoke sorting. On some devices, there 
might be different kinds of sorting; on other devices, sorting may simply be 
on or off.

The currently registered values for sortOption are:

• True—Turn on sorting.

• False—Turn off sorting.

One of the options must be None or False to turn off sorting. *DefaultSorter 
denotes the default state of the sorter mechanism. *?Sorter returns a string 
denoting the current state of the sorter mechanism.

*StapleLocation stapleOption: “invocation”

*DefaultStapleLocation: stapleOption | Unknown

*?StapleLocation: “query” (returns: stapleOption | Unknown)

*StapleLocation provides an InvocationValue that controls where the staple is 
placed on the page—for devices where the location is expressed as a single 
parameter. A PPD file will contain either *StapleLocation or *StapleX and *StapleY 
but not both. *DefaultStapleLocation denotes the default location for stapling. 
*?StapleLocation returns a string that denotes the current stapling location. 

The following stapleOptions are used with the *StapleLocation keyword to deter-
mine the location of staples:

• SinglePortrait—With the page in portrait orientation, a single staple is put at 
the upper left.

• SingleLandscape—With the page in landscape orientation, a single staple is 
put at the upper left.

• DualLandscape—With the page in landscape orientation, two staples are put 
along the top edge of the page, approximately 1/3 and 2/3 of the way 
across the page, respectively.

• None—No stapling.

UIU I


UIU I




126 PostScript Printer Description File Format Specification (9 Feb 1996)

One of the options must be None or False, to turn off stapling. Builders of PPD 
files should include the following *UIConstraints statements to disable 
*StapleLocation unless *StapleWhen has been invoked with a value other than 
None:

*UIConstraints: *StapleWhen None *StapleLocation

*UIConstraints: *StapleLocation None *StapleWhen

*StapleX stapleOption: “invocation”

*DefaultStapleX: stapleOption | Unknown

*?StapleX: “query” (returns: stapleOption | Unknown)

*StapleX provides an InvocationValue that controls the x dimension (in default 
user space) of where the staple is placed on the page—for devices where the 
location is expressed as two parameters, x and y. This keyword must appear in 
PPD files in which *StapleY appears. A PPD file will contain either 
*StapleLocation, or *StapleX and *StapleY, but not both.

These stapleOptions are used with the *StapleX keyword to determine the loca-
tion of staples in relation to the x axis when the page is in portrait orientation:

• Left—The staple is placed along the left side of the page. Exactly where it is 
placed in relation to the left edge is device-dependent.

• Right—The staple is placed along the right side of the page. Exactly where 
it is placed in relation to the right edge is device-dependent.

• Saddle—The staple is placed halfway along the x axis of the page. This is 
commonly used when the page is to be stapled along the center and then 
folded in half along the staple line to form a booklet.

• None—No stapling.

One of the options must be None or False, to turn off stapling. Builders of PPD 
files should include the following *UIConstraints statements to disable *StapleX 
unless *StapleWhen has been invoked with a value other than None:

*UIConstraints: *StapleWhen None *StapleX

*UIConstraints: *StapleX None *StapleWhen

*DefaultStapleX denotes the default location for stapling. *?StapleX returns a 
string that denotes the current stapling location.

UIU I




5  Keywords  127

*StapleY stapleOption: “invocation”

*DefaultStapleY: stapleOption | Unknown

*?StapleY: “query” (returns: stapleOption | Unknown)

*StapleY provides an InvocationValue that controls the y dimension (in default 
user space) of where the staple is placed on the page—for devices where the 
location is expressed as two parameters, x and y. This keyword must appear in 
PPD files in which *StapleX appears. A PPD file will contain either 
*StapleLocation or *StapleX and *StapleY but not both.

These stapleOptions are used with the *StapleY keyword to determine the loca-
tion of staples in relation to the y axis with the page in portrait orientation:

• Top—The staple is placed at the top of the page. Exactly where it is placed 
in relation to the top edge is device-dependent

• OneThird—The staple is placed 1/3 of the way down the page.

• Middle—The staple is placed halfway down the page.

• TwoThirds—The staple is placed 2/3 of the way down the page.

• Bottom—The staple is placed at the bottom of the page. Exactly where it is 
placed in relation to the bottom edge is device-dependent

• None—No stapling.

One of the options must be None or False, to turn off stapling. Builders of PPD 
files should include the following *UIConstraints statements to disable *StapleY 
unless *StapleWhen has been invoked with a value other than None:

*UIConstraints: *StapleWhen None *StapleY

*UIConstraints: *StapleY None *StapleWhen

*DefaultStapleY denotes the default location for stapling. *?StapleY returns a 
string that denotes the current stapling location. 

UIU I




128 PostScript Printer Description File Format Specification (9 Feb 1996)

*StapleWhen stapleOption: “invocation”

*DefaultStapleWhen: stapleOption | Unknown

*?StapleWhen: “query” (returns: stapleOption | Unknown)

*StapleWhen provides the InvocationValue to control when a job is stapled. 
Examples include “end of job,” “end of group.” One of the options must be 
None or False to turn off stapling. See the descriptions of *StapleX, *StapleY, 
*StapleOrientation, and *StapleLocation for examples of *UIConstraints that should be 
written for *StapleWhen.

These stapleOptions are used with the *StapleWhen keyword to determine when 
the document should be stapled:

• None—Do not staple.

• DeviceDeactivation—Staple immediately after the device has been deacti-
vated.

• EndOfJob—Staple when the last page has joined the other pages in the job, 
so the entire job can be stapled together. The notion of “job” is explained 
in section 3.7.7 of the PostScript Language Reference Manual, Second 
Edition.

• EndOfSet—Staple when the last page has joined the other pages in the set, so 
the entire set can be stapled together. The definition of “set” depends on 
whether or not the document is collated. For a definition of “set,” see 
NumCopies  and Collate  in Table 4.11 of the PostScript Language Reference 
Manual, Second Edition.

• EndOfPage—Staple after each showpage  or copypage .

*DefaultStapleWhen denotes the default time for stapling. *?StapleWhen returns a 
string that denotes when stapling will occur under the current setting.

*StapleOrientation orientationOption: “invocation”

*DefaultStapleOrientation: orientationOption | Unknown

*?StapleOrientation: “query” (returns: orientationOption | Unknown)

*StapleOrientation provides the InvocationValue to control the orientation of the 
staple; for example, 45 degrees.These orientationOptions are used with the 
*StapleOrientation keyword to determine the orientation of the staple with 
respect to default user space:

• 0 —The staple is not turned. That is, the staple is horizontal, or parallel to 
the x axis of the page.

UIU I


UIU I




5  Keywords  129

• 45—The staple is rotated 45 degrees clockwise from the x axis of the page.

• 90—The staple is rotated 90 degrees clockwise from the x axis of the page. 
That is, the staple is vertical, or parallel to the y axis of the page.

• 135—The staple is rotated 135 degrees clockwise from the x axis of the 
page.

• None—No specific staple orientation requested (empty code).

One of the options must be None or False. Builders of PPD files should include 
the following *UIConstraints statements to disable *StapleOrientation unless 
*StapleWhen has been invoked with a value other than None:

*UIConstraints: *StapleWhen None *StapleOrientation

*UIConstraints: *StapleOrientation *StapleWhen None

*DefaultStapleOrientation denotes the default orientation for the staple. 
*?StapleOrientation returns a string that denotes the current staple orientation.

*BindEdge bindOption: “invocation”

*DefaultBindEdge: bindOption | Unknown

*?BindEdge: “query” (returns: bindOption | Unknown)

*BindEdge provides the InvocationValue to control which edge is bound. 
*DefaultBindEdge denotes the default edge for binding. *?BindEdge returns a 
string denoting which edge will be bound under the current setting.

These bindOptions are used with the *BindEdge keyword to determine the loca-
tion of binding relative to the page in default user space (portrait orientation):

• Left—The binding is placed along the left side of the page.

• Right—The binding is placed along the right side of the page.

• Bottom—The binding is placed along the bottom of the page.

• Top—The binding is placed along the top of the page.

• None—No binding.

One of the options must be None or False, to turn off binding. Builders of PPD 
files should include the following *UIConstraints statements to disable *BindEdge 
unless *BindWhen has been invoked with a value other than None:

*UIConstraints: *BindWhen None *BindEdge

*UIConstraints: *BindEdge None *BindWhen

UIU I




130 PostScript Printer Description File Format Specification (9 Feb 1996)

*BindType bindtypeOption: “invocation”

*DefaultBindType: bindtypeOption | Unknown

*?BindType: “query” (returns: bindtypeOption | Unknown)

*BindType provides the InvocationValue to control the type of binding. 
*DefaultBindType denotes the default type of binding.*?BindType returns a string 
indicating which type of binding will occur given the current setting. 
bindtypeOption is a product-dependent string describing the type of binding 
available (for example, Spiral). One of the options must be None or False, to dis-
able binding. Builders of PPD files should write *UIConstraints entries to dis-
able *BindType when *BindWhen is None; see *BindEdge for an example.

*BindColor colorOption: “invocation”

*DefaultBindColor: colorOption | Unknown

*?BindColor: “query” (returns: colorOption | Unknown)

*BindColor provides the InvocationValues to control the binding color. 
*DefaultBindColor denotes the default color of binding. *?BindColor returns a string 
indicating which binding color will be used under the current setting. The 
valid values for colorOption are product-dependent strings describing the color 
of the binding, such as Blue or Red. One of the options must be None or False. 
Builders of PPD files should write *UIConstraints entries to disable *BindColor 
when *BindWhen is None; see *BindEdge for an example.

*BindWhen bindOption: “invocation”

*DefaultBindWhen: bindOption | Unknown

*?BindWhen: “query” (returns: bindOption | Unknown)

*BindWhen provides the InvocationValue to turn on binding and to control 
when a job is bound. *DefaultBindWhen denotes the default time for binding. 
*?BindWhen returns a string that denotes when binding will occur under the 
current setting.

These bindOptions are used with the *BindWhen keyword to determine when the 
document should be bound:

• None—Do not bind.

• DeviceDeactivation—Bind immediately after the device has been deactivated.

UIU I


UIU I


UIU I




5  Keywords  131

• EndOfJob—Bind when the last page has joined the other pages in the job, so 
the entire job can be bound together. The notion of “job” is explained in 
section 3.7.7 of the PostScript Language Reference Manual, Second Edi-
tion.

• EndOfSet—Bind when the last page has joined the other pages in the set, so 
the whole set can be bound together. The definition of “set” depends on 
whether or not the document is collated. For a definition of “set,” see 
NumCopies  and Collate  in Table 4.11 of the PostScript Language Reference 
Manual, Second Edition.

One of the options must be None or False to turn off binding. See the descrip-
tion of *BindEdge for an example of *UIConstraints that should be written 
between *BindWhen and *BindColor, *BindType, and *BindEdge.

*Booklet bookletOption: “invocation”

*DefaultBooklet: bookletOption | Unknown

*?Booklet: “query” (returns: bookletOption | Unknown)

*Booklet provides the InvocationValue to make booklets. Booklets are created 
by saddle stitching, folding, and trimming. One of the options must be None 
or False, to turn off booklet-making. 

The currently registered values for bookletOption are:

• True—Make a booklet.

• False—Do not make a booklet.

*DefaultBooklet denotes the default state of booklet making. *?Booklet returns a 
string denoting the current state of booklet making. 

UIU I




132 PostScript Printer Description File Format Specification (9 Feb 1996)

*Slipsheet slipsheetOption: “invocation”

*DefaultSlipsheet: slipsheetOption | Unknown

*?Slipsheet: “query” (returns: slipsheetOption | Unknown)

*Slipsheet provides the InvocationValue to control slipsheeting. Slipsheeting is 
the insertion of pages of a different color or type between sets of documents. 
One of the options must be None or False to turn off slipsheeting. 

The currently registered values for slipsheetOption are:

• None—Turn off slipsheeting.

• DeviceDeactivation—Insert slipsheet at device deactivation.

• EndOfJob—Insert slipsheet at the end of the current job. A job is defined in 
section 3.7.7 of the PostScript Language Reference Manual, Second Edi-
tion.

• EndOfSet—Insert slipsheet at the end of the current set. For a definition of 
“set,” see NumCopies  and Collate  in Table 4.11 of the PostScript Language 
Reference Manual, Second Edition.

• EndOfPage—Insert slipsheet at the end of the current page.

• True—Turn on slipsheeting—for devices in which slipsheeting is a binary 
state. Whether this activates slipsheeting at the end of the job, end of set, 
or device deactivation is device-dependent.

• False—Turn off slipsheeting—for devices in which slipsheeting is a binary 
state.

*DefaultSlipsheet denotes the default state of slipsheeting. *?Slipsheet returns a 
string denoting the current state of slipsheeting. 

*InsertSheet True | False: “invocation”

*DefaultInsertSheet: True | False | Unknown

*?InsertSheet: “query” (returns: True | False | Unknown)

*InsertSheet provides the InvocationValue to insert a sheet at a specific place in 
the document. True means that the next page will be drawn from a special 
input tray and inserted in the page sequence. False means that the next page 
will be drawn from the regular input tray. For example, a printer might allow 
the insertion of a photograph between specific pages of the document after 
the pages have passed through the heated elements in the printer. To accom-

UIU I




5  Keywords  133

plish this, a print manager would emit the code for a True value at the begin-
ning of the specific page, emit the showpage  operator to insert the special 
sheet, and then emit the code for the False value of *InsertSheet.

*DefaultInsertSheet denotes the default state of *InsertSheet. *?InsertSheet returns a 
string denoting the current state of *InsertSheet.

Note To builders of PPD files: This feature was marked with the “UI” symbol in 
previous versions of this specification. Upon further study, it was found that 
this keyword should not be surrounded by *OpenUI/*CloseUI because the print 
manager must do more than blindly post the feature and execute the code; it 
must provide a method for the user to specify where the page should be 
inserted and then perform the procedures described above.

*Jog jogOption: “invocation”

*DefaultJog: jogOption | Unknown

*?Jog: “query” (returns: jogOption | Unknown)

*Jog provides the InvocationValue to control jogging.When jogging is 
invoked, the next job or set is offset to the left or right from the previous job 
or set in the output bin. Jogging is also known as “offset stacking”. One of the 
options must be None or False to turn off jogging. 

The currently registered values for jogOption are:

• None—Turn off jogging.

• DeviceDeactivation— Jog at device deactivation.

• EndOfJob— Jog at the end of the current job.

• EndOfSet— Jog at the end of the current set.

*DefaultJog denotes the default state of jogging. *?Jog returns a string denoting 
the current state of jogging. 

5.19 Imagesetter Features

This section contains features that are usually found only on imagesetters 
(also referred to as typesetters and filmsetters). These features are imple-
mented by device-dependent means, but a uniform interface to them is pro-
vided by the PostScript interpreter. Each of these features, with the exception 
of *ReferencePunch, is documented in section 4.11 of the PostScript Language 
Reference Manual, Second Edition.

UIU I




134 PostScript Printer Description File Format Specification (9 Feb 1996)

*MirrorPrint True | False: “invocation”

*DefaultMirrorPrint: True | False | Unknown

*?MirrorPrint: “query” (returns: True | False | Unknown)

*MirrorPrint provides the InvocationValue to turn the mirror print feature on 
(True) and off (False). *DefaultMirrorPrint denotes the default state of mirror print-
ing. *?MirrorPrint returns the current setup for mirror printing.

*NegativePrint True | False: “invocation”

*DefaultNegativePrint: True | False | Unknown

*?NegativePrint: “query” (returns: True | False | Unknown)

*NegativePrint provides the InvocationValue to turn the negative print feature on 
(True) and off (False).*DefaultNegativePrint denotes the default state of negative 
printing. *?NegativePrint returns the current setup for negative printing.

*AdvanceMedia advanceOption: “invocation”

*DefaultAdvanceMedia: advanceOption | Unknown

*?AdvanceMedia: “query” (returns: advanceOption | Unknown)

*AdvanceMedia provides the InvocationValue to tell the device when to advance 
roll-fed media by a preset distance. The currently registered values for 
advanceOption are:

• None—Do not advance the medium.

• DeviceDeactivation—Advance the medium at device deactivation.

• EndOfJob—Advance the medium at the end of the job.

• EndOfSet—Advance the medium after each set.

• EndOfPage—Advance the medium after each showpage  or copypage.

*DefaultAdvanceMedia denotes the default state of *AdvanceMedia. The query 
*?AdvanceMedia returns a string denoting the current state of *AdvanceMedia.

UIU I


UIU I


UIU I




5  Keywords  135

*CutMedia cutOption: “invocation” 

*DefaultCutMedia: cutOption | Unknown

*?CutMedia: “query” (returns: cutOption | Unknown)

*CutMedia provides the InvocationValue to tell the device when to cut roll-fed 
media. *DefaultCutMedia denotes the default state of *CutMedia. *?CutMedia returns 
a string denoting the current state of *CutMedia.

The currently registered values for cutOption are:

• None—Do not cut the medium.

• DeviceDeactivation—Cut the medium at device deactivation.

• EndOfJob—Cut the medium at the end of the job.

• EndOfSet—Cut the medium after each set.

• EndOfPage—Cut the medium after each showpage  or copypage.

*ReferencePunch  mediaOption: x  y

Printing plates are typically punched along their leading edge to facilitate 
mounting on printing presses. Some devices provide an equivalent punch 
system for film so that the film may be accurately contacted to a printing 
plate. This keyword provides the location of the reference punch (the center 
point of the center hole on the punch rack) so that an application may posi-
tion the image on the film relative to the punch.

The parameter mediaOption designates the page size. It must be one of the 
option keywords listed under *PageSize and *PageRegion in the PPD file. There 
must be one *ReferencePunch statement for every page size that can be 
punched.

The parameters x and y provide the coordinates, in default user space, of the 
reference punch. For example, if the punch rack was 1/8 inch ahead of the 
page image along the media feed direction, and the reference punch was cen-
tered along the page in the direction perpendicular to media feed direction, 
the PPD file would contain the following statements for the page sizes Letter 
and Letter.Transverse:

*ReferencePunch Letter: 792.125 306

*ReferencePunch Letter.Transverse: -0.125 396

UIU I




136 PostScript Printer Description File Format Specification (9 Feb 1996)

This example assumes that, on this device, Letter has a width of 612, a height 
of 792, and an orientation of 1, and Letter.Transverse has a width of 792, a 
height of 612, and an orientation of 0, where width, height, and orientation 
are defined as in Figure 3 on page 109. 

Note: There is currently no *ReferencePunch support for custom page sizes.

5.20 Font Related Keywords

This section contains keywords that provide information about the fonts on 
the device.

*FDirSize: int

This provides the size, in bytes, of the font directory in the device’s inter-
preter. This is only useful for Level 1 devices, which have a fixed-size font 
directory. This keyword will not appear in the PPD file of a Level 2 device. If 
a print manager is keeping track of how many fonts have been downloaded to 
the device, this StringValue tells a print manager when the directory is getting 
full, so the print manager can flush out old fonts to make room for new ones. 
Without this information, a print manager may either flush too often or 
encounter a dictfull  error.

*FCacheSize  vmOption: int

This StringValue provides the size of the font cache, in bytes, for a given 
level of memory installed in the device. vmOption must be a valid option listed 
under *VMOption and *InstalledMemory. (See the description of those keywords 
for details on vmOption.) If the device accepts installable memory modules, 
there should be a *FCacheSize statement for each module size.

*Font fontname: encoding “(version)” charset status

This keyword provides one line of information for each font that may be resi-
dent on the product. (To understand which fonts are listed, see Listing fonts at 
the end of this keyword description.) The option fontname is the valid Post-
Script language name of the font, without the leading slash. The StringValue 
has multiple components separated by white space. 

Value of encoding

The encoding value has slightly varying meanings depending on the font type. 
If the encoding cannot be determined, the value of encoding may be Unknown. 



5  Keywords  137

For Roman (one byte per character) fonts, the encoding value indicates the 
default encoding of each font. Fonts are usually re-encoded by applications or 
print managers to provide other encodings; the charset value (described later) 
for each font indicates which encodings are possible for that font. 

The following are the currently defined encoding values for Roman fonts:

• Standard—This font, by default, uses the Adobe StandardEncoding  vector.

• Special—This font has a nonstandard font-specific encoding (for example, 
the font named Sonata, which is composed of musical symbols).

• ISOLatin1—This font, by default, uses the Adobe ISOLatin1Encoding  vector.

• Expert—This font, by default, uses the Adobe Expert encoding vector.

• ExpertSubset—This font, by default, uses the Adobe ExpertSubset encoding 
vector.

Older composite fonts use the following encoding values:

• JIS—A Japanese font with JIS (Japan Industrial Standard) encoding. (This 
is a two byte-per-character encoding.)

• RKSJ—A Japanese font with RKSJ (Romaji-Kana-Shift-JIS) encoding. 
(This is a mixed one and two byte-per-character encoding, common on 
PCs, and often informally referred to as “Shift JIS.” In this specification, 
“Shift-JIS” refers to the two byte-per-character encoding, which is a 
proper subset of RKSJ.)

• EUC—A Japanese font with EUC (Extended UNIX Code) encoding. (This 
is a two byte-per-character encoding.)

• Shift-JIS—A Japanese font with Shift-JIS encoding. (This is a two byte-per-
character encoding. It is a proper subset of RKSJ. The Japanese PC encod-
ing commonly referred to as “Shift JIS,” which includes one-byte Romaji 
and Katakana codes, is referred to in this specification as RKSJ.)



138 PostScript Printer Description File Format Specification (9 Feb 1996)

CID-keyed composite fonts use the encoding value to record the CMap compo-
nent of the font. For details on CMaps in CID-keyed composite fonts, includ-
ing the CMap names for Chinese and Korean fonts, see Technical Note 
#5094, Adobe CJK Character Collections and CMaps for CID-Keyed Fonts, 
available from the Adobe Developers Association. The following is a list of 
the currently registered values for encoding for Japanese CID-keyed fonts:

78-H 78-V 78-RKSJ-H  78-RKSJ-V
78-EUC-H 78-EUC-V 83pv-RKSJ-H 
90pv-RKSJ-H 90ms-RKSJ-H 90ms-RKSJ-V
Add-RKSJ-H Add-RKSJ-V Add-H Add-V
Ext-RKSJ-H Ext-RKSJ-V Ext-H Ext-V
EUC-H EUC-V RKSJ-H RKSJ-V
Hankaku Hiragana H V
Katakana Roman WP-Symbol  
NWP-H NWP-V

Note The encodings named NWP-H and NWP-V are obsolete and may be removed 
from a future version of this specification.

Note To builders of PPD files: The currently registered values for encoding are pri-
marily for the most common Japanese fonts. If a font has a CMap name that 
is not listed here, the appropriate CMap name from Technical Note #5094 
should be inserted in the encoding field. However, print managers, depending 
on how they use the encoding field, might not recognize new encoding values 
until they are listed in this specification and the print manager is updated.

Value of version

The value of version is the version number of the font; for most fonts, it is the 
value of the key Version  in the FontInfo  dictionary that is a subdictionary of the 
font dictionary. For CID-keyed composite fonts, it is the value of the key 
CIDFontVersion in the dictionary for the CIDFont  resource instance. 

Value of charset

The charset value of the *Font keyword indicates which shape descriptions 
(glyphs) are contained in the font and are available for re-encoding. If this 
information cannot be determined, the value of charset may be Unknown. 

Valid charset values for Western (Roman) fonts are:

• Standard—This indicates a Roman font that contains the character set that 
supports both the Standard and ISOLatin1 encodings. Most Roman fonts from 
Adobe will have this value in the charset field of their *Font statements.



5  Keywords  139

• OldStandard—This indicates a Roman font that contains the character set 
necessary to support the Standard encoding. OldStandard is a subset of the 
Standard character set.

• Special—This indicates a font that supports a font-specific character set (for 
example, Sonata).

• ISOLatin1—This indicates a Roman font that contains the character set that 
supports the ISOLatin1 encoding. ISOLatin1 is a subset of the Standard charac-
ter set.

• Expert—This indicates a Roman font that contains the character set that sup-
ports the Expert encoding.

• ExpertSubset—This indicates a Roman font that contains the character set 
that supports the ExpertSubset encoding.

Older composite fonts use the following charset values:

• JIS-83—Supports the JIS X0208-1983 character set.

• JIS-78—Supports the JIS 1978 character set.

• 83pv—Supports the 83pv (Apple® Macintosh-compatible) character set.

• Add—Supports the Add (Fujitsu FM system-compatible) character set.

• Ext—Supports the Extended (NEC PC-98-compatible) character set.

• NWP—Supports the NWP (NEC Word Processor) character set.

CID-keyed composite fonts use the charset value to record the registry, order-
ing, and supplement values of the font. For details on CID-keyed fonts, see 
Technical Note #5094, Adobe CJK Character Collections and CMaps for 
CID-Keyed Fonts, available from the Adobe Developers Association. When 
creating a charset value, the registry, ordering, and supplement fields are sepa-
rated by hyphens. The following is a list of the currently registered values for 
charset for CID-keyed fonts:

Adobe-Japan1-0 Adobe-Japan1-1 Adobe-Japan1-2
Adobe-Japan2-0 Adobe-Korea1-0 Adobe-Korea1-1
Adobe-GB1-0 Adobe-CNS1-0

Note To builders of PPD files: If a font contains a registry, ordering, and supple-
ment combination that does not appear on this list, you may create a charset 
value composed of the registry, ordering, and supplement values from the 
font, in that order, separated by hyphens. Some print managers might not rec-
ognize such newly-created charset values; depending on whether or not the 
print manager uses the charset information, this might not matter.



140 PostScript Printer Description File Format Specification (9 Feb 1996)

Value of status

The status field indicates whether or not the font can be removed without 
causing the printer to cease its normal functioning.Valid values for the status 
field are ROM and Disk. The distinction between ROM and Disk is that upon 
powering up the device, a font from the ROM list will be inaccessible only if 
there is a printer malfunction. A font from the Disk list, while usually avail-
able, could possibly be inaccessible without a printer malfunction. 

Table 4 contains examples of font distribution methods and associated status 
keywords. This table is not exhaustive as to the different methods of font dis-
tribution.

Table 4  Designation of fonts: ROM versus Disk

Font distribution Erasable Removable Status

ROM-resident No No ROM

auto-loaded into RAM, read-only No No ROM

internal read-only CD-ROM No No ROM

downloaded to RAM, writable Yes No Disk

external read-only CD-ROM No Yes Disk

internal writable hard disk Yes No Disk

external writable hard disk Yes Yes Disk

While most devices include fonts in ROM, a device could ship with all fonts 
having a status of Disk. For example, all of a device’s fonts could be shipped on 
an external CD-ROM.

Listing fonts

All valid font dictionaries found on the device will have *Font statements; the 
list is not limited to Type 1 fonts. All fonts shipped with the product in its 
minimal configuration are listed. These fonts may be in ROM or on a periph-
eral device such as a hard disk, as long as they are always shipped with the 
product. 

Note To builders of PPD files: If additional fonts are available on a plug-in car-
tridge, hard disk, or similar peripheral device that does not ship with the 
product in its minimal configuration, a separate PPD file should be created 
to represent the primary device with the peripheral device attached. For 
example, there might be a PPD file for “Acme FunPrinter” and a separate 
PPD file for “Acme FunPrinter with Display Font Cartridge”. The second 
PPD file would be a duplicate of the first PPD file, except that the second 
PPD file would contain extra *Font statements to list the fonts available on the 



5  Keywords  141

Display Font Cartridge. Theoretically, this could also be accomplished by 
creating a local customization file with the extra fonts listed, but support for 
the installation of local customization files is extremely limited or nonexistent 
in most common operating environments, so this has little practical value. 
See the next note for long-term plans to make the inclusion of aftermarket 
font devices more streamlined.

Note To print manager authors: Although it is not legal now, in a future edition of 
this specification, it will be legal to use *NonUIConstraints to constrain *Font. For 
example, if *Option1 represents a plug-in font cartridge in the InstallableOptions 
group, a future version of this specification will allow

*NonUIConstraints: *Option1 False *Font Palatino

which would tell a print manager that the Palatino font is not available if the 
*Option1 font cartridge is not installed on the device. The PPD file could con-
tain *Font entries for fonts available on peripheral devices for this product, 
along with the appropriate *NonUIConstraints statement that ties the presence of 
the font to the presence of the peripheral device. If you are writing or upgrad-
ing an application that reads *Font statements, we recommend that you 
include support for this future feature. That is, instead of assuming that all 
fonts listed under *Font are always present on the device, applications should 
be written to check for *NonUIConstraints on *Font and only register the font as 
available if the appropriate peripheral device has been registered as 
installed.

Fonts that are later downloaded to the device from the host via software are 
usually monitored by system software (the print manager, a font downloading 
utility, or any application) and are not covered by this specification.

*DefaultFont: Error | fontname

This gives the name of the default font provided by findfont  if the requested 
font is not available. Note that in some devices this might not be well-defined 
(especially where there might be a network font server, for instance), and in 
these cases, this statement might not be present. For many devices this field 
will contain the name Courier. If this value is Error, an execution error will 
occur if the font is not found. Any other value implies that a font substitution 
will take place (such as substituting Courier).

*?FontList: “query”

Provides a PostScript language sequence to return a list of all available fonts. 
It should consult the FontDirectory  dictionary as well as any mass storage 
devices available to the device. The list does not need to be in any particular 
order, but each name is returned separated by a slash ‘/’ character. This is nor-



142 PostScript Printer Description File Format Specification (9 Feb 1996)

mally the way the PostScript language == operator will return a font name. 
All white space characters should be ignored. The end of the font list is indi-
cated by a trailing * sign on a line by itself (decimal 42). 

The following is a look at two valid returns from the query:

/Optima/Optima-Bold/Optima-Oblique/Optima-BoldOblique/Courier/Symbol

*

and

/Courier

/Symbol

/Times-Roman

*

Note To builders of PPD files: This keyword can return a large amount of data. If 
the host or communication channel cannot retrieve the data fast enough, the 
device’s output buffer may overflow, causing data to be lost before it can be 
retrieved. If the device ships with a large number of fonts or will regularly be 
attached to a mass storage device containing many fonts, the *?FontList code 
should be tested over all available communication channels. If data is lost, 
the*?FontList code should be altered to slow down the output. One method is to 
output the font names in groups separated by small time delays.

*?FontQuery: “query”

This provides a PostScript language query that should be combined with a 
particular list of font names being sought. It looks for any number of names 
on the stack, and will print a list of values depending on whether or not the 
font is known to the PostScript interpreter. The font names must be provided 
on the operand stack by the print manager. This is done by emitting the 
names, with leading slash ‘/’ characters, before emitting the query itself. To 
avoid stack overflow, the number of names on the stack should be less than 
150.

So that the print manager does not have to keep track of the precise order in 
which the values are returned and to guard against errors from dropped infor-
mation, the syntax of the returned value will be /fontname:Yes or /fontname:No, 
where each font in the list is returned in this manner. The slashes delimit the 
individually returned font names, although newlines should be expected (and 
ignored) between them. A final * character will follow the returned values. 



5  Keywords  143

For example:

/Times-Roman:Yes

/Optima:Yes

/CircleFont:No

/Adobe-Garamond:No

*

Note To print manager authors: The query provided by *?FontQuery is often prefera-
ble to the *?FontList query, since that query can return a very long list of fonts 
in some devices, such as those with access to built-in hard disks or network 
font servers. 

Note To builders of PPD files: Given a large list of font names to query, this key-
word could return a large amount of data, although not typically as large as 
*?FontList. If the host or communication channel cannot retrieve the data fast 
enough, the device’s output buffer may overflow, causing data to be lost 
before it can be retrieved. If the device ships with a large number of fonts or 
will regularly be attached to a mass storage device containing many fonts, the 
*?FontQuery code should be tested with a large list of font names over all avail-
able communication channels. If data is lost, the*?FontQuery code should be 
altered to slow down the output. One method is to output the responses in 
smaller groups separated by small time delays.

5.21 Printer Messages

In an environment where the output device is connected to the host by a bi-
directional channel, such as serial communication, the output device can 
return various status messages to the host. A print manager can recognize 
these messages and convert some of them to a more readable form before dis-
playing them to the user. The messages are divided into categories and enu-
merated in the PPD file for recognition purposes.

*PrinterError: “text”

Printer errors are reported automatically by the output device when some-
thing is wrong. The same printer errors can often be returned in a status mes-
sage as a response to a request for status (see *Status). This provides a list of 
QuotedValues that are possible Printer Error messages returned by the device 
in the following form:

%%[PrinterError: cover open]%%

%%[PrinterError: paper exit misfeed]%%



144 PostScript Printer Description File Format Specification (9 Feb 1996)

The PPD file statements for these error messages would be as follows:

*PrinterError: "cover open"

*PrinterError: "paper exit misfeed"

The brackets, percent signs, and the word “PrinterError” from the original 
error message are not included in the PPD file.

If a translation string were included, the PPD file statement would look like 
this:

*PrinterError: "cover open"/lucka <F6>ppen

The translation string translates the error message into Swedish; the hexadec-
imal substring ‘F6’ represents the 8-bit character ‘Odieresissmall’. See sec-
tion 3.5 for details on translation string syntax.

*Status: “text”

This lists the possible responses to a status query as QuotedValues. A status 
query is typically accomplished by sending ^T (control-T, decimal 20) over a 
serial connection or by a special status packet if a network protocol is used 
(for instance, AppleTalk®). 

The status message may be composed of up to three parts. There is always at 
least the word “status: message” with an appropriate status message (those 
messages are listed in this section of the PPD file). There may also be two 
other sections in the message from the device, listing the currently executing 
job name (job: name) as defined by the variable jobname  in statusdict , and a 
source field, like this: source: connection.

The following are examples of status messages returned by a PostScript 
output device:

%%[status: warming up]%%

%%[status: busy; source: AppleTalk]%%

%%[job: userjob; status: waiting; source: serial25]%%

%%[job: myjob; status: PrinterError: cvr opn; source: serial25]%%

The statements in the PPD file will not have the brackets, the percent signs, or 
the extraneous fields for jobname and source. The PPD file will contain only the 
message field:

*Status: "warming up"

*Status: "busy"

*Status: "waiting"

*Status: "PrinterError: cover open"



5  Keywords  145

Note that the message portion of a status message can contain a printer error, 
so the same list of printer errors that appears under *PrinterError may appear 
under *Status.

*Source: “sourceOption”

This lists the possible sources for print jobs, as QuotedValues. These corre-
spond to the source: field in the status message (as shown under the *Status sec-
tion). This effectively provides a list of the names of the communications 
channels on the device, plus any other possible sources for jobs. The follow-
ing are example statements for Level 1 devices:

*Source: "serial25"

*Source: "serial9"

*Source: "AppleTalk"

*Source: "Centronics"

and for Level 2 devices:

*Source: "Serial"

*Source: "SerialB"

*Source: "LocalTalk"

*Source: "Parallel"

The status message in which the source is found can contain other fields (as 
in the example under *Status), depending on the values of jobname  in statusdict  
and whether or not there is an active job (in which case the source is listed). 
Just the strings for the source field are provided in this section.

*Message: “text”

This provides, as QuotedValues, a list of possible device messages that do not 
fit into the categories of *Status, *PrinterError, or *Source. Messages that are listed 
under those keywords are not repeated here. The strings listed under the key-
word *Message will contain the text delimiters (brackets and percent signs), if 
they exist in the original error message generated by the device. 

The following are two examples. The first example contains the delimiters as 
the device generated them. The second example contains no delimiters 
because the device generates this message without delimiters. The second 
example also contains a translation string and some special syntax, which is 
explained below.

*Message: "%%[exitserver: permanent state may be changed]%%"

*Message: "\fontname\ not found, using Courier"/no \fontname\ on this printer



146 PostScript Printer Description File Format Specification (9 Feb 1996)

Notice the \fontname\ notation in the last example, with the backslashes. The 
exact text of this message depends on which font was requested by the user 
program. This backslash notation is a PPD file syntax that indicates that any 
arbitrary PostScript language name may be found at the beginning of that 
message (substituted for \fontname\). A parser, parsing a PPD file, should parse 
for the complete string \fontname\. Special significance should not be given to 
the single character \, because a backslash can occur in other contexts.

5.22 Color Separation Keywords

Color separations are device-dependent. A color separation is a monochrome 
print that represents a single color plate that is later printed in combination 
with other plates on a full color press system. In this sense, a color separation 
can be one of the four standard process colors (cyan, magenta, yellow, and 
black) from which all other colors are simulated by mixing, or it can be a par-
ticular spot color, which is simply an ink of a particular color.

For color separations to work well, it must be possible to print several layers 
one on top of the other on a color printing press. The way the color mixing is 
optimized is to print each color plate with a different halftone screen, usually 
rotated at some specific angle to minimize both dot interference with other 
plates and to avoid moiré patterns. 

The selection of these halftone screens is typically done by hand for a partic-
ular device, taking resolution and other device characteristics into account 
(even variations in the speed of media travel). Once a good set of screen 
parameters have been established, they are used for almost all separations on 
that machine, unless screens of different granularity are desired, in which 
case the process is repeated.

In addition to the halftoning process necessary for producing separations, 
there are issues of color matching that are equally device-dependent. As an 
example, many companies have specific names for their entire range of col-
ored inks. These colors can be simulated or approximated with various color 
technologies (screen phosphors or process inks) but it might not be possible 
to render them exactly. There is usually a color mapping table that associates 
a particular combination of process inks (or screen phosphor intensities) to 
one of the named colors. This is, of course, device-specific.

Option Keywords

Color separation option keywords (the notation colorsepkey in the keyword list-
ings) are designed to reflect particular combinations of separation character-
istics. For example, a given separation typically is designed for a particular 
process color (for example, the cyan separation), at a certain halftone screen 
frequency, for a particular resolution device. To this end, the color separation 



5  Keywords  147

option keywords are complex and modular, but they can be made more 
human-readable through use of the general translation string mechanism pro-
vided in the file format.

A colorsepkey consists of a name that can optionally have any number of quali-
fiers (sub-components), each separated by a dot (., decimal 46). The key is 
typically a color name, and the qualifiers typically refer to a screen fre-
quency, a resolution, and sometimes to vendor-specific or printer-specific 
features that can affect the appearance of the color separation, such as a spe-
cial screening method or a specific type of controller. 

Two common qualifiers are defined in this spec: screen frequency, which 
must end in the string lpi, and resolution, which must end in the string dpi. 
These qualifiers occur in the following relationship: 

colorname.frequency.resolution

Any number of other qualifiers can appear after the resolution qualifier and 
will be separated from each other by a dot.

The idea is to be able to associate many different components of a color sepa-
ration package by keyword. The keywords are arbitrary, but the structured 
qualifiers make it possible for an application to separate the components, if 
necessary, to allow a user to choose from several frequencies, optional resolu-
tions, and so on. Otherwise, these keywords behave similarly to any other 
option keywords in PPD files. For devices where the resolution cannot be 
varied (most of them), the resolution qualifier will usually be omitted from 
the colorsepkey keyword.

The following are several examples, to help illustrate the format more clearly:

*ColorSepScreenAngle ProcessCyan.60lpi.1270dpi: "37"

*ColorSepScreenAngle ProcessMagenta.60lpi.1270dpi: "45"

*ColorSepScreenAngle ProcessYellow.60lpi.1270dpi: "75"

*ColorSepScreenAngle ProcessBlack.60lpi.1270dpi: "0"

*ColorSepScreenFreq ProcessBlack.60lpi.1270dpi: "60"

*ColorSepScreenProc ProcessBlack.60lpi.1270dpi: "{ pop }"

*ColorSepTransfer ProcessBlack.60lpi.1270dpi: "{ 1 exch sub }"

*ColorSepScreenFreq ProcessCyan.90lpi.1270dpi: "90"

*ColorSepScreenFreq ProcessCyan.60lpi.600dpi: "60"

The following keywords provide suggested values for manipulating the 
PostScript language halftone machinery to provide good color separations. 
Each separate process color should be printed with a different screen angle 
and perhaps different transfer functions or at various screen frequencies. 

Be aware that all color separation statements are optional. If a statement does 
not exist for a specific color, the default value should be used. For example, 
there might be statements for screen frequencies and screen angles for a color 
but not a statement for a screen procedure for that color. 



148 PostScript Printer Description File Format Specification (9 Feb 1996)

*DefaultColorSep: colorsepkey

This keyword provides the default color separation in the form of a colorsepkey 
keyword. This is used in conjunction with the other keywords listed below.

*ColorSepScreenFreq colorsepkey: “real”

This keyword provides the InvocationValue for the appropriate screen fre-
quency for a color separation keyed to the given colorsepkey.

*ColorSepScreenAngle colorsepkey: “real”

This statement gives the halftone screen angle InvocationValue for the given 
color separation.

*ColorSepScreenProc colorsepkey: “{procedure}”

This provides the halftone spot function InvocationValue for the specified 
color separation.

*ColorSepTransfer colorsepkey: “{procedure}”

This keyword provides the transfer function InvocationValue appropriate for 
the given color separation keyword.

*CustomCMYK inkname: “cyan magenta yellow black”

This keyword provides an InvocationValue containing the CMYK equivalents 
for a named custom color. These can be user-defined or names used in a com-
mercial color matching system that can provide CMYK approximations for 
particular marking technologies. The idea is to associate any given named ink 
(whether it be from a commercial color matching system or a local custom 
color) with a set of process color values to approximate it. For example:

*CustomCMYK HarvestGold: "0 .01 .9 .01"

The keyword *CustomCMYK is kept deliberately brief because there might be 
hundreds of statements of this sort in a PPD file. For some devices, in fact, 
these statements can be put into a separate file that references the original 
PPD file with the *Include convention, discussed in section 2.6. 



5  Keywords  149

*InkName: inkname / alias

This keyword provides a StringValue that is an alternative name for one of 
the inkname keywords used in the *CustomCMYK section. It provides slightly 
more human-readable versions of the keywords that can be presented in a 
user interface (the keywords themselves cannot contain spaces). Here is an 
example:

*InkName: p305/COLORNAME 305

Alternatively, you can omit the *InkName entry and simply supply a translation 
string for the option keyword of the *CustomCMYK entry. For example:

*CustomCMYK p305/Harvest Gold 305: "0 .01 .9 0.1"

*Separations True | False: “invocation”

*DefaultSeparations: True | False | Unknown

*?Separations: “query” (returns: True | False | Unknown)

If the device can provide automatic generation of color separations, 
*Separations provides the InvocationValue to tell the device to output either 
color separations (True) or composite color (False). True means that the device 
will produce each page by printing multiple color separations, one for each 
device colorant. False means that the device will produce each page as a 
single composite page with all the colors, if any, combined on the same page. 
*DefaultSeparations denotes the default state of the automatic separations mech-
anism.*?Separations will return the current state of the separations mechanism

Color separations are explained in section 4.8 of the PostScript Language 
Reference Manual, Second Edition. The print manager may wish to provide a 
more complex user interface for the user to declare which pages should be 
produced as separations and which should not, in which case this keyword 
should not be treated as a simple UI keyword. 

5.23 Symbolic References to Data

The keywords in this section provide a way for parsers to skip large amounts 
of data contained in a PPD file when the parsers are not interested in that par-
ticular type of data. This is accomplished by providing a symbolic reference 
in place of a large body of PostScript language code.

Where an InvocationValue is normally permitted, it is legal to have a symbol 
name instead. A symbol name must start with the character caret, ^ (decimal 
94). This symbol name is associated with a PostScript language sequence 

UIU I




150 PostScript Printer Description File Format Specification (9 Feb 1996)

(InvocationValue) that appears at some later place in the PPD file (or in an 
attached local customization file). Since the InvocationValue might be large, 
a length hint can be provided by *SymbolLength to allow parsers to skip the 
large value quickly. 

For example:

*OpenUI *MainFeature: PickOne

*MainFeature Option1: ^MySymbol

*MainFeature Option2: "..."

*CloseUI: *MainFeature

...

*SymbolLength ^MySymbol: bytecount EOLcount

*SymbolValue ^MySymbol: "

  ... bulky data here (e.g. color rendering dictionary)

"

*SymbolEnd: ^MySymbol

If a parser encounters a symbol name as a value, the parser should expect to 
find a *SymbolValue statement with the same symbol name later in the file. The 
rest of this section describes the individual keywords used to indicate sym-
bolic pointers to bodies of data.

Note The use of a symbol name in place of an InvocationValue is incompatible with 
version 3.0 of the PPD file specification and might cause problems for older 
parsers. It is intended for use only when the code is very large—on the order 
of tens of kilobytes. Symbol names should not be used as the values of key-
words that existed in version 3.0 of this specification or for commonly-refer-
enced keywords, such as *PageSize. 

*SymbolLength symbolName: bytecount EOLcount

This keyword tells a parser how long the body of data is, so the parser knows 
how many bytes to skip if it wants to skip this data. The option symbolName 
must be the symbolName used in the associated *SymbolValue statement. 

The StringValue components bytecount and EOLcount are unsigned integers, 
separated by white space. Together they measure the length in bytes of the 
data from the ‘*’ byte of *SymbolValue to the ‘*’ byte of *SymbolEnd. The first 
value gives the number of bytes, excluding the bytes that comprise end-of-
line sequences. The second value gives the number of end-of-line sequences. 

The parser must determine the number of bytes in an end-of-line sequence in 
the PPD file (usually 1 or 2).This number is usually a function of the operat-
ing system or platform on which the parser is operating, so it is usually 
known to the parser. It can then compute the byte offset of the *SymbolEnd key-
word in the file by the formula

ibEnd = ibValue + bytecount + (cbEOL*EOLcount)



5  Keywords  151

where

ibEnd   = byte offset of '*' in '*SymbolEnd'

ibValue = byte offset of '*' in '*SymbolValue'

cbEOL   = number of bytes per end-of-line sequence

and the values of bytecount and EOLcount are taken from the *SymbolLength key-
word.

The information given by the *SymbolLength keyword is a hint only; parsers 
must not rely on it being correct or even present. If it is not correct or present, 
the parser must skip the value definition by scanning through the file until it 
reaches the *SymbolEnd keyword with the appropriate symbolName. 

*SymbolLength must occur in a PPD file immediately before *SymbolValue.

*SymbolValue symbolName: “invocation”

This keyword marks the beginning of a body of data of type InvocationValue. 
Symbol names must be defined in a *SymbolValue statement if they are refer-
enced by a main keyword. It is an error for a PPD file to reference a symbol 
name that is not later defined. If a name is referenced but not defined, parsers 
can substitute a value of " " (empty quotes). The *SymbolValue statement for a 
given symbolName must occur after the reference to symbolName by a main key-
word. That is, once a parser encounters a main keyword referencing 
symbolName, it can expect to find a corresponding *SymbolValue statement either 
later in the PPD file or in an included PPD file. 

The following two examples are both valid.

*%File: A

...

*Jog True: ^JogTrue

...

*SymbolLength ^JogTrue: 2000 500

*SymbolValue ^JogTrue: "..."

*SymbolEnd: ^JogTrue

...

*%File: B

...

*Jog True: ^JogTrue

...

*Include: "C" ---------> *%File: C

...

... *SymbolLength ^JogTrue: 2000 500

*SymbolValue ^JogTrue: "..."

*SymbolEnd: ^JogTrue



152 PostScript Printer Description File Format Specification (9 Feb 1996)

Alternatively, the reference to symbolName can be in an included PPD file as 
long as the *SymbolValue statement is encountered after the *Include statement in 
the including file. For example, the following is valid because included files 
are treated as in-line files, so the parser must finish parsing File E before it 
encounters the *SymbolValue in File D:

*%File: D

...

*Include: "E" -------------------> *%File: E

... *Jog True: ^JogTrue

... ...

*SymbolLength ^JogTrue: 2000 500

*SymbolValue ^JogTrue: "..."

*SymbolEnd: ^JogTrue

The rules for legal symbolNames are the same as for legal option keywords. By 
convention, Adobe-generated PPD files will construct symbol names by con-
catenating the main and option keywords together (omitting the asterisk from 
the main keyword). For example:

*ColorRenderDict Saturated.Bond.Dot: ^ColorRenderDictSaturated.Bond.Dot

...

*SymbolValue ^ColorRenderDictSaturated.Bond.Dot: “...”

If there are multiple occurrences of *SymbolValue for a given symbolName, the 
first occurrence has precedence.

*SymbolEnd: symbolName

This keyword must appear on the next line following the closing double 
quote of the symbol value. The StringValue value, symbolName, must be the 
same as the symbolName used in the associated *SymbolValue statement.



6  Sample PPD File Structure  153

6 Sample PPD File Structure

This section contains examples of

• a generic Level 2 color printer PPD file

• a generic Level 2 imagesetter PPD file

• custom page size entries for various devices

6.1 Level 2 Color Printer

This PPD file describes a Level 2 color printer with one resolution, one regu-
lar input slot, one manual feed slot, two output bins, an optional envelope 
feeder, and three supported page sizes. The printer can have a hard disk 
attached to it. It supports duplexing, choosing the media by type, and HP 
LaserJet emulation. It can also do color separations at the printer, when sent a 
composite color file.

*PPD-Adobe: "4.3"

*FormatVersion: "4.3"

*FileVersion: "1.0"

*LanguageEncoding: ISOLatin1

*LanguageVersion: English

*Product: "(Acme Color Printer)"

*PSVersion: "(2017.0) 0"

*Manufacturer: “Acme”

*ModelName: "Acme Color Printer v.2017"

*ShortNickName: “Acme Color Printer”

*NickName: "Acme Color Printer v.2017"

*PCFileName: “ACCOLOR1.PPD”

*%=== Basic Capabilities ===============

*LanguageLevel: “2”

*ColorDevice: True

*DefaultColorSpace: CMYK

*FreeVM: "8134935"

*FileSystem: True

*?FileSystem: " 

save false

      (%disk?%)

      { currentdevparams dup /Writeable known

        { /Writeable get {pop true} if }  { pop } ifelse 

      } 10 string /IODevice resourceforall

      {(True)}{(False)} ifelse = flush

   restore"

*End

*Throughput: "1"

*Password: "0"



154 PostScript Printer Description File Format Specification (9 Feb 1996)

*ExitServer: " count 0 eq

   { false } { true exch startjob } ifelse

   not { (WARNING: Cannot modify initial VM.) =

            (Missing or invalid password.) =

            (Please contact the author of this software.) = flush quit

} if"

*End

*Reset: " count 0 eq { false } { true exch startjob } ifelse

   not { (WARNING: Cannot reset printer.) =

            (Missing or invalid password.) =

            (Please contact the author of this software.) = flush quit

          } if

   systemdict /quit get exec

   (WARNING : Printer Reset Failed.) = flush"

*End

*Protocols: BCP PJL

*Emulators: hplj

*StartEmulator_hplj: "currentfile /hpcl statusdict /emulate get exec "

*StopEmulator_hplj: "<1B7F>0"

*JCLBegin: "<1B>%-12345X@PJL JOB<0A>"

*JCLToPSInterpreter: "@PJL ENTER LANGUAGE = POSTSCRIPT <0A>"

*JCLEnd: "<1B>%-12345X@PJL EOJ<0A><1B>%-12345X"

*%===== Installable Options =============

*OpenGroup: InstallableOptions/Options Installed

*OpenUI *Option1/Optional Envelope Feeder: Boolean

*DefaultOption1: False

*Option1 True/Installed: ““

*Option1 False/Not Installed: ““

*CloseUI: *Option1

*CloseGroup: InstallableOptions

*% ====== Constraints ===========

*% This device cannot print duplex on envelopes or transparencies,

*% It cannot output legal size paper to the rear output tray. It

*% cannot print from the envelope feeder unless the feeder is installed

*% Envelopes must be fed from the envelope feeder. Only envelopes may be fed

*% from the envelope feeder. Envelopes may not be transparent.

*UIConstraints: *PageSize Env10 *Duplex

*UIConstraints: *Duplex *PageSize Env10

*UIConstraints: *Duplex *MediaType Transparent

*UIConstraints: *MediaType Transparent *Duplex

*UIConstraints: *PageSize Legal *OutputBin Rear

*UIConstraints: *OutputBin Rear *PageSize Legal

*UIConstraints: *Option1 False *InputSlot Envelope

*UIConstraints: *InputSlot Envelope *Option1 False

*UIConstraints: *PageSize Env10 *InputSlot Upper

*UIConstraints: *InputSlot Upper *PageSize Env10

*UIConstraints: *PageSize Legal *InputSlot Envelope

*UIConstraints: *InputSlot Envelope *PageSize Legal

*UIConstraints: *PageSize Letter *InputSlot Envelope

*UIConstraints: *InputSlot Envelope *PageSize Letter

*UIConstraints: *PageSize Env10 *MediaType Transparent

*UIConstraints: *MediaType Transparent *PageSize Env10

*UIConstraints: *InputSlot Envelope *MediaType Transparent

*UIConstraints: *MediaType Transparent *InputSlot Envelope



6  Sample PPD File Structure  155

*%=== Resolution Information ======================

*DefaultResolution: 300dpi

*?Resolution: "save 

currentpagedevice /HWResolution get

0 get

(      ) cvs print (dpi) = flush

restore

"

*End

*% Halftone Information ===========================

*ScreenFreq: "60.0"

*ScreenAngle: "45.0"

*DefaultScreenProc: Dot

*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1 

sub}{dup mul exch dup mul add 1 exch sub}ifelse}

"

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

 sqrt 1 exch sub}"

*End

*DefaultTransfer: Null

*Transfer Null: "{}"

*Transfer Null.Inverse: "{1 exch sub}"

*% Paper Handling ===================

*% Print managers should use these entries to set paper size, unless there is

*% a specific reason to use PageRegion, such as with manual feed.

*OpenUI *PageSize: PickOne

*OrderDependency: 20 AnySetup *PageSize

*PageSize Letter: "(<<) cvx exec 

/PageSize [612 792] /ImagingBBox null (>>) cvx exec setpagedevice"

*End

*PageSize Legal: "(<<) cvx exec 

/PageSize [612 1008] /ImagingBBox null (>>) cvx exec setpagedevice"

*End

*PageSize Env10: “(<<) cvx exec /PageSize [297 684] /ImagingBBox null

(>>) cvx exec setpagedevice”

*End

*DefaultPageSize: Letter

*?PageSize: "save

   currentpagedevice /PageSize get aload pop

   2 copy gt {exch} if (Unknown) 

(<<) cvx exec

[612 792] (Letter)

[612 1008] (Legal)

[297 684] (Env10)

(>>) cvx exec

   { exch aload pop 4 index sub abs 5 le exch 5 index sub abs 5 le and

     { exch pop exit } {pop} ifelse

   } bind forall = flush pop pop

 restore

"

*End

*CloseUI: *PageSize



156 PostScript Printer Description File Format Specification (9 Feb 1996)

*% These entries set up the frame buffer. Usually used with manual feed.

*OpenUI *PageRegion: PickOne

*OrderDependency: 30 AnySetup *PageRegion

*PageRegion Letter: "(<<) cvx exec /PageSize [612 792] /ImagingBBox null

(>>) cvx exec setpagedevice"

*End

*PageRegion Legal: "(<<) cvx exec /PageSize [612 1008] /ImagingBBox null

(>>) cvx exec setpagedevice"

*End

*PageRegion Env10: “(<<) cvx exec /PageSize [297 684] /ImagingBBox null

(>>) cvx exec setpagedevice”

*End

*DefaultPageRegion: Letter

*CloseUI: *PageRegion

*% The following entries provide information about specific paper keywords.

*DefaultImageableArea: Letter

*ImageableArea Letter: "13 12 596 774 "

*ImageableArea Legal: "15 13 597 991 "

*ImageableArea Env10: "15 13 280 670"

*?ImageableArea: " save /cvp { cvi (            ) cvs

  print ( ) print } bind def

  newpath clippath pathbbox

  4 -2 roll exch 2 {ceiling cvp} repeat

  exch 2 {floor cvp} repeat ( ) = flush

 restore

"

*End

*% These provide the physical dimensions of the paper (by keyword)

*DefaultPaperDimension: Letter

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*PaperDimension Env10: "297 684"

*% On this device, the Upper tray is tray 0 and the Envelope tray is tray 1.

*OpenUI *InputSlot: PickOne

*OrderDependency: 15 AnySetup *InputSlot

*DefaultInputSlot: Upper

*InputSlot Upper: " mark {

(<<) cvx exec 

/InputAttributes (<<) cvx exec /Priority [0] (>>) cvx exec

(>>) cvx exec setpagedevice

  } stopped cleartomark "

*End

*InputSlot Envelope: " mark {

(<<) cvx exec 

/InputAttributes (<<) cvx exec /Priority [1] (>>) cvx exec

(>>) cvx exec setpagedevice

  } stopped cleartomark "

*End



6  Sample PPD File Structure  157

*?InputSlot: "

save

(<<) cvx exec

/1 (Envelope)

/0 (Upper)

(>>) cvx exec

  currentpagedevice /InputAttributes get

  dup /Priority known

  { /Priority get 0 get (        ) cvs cvn get }

  {

    dup length 1 eq

    { {pop} forall (       ) cvs cvn get }

    { pop pop (Unknown) } ifelse

  } ifelse

  = flush

restore

"

*End

*CloseUI: *InputSlot

*OpenUI *MediaType: PickOne

*OrderDependency: 20 AnySetup *MediaType

*DefaultMediaType: Paper

*MediaType Transparent: "(<<) cvx exec /MediaType Transparent (>>) cvx exec setpagedevice"

*MediaType Paper: "(<<) cvx exec /MediaType Paper (>>) cvx exec setpagedevice"

*?MediaType: " save

currentpagedevice /MediaType {get} stopped

{pop pop (Unknown)} {dup null eq {pop (Unknown)} if} ifelse = flush restore "

*End

*CloseUI: *MediaType

*OpenUI *Duplex: PickOne

*OrderDependency: 30 AnySetup *Duplex

*DefaultDuplex: None

*Duplex DuplexTumble: "(<<) cvx exec /Duplex true /Tumble true (>>) cvx exec setpagedevice"

*Duplex DuplexNoTumble: "(<<) cvx exec /Duplex true /Tumble false (>>) cvx exec setpagedevice”

*Duplex None: "(<<) cvx exec /Duplex false /Tumble false (>>) cvx exec setpagedevice"

*?Duplex: "save currentpagedevice /Duplex get

   { currentpagedevice /Tumble get

       {(DuplexTumble)}{(DuplexNoTumble)}ifelse

   }

   { (None)}

   ifelse = flush

restore

"

*End

*CloseUI: *Duplex

*% Font Information =====================

*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard ROM

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard ROM

*Font AvantGarde-Demi: Standard "(001.003)" Standard ROM

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard ROM

*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM



158 PostScript Printer Description File Format Specification (9 Feb 1996)

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM

*Font Times-BoldItalic: Standard "(001.004)" Standard ROM

*Font Times-Italic: Standard "(001.002)" Standard ROM

*Font Times-Roman: Standard "(001.002)" Standard ROM

*Font ZapfDingbats: Special "(001.002)" Special ROM

*?FontQuery: "

   save  

   { count 1 gt

      { exch dup 127 string cvs (/) print print (:) print

       /Font resourcestatus {pop pop (Yes)} {(No)} ifelse = 

      } { exit } ifelse

   } bind loop

   (*) = flush

   restore"

*End

*?FontList: "

   save (*) {cvn ==} 128 string /Font resourceforall

   (*) = flush restore"

*End

*% Printer Messages (verbatim from printer):

*Message: "%%[ exitserver: permanent state may be changed ]%%"

*Message: "\FontName\ not found, using Courier"

*% Status (format: %%[ status: <one of these> ]%% )

*Status: "idle"

*Status: "busy"

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: "Optical System Error "

*Status: "PrinterError: " Cover Open "

*Status: "PrinterError: "Prnter Wrmng"/PrinterError: Printer Warming Up

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)

*Source: "%Serial%"

*Source: "%SerialB%"

*Source: "%LocalTalk%"

*Source: "%Parallel%"

*% Printer Error (format: %%[ PrinterError: <one of these> ]%%)

*PrinterError: "Optical System Error "

*PrinterError: " Cover Open "

*PrinterError: "Prnter Wrmng"/Printer Warming Up

*% Color Separation Information =====================

*OpenUI *Separations: Boolean

*OrderDependency: 40 AnySetup *Separations

*Separations True: "(<<) cvx exec /Separations true (>>) cvx exec setpagedevice"

*Separations False: "(<<) cvx exec /Separations false (>>) cvx exec setpagedevice"

*DefaultSeparations: False

*?Separations: "save currentpagedevice /Separations get

{(True)}{(False)}ifelse = flush restore"

*End

*CloseUI: *Separations



6  Sample PPD File Structure  159

*DefaultColorSep: ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

*%  For 60 lpi / 300 dpi  ===============================

*ColorSepScreenAngle ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi: "45"

*ColorSepScreenAngle CustomColor.60lpi.300dpi/60 lpi / 300 dpi: "45"

*ColorSepScreenAngle ProcessCyan.60lpi.300dpi/60 lpi / 300 dpi: "15"

*ColorSepScreenAngle ProcessMagenta.60lpi.300dpi/60 lpi / 300 dpi: "75"

*ColorSepScreenAngle ProcessYellow.60lpi.300dpi/60 lpi / 300 dpi: "0"

*ColorSepScreenFreq ProcessBlack.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq CustomColor.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessCyan.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessMagenta.60lpi.300dpi/60 lpi / 300 dpi: "60"

*ColorSepScreenFreq ProcessYellow.60lpi.300dpi/60 lpi / 300 dpi: "60"

*%  For 53 lpi / 300 dpi  ===============================

*ColorSepScreenAngle ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "45.0"

*ColorSepScreenAngle CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "45.0"

*ColorSepScreenAngle ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "71.5651"

*ColorSepScreenAngle ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "18.43"

*ColorSepScreenAngle ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "0.0"

*ColorSepScreenFreq ProcessBlack.53lpi.300dpi/53 lpi / 300 dpi: "53.033"

*ColorSepScreenFreq CustomColor.53lpi.300dpi/53 lpi / 300 dpi: "53.033"

*ColorSepScreenFreq ProcessCyan.53lpi.300dpi/53 lpi / 300 dpi: "47.43"

*ColorSepScreenFreq ProcessMagenta.53lpi.300dpi/53 lpi / 300 dpi: "47.43"

*ColorSepScreenFreq ProcessYellow.53lpi.300dpi/53 lpi / 300 dpi: "50.0"

*% end of PPD file for Acme Color Printer



160 PostScript Printer Description File Format Specification (9 Feb 1996)

6.2 Level 2 Imagesetter

This PPD file describes a generic Level 2 roll-fed imagesetter. It supports 
Adobe’s Accurate Screens technology and several resolutions. It supports the 
features mirror print and negative print, which have been grouped together by 
the *OpenGroup/*CloseGroup keyword pair. This device ships with several fonts 
built into the ROM of the device, and the font Avant-Garde on a separate hard 
disk. While most imagesetters support custom page sizes, the custom page 
size section is not shown here because of its complexity; see section 6.3 for 
examples of custom page size code.

*PPD-Adobe: "4.3"

*FormatVersion: "4.3"

*FileVersion: "1.0"

*LanguageEncoding: ISOLatin1

*LanguageVersion: English

*Product: "(Acme Imagesetter)"

*PSVersion: "(2015.11) 7"

*Manufacturer: “Acme”

*ModelName: "Acme Imagesetter v.2015.11"

*ShortNickName: “Acme Imagesetter”

*NickName: "Acme Imagesetter v.2015.11"

*PCFileName: “ACIMAGE1.PPD”

*%======================================= Basic Capabilities ===============

*LanguageLevel: “2”

*ColorDevice: False

*DefaultColorSpace: Gray

*FreeVM: "8134935"

*FileSystem: True

*?FileSystem: " 

save false

      (%disk?%)

      { currentdevparams dup /Writeable known

        { /Writeable get {pop true} if }  { pop } ifelse 

      } 10 string /IODevice resourceforall

      {(True)}{(False)} ifelse = flush

   restore"

*End

*Throughput: "1"

*Password: "0"

*ExitServer: " count 0 eq

   { false } { true exch startjob } ifelse

   not { (WARNING: Cannot modify initial VM.) =

            (Missing or invalid password.) =

            (Please contact the author of this software.) = flush quit

} if"

*End



6  Sample PPD File Structure  161

*Reset: " count 0 eq

   { false } { true exch startjob } ifelse

   not { (WARNING: Cannot reset printer.) =

            (Missing or invalid password.) =

            (Please contact the author of this software.) = flush quit

          } if

   systemdict /quit get exec

   (WARNING : Printer Reset Failed.) = flush"

*End

*%=== Resolution Information ===================

*OpenUI *Resolution/Choose Resolution: PickOne

*OrderDependency: 10 AnySetup *Resolution

*Resolution 600dpi: "(<<) cvx exec /HWResolution 600 (>>) cvx exec setpagedevice"

*Resolution 1200dpi: "(<<) cvx exec /HWResolution 1200 (>>) cvx exec setpagedevice"

*Resolution 2400dpi: "(<<) cvx exec /HWResolution 2400 (>>) cvx exec setpagedevice"

*DefaultResolution: 1200dpi

*?Resolution: " save

   currentpagedevice /HWResolution get

   0 get (          ) cvs print (dpi) = flush

   restore"

*End

*CloseUI: *Resolution

*% === Halftone Information ===========================

*ScreenFreq: "60.0"

*ScreenAngle: "45.0"

*DefaultScreenProc: Dot

*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1 

sub}{dup mul exch dup mul add 1 exch sub}ifelse}

"

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

 sqrt 1 exch sub}

"

*End

*AccurateScreensSupport: True

*DefaultTransfer: Null

*Transfer Null: "{}"

*Transfer Null.Inverse: "{1 exch sub}"

*% Paper Handling ===================

*% Use these entries to set paper size most of the time, unless there is

*% specific reason to use PageRegion or PaperTray.

*OpenUI *PageSize/Page Size: PickOne

*OrderDependency: 30 AnySetup *PageSize

*DefaultPageSize: Letter

*PageSize Letter: "(<<) cvx exec

/PageSize [612 792]

/ImagingBBox null (>>) cvx exec setpagedevice"

*End



162 PostScript Printer Description File Format Specification (9 Feb 1996)

*PageSize Legal: "(<<) cvx exec

/PageSize [612 1008]

/ImagingBBox null (>>) cvx exec setpagedevice"

*End

*PageSize Tabloid: "(<<) cvx exec

/PageSize [792 1224]

/ImagingBBox null (>>) cvx exec setpagedevice"

*End

*?PageSize: "save currentpagedevice /PageSize get aload pop

   2 copy gt {exch} if (Unknown) 

(<<) cvx exec

[612 792] (Letter) 

[612 1008] (Legal) 

[792 1224] (Tabloid)

(>>) cvx exec

   { exch aload pop 4 index sub abs 5 le exch 5 index sub abs 5 le and

      { exch pop exit } { pop } ifelse

   } bind forall = flush pop pop

   restore"

*End

*CloseUI: *PageSize

*% These entries set up the frame buffer. Same as *PageSize for an

*% imagesetter, which has no input trays or manual feed slot.

*OpenUI *PageRegion: PickOne

*OrderDependency: 40 AnySetup *PageRegion

*DefaultPageRegion: Letter

*PageRegion Letter: "(<<) cvx exec

/PageSize [612 792]

/ImagingBBox null (>>) cvx exec setpagedevice"

*End

*PageRegion Legal: "(<<) cvx exec

/PageSize [612 1008]

/ImagingBBox null (>>) cvx exec setpagedevice"

*End

*PageRegion Tabloid: "(<<) cvx exec

/PageSize [792 1224]

/ImagingBBox null (>>) cvx exec setpagedevice"

*End

*CloseUI: *PageRegion

*% These entries provide the imageable area for specific paper keywords.

*DefaultImageableArea: Letter

*ImageableArea Letter: "0.0 0.0 612.0 792.0"

*ImageableArea Legal: "0.0 0.0 612.0 1008.0"

*ImageableArea Tabloid: "0.0 0.0 792.0 1224.0"

*?ImageableArea: "

save

  /cvp { (                ) cvs print ( ) print } bind def

  /upperright {10000 mul floor 10000 div} bind def

  /lowerleft {10000 mul ceiling 10000 div} bind def

  newpath clippath pathbbox

  4 -2 roll exch 2 {lowerleft cvp} repeat

  exch 2 {upperright cvp} repeat ( ) = flush

 restore

"

*End



6  Sample PPD File Structure  163

*% These provide the physical dimensions of the page (by option keyword)

*DefaultPaperDimension: Letter

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*PaperDimension Tabloid: "792 1224"

*% Only one input slot, but the entry is included to dictate the slot name

*% that appears in the user interface.

*OpenUI *InputSlot: PickOne

*OrderDependency: 30 AnySetup *InputSlot

*InputSlot Cassette: ““

*DefaultInputSlot: Cassette

*CloseUI: *InputSlot

*% === Imagesetter Information ===========================

*% Imagesetter features are grouped here.

*OpenGroup: Imagesetter

*OpenUI *MirrorPrint/Mirror Print: Boolean

*OrderDependency: 40 AnySetup *MirrorPrint

*MirrorPrint True: "(<<) cvx exec /MirrorPrint true (>>) cvx exec setpagedevice"

*MirrorPrint False: "(<<) cvx exec /MirrorPrint false (>>) cvx exec setpagedevice"

*DefaultMirrorPrint: False

*?MirrorPrint: " save currentpagedevice /MirrorPrint get

   {(True)} {(False)} ifelse = flush restore"

*End

*CloseUI: *MirrorPrint

*OpenUI *NegativePrint/Negative Print: Boolean

*OrderDependency: 40 AnySetup *NegativePrint

*NegativePrint True: "(<<) cvx exec /NegativePrint true (>>) cvx exec setpagedevice"

*NegativePrint False: "(<<) cvx exec /NegativePrint false (>>) cvx exec setpagedevice"

*DefaultNegativePrint: False

*?NegativePrint: "save currentpagedevice /NegativePrint get

 {(True)}{(False)}ifelse = flush restore"

*End

*CloseUI: *NegativePrint

*CloseGroup: Imagesetter

*% Font Information =====================

*% For example purposes, this device ships with several fonts built into

*% the ROM of the device, and Avant-Garde on a separate hard disk

*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard Disk

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard Disk

*Font AvantGarde-Demi: Standard "(001.003)" Standard Disk

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard Disk

*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM

*Font Times-BoldItalic: Standard "(001.004)" Standard ROM

*Font Times-Italic: Standard "(001.002)" Standard ROM

*Font Times-Roman: Standard "(001.002)" Standard ROM



164 PostScript Printer Description File Format Specification (9 Feb 1996)

*?FontQuery: "

save  

   { count 1 gt

      { exch dup 127 string cvs (/) print print (:) print

       /Font resourcestatus {pop pop (Yes)} {(No)} ifelse = 

      } { exit } ifelse

   } bind loop

   (*) = flush

   restore

"

*End

*?FontList: "

save (*) {cvn ==} 128 string /Font resourceforall

   (*) = flush restore

"

*End

*% Printer Messages (verbatim from printer):

*Message: "%%[ exitserver: permanent state may be changed ]%%"

*Message: "\FontName\ not found, using Courier"

*% Status (format: %%[ status: <one of these> ]%% )

*Status: "idle"

*Status: "busy"

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: Cassette not loaded"

*Status: "PrinterError: Film Unit Error"

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)

*Source: "Localtalk"

*Source: "Parallel"

*Source: "Serial"

*Source: "SerialB"

*% Printer Error (format: %%[ PrinterError: <one of these> ]%%)

*PrinterError: "Cassette not loaded"

*PrinterError: "Film Unit Error"

*% Color Separation Information =====================

*DefaultColorSep: ProcessBlack.90lpi.1200dpi/90 lpi / 1200 dpi

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

*% For 90 lpi / 1200 dpi  ===============================

*ColorSepScreenAngle ProcessCyan.90lpi.1200dpi/90 lpi / 1200 dpi: "71.565"

*ColorSepScreenAngle ProcessMagenta.90lpi.1200dpi/90 lpi/1200 dpi: "18.43"

*ColorSepScreenAngle ProcessYellow.90lpi.1200dpi/90 lpi / 1200 dpi: "0"

*ColorSepScreenAngle ProcessBlack.90lpi.1200dpi/90 lpi / 1200 dpi: "45"

*ColorSepScreenAngle CustomColor.90lpi.1200dpi/90 lpi / 1200 dpi: "45"



6  Sample PPD File Structure  165

*ColorSepScreenFreq ProcessCyan.90lpi.1200dpi/90 lpi / 1200 dpi: "94.8683"

*ColorSepScreenFreq ProcessMagenta.90lpi.1200dpi/90 lpi/1200 dpi: "94.86"

*ColorSepScreenFreq ProcessYellow.90lpi.1200dpi/90 lpi / 1200 dpi: "30"

*ColorSepScreenFreq ProcessBlack.90lpi.1200dpi/90 lpi / 1200 dpi: "84.852"

*ColorSepScreenFreq CustomColor.90lpi.1200dpi/90 lpi / 1200 dpi: "84.8528"

*ColorSepScreenProc ProcessYellow.90lpi.1200dpi/90 lpi / 1200 dpi: "

{2 {1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch } repeat

abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1 

sub }{dup mul exch dup mul add 1 exch sub }ifelse }"

*End

*% For 110 lpi / 1200 dpi  ==============================

*ColorSepScreenAngle ProcessCyan.110lpi.1200dpi/110 lpi /1200 dpi: "70.01"

*ColorSepScreenAngle ProcessMagenta.110lpi.1200dpi/110 lpi/1200 dpi: "19"

*ColorSepScreenAngle ProcessYellow.110lpi.1200dpi/110 lpi / 1200 dpi: "0"

*ColorSepScreenAngle ProcessBlack.110lpi.1200dpi/110 lpi / 1200 dpi: "45"

*ColorSepScreenAngle CustomColor.110lpi.1200dpi/110 lpi / 1200 dpi: "45"

*ColorSepScreenFreq ProcessCyan.110lpi.1200dpi/110 lpi /1200 dpi: "102.52"

*ColorSepScreenFreq ProcessMagenta.110lpi.1200dpi/110 lpi/1200 dpi: "102"

*ColorSepScreenFreq ProcessYellow.110lpi.1200dpi/110 lpi/1200 dpi: "109.1"

*ColorSepScreenFreq ProcessBlack.110lpi.1200dpi/110 lpi/1200 dpi: "121.22"

*ColorSepScreenFreq CustomColor.110lpi.1200dpi/110 lpi/1200 dpi: "121.218"

*% For 90 lpi / 2400 dpi  ===============================

*ColorSepScreenAngle ProcessCyan.90lpi.2400dpi/90 lpi /2400 dpi: "71.5651"

*ColorSepScreenAngle ProcessMagenta.90lpi.2400dpi/90 lpi/2400 dpi: "18.44"

*ColorSepScreenAngle ProcessYellow.90lpi.2400dpi/90 lpi / 2400 dpi: "0"

*ColorSepScreenAngle ProcessBlack.90lpi.2400dpi/90 lpi / 2400 dpi: "45"

*ColorSepScreenAngle CustomColor.90lpi.2400dpi/90 lpi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.90lpi.2400dpi/90 lpi / 2400 dpi: "94.8683"

*ColorSepScreenFreq ProcessMagenta.90lpi.2400dpi/90 lpi /2400 dpi: "94.87"

*ColorSepScreenFreq ProcessYellow.90lpi.2400dpi/90 lpi / 2400 dpi: "30"

*ColorSepScreenFreq ProcessBlack.90lpi.2400dpi/90 lpi /2400 dpi: "84.8528"

*ColorSepScreenFreq CustomColor.90lpi.2400dpi/90 lpi / 2400 dpi: "84.8528"

*ColorSepScreenProc ProcessYellow.90lpi.2400dpi/90 lpi / 2400 dpi: "

{2 {1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch } repeat

abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1 

sub }{dup mul exch dup mul add 1 exch sub }ifelse }"

*End

*% For 115 lpi / 2400 dpi  ==============================

*ColorSepScreenAngle ProcessCyan.115lpi.2400dpi/115 lpi /2400 dpi: "71.56"

*ColorSepScreenAngle ProcessMagenta.115lpi.2400dpi/115 lpi/ 2400 dpi: "18"

*ColorSepScreenAngle ProcessYellow.115lpi.2400dpi/115 lpi / 2400 dpi: "0"

*ColorSepScreenAngle ProcessBlack.115lpi.2400dpi/115 lpi / 2400 dpi: "45"

*ColorSepScreenAngle CustomColor.115lpi.2400dpi/115 lpi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.115lpi.2400dpi/115 lpi/2400 dpi: "126.491"

*ColorSepScreenFreq ProcessMagenta.115lpi.2400dpi/115 lpi/ 2400 dpi: "126"

*ColorSepScreenFreq ProcessYellow.115lpi.2400dpi/115 lpi / 2400 dpi: "120"

*ColorSepScreenFreq ProcessBlack.115lpi.2400dpi/115 lpi/2400 dpi: "113.13"

*ColorSepScreenFreq CustomColor.115lpi.2400dpi/115 lpi/2400 dpi: "113.137"

*% end of PPD file for Acme Imagesetter



166 PostScript Printer Description File Format Specification (9 Feb 1996)

6.3 Examples of Custom Page Size Code

This section contains examples of custom page size entries for Level 1 and 
Level 2 drum and capstan recorders (roll-fed devices) and for Level 2 devices 
that accept both roll-fed and cut-sheet media. These examples are intended to 
help builders of PPD files with the construction of custom page size entries. 
They should be interpreted as guidelines, not requirements of this specifica-
tion.

Because of the complexity of writing a custom page size entry, it is critical 
that you thoroughly test your *CustomPageSize code with requests for different 
page sizes, different offsets (if supported), and different orientations, prefera-
bly using several different print managers or applications. Such testing often 
highlights problems with the custom page size code in the PPD file, with a 
print manager’s handling of custom page sizes, or even with the device’s 
implementation of custom page sizes.

Minimums and maximums

When constructing your own custom page size entry, you would insert the 
device’s values for *MaxMediaWidth, *MaxMediaHeight, *HWMargins (if present), and 
the minimum and maximum range values of the *ParamCustomPageSize entries. 
On some devices, requesting a width or height of zero will cause an error. 
Because of this, the values of the minimum Width and Height boundaries in the 
*ParamCustomPageSize entries should be set to small positive numbers, such as 
100 points. 

*LeadingEdge

*LeadingEdge is needed by print managers to give the user a way to request 
Transverse pages (on roll-fed media) or to tell the print manager how a cut-
sheet device is configured so that the imageable area of the custom page size 
can be calculated correctly. It is important to include this keyword in the PPD 
file if *CustomPageSize is present. 

For *LeadingEdge, list only the options that are available on the device. Most 
devices that accept only cut-sheet media will support either Short or Long, but 
not both. However, some cut-sheet devices will support both Short and Long, 
either in separate input trays or in an adjustable input tray. Most roll-fed 
devices support both Short and Long, because the page image can be rotated on 
the film or paper.



6  Sample PPD File Structure  167

You’ll need to write *NonUIConstraints that document which trays support 
which leading edge, such as these for a device whose Upper tray supports only 
long-edge feed and whose Lower tray supports only short-edge feed:

*LeadingEdge Short: ““

*LeadingEdge Long: ””

*DefaultLeadingEdge: Long

*NonUIConstraints: *InputSlot Upper *LeadingEdge Short

*NonUIConstraints: *LeadingEdge Short *InputSlot Upper

*NonUIConstraints: *InputSlot Lower *LeadingEdge Long

*NonUIConstraints: *LeadingEdge Long *InputSlot Lower

Typically, PreferLong will be available only on devices that accept roll-fed 
media. It should only appear in the PPD file as an option for *LeadingEdge if 
the device can be configured to calculate whether the page will fit on the roll 
in the long-edge feed direction and rotate the page to long-edge feed if it fits 
that way. PreferLong is typically not available on devices that accept only cut-
sheet media, as the device has no way to rotate the physical page. If 
* HWMargins and *UseHWMargins are both present, then PreferLong will typically 
only be available when *UseHWMargins is False (when the device is operating in 
traditional roll-fed mode). If PreferLong is not available when *UseHWMargins is 
True, there should be a *NonUIConstraints entry to reflect this:

*NonUIConstraints: *UseHWMargins True *LeadingEdge PreferLong

*NonUIConstraints: *LeadingEdge PreferLong *UseHWMargins True

The *LeadingEdge option Forced is very rare. Forced will usually be available 
only on devices that accept cut-sheet media. If the device always rotates the 
page image in device space so that the long axis of the page image is parallel 
to the long axis of the physical page, then Forced is not available on the 
device. To find out whether Forced is available, try to print a short-edge feed 
image (Width < Height, Portrait orientation) on a long-edge feed page, or vice 
versa. You must first set up the device correctly, in “do what I say” mode, 
with the leading edge set up to be the opposite of what you will request from 
the print manager. If you do this with a full-page image, and Forced is avail-
able, the image should appear to be rotated 90 degrees and clipped. If you are 
unsure, do not include Forced as an option for *LeadingEdge in the PPD file.

Unknown is available for all devices, but it provides a print manager with no 
useful information and should be omitted if the device manufacturer (and 
PPD file builder) wants to force the user to choose the correct value (Short, 
Long, PreferLong, or Forced) for *LeadingEdge. If a user chooses Unknown, the print 
manager cannot correlate the top of the physical page with the x and y axes of 
the page image, so it cannot calculate the imageable area of the custom page 
size correctly. This can cause the print manager to falsely warn the user that 
the page image will be clipped, or it can cause actual clipping if the page 
image and the physical page are rotated relative to each other. For these rea-
sons, including Unknown in the *LeadingEdge options list is discouraged. If 
Unknown must be listed as an option, using Unknown as the value of 



168 PostScript Printer Description File Format Specification (9 Feb 1996)

*DefaultLeadingEdge is strongly discouraged. The value of *DefaultLeadingEdge 
should be the default leading edge of the default input slot; typically, Short, 
Long, or PreferLong.

Level 1 roll-fed devices

Since the *ParamCustomPageSize parameters for roll-fed devices are defined in 
terms of media feed direction, not fast scan/slow scan direction, writing the 
*CustomPageSize code and setting up the *ParamCustomPageSize entries can be 
confusing, and must be done with great care. 

On Level 1 roll-fed devices that use the setpageparams  operator in the 
*CustomPageSize code, HeightOffset is not used and will be discarded, as shown 
by exch pop  in the first line of the *CustomPageSize code.

Example 1: Entry for a Level 1 capstan recorder, or a Level 1 drum recorder 
where setpageparams  has been redefined to emulate the output of a capstan 
recorder:

*CenterRegistered: False

*LeadingEdge Short: ““

*LeadingEdge Long: ““

*DefaultLeadingEdge: Long

*NonUIOrderDependency: 20 AnySetup *CustomPageSize

*ParamCustomPageSize Width: 1 points 1 1008

*ParamCustomPageSize Height: 2 points 1 3000

*ParamCustomPageSize WidthOffset/Margins: 3 points 0 1007

*ParamCustomPageSize HeightOffset: 4 points 0 0

*ParamCustomPageSize Orientation: 5 int 0 1

*CustomPageSize True: "exch pop

statusdict /setpageparams get exec"

*End

*MaxMediaWidth: "1008"

*?CurrentMediaWidth: "statusdict /mediawidth get exec = flush"

*MaxMediaHeight: "3000"

*?CurrentMediaHeight: "statusdict /medialength get exec = flush"



6  Sample PPD File Structure  169

Example 2: Entry for a Level 1 drum recorder, where setpageparams  has not 
been redefined to emulate the output of a capstan recorder. Note the 
differences in the ordering of the parameters on the stack, and the differences 
in both the invocation and query code, compared to Example 1:

*CenterRegistered: False

*LeadingEdge Short: ““

*LeadingEdge Long: ““

*LeadingEdge PreferLong: ““

*DefaultLeadingEdge: PreferLong

*NonUIOrderDependency: 20 AnySetup *CustomPageSize

*ParamCustomPageSize Width: 2 points 1 1152

*ParamCustomPageSize Height: 1 points 1 1584

*ParamCustomPageSize WidthOffset/Margins: 4 points 0 0

*ParamCustomPageSize HeightOffset: 3 points 0 1151

*ParamCustomPageSize Orientation: 5 int 0 1

*CustomPageSize True: "1 exch sub exch pop

statusdict /setpageparams get exec"

*End

*MaxMediaWidth: "1152"

*?CurrentMediaWidth: "statusdict /medialength get exec = flush"

*MaxMediaHeight: "1584"

*?CurrentMediaHeight: "statusdict /mediawidth get exec = flush"



170 PostScript Printer Description File Format Specification (9 Feb 1996)

Level 2 devices

These examples of Level 2 *CustomPageSize invocation code first check the 
Orientation parameter to see if it is even or odd. An even Orientation parameter (0 
or 2) means that the x axis will be parallel to the media feed direction, which 
means that Height must be mapped to the x axis. To perform this mapping, if 
Orientation is even, Width and Height are first checked for equality; if they are not 
equal, they are switched so that Height maps to x and Width maps to y in the 
PageSize  array. 

The code then examines the dimensions Width and Height to determine how to 
map the custom page size Orientation parameter to the setpagedevice  key 
Orientation , using a choice of arrays of orientations. It then executes 
setpagedevice  with the appropriate dictionary. 

These examples are only appropriate for devices that support the 
setpagedevice  key PageOffset ; otherwise, this code must be written to discard 
the offset values provided by the user. The code used to obtain the maximum 
width and height is only appropriate for devices that support the setpagedevice  
key OutputDevice  and a particular form of the PageSize  value in the 
OutputDevice  resource, as documented in the appropriate PostScript language 
supplement for the product.

This sample Level 2 code is more verbose than the equivalent Level 1 code 
because the mapping between the *ParamCustomPageSize parameters and the 
setpagedevice  keys can be complicated. When writing your own code, consult 
the diagram of orientations in Figure 3, section 5.16 of this document. If the 
value of Orientation produces different positions of the pages on the media than 
described in these examples, you can still use the examples as a starting point 
and change the numbers in the arrays to correctly map the custom page size 
parameter Orientation to the setpagedevice  key Orientation  in the invocation code.



6  Sample PPD File Structure  171

Example 3: Entry for a Level 2 capstan recorder that accepts only roll-fed 
media. This example assumes that a portrait page with Orientation equal to 0 in 
the currentpagedevice  dictionary results in the same positioning of the page on 
the media as when the *ParamCustomPageSize parameter Orientation is 0 and 
Width is greater than the Height. Note the order of the parameters on the stack 
dictated by *ParamCustomPageSize.

*CenterRegistered: False

*DefaultLeadingEdge: PreferLong

*LeadingEdge Long: ““

*LeadingEdge PreferLong: ““

*LeadingEdge Short: ““

*ParamCustomPageSize Width: 3 points 100 1008

*ParamCustomPageSize Height: 4 points 100 3000

*ParamCustomPageSize WidthOffset/Width Margin: 1 points 0 908

*ParamCustomPageSize HeightOffset/Height Margin: 2 points 0 2900

*ParamCustomPageSize Orientation: 5 int 0 3

*NonUIOrderDependency: 30 AnySetup *CustomPageSize

*CustomPageSize True: "

3 copy 2 mod 0 eq {

  2 copy eq {

    1 add 

  }{

    5 -2 roll exch 5 2 roll

  } ifelse

} if

[0 0 2 2] [3 1 1 3]

4 2 roll lt {exch} if pop

exch get

(<<) cvx exec

  /Orientation 3 -1 roll

  /PageSize [ 7 -2 roll ]

  /PageOffset [ 9 -2 roll ]

  /ImagingBBox null

(>>) cvx exec setpagedevice"

*End

*MaxMediaWidth: "1008"

*?CurrentMediaWidth: "

  currentpagedevice /OutputDevice get

  /OutputDevice findresource

  /PageSize get 0 get 2 get = flush

"

*End

*MaxMediaHeight: "3000"

*?CurrentMediaHeight: "

  currentpagedevice /OutputDevice get

  /OutputDevice findresource

  /PageSize get 0 get 3 get = flush

"

*End



172 PostScript Printer Description File Format Specification (9 Feb 1996)

Example 4: The code for a roll-fed drum recorder may be slightly different from 
the code for a capstan recorder. This example assumes that the setpagedevice  
key Orientation  on the drum recorder produces the same results as the capstan 
device in Example 3. This code is similar to Example 3, except that it first 
calculates a new value for the width offset by subtracting the custom page 
size parameters Width and the WidthOffset from the maximum width. This is 
necessary because the fast scan direction (relative to media feed direction) of 
a drum recorder is different from that of a capstan recorder. Note that the 
order of the parameters on the stack is different from that of Example 3.

*CenterRegistered: False

*DefaultLeadingEdge: PreferLong

*LeadingEdge Long: ““

*LeadingEdge PreferLong: ““

*LeadingEdge Short: ““

*ParamCustomPageSize Width: 1 points 100 1152

*ParamCustomPageSize Height: 2 points 100 1584

*ParamCustomPageSize WidthOffset/Width Margin: 5 points 0 1052

*ParamCustomPageSize HeightOffset/Height Margin: 4 points 0 1484

*ParamCustomPageSize Orientation: 3 int 0 3

*NonUIOrderDependency: 30 AnySetup *CustomPageSize

*CustomPageSize True: "

currentpagedevice /OutputDevice get /OutputDevice findresource

/PageSize get 0 get 3 get

5 index sub exch sub 5 2 roll

3 copy 2 mod 0 eq {

 2 copy eq {

 1 add

 }{

 5 -2 roll exch 5 2 roll

 } ifelse

} if  %

[0 0 2 2] [3 1 1 3]

4 2 roll lt {exch} if pop exch get

(<<) cvx exec

 /Orientation 3 -1 roll

 /PageSize [ 7 -2 roll ]

 /PageOffset [ 9 -2 roll ]

 /ImagingBBox null

(>>) cvx exec setpagedevice

"

*End

*MaxMediaWidth: "1152"

*?CurrentMediaWidth: "

  currentpagedevice /OutputDevice get

  /OutputDevice findresource

  /PageSize get 0 get 3 get = flush

"

*End

*MaxMediaHeight: "1584"

*?CurrentMediaHeight: "

  currentpagedevice /OutputDevice get

  /OutputDevice findresource

  /PageSize get 0 get 2 get = flush

"

*End



6  Sample PPD File Structure  173

Cut-sheet media

If the roll-fed capstan recorder depicted in Example 3 also accepted cut-sheet 
media, additional entries would be required in the PPD file, as shown in 
Example 5. Example 6 illustrates a device that, unlike all the other examples 
in this section, accepts only cut-sheet media, perhaps in an input tray whose 
sides can be adjusted to accommodate different page sizes.

Example 5: In this example, cut-sheet media is accepted only through the 
manual feed slot, fed short-edge first, and the hardware imposes margins of 1 
inch at the top and bottom and 1/2 inch on the sides. These entries would 
appear in addition to the entries shown in Example 3.

*HWMargins: 72 36 72 36

*UseHWMargins True: ““

*UseHWMargins False: ““

*DefaultUseHWMargins: False

*NonUIConstraints: *InputSlot Cassette *UseHWMargins True

*NonUIConstraints: *UseHWMargins True *InputSlot Cassette

*NonUIConstraints: *ManualFeed True *UseHWMargins False

*NonUIConstraints: *UseHWMargins False *ManualFeed True

*NonUIConstraints: *InputSlot Cassette *ManualFeed True

*NonUIConstraints: *ManualFeed True *InputSlot Cassette

*NonUIConstraints: *ManualFeed True *LeadingEdge PreferLong

*NonUIConstraints: *ManualFeed True *LeadingEdge Long

*NonUIConstraints: *LeadingEdge Long *ManualFeed True

*NonUIConstraints: *LeadingEdge PreferLong *ManualFeed True



174 PostScript Printer Description File Format Specification (9 Feb 1996)

WidthOffset and HeightOffset on cut-sheet devices

Most devices that accept only cut-sheet media do not support the concept of 
offsetting the image in a particular direction. On such devices, WidthOffset and 
HeightOffset should be discarded by the *CustomPageSize code. Level 2 devices 
that do support offsetting will do so with one of the following setpagedevice  
keys:

• Margins, which should not be used for this purpose. Margins , which is 
measured in device units, is intended to be used to compensate for 
mechanical misadjustments in the device, not to position output on the 
page. Do not use it in *CustomPageSize code.

• PageOffset, which is intended for this purpose. WidthOffset, HeightOffset, and 
PageOffset are all defined in “points” (1/72 of an inch), so no conversion is 
necessary. However, the direction of offset for PageOffset  is in device 
space, which may cause problems for a rotated page. Test the custom page 
size code carefully with different combinations of Orientation, WidthOffset, 
and HeightOffset. In each case, WidthOffset should remain relative to Width, and 
HeightOffset should remain relative to Height. If this does not happen, you 
will have to amend the *CustomPageSize code so that it manipulates the 
offset values to compensate for Orientation before passing them to 
PageOffset .

• ImageShift  is defined in default user space, so the *CustomPageSize code 
can pass the values of WidthOffset and HeightOffset directly into ImageShift . 
However, if the device also performs duplex printing on custom page 
sizes, this combination should be carefully tested with WidthOffset and 
HeightOffset to make sure the image is offset in the proper direction on both 
sides of the page, as ImageShift  was designed to shift the image differ-
ently on the front and back sides of a page. In this case, PageOffset  may 
work better.

If the device does not support either of the setpagedevice  keys PageOffset  or 
ImageShift , or if the manufacturer does not want image offsetting to be sup-
ported in custom page sizes on the device, change the min and max range 
values for WidthOffset and HeightOffset to 0:

*ParamCustomPageSize WidthOffset: 3 points 0 0

*ParamCustomPageSize HeightOffset: 4 points 0 0

and rewrite the *CustomPageSize code to discard the values of WidthOffset and 
HeightOffset. Be careful to keep the dictionary mark on the stack. 



6  Sample PPD File Structure  175

Example 6: This is a sample custom page size entry for a PostScript Level 2 
device that accepts only cut-sheet media, supports custom page sizes fed 
short-edge first only through the manual feed slot, and does not support 
offsetting or the setpagedevice  key Orientation . The *CustomPageSize code first 
discards the values of HeightOffset and WidthOffset by popping them off the stack. 
(Note the order of the parameters.) Next, Orientation is checked (and discarded, 
since it is not supported by the device); if it is even, the values of Width and 
Height are exchanged so that they will be in the correct order for the requested 
landscape or portrait page. This code assumes that Width, Height, and Orientation 
have been calculated as described in Table 2 in section 5.16 and that all 
values were put on the stack in the correct order.

*HWMargins: 72 36 72 36

*LeadingEdge Short: ““

*DefaultLeadingEdge: Short

*NonUIConstraints: *InputSlot Upper *ManualFeed True

*NonUIConstraints: *ManualFeed True *InputSlot Upper

*NonUIConstraints: *ManualFeed False *CustomPageSize True

*NonUIConstraints: *CustomPageSize True *ManualFeed False

*MaxMediaWidth: 792

*MaxMediaHeight: 1008

*CustomPageSize True: "

pop pop

2 mod 0 eq {exch} if

(<<) cvx exec

/PageSize [ 5 -2 roll ] 

  /ImagingBBox null 

(>>) cvx exec setpagedevice

"

*End

*ParamCustomPageSize Width: 1 points 100 1008

*ParamCustomPageSize Height: 2 points 100 1008

*ParamCustomPageSize WidthOffset: 4 points 0 0

*ParamCustomPageSize HeightOffset: 5 points 0 0

*ParamCustomPageSize Orientation: 3 int 0 3

*?CurrentMediaHeight, *?CurrentMediaWidth, and *CenterRegistered are not usually 
supported by devices that accept only cut-sheet media, so they are omitted 
from this example. *UseHWMargins is omitted because this device can only 
print within the hardware-imposed margins (this is true for most cut-sheet-
only devices), so there is no choice to be made about using *HWMargins (it 
must be used).



176 PostScript Printer Description File Format Specification (9 Feb 1996)

7 PPD File Summary

This section is intended for builders of PPD files. It provides a brief summary 
of things to check for when you’re done building your PPD file. Checking off 
all the items on this list does not guarantee that you’ve built a perfect PPD 
file, but at least you will have avoided some common errors and omissions.

• Using the PPD File Format Specification and the product addendum as a 
guide, first make sure that the PPD file contains all of the keywords from 
the specification that are relevant to the device. 

• Using the product addendum, make sure that the PPD file does not contain 
any entries or statements for features that are not supported by the device.

• Make sure the required keywords are present and that they are correct 
according to their descriptions in section 5.

• Make sure that *PCFileName, *ModelName, *NickName, and *ShortNickName are 
unique across all PPD files, and that *ShortNickName is < 32 characters and 
occurs before *NickName.

• If there is an ICC color profile for the device: Check *ModelName, *NickName, 
and *ShortNickName against the value of icHeader.model in the ICC color pro-
file, and check the first four characters of these strings against icHeader.man-

ufacturer.

• Make sure the *Manufacturer string is the same as in all other PPD files from 
this manufacturer. Check its value against the icHeader.manufacturer tag in 
any ICC color profiles for that manufacturer.

• Make sure that the *PCFileName follows Adobe naming standards.

• Any main keywords created by the manufacturer must start with the manu-
facturer’s assigned prefix (see Appendix D).

• Check the *UIConstraints entries and *NonUIConstraints entries to make sure 
that all necessary constraints exist, that there are no unnecessary con-
straints, that constraints that need to be reversed have been reversed, and 
that no constraints are reversed unnecessarily.

• Make sure that the four required media handling keywords (*PageSize, 

*PageRegion, *ImageableArea, *PaperDimension) are present for each page size. 
Make sure any translation strings on option keywords are consistent across 
all media handling keywords.



7  PPD File Summary  177

• The page size option keyword qualifier Transverse is often misused. Check 
for the following:

- 1. Transverse sizes should not appear in the PPD file of a cut-sheet device 
that supports either short-edge-feed or long-edge-feed but not both. If a 
device supports only one feed direction, there is no reason to have 
Transverse sizes listed in the PPD. Transverse is used to designate a page 
size that is fed differently  from other page sizes on the device.

- 2. If a cut-sheet device does support 2 media feed directions and they 
are selectable via PostScript code, the *PageSize code for equivalent 
Transverse and non-Transverse sizes (for example, Letter and 
Letter.Transverse) should request the same page size (with the dimensions 
in the same order, to preserve the correct image orientation on the 
page), but should do whatever it takes to ensure that the page is fed 
from the correct tray. This might mean that the code requests a different 
page orientation (if the setpagedevice  key /Orientation is supported by the 
device) or a different input slot, as shown here:

*PageSize Letter: “.../PageSize [612 792]

/MediaPosition 1...”

*End

*PageSize Letter.Transverse: “.../PageSize [612 792]

/MediaPosition 0...”

*End

The whole point of Transverse is for the user to say “this device usually 
feeds Letter from the short-edge-feed input tray, but this time I want a 
Letter page from the long-edge-feed tray”. The physical size is the same, 
but the feed direction is different, and code needs to be sent to invoke 
that difference. However, the *PageRegion code fragments for the equiva-
lent Transverse and non-Transverse sizes will usually be identical to each 
other, because *PageRegion should not select an input tray; it should only 
request the page dimensions,which are the same for the Transverse and 
non-Transverse size.

- 3. On a roll-fed device, the *PageSize code for Transverse pages will 
request a different /Orientation  than the *PageSize code for the equivalent 
non-Transverse size. For example:

*PageSize Letter: “.../PageSize [612 792]

/Orientation 1...”

*End

*PageSize Letter.Transverse: “.../PageSize [612 792]

/Orientation 0...”

*End



178 PostScript Printer Description File Format Specification (9 Feb 1996)

Again, the page size dimensions should be in the same order, at least for 
most roll-fed devices. The *PageSize and *PageRegion code fragments will 
usually be identical, since on a roll-fed device the *PageSize code does 
not usually invoke an input slot, so it performs the same function as the 
*PageRegion code.

- 4. The page size dimensions should be in the same order in all relevant 
keywords (*PageSize, *PageRegion, *ImageableArea, *PaperDimension) for 
equivalent Transverse and non-Transverse sizes. 

- 5. If the intent is to produce a landscape page, you should use Rotated or 
R as the suffix (for example, A4Rotated or LetterR) instead of Transverse. 
Most print managers perform landscape rotation internally, so there's 
really no need for special landscape page sizes in a PPD file, unless it 
will be used in an environment where the print manager does not pro-
vide this service. If landscape page sizes are included in the PPD file, 
their dimensions in all relevant keywords should be in reversed from the 
dimensions of the equivalent non-Transverse size. For example:

*PaperDimension LetterRotated: “792 612”

*PaperDimension Letter: “612 792”

• Make sure that the imageable area for each page size is within its bound-
ing box as defined by *PaperDimension for that page size.

• Make sure the *?ImageableArea query ends with the following code, as in the 
examples in section 6:

repeat ( ) = flush

rather than the old form of code, which was

repeat flush

The first example ensures that the string returned from the query termi-
nates with a newline, which is a new requirement of the 4.3 specification.

• Make sure that all user-selectable features are surrounded by *OpenUI/

*CloseUI pairs as needed, and that each entry is complete (contains a *Default 
keyword, *OrderDependency statement, main keyword with options and code 
to invoke the feature, and query code if a query keyword exists for that fea-
ture and if query code can be written).

• Make sure that the strings returned by query code do not include any 
translation strings; they should return only option names, and they must be 
terminated by a newline (usually accomplished by ending the code with 
the sequence = flush ).

• Make sure the device’s error and status messages have been included.



7  PPD File Summary  179

• Make sure that color separation information is present for each resolution.

• Most critical: Make sure that every piece of PostScript code in the PPD 
file has been thoroughly tested against the device, with all variables, such 
as invoking different input slots and page sizes.

• Test the PPD file with different print managers and applications. Make 
sure that all features that are surrounded by *OpenUI/*CloseUI in the PPD file 
are selectable from the print manager. Test the functionality of the print 
manager and PPD file by printing a sample document, using the different 
PPD file options. For example, select Duplex and Lower Tray and make sure 
that document is printed from the lower tray and is printed on both sides of 
the page. Test the functionality of all the features in the PPD file. Test the 
PPD file and print manager by printing from more than one application.

7.1 PPD Files for Kanji Products

If you are building a PPD file for a Kanji (Japanese font) product, you should 
be aware of the following guidelines, which have evolved over time and are 
now an accepted part of the PPD file building process. These are not require-
ments of this specification, and failure to follow these guidelines should not 
be considered an error in the PPD file. They are recommendations, intended 
to provide some uniformity in PPD files.

• *ModelName should include the word “Kanji”. For example:

*ModelName: “ACME Maxi-Print Kanji”

• *NickName should include the word “Kanji” as well as the PostScript inter-
preter version number. For example:

*NickName: “ACME Maxi-Print Kanji v2013.114

• *ShortNickName should include the word “Kanji”. If you have to shorten the 
name to squeeze it into 31 characters, shorten another part of the name. 
Leave the word “Kanji” to differentiate this product from any equivalent 
Roman product. 

• *PCFileName: The 8.3 format name should include a “J” in the file name, 
usually near the end of the name. For example: xxxxxJ_1.PPD or 
xxxxxxJ1.PPD. The first two characters must be the assigned manufacturer 
prefix.

• *PageSize, *PageRegion, *ImageableArea, *PaperDimension: Make sure that any 
additional page sizes available on the Kanji product are included, and that 
any page sizes that are not available on the Kanji product are deleted.



180 PostScript Printer Description File Format Specification (9 Feb 1996)

• *Font: Make sure that all Kanji fonts built into the product are included in 
the list with the correct Character Set, Font Encoding, and Status fields 
filled in. This includes fonts on a separate hard disk if  the hard disk always 
ships with the product. If the hard disk is not part of the minimal configu-
ration for the product, you should create one PPD file for the device in its 
minimal configuration, and a second PPD file that represents the product 
with the optional hard disk attached. 

• If the Kanji product comes with more memory than the Roman product, 
you will need to make the appropriate changes to *FreeVM, *InstalledMemory, 
and *VMOption.

• If you are translating strings in the PPD file into Japanese, you will need to 
change *LanguageVersion and *LanguageEncoding to the appropriate value. If 
the PPD file is to be a cross-platform (portable) file, you must use the 
hexadecimal notation for 8-bit byte codes in translation strings. If the file 
is platform-specific (for example, Macintosh-only or Windows-only), you 
may use 8-bit byte codes directly in the translation strings. You may also 
directly translate the values of the following keywords into 8-bit byte 
codes, without using translation strings: *ModelName, *ShortNickName, 
*NickName, *Manufacturer, *PCFileName, *Include.



181

Appendix A: Keyword Categories

A.1 UI Keywords

This section provides a list of keywords that are typically bracketed by the 
*OpenUI/*CloseUI keywords in PPD files. Only the main keywords are listed 
here; naturally, their associated defaults and queries would also be included 
in the *OpenUI/*CloseUI bracketing. Other keywords may also be bracketed by 
*OpenUI/*CloseUI; this list provides only the typical set.

*AdvanceMedia
*BindColor
*BindEdge
*BindType
*BindWhen
*BitsPerPixel
*BlackSubstitution
*Booklet
*Collate
*ColorModel
*CutMedia
*Duplex
*ExitJamRecovery
*FoldType
*FoldWhen
*InputSlot
*InstalledMemory
*Jog
*ManualFeed
*MediaColor
*MediaType
*MediaWeight
*MirrorPrint
*NegativePrint
*OutputBin
*OutputMode
*OutputOrder
*PageSize

*PageRegion
*Separations
*Signature
*Slipsheet
*Smoothing
*Sorter
*StapleLocation
*StapleOrientation
*StapleWhen
*StapleX
*StapleY
*TraySwitch



182 Appendix A: Keyword Categories (9 Feb 1996)

A.2 Repeated Keywords

In the general model, if a main keyword, or specific combination of main and 
option keyword, is repeated within a PPD file or in an included PPD file, the 
first occurrence has precedence and future occurrences are ignored. For his-
torical reasons, there are certain keywords in a PPD file that do not conform 
to the general model; specific main keywords are repeated, but all occur-
rences are relevant and should be recorded by a parser because their values 
are unique. For backward compatibility, the form of these keywords cannot 
be changed.

To provide assistance to PPD file parsers, the following is a list of main key-
words that do not have option keywords to distinguish one instance from 
another, yet all instances are relevant, so all occurrences of this main key-
word and its associated unique values should be recorded by the PPD file 
parser. 

*HalftoneName
*Include
*Message
*NonUIConstraints
*NonUIOrderDependency
*OrderDependency
*PageDeviceName
*PrinterError
*Product
*PSVersion
*QueryOrderDependency
*RenderingIntent
*Source
*Status
*UIConstraints



183

Appendix B: Registered 
mediaOption  Keywords

The tables in this section contain the option keywords currently registered for 
mediaOption, which designates a given page size on a device. Table B.1 is 
sorted by the mediaOption name. Given the name of a page size, the table pro-
vides the dimensions and any additional information about that size. 

Table B.2 is sorted by size. This is useful for a person building a PPD file, as 
the dimensions of a page size available on a device can be looked up in the 
table and it can be determined if there is already a mediaOption defined for that 
size. 

Only the most common page sizes are specified here. A device manufacturer 
is free to list a new size in a PPD file for a new device. However, care should 
be taken to avoid duplicating the semantics of an already-registered option 
keyword. Also, when creating a new option keyword, the capitalization con-
ventions shown in the tables should be followed as much as possible; that is, 
the first letters of logical words should be capitalized.

Note Builders of PPD files should always use existing mediaOption names where 
possible, because some applications and users have come to rely on these 
standard names for page sizes. Also, keeping paper size names consistent 
reduces user confusion. Builders of PPD files should define new mediaOptions 
only when there is no existing mediaOption that describes a certain page size. 
See section 5.13 for more information on mediaOption, and section 5.1 for 
information on defining new option keywords.



184 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

B.1 Components of mediaOption  Keywords

Any mediaOption keyword can be qualified by another string that indicates a 
slightly distinct treatment of the media size. A qualifier is appended with a 
period, like this: 

Letter.Transverse

Any mediaOption keyword can have a serialization qualifier, which is a number 
used to distinguish between two otherwise equivalent instances of the same 
option keyword. For example, if there are two Letter-size media trays, they can 
be numbered to differentiate them (as in Letter.1, Letter.2). These qualifiers can 
be combined with other qualifiers. For example, Letter.Transverse.1

Certain qualifiers and substrings in mediaOption names have special meaning. 
The most common components of a mediaOption name are defined here, prima-
rily so that builders of PPD files can construct meaningful names for their 
page sizes:

• As of the 4.3 specification, the prefix Env denotes an envelope page size. 
The following sizes had the prefix Env added to reflect this change:C0, C1, 
C2, C3, C4, C5, C6, C7, DL, and Monarch. Additionally, Comm10 was changed to 
Env10. However, these size names were not changed in existing PPD files. 
While the old names are still valid, PPD files built to conform to the 4.3 
specification should use EnvC0, EnvC1, etc. rather than C0, C1, etc. This 
enables a print manager to recognize envelope sizes and group them 
together. Translations strings can be used to control the mediaOption name 
that is displayed to the user.

• The size Executive varies by as much as 1/2 inch across devices. Most 
devices offer only one version of Executive. However, if a device offers 
more than one size of Executive, these sizes can be differentiated by a serial-
ization extension and a translation string that denotes the exact size. For 
example, a PPD file for a Level 1 device might have:

*PageSize Executive.1/7.5 x 10 in: "7.5x10inchtray"

*PageSize Executive.2/7.25 x 10.5 in: "7.25x10.5inchtray"

*PageSize Executive.3/7.5 x 10.5 in: "7.5x10.5inchtray"

• Envelope describes envelopes that have no standard name. This keyword 
can be qualified by an x and y dimension (specified in PostScript default 
units), in the order x.y, where x is perpendicular to the feed direction and y 
is parallel to the feed direction. In the 3.0 specification, all envelope sizes 
were specified in the format Envelope.x.y, usually with a translation string 
for clarity. In later versions, envelopes are simply another size of media, 
and most envelope sizes are listed by their common names, but the 3.0 
format is still valid and is useful for envelopes without common names.



B.1  Components of mediaOption Keywords 185

• Extra in a page size name or as a qualifier designates a page size slightly 
larger than the corresponding standard size, such as A4Extra. The purpose is 
to allow for bleeds and crop marks to be printed in the margins. However, 
the increase in size is somewhat variable across devices. Typically, an Extra 
size is 0.69 to 1 inch larger than its corresponding standard size.

• MaxPage is a special mediaOption that denotes the largest page size avail-
able on a given device. The dimensions of this size will vary widely across 
devices. MaxPage provides a convenient way for the user to select the larg-
est available page size.

• Rotated in a page size name designates a page size whose image is rotated 
relative to the corresponding standard size. For most page sizes, this pro-
duces a “landscape” image on the page. For example, on a LetterRotated 
page, the x dimension is longer than the y dimension. This functionality is 
usually provided by the print manager on the host, so the use of Rotated 
page sizes in a PPD file is usually redundant and should be discouraged.

• Small in a page size name or as a qualifier usually denotes a page that is the 
same physical size as the regular named page, but with an imageable area 
that is typically 10 to 20 points smaller.

• The Transverse qualifier indicates that the paper is fed in an orientation that 
is rotated 90 degrees from the orientation of the base paper size. Since 
most printers feed paper with the short edge of the paper perpendicular to 
the feed direction (“short edge feed”), Transverse usually means “long edge 
feed.” That is, a Transverse size indicates that the long edge of the image 
(on an imagesetter) or of the physical page (on a cut-sheet printer) is per-
pendicular to the feed direction.

This does not affect the relationship of user space to the physical page, but 
it does mean that the page is oriented differently with respect to device 
space. Transverse is not the same as landscape orientation. The orientation 
of the image on the page is exactly the same for transverse as for non-
transverse pages. A page fed transversely will appear identical to a page 
fed non-transversely, except that on certain printers, certain patterns and 
asymmetric halftone screens will image differently when the page is fed 
transversely, due to device and driver limitations. On older devices, the 
printing speed when using the image operator might be different for a page 
that is fed transversely.

Because the orientation of the image on the page is the same, the dimen-
sions for a Transverse and non-Transverse page are the same. For example:

*PaperDimension Letter: “612 792”

*PaperDimension Letter.Transverse: “612 792”



186 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Page sizes with the qualifier Transverse should only appear in the PPD file 
of a roll-fed device (such as an imagesetter) that supports requesting a spe-
cific orientation so that pages can be either short-edge feed or long-edge 
feed, or in the PPD file of a cut-sheet device that has both short-edge-feed 
and long-edge-feed input trays. If a cut-sheet device supports either short-
edge-feed or long-edge-feed, but not both, there is no need to differentiate 
Transverse pages from non-Transverse pages. Transverse is only useful if there 
is a need to choose between two input slots with different feed directions.

If a page size has both a Transverse and non-Transverse version in a PPD file, 
their *PageSize code fragments should be different. For example, in a PPD 
file for a Level 2 device, the *PageSize code for Letter.Transverse should 
request a different /Orientation  from setpagedevice than the code for Letter, or 
it should set up a different input slot. Otherwise, including both the Trans-
verse and non-Transverse size is pointless, if they produce exactly the same 
result. See section 7 for more advice and examples of putting Transverse 
sizes in a PPD file.

B.2 mediaOption  Name Tables

The dimensions given in the tables are in PostScript default units. They refer 
to the actual physical dimensions of the page, not the imageable region, 
unless otherwise specified. All sizes are given with the x dimension first, fol-
lowed by the y dimension. The units in which a page size was originally 
defined appear in boldface type. The dimensions in other units are provided 
strictly for comparison, and are approximate due to rounding.

The letters in the Notes  column have the following meanings:

• I—size is defined by ISO standards

• J—size is defined by JIS standards

• S—imageable area is smaller than the imageable area of the corresponding 
standard size, typically by 10 to 20 points

• N—see section B.1 for information about this size

• V—size varies across devices, typically by up to 1/2 inch 

• E—this is an envelope size

Microsoft has defined programming identifiers (#define's in C language pro-
grams) for many of the common mediaOption keywords, for use in Windows 
applications. This enables a print manager to match a request for a specific 
page size, in the form of a #define, to a mediaOption name.The #define  column 
contains those identifiers where appropriate.



B.2  mediaOption Name Tables 187

Table B.1  MediaOptions Sorted By Name

mediaOption Size (pts) Size (mm) Size (inches) Notes #define

10x11 720 x 792 254 x 279.4 10 x 11 DMPAPER_10X11

10x13 720 x 936 254 x 330.2 10 x 13

10x14 720 x 1008 254 x 355.6 10 x 14 DMPAPER_10X14               

12x11 864 x 792 304.8 x 279.4 12 x 11 DMPAPER_12X11

15x11 1080 x 792 381 x 279.4 15 x 11 DMPAPER_15X11

7x9 504 x 648 177.8 x 228.6 7 x 9

8x10 576 x 720 203.2 x 254 8 x 10

9x11 648 x 792 228.6 x 279.4 9 x 11 DMPAPER_9X11

9x12 648 x 864 228.6 x 304.8 9 x 12

A0 2384 x 3370 841 x 1189 33.11 x 46.81 I, J

A1 1684 x 2384 594 x 841 23.39 x 33.11 I, J

A2 1191 x 1684 420 x 594 16.54 x 23.39 I, J DMPAPER_A2

A3 842 x 1191 297 x 420 11.69 x 16.54 I, J DMPAPER_A3

A3.Transverse 842 x 1191 297 x 420 11.69 x 16.54 DMPAPER_A3_TRANSVERSE       

A3Extra 913 x 1262 322 x 445 12.67 x 17.52 N, V DMPAPER_A3_EXTRA

A3Extra.Transverse 913 x 1262 322 x 445 12.67 x 17.52 N, V DMPAPER_A3_EXTRA_TRANSVERSE

A3Rotated 1191 x 842 420 x 297 16.54 x 11.69 N DMPAPER_A3_ROTATED

A4 595 x 842 210 x 297 8.27 x 11.69 I, J DMPAPER_A4

A4.Transverse 595 x 842 210 x 297 8.27 x 11.69 DMPAPER_A4_TRANSVERSE       

A4Extra 667 x 914 235.5 x 322.3 9.27 x 12.69 N, V DMPAPER_A4_EXTRA

A4Plus 595 x 936 210 x 330 8.27 x 13 DMPAPER_A4_PLUS

A4Rotated 842 x 595 297 x 210 11.69 x 8.27 N DMPAPER_A4_ROTATED

A4Small 595 x 842 210 x 297 8.27 x 11.69 S DMPAPER_A4SMALL

A5 420 x 595 148 x 210 5.83 x 8.27 I, J DMPAPER_A5

A5.Transverse 420 x 595 148 x 210 5.83 x 8.27 DMPAPER_A5_TRANSVERSE       

A5Extra 492 x 668 174 x 235 6.85 x 9.25 N, V DMPAPER_A5_EXTRA

A5Rotated 595 x 420 210 x 148 8.27 x 5.83 N DMPAPER_A5_ROTATED

A6 297 x 420 105 x 148 4.13 x 5.83 I, J DMPAPER_A6

A6Rotated 420 x 297 148 x 105 5.83 x 4.13 N DMPAPER_A6_ROTATED



188 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

A7 210 x 297 74 x 105 2.91 x 4.13 I, J

A8 148 x 210 52 x 74 2.05 x 2.91 I, J

A9 105 x 148 37 x 52 1.46 x 2.05 I, J

A10 73 x 105 26 x 37 1.02 x 1.46 I, J

AnsiC 1224 x 1584 431.8 x 558.8 17 x 22

AnsiD 1584 x 2448 558.8 x 863.6 22 x 34

AnsiE 2448 x 3168 863.6 x 1118 34 x 44

ARCHA 648 x 864 228.6 x 304.8 9 x 12

ARCHB 864 x 1296 304.8 x 457.2 12 x 18

ARCHC 1296 x 1728 457.2 x 609.6 18 x 24 DMPAPER_CSHEET

ARCHD 1728 x 2592 609.6 x 914.4 24 x 36 DMPAPER_DSHEET

ARCHE 2592 x 3456 914.4 x 1219 36 x 48 DMPAPER_ESHEET

B0 2920 x 4127 1030 x 1456 40.55 x 57.32 J

B1 2064 x 2920 728 x 1030 28.66 x 40.55 J

B2 1460 x 2064 515 x 728 20.28 x 28.66 J

B3 1032 x 1460 364 x 515 14.33 x 20.28 J

B4 729 x 1032 257 x 364 10.12 x 14.33 J DMPAPER_B4

B4Rotated 1032 x 729 364 x 257 14.33 x 10.12 N DMPAPER_B4_JIS_ROTATED

B5 516 x 729 182 x 257 7.17 x 10.12 J DMPAPER_B5

B5.Transverse 516 x 729 182 x 257 7.17 x 10.12 DMPAPER_B5_TRANSVERSE       

B5Rotated 729 x 516 257 x 182 10.12 x 7.17 N DMPAPER_B5_JIS_ROTATED

B6 363 x 516 128 x 182 5.04 x 7.17 J DMPAPER_B6_JIS              

B6Rotated 516 x 363 182 x 128 7.17 x 5.04 N DMPAPER_B6_JIS_ROTATED

B7 258 x 363 91 x 128 3.58 x 5.04 J

B8 181 x 258 64 x 91 2.52 x 3.58 J

B9 127 x 181 45 x 64 1.77 x 2.52 J

B10 91 x 127 32 x 45 1.26 x 1.77 J

C4 (use EnvC4 ) 649 x 918 229 x 324 9.02 x 12.75 I, E, N DMPAPER_ENV_C4

C5 (use EnvC5 ) 459 x 649 162 x 229 6.38 x 9.02 I, E, N DMPAPER_ENV_C5

C6 (use EnvC6 ) 323 x 459 114 x 162 4.49 x 6.38 I, E, N DMPAPER_ENV_C6

Table B.1  MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



B.2  mediaOption Name Tables 189

Comm10  (use Env10 ) 297 x 684 104.8 x 241.3 4.125 x 9.5 E, N DMPAPER_ENV_10              

DL (use EnvDL ) 312 x 624 110 x 220 4.33 x 8.66 I, E, N DMPAPER_ENV_DL              

DoublePostcard 567 x 419.5 200 x 148 7.87 x 5.83 DMPAPER_DBL_JAPANESE_POSTCARD

DoublePostcardRotated 419.5 x 567 148 x 200 5.83 x 7.87 N DMPAPER_DBL_JAPANESE_POSTCARD_ROTATED

Env9 279 x 639 98.4 x 225.4 3.875 x 8.875 E DMPAPER_ENV_9

Env10 297 x 684 104.8 x 241.3 4.125 x 9.5 E DMPAPER_ENV_10              

Env11 324 x 747 114.3 x 263.5 4.5 x 10.375 E DMPAPER_ENV_11

Env12 342 x 792 120.7 x 279.4 4.75 x 11 E DMPAPER_ENV_12

Env14 360 x 828 127 x 292.1 5 x 11.5 E DMPAPER_ENV_14

EnvC0 2599 x 3676 917 x 1297 36.10 x 51.06 I, E

EnvC1 1837 x 2599 648 x 917 25.51 x 36.10 I, E

EnvC2 1298 x 1837 458 x 648 18.03 x 25.51 I, E

EnvC3 918 x 1296 324 x 458 12.75 x 18.03 I, E DMPAPER_ENV_C3              

EnvC4 649 x 918 229 x 324 9.02 x 12.75 I, E DMPAPER_ENV_C4

EnvC5 459 x 649 162 x 229 6.38 x 9.02 I, E DMPAPER_ENV_C5

EnvC6 323 x 459 114 x 162 4.49 x 6.38 I, E DMPAPER_ENV_C6

EnvC65 324 x 648 114 x 229 4.5 x 9 E DMPAPER_ENV_C65

EnvC7 230 x 323 81 x 114 3.19 x 4.49 I, E

EnvChou3 340 x 666 120 x 235 4.72 x 9.25 E DMPAPER_JENV_CHOU3

EnvChou3Rotated 666 x 340 235 x 120 9.25 x 4.72 E, N DMPAPER_JENV_CHOU3_ROTATED

EnvChou4 255 x 581 90 x 205 3.54 x 8 E DMPAPER_JENV_CHOU4

EnvChou4Rotated 581 x 255 205 x 90 8 x 3.54 E, N DMPAPER_JENV_CHOU4_ROTATED

EnvDL 312 x 624 110 x 220 4.33 x 8.66 I, E DMPAPER_ENV_DL              

EnvInvite 624 x 624 220 x 220 8.66 x 8.66 E DMPAPER_ENV_INVITE

EnvISOB4 708 x 1001 250 x 353 9.84 x 13.9 E DMPAPER_ENV_B4

EnvISOB5 499 x 709 176 x 250 6.9 x 9.8 E DMPAPER_ENV_B5

EnvISOB6 499 x 354 176 x 125 6.9 x 4.9 E DMPAPER_ENV_B6

EnvItalian 312 x 652 110 x 230 4.33 x 9 E DMPAPER_ENV_ITALY

EnvKaku2 680 x 941 240 x 332 9.45 x 13 E DMPAPER_JENV_KAKU2

EnvKaku2Rotated 941 x 680 332 x 240 13 x 9.45 E, N DMPAPER_JENV_KAKU2_ROTATED

Table B.1  MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



190 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

EnvKaku3 612 x 785 216 x 277 8.5 x 10.9 E DMPAPER_JENV_KAKU3

EnvKaku3Rotated 785 x 612 277 x 216 10.9 x 8.5 E, N DMPAPER_JENV_KAKU3_ROTATED

 EnvMonarch 279 x 540 98.43 x 190.5 3.875 x 7.5 E DMPAPER_ENV_MONARCH         

EnvPersonal 261 x 468 92.08 x 165.1 3.625 x 6.5 E DMPAPER_ENV_PERSONAL

EnvPRC1 289 x 468 102 x 165 4 x 6.5 E DMPAPER_PENV_1

EnvPRC1Rotated 468 x 289 165 x 102 6.5 x 4 E, N DMPAPER_PENV_1_ROTATED

EnvPRC2 289 x 499 102 x 176 4 x 6.9 E DMPAPER_PENV_2

EnvPRC2Rotated 499 x 289 176 x 102 6.9 x 4 E, N DMPAPER_PENV_2_ROTATED

EnvPRC3 354 x 499 125 x 176 4.9 x 6.9 E DMPAPER_PENV_3

EnvPRC3Rotated 499 x 354 176 x 125 6.9 x 4.9 E, N DMPAPER_PENV_3_ROTATED

EnvPRC4 312 x 590 110 x 208 4.33 x 8.2 E DMPAPER_PENV_4

EnvPRC4Rotated 590 x 312 208 x 110 8.2 x 4.33 E, N DMPAPER_PENV_4_ROTATED

EnvPRC5 312 x 624 110 x 220 4.33 x 8.66 E DMPAPER_PENV_5

EnvPRC5Rotated 624 x 312 220 x 110 8.66 x 4.33 E, N DMPAPER_PENV_5_ROTATED

EnvPRC6 340 x 652 120 x 230 4.7 x 9 E DMPAPER_PENV_6

EnvPRC6Rotated 652 x 340 230 x 120 9 x 4.7 E, N DMPAPER_PENV_6_ROTATED

EnvPRC7 454 x 652 160 x 230 6.3 x 9 E DMPAPER_PENV_7

EnvPRC7Rotated 652 x 454 230 x 160 9 x 6.3 E, N DMPAPER_PENV_7_ROTATED

EnvPRC8 340 x 876 120 x 309 4.7 x 12.2 E DMPAPER_PENV_8

EnvPRC8Rotated 876 x 340 309 x 120 12.2 x 4.7 E, N DMPAPER_PENV_8_ROTATED

EnvPRC9 649 x 918 229 x 324 9 x 12.75 E DMPAPER_PENV_9

EnvPRC9Rotated 918 x 649 324 x 229 12.75 x 9 E, N DMPAPER_PENV_9_ROTATED

EnvPRC10 918 x 1298 324 x 458 12.75 x 18 E DMPAPER_PENV_10

EnvPRC10Rotated 1298 x 918 458 x 324 18 x 12.75 E, N DMPAPER_PENV_10_ROTATED

EnvYou4 298 x 666 105 x 235 4.13 x 9.25 E DMPAPER_JENV_YOU4

EnvYou4Rotated 666 x 298 235 x 105 9.25 x 4.13 E, N DMPAPER_JENV_YOU4_ROTATED

Executive 522 x 756 184.2 x 266.7 7.25 x 10.5 N, V DMPAPER_EXECUTIVE     

FanFoldUS 1071 x 792 377.8 x 279.4 14.875 x 11 DMPAPER_FANFOLD_US

FanFoldGerman 612 x 864 215.9 x 304.8 8.5 x 12 DMPAPER_FANFOLD_STD_GERMAN

FanFoldGermanLegal 612 x 936 215.9 x 330 8.5 x 13 DMPAPER_FANFOLD_LGL_GERMAN

Table B.1  MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



B.2  mediaOption Name Tables 191

Folio 595 x 935 210 x 330 8.27 x 13 DMPAPER_FOLIO

ISOB0 2835 x 4008 1000 x 1414 39.37 x 55.67 I

ISOB1 2004 x 2835 707 x 1000 27.83 x 39.37 I

ISOB2 1417 x 2004 500 x 707 19.68 x 27.83 I

ISOB3 1001 x 1417 353 x 500 13.90 x 19.68 I

ISOB4 709 x 1001 250 x 353 9.84 x 13.90 I DMPAPER_ISO_B4              

ISOB5 499 x 709 176 x 250 6.9 x 9.8 I

ISOB5Extra 569.7 x 782 201 x 276 7.9 x 10.8 N, V DMPAPER_B5_EXTRA

ISOB6 354 x 499 125 x 176 4.92 x 6.93 I

ISOB7 249 x 354 88 x 125 3.46 x 4.92 I

ISOB8 176 x 249 62 x 88 2.44 x 3.46 I

ISOB9 125 x 176 44 x 62 1.73 x 2.44 I

ISOB10 88 x 125 31 x 44 1.22 x 1.73 I

Ledger 1224 x 792 431.8 x 279.4 17 x 11 DMPAPER_LEDGER

Legal 612 x 1008 215.9 x 355.6 8.5 x 14 DMPAPER_LEGAL

LegalExtra 684 x 1080 241.3 x 381 9.5 x 15 N, V DMPAPER_LEGAL_EXTRA

Letter 612 x 792 215.9 x 279.4 8.5 x 11 DMPAPER_LETTER

Letter.Transverse 612 x 792 215.9 x 279.4 8.5 x 11 DMPAPER_LETTER_TRANSVERSE   

LetterExtra 684 x 864 241.3 x 304.8 9.5 x 12 N, V DMPAPER_LETTER_EXTRA

LetterExtra.Transverse 684 x 864 241.3 x 304.8 9.5 x 12 DMPAPER_LETTER_EXTRA_TRANSVERSE

LetterPlus 612 x 913.7 215.9 x 322.3 8.5 x 12.69 DMPAPER_LETTER_PLUS

LetterRotated 792 x 612 279.4 x 215.9 11 x 8.5 N DMPAPER_LETTER_ROTATED

LetterSmall 612 x 792 215.9 x 279.4 8.5 x 11 S DMPAPER_LETTERSMALL         

MaxPage largest page available on this device N, V

Monarch  (use EnvMonarch ) 279 x 540 98.43 x 190.5 3.875 x 7.5 E, N DMPAPER_ENV_MONARCH         

Note 612 x 792 215.9 x 279.4 8.5 x 11 S DMPAPER_NOTE

Postcard 284 x 419 100 x 148 3.94 x 5.83 DMPAPER_JAPANESE_POSTCARD

PostcardRotated 419 x 284 148 x 100 5.83 x 3.94 N DMPAPER_JAPANESE_POSTCARD_ROTATED

PRC16K 414 x 610 146 x 215 5.75 x 8.5 DMPAPER_P16K

PRC16KRotated 610 x 414 215 x 146 8.5 x 5.75 N DMPAPER_P16K_ROTATED

Table B.1  MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



192 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

PRC32K 275 x 428 97 x 151 3.82 x 5.95 DMPAPER_P32K

PRC32KBig 275 x 428 97 x 151 3.82 x 5.95 DMPAPER_P32KBIG

PRC32KBigRotated 428 x 275 151 x 97 5.95 x 3.82 N DMPAPER_P32KBIG_ROTATED

PRC32KRotated 428 x 275 151 x 97 5.95 x 3.82 N DMPAPER_P32K_ROTATED

Quarto 610 x 780 215.9 x 275.1 8.5 x 10.83 DMPAPER_QUARTO              

Statement 396 x 612 139.7 x 215.9 5.5 x 8.5 DMPAPER_STATEMENT

SuperA 643 x 1009 227 x 356 8.94 x 14 DMPAPER_A_PLUS

SuperB 864 x 1380 305 x 487 12 x 19.17 DMPAPER_B_PLUS

Tabloid 792 x 1224 279.4 x 431.8 11 x 17 DMPAPER_TABLOID

TabloidExtra 864 x 1296 304.8 x 457.2 12 x 18 V DMPAPER_TABLOID_EXTRA

Table B.1  MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



B.2  mediaOption Name Tables 193

.

Table B.2  MediaOptions Sorted By Size

mediaOption Size (pts) Size (mm) Size (inches) Notes #define

A10 73 x 105 26 x 37 1.02 x 1.46 I, J

ISOB10 88 x 125 31 x 44 1.22 x 1.73 I

B10 91 x 127 32 x 45 1.26 x 1.77 J

A9 105 x 148 37 x 52 1.46 x 2.05 I, J

ISOB9 125 x 176 44 x 62 1.73 x 2.44 I

B9 127 x 181 45 x 64 1.77 x 2.52 J

A8 148 x 210 52 x 74 2.05 x 2.91 I, J

ISOB8 176 x 249 62 x 88 2.44 x 3.46 I

B8 181 x 258 64 x 91 2.52 x 3.58 J

A7 210 x 297 74 x 105 2.91 x 4.13 I, J

EnvC7 230 x 323 81 x 114 3.19 x 4.49 I, E

ISOB7 249 x 354 88 x 125 3.46 x 4.92 I

EnvChou4 255 x 581 90 x 205 3.54 x 8 E DMPAPER_JENV_CHOU4

B7 258 x 363 91 x 128 3.58 x 5.04 J

EnvPersonal 261 x 468 92.08 x 165.1 3.625 x 6.5 E DMPAPER_ENV_PERSONAL

PRC32K 275 x 428 97 x 151 3.82 x 5.95 DMPAPER_P32K

PRC32KBig 275 x 428 97 x 151 3.82 x 5.95 DMPAPER_P32KBIG

Monarch  (use EnvMonarch ) 279 x 540 98.43 x 190.5 3.875 x 7.5 E DMPAPER_ENV_MONARCH         

Env9 279 x 639 98.4 x 225.4 3.875 x 8.875 E DMPAPER_ENV_9

Postcard 284 x 419 100 x 148 3.94 x 5.83 DMPAPER_JAPANESE_POSTCARD

EnvPRC1 289 x 468 102 x 165 4 x 6.5 E DMPAPER_PENV_1

EnvPRC2 289 x 499 102 x 176 4 x 6.9 E DMPAPER_PENV_2

Comm10  (use Env10 ) 297 x 684 104.8 x 241.3 4.125 x 9.5 E, N DMPAPER_ENV_10              

A6 297 x 420 105 x 148 4.13 x 5.83 I, J DMPAPER_A6

EnvYou4 298 x 666 105 x 235 4.13 x 9.25 E DMPAPER_JENV_YOU4

EnvPRC4 312 x 590 110 x 208 4.33 x 8.2 E DMPAPER_PENV_4

DL (use EnvDL ) 312 x 624 110 x 220 4.33 x 8.66 I, E DMPAPER_ENV_DL              

EnvPRC5 312 x 624 110 x 220 4.33 x 8.66 E DMPAPER_PENV_5

EnvItalian 312 x 652 110 x 230 4.33 x 9 E DMPAPER_ENV_ITALY



194 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

C6 (use EnvC6 ) 323 x 459 114 x 162 4.49 x 6.38 I, E DMPAPER_ENV_C6

EnvC65 324 x 648 114 x 229 4.5 x 9 E DMPAPER_ENV_C65

Env11 324 x 747 114.3 x 263.5 4.5 x 10.375 E DMPAPER_ENV_11

EnvPRC6 340 x 652 120 x 230 4.7 x 9 E DMPAPER_PENV_6

EnvChou3 340 x 666 120 x 235 4.72 x 9.25 E DMPAPER_JENV_CHOU3

EnvPRC8 340 x 876 120 x 309 4.7 x 12.2 E DMPAPER_PENV_8

Env12 342 x 792 120.7 x 279.4 4.75 x 11 E DMPAPER_ENV_12

ISOB6 354 x 499 125 x 176 4.92 x 6.93 I

EnvPRC3 354 x 499 125 x 176 4.9 x 6.9 E DMPAPER_PENV_3

Env14 360 x 828 127 x 292.1 5 x 11.5 E DMPAPER_ENV_14

B6 363 x 516 128 x 182 5.04 x 7.17 J DMPAPER_B6_JIS              

Statement 396 x 612 139.7 x 215.9 5.5 x 8.5 DMPAPER_STATEMENT

PRC16K 414 x 610 146 x 215 5.75 x 8.5 DMPAPER_P16K

PostcardRotated 419 x 284 148 x 100 5.83 x 3.94 N DMPAPER_JAPANESE_POSTCARD_ROTATED

A6Rotated 420 x 297 148 x 105 5.83 x 4.13 DMPAPER_A6_ROTATED

DoublePostcardRotated 419.5 x 567 148 x 200 5.83 x 7.87 N DMPAPER_DBL_JAPANESE_POSTCARD_ROTATED

A5 420 x 595 148 x 210 5.83 x 8.27 I, J DMPAPER_A5

A5.Transverse 420 x 595 148 x 210 5.83 x 8.27 DMPAPER_A5_TRANSVERSE       

PRC32KBigRotated 428 x 275 151 x 97 5.95 x 3.82 N DMPAPER_P32KBIG_ROTATED

PRC32KRotated 428 x 275 151 x 97 5.95 x 3.82 N DMPAPER_P32K_ROTATED

EnvPRC7 454 x 652 160 x 230 6.3 x 9 E DMPAPER_PENV_7

C5 (use EnvC5 ) 459 x 649 162 x 229 6.38 x 9.02 I, E DMPAPER_ENV_C5

EnvPRC1Rotated 468 x 289 165 x 102 6.5 x 4 E, N DMPAPER_PENV_1_ROTATED

A5Extra 492 x 668 174 x 235 6.85 x 9.25 N, V DMPAPER_A5_EXTRA

EnvPRC2Rotated 499 x 289 176 x 102 6.9 x 4 E, N DMPAPER_PENV_2_ROTATED

EnvISOB6 499 x 354 176 x 125 6.9 x 4.9 E DMPAPER_ENV_B6

EnvPRC3Rotated 499 x 354 176 x 125 6.9 x 4.9 E, N DMPAPER_PENV_3_ROTATED

EnvISOB5 499 x 709 176 x 250 6.9 x 9.8 E DMPAPER_ENV_B5

ISOB5 499 x 709 176 x 250 6.9 x 9.8 I

7x9 504 x 648 177.8 x 228.6 7 x 9

Table B.2  MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



B.2  mediaOption Name Tables 195

B6Rotated 516 x 363 182 x 128 7.17 x 5.04 N DMPAPER_B6_JIS_ROTATED

B5 516 x 729 182 x 257 7.17 x 10.12 J DMPAPER_B5

B5.Transverse 516 x 729 182 x 257 7.17 x 10.12 DMPAPER_B5_TRANSVERSE       

Executive 522 x 756 184.2 x 266.7 7.25 x 10.5 N, V DMPAPER_EXECUTIVE     

DoublePostcard 567 x 419.5 200 x 148 7.87 x 5.83 DMPAPER_DBL_JAPANESE_POSTCARD

ISOB5Extra 569.7 x 782 201 x 276 7.9 x 10.8 N, V DMPAPER_B5_EXTRA

8x10 576 x 720 203.2 x 254 8 x 10

EnvChou4Rotated 581 x 255 205 x 90 8 x 3.54 E, N DMPAPER_JENV_CHOU4_ROTATED

EnvPRC4Rotated 590 x 312 208 x 110 8.2 x 4.33 E, N DMPAPER_PENV_4_ROTATED

A5Rotated 595 x 420 210 x 148 8.27 x 5.83 N DMPAPER_A5_ROTATED

A4 595 x 842 210 x 297 8.27 x 11.69 I, J DMPAPER_A4

A4.Transverse 595 x 842 210 x 297 8.27 x 11.69 DMPAPER_A4_TRANSVERSE       

A4Small 595 x 842 210 x 297 8.27 x 11.69 S DMPAPER_A4SMALL             

Folio 595 x 935 210 x 330 8.27 x 13 DMPAPER_FOLIO

A4Plus 595 x 936 210 x 330 8.27 x 13 DMPAPER_A4_PLUS

PRC16KRotated 610 x 414 215 x 146 8.5 x 5.75 N DMPAPER_P16K_ROTATED

Quarto 610 x 780 215.9 x 275.1 8.5 x 10.83 DMPAPER_QUARTO              

EnvKaku3 612 x 785 216 x 277 8.5 x 10.9 E DMPAPER_JENV_KAKU3

Letter 612 x 792 215.9 x 279.4 8.5 x 11 DMPAPER_LETTER

Letter.Transverse 612 x 792 215.9 x 279.4 8.5 x 11 DMPAPER_LETTER_TRANSVERSE   

LetterSmall 612 x 792 215.9 x 279.4 8.5 x 11 S DMPAPER_LETTERSMALL         

Note 612 x 792 215.9 x 279.4 8.5 x 11 S DMPAPER_NOTE

FanFoldGerman 612 x 864 215.9 x 304.8 8.5 x 12 DMPAPER_FANFOLD_STD_GERMAN

LetterPlus 612 x 913.7 215.9 x 322.3 8.5 x 12.69 DMPAPER_LETTER_PLUS

FanFoldGermanLegal 612 x 936 215.9 x 330 8.5 x 13 DMPAPER_FANFOLD_LGL_GERMAN

Legal 612 x 1008 215.9 x 355.6 8.5 x 14 DMPAPER_LEGAL

EnvPRC5Rotated 624 x 312 220 x 110 8.66 x 4.33 E, N DMPAPER_PENV_5_ROTATED

EnvInvite 624 x 624 220 x 220 8.66 x 8.66 E DMPAPER_ENV_INVITE

SuperA 643 x 1009 227 x 356 8.94 x 14 DMPAPER_A_PLUS

9x11 648 x 792 228.6 x 279.4 9 x 11 DMPAPER_9X11

Table B.2  MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



196 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

9x12 648 x 864 228.6 x 304.8 9 x 12

ARCHA 648 x 864 228.6 x 304.8 9 x 12

C4 (use EnvC4 ) 649 x 918 229 x 324 9.02 x 12.75 I, E DMPAPER_ENV_C4

EnvPRC9 649 x 918 229 x 324 9 x 12.75 E DMPAPER_PENV_9

EnvPRC6Rotated 652 x 340 230 x 120 9 x 4.7 E, N DMPAPER_PENV_6_ROTATED

EnvPRC7Rotated 652 x 454 230 x 160 9 x 6.3 E ,N DMPAPER_PENV_7_ROTATED

EnvYou4Rotated 666 x 298 235 x 105 9.25 x 4.13 E, N DMPAPER_JENV_YOU4_ROTATED

EnvChou3Rotated 666 x 340 235 x 120 9.25 x 4.72 E, N DMPAPER_JENV_CHOU3_ROTATED

A4Extra 667 x 914 235.5 x 322.3 9.27 x 12.69 N, V DMPAPER_A4_EXTRA

EnvKaku2 680 x 941 240 x 332 9.45 x 13 E DMPAPER_JENV_KAKU2

LetterExtra 684 x 864 241.3 x 304.8 9.5 x 12 N, V DMPAPER_LETTER_EXTRA

LetterExtra.Transverse 684 x 864 241.3 x 304.8 9.5 x 12 N, V DMPAPER_LETTER_EXTRA_TRANSVERSE

LegalExtra 684 x 1080 241.3 x 381 9.5 x 15 N, V DMPAPER_LEGAL_EXTRA

EnvISOB4 708 x 1001 250 x 353 9.84 x 13.9 E DMPAPER_ENV_B4

ISOB4 709 x 1001 250 x 353 9.84 x 13.90 I DMPAPER_ISO_B4              

10x11 720 x 792 254 x 279.4 10 x 11 DMPAPER_10X11

10x13 720 x 936 254 x 330.2 10 x 13

10x14 720 x 1008 254 x 355.6 10 x 14 DMPAPER_10X14               

B5Rotated 729 x 516 257 x 182 10.12 x 7.17 N DMPAPER_B5_JIS_ROTATED

B4 729 x 1032 257 x 364 10.12 x 14.33 J DMPAPER_B4

EnvKaku3Rotated 785 x 612 277 x 216 10.9 x 8.5 E, N DMPAPER_JENV_KAKU3_ROTATED

LetterRotated 792 x 612 279.4 x 215.9 11 x 8.5 N DMPAPER_LETTER_ROTATED

Tabloid 792 x 1224 279.4 x 431.8 11 x 17 DMPAPER_TABLOID

A4Rotated 842 x 595 297 x 210 11.69 x 8.27 N DMPAPER_A4_ROTATED

A3 842 x 1191 297 x 420 11.69 x 16.54 I, J DMPAPER_A3

A3.Transverse 842 x 1191 297 x 420 11.69 x 16.54 DMPAPER_A3_TRANSVERSE       

12x11 864 x 792 304.8 x 279.4 12 x 11 DMPAPER_12X11

ARCHB 864 x 1296 304.8 x 457.2 12 x 18

TabloidExtra 864 x 1296 304.8 x 457.2 12 x 18 V DMPAPER_TABLOID_EXTRA

SuperB 864 x 1380 305 x 487 12 x 19.17 DMPAPER_B_PLUS

Table B.2  MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



B.2  mediaOption Name Tables 197

EnvPRC8Rotated 876 x 340 309 x 120 12.2 x 4.7 E, N DMPAPER_PENV_8_ROTATED

A3Extra 913 x 1262 322 x 445 12.67 x 17.52 N, V DMPAPER_A3_EXTRA

A3Extra.Transverse 913 x 1262 322 x 445 12.67 x 17.52 N, V DMPAPER_A3_EXTRA_TRANSVERSE

EnvPRC9Rotated 918 x 649 324 x 229 12.75 x 9 E, N DMPAPER_PENV_9_ROTATED

EnvC3 918 x 1296 324 x 458 12.75 x 18.03 I, E DMPAPER_ENV_C3              

EnvPRC10 918 x 1298 324 x 458 12.75 x 18 E DMPAPER_PENV_10

EnvKaku2Rotated 941 x 680 332 x 240 13 x 9.45 E, N DMPAPER_JENV_KAKU2_ROTATED

ISOB3 1001 x 1417 353 x 500 13.90 x 19.68 I

B4Rotated 1032 x 729 364 x 257 14.33 x 10.12 N DMPAPER_B4_JIS_ROTATED

B3 1032 x 1460 364 x 515 14.33 x 20.28 J

FanFoldUS 1071 x 792 377.83x 
279.4

14.875 x 11 DMPAPER_FANFOLD_US

15x11 1080 x 792 381 x 279.4 15 x 11 DMPAPER_15X11

A3Rotated 1191 x 842 420 x 297 16.54 x 11.69 N DMPAPER_A3_ROTATED

A2 1191 x 1684 420 x 594 16.54 x 23.39 I, J DMPAPER_A2

Ledger 1224 x 792 431.8 x 279.4 17 x 11 DMPAPER_LEDGER

AnsiC 1224 x 1584 431.8 x 558.8 17 x 22

ARCHC 1296 x 1728 457.2 x 609.6 18 x 24 DMPAPER_CSHEET

EnvPRC10Rotated 1298 x 918 458 x 324 18 x 12.75 E, N DMPAPER_PENV_10_ROTATED

EnvC2 1298 x 1837 458 x 648 18.03 x 25.51 I , E

ISOB2 1417 x 2004 500 x 707 19.68 x 27.83 I

B2 1460 x 2064 515 x 728 20.28 x 28.66 J

AnsiD 1584 x 2448 558.8 x 863.6 22 x 34

A1 1684 x 2384 594 x 841 23.39 x 33.11 I, J

ARCHD 1728 x 2592 609.6 x 914.4 24 x 36 DMPAPER_DSHEET

EnvC1 1837 x 2599 648 x 917 25.51 x 36.10 I, E

ISOB1 2004 x 2835 707 x 1000 27.83 x 39.37 I

B1 2064 x 2920 728 x 1030 28.66 x 40.55 J

A0 2384 x 3370 841 x 1189 33.11 x 46.81 I, J

AnsiE 2448 x 3168 863.6 x 1118 34 x 44

Table B.2  MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



198 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

ARCHE 2592 x 3456 914.4 x 1219 36 x 48 DMPAPER_ESHEET

EnvC0 2599 x 3676 917 x 1297 36.10 x 51.06 I, E

ISOB0 2835 x 4008 1000 x 1414 39.37 x 55.67 I

B0 2920 x 4127 1030 x 1456 40.55 x 57.32 J

MaxPage largest page size available on this device N, V

Table B.2  MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define



199

Appendix C: Character Encodings

The *LanguageEncoding keyword defines the encoding used by translation 
strings and certain QuotedValues in a PPD file. This appendix describes three 
encodings commonly used in PPD files, and how to convert between them. 
The three encoding options compared in this appendix are ISOLatin1, 
WindowsANSI (character set 0 or Western), and MacStandard (Script Manager 
script 0). ISOLatin1 encoding is commonly used in the Unix environment. 
WindowsANSI is defined by Microsoft for use in the Windows operating system. 
MacStandard is the encoding used by Macintosh computers. 

Document managers will need to convert certain strings from the encoding 
used in the PPD file to the encoding used on their operating system. For doc-
ument managers operating in the Macintosh, Windows, and Unix environ-
ments, this often means a conversion between two of the three encodings 
listed here. These tables are intended to help in that conversion. 

Table C.1 shows the three encoding vectors in their entirety. It is indexed by 
character code and contains the union of all of the characters in all three 
encoding vectors. 

Tables C.2, C.3, and C.4 contain only the differences between the three 
encoding vectors, and could be the basis for conversion tables in a document 
manager. Table C.2 is indexed by the character code and name of each char-
acter in the WindowsANSI encoding vector. Table C.3 is indexed by the charac-
ter code and name of each character in the MacStandard encoding vector. Table 
C.4 is indexed by the character code and name of each character in the 
ISOLatin1 encoding vector. 



200 Appendix C: Character Encodings (9 Feb 1996)

Table C.1 All Encodings Indexed By Byte Code

Code WindowsANSI ISOLatin1 MacStandard
0-31 unused unused unused
32 space space space
33 exclam exclam exclam
34 quotedbl quotedbl quotedbl
35 numbersign numbersign numbersign
36 dollar dollar dollar
37 percent percent percent
38 ampersand ampersand ampersand
39 quotesingle quoteright quotesingle
40 parenleft parenleft parenleft
41 parenright parenright parenright
42 asterisk asterisk asterisk
43 plus plus plus
44 comma comma comma
45 hyphen minus hyphen
46 period period period
47 slash slash slash
48 zero zero zero
49 one one one
50 two two two
51 three three three
52 four four four
53 five five five
54 six six six
55 seven seven seven
56 eight eight eight
57 nine nine nine
58 colon colon colon
59 semicolon semicolon semicolon
60 less less less
61 equal equal equal
62 greater greater greater
63 question question question
64 at at at
65-90 A-Z A-Z A-Z
91 bracketleft bracketleft bracketleft
92 backslash backslash backslash
93 bracketright bracketright bracketright
94 asciicircum asciicircum asciicircum

C.1 All Encodings Indexed By Byte Code

Table C.1 shows the three encoding vectors in their entirety. The first column 
gives the byte code. The second, third, and fourth columns give the PostScript 
language name of the character encoded at that position in the specified encod-
ing vector. The word “unused” in a column means there is no printable character 
at that byte code position in the specified encoding vector.

95 underscore underscore underscore
96 grave quoteleft grave
97-122 a-z a-z a-z
123 braceleft braceleft braceleft
124 bar bar bar
125 braceright braceright braceright
126 asciitilde asciitilde asciitilde
127 unused unused unused
128 unused unused Adieresis
129 unused unused Aring
130 quotesinglbase unused Ccedilla
131 florin unused Eacute
132 quotedblbase unused Ntilde
133 ellipsis unused Odieresis
134 dagger unused Udieresis
135 daggerdbl unused aacute
136 circumflex unused agrave
137 perthousand unused acircumflex
138 Scaron unused adieresis
139 guilsinglleft unused atilde
140 OE unused aring
141 unused unused ccedilla
142 unused unused eacute
143 unused unused egrave
144 unused dotlessi ecircumflex
145 quoteleft grave edieresis
146 quoteright acute iacute
147 quotedblleft circumflex igrave
148 quotedblright tilde icircumflex
149 bullet macron idieresis
150 endash breve ntilde
151 emdash dotaccent oacute
152 tilde dieresis ograve
153 trademark unused ocircumflex
154 scaron ring odieresis
155 guilsinglright cedilla otilde
156 oe unused uacute
157 unused hungarumlaut ugrave
158 unused ogonek ucircumflex

Table C.1 All Encodings Indexed By Byte Code (Continued)

Code WindowsANSI ISOLatin1 MacStandard



C.1  All Encodings Indexed By Byte Code 201

159 Ydieresis caron udieresis
160 spacea space dagger
161 exclamdown exclamdown degree
162 cent cent cent
163 sterling sterling sterling
164 currency currency section
165 yen yen bullet
166 brokenbar brokenbar paragraph
167 section section germandbls
168 dieresis dieresis registered
169 copyright copyright copyright
170 ordfeminine ordfeminine trademark
171 guillemotleft guillemotleft acute
172 logicalnot logicalnot dieresis
173 hyphenb hyphen notequal
174 registered registered AE
175 macron macron Oslash
176 degree degree infinity
177 plusminus plusminus plusminus
178 twosuperior twosuperior lessequal
179 threesuperior threesuperior greaterequal
180 acute acute yen
181 mu mu mu
182 paragraph paragraph partialdiff
183 periodcentered periodcentered summation
184 cedilla cedilla product
185 onesuperior onesuperior pi
186 ordmasculine ordmasculine integral
187 guillemotright guillemotright ordfeminine
188 onequarter onequarter ordmasculine
189 onehalf onehalf Omega
190 threequarters threequarters ae
191 questiondown questiondown oslash
192 Agrave Agrave questiondown
193 Aacute Aacute exclamdown
194 Acircumflex Acircumflex logicalnot
195 Atilde Atilde radical
196 Adieresis Adieresis florin
197 Aring Aring approxequal
198 AE AE Delta
199 Ccedilla Ccedilla guillemotleft
200 Egrave Egrave guillemotright
201 Eacute Eacute ellipsis
202 Ecircumflex Ecircumflex space
203 Edieresis Edieresis Agrave
204 Igrave Igrave Atilde
205 Iacute Iacute Otilde
206 Icircumflex Icircumflex OE
207 Idieresis Idieresis oe
208 Eth Eth endash
209 Ntilde Ntilde emdash
210 Ograve Ograve quotedblleft

Table C.1 All Encodings Indexed By Byte Code (Continued)

Code WindowsANSI ISOLatin1 MacStandard

a. Some PostScript fonts may include code 160 as
a non-breaking space named nbspace. 

b. Some PostScript fonts may include code 173 as
a soft hyphen named sfthyphen. 

211 Oacute Oacute quotedblright
212 Ocircumflex Ocircumflex quoteleft
213 Otilde Otilde quoteright
214 Odieresis Odieresis divide
215 multiply multiply lozenge
216 Oslash Oslash ydieresis
217 Ugrave Ugrave Ydieresis
218 Uacute Uacute fraction
219 Ucircumflex Ucircumflex currency
220 Udieresis Udieresis guilsinglleft
221 Yacute Yacute guilsinglright
222 Thorn Thorn fi
223 germandbls germandbls fl
224 agrave agrave daggerdbl
225 aacute aacute periodcentered
226 acircumflex acircumflex quotesinglbase
227 atilde atilde quotedblbase
228 adieresis adieresis perthousand
229 aring aring Acircumflex
230 ae ae Ecircumflex
231 ccedilla ccedilla Aacute
232 egrave egrave Edieresis
233 eacute eacute Egrave
234 ecircumflex ecircumflex Iacute
235 edieresis edieresis Icircumflex
236 igrave igrave Idieresis
237 iacute iacute Igrave
238 icircumflex icircumflex Oacute
239 idieresis idieresis Ocircumflex
240 eth eth apple
241 ntilde ntilde Ograve
242 ograve ograve Uacute
243 oacute oacute Ucircumflex
244 ocircumflex ocircumflex Ugrave
245 otilde otilde dotlessi
246 odieresis odieresis circumflex
247 divide divide tilde
248 oslash oslash macron
249 ugrave ugrave breve
250 uacute uacute dotaccent
251 ucircumflex ucircumflex ring
252 udieresis udieresis cedilla
253 yacute yacute hungarumlaut
254 thorn thorn ogonek
255 ydieresis ydieresis caron

Table C.1 All Encodings Indexed By Byte Code (Continued)

Code WindowsANSI ISOLatin1 MacStandard



202 Appendix C: Character Encodings (9 Feb 1996)

Table C.2 Conversions from WindowsANSI 
Encoding  

Character Name ANSI Mac ISOLatin1
quotesingle 39 same n/a
hyphen  45 same 173
grave 96 same 145
quotesinglbase 130 226 n/a
florin 131 196 n/a
quotedblbase 132 227 n/a
ellipsis    133 201 n/a
dagger 134 160 n/a
daggerdbl 135 224 n/a
circumflex   136 246 147
perthousand   137 228 n/a
Scaron 138 n/a n/a
guilsinglleft  139 220 n/a
OE    140 206 n/a
quoteleft  145 212 96
quoteright 146 213 39
quotedblleft 147 210 n/a
quotedblright 148 211 n/a
bullet 149 165 n/a
endash 150 208 n/a
emdash 151 209 n/a
tilde  152 247 148
trademark    153 170 n/a
scaron 154 n/a n/a
guilsinglright 155 221 n/a
oe 156 207 n/a
Ydieresis   159 217 n/a
space 160 32 same
exclamdown 161 193 same
currency 164 219 same
yen 165 180 same
brokenbar 166 n/a same
section 167 164 same
dieresis 168 172 same
ordfeminine 170 187 same
guillemotleft 171 199 same
logicalnot 172 194 same

C.2 Conversions from WindowsANSI Encoding

In Table C.2, the first two columns give the byte code and name of a character in 
the source encoding vector, WindowsANSI (abbreviated for space in the table as 
ANSI). The third and fourth columns give the corresponding byte code in the des-
tination encoding vectors, MacStandard (abbreviated as Mac) and ISOLatin1, respec-
tively. The word “same” in a column means that the destination byte code is the 
same as the source byte code. The string “n/a” in a column means that the char-
acter has no equivalent in the destination encoding vector.

hyphen 173 45 same
registered 174 168 same
macron 175 248 same
degree 176 161 same
twosuperior 178 n/a same
threesuperior 179 n/a same
acute 180 171 same
paragraph 182 166 same
periodcentered 183 225 same
cedilla 184 252 same
onesuperior 185 n/a same
ordmasculine 186 188 same
guillemotright 187 200 same
onequarter 188 n/a same
onehalf 189 n/a same
threequarters 190 n/a same
questiondown 191 192 same
Agrave 192 203 same
Aacute 193 231 same
Acircumflex 194 229 same
Atilde 195 204 same
Adieresis 196 128 same
Aring 197 129 same
AE 198 174 same
Ccedilla 199 130 same
Egrave 200 233 same
Eacute 201 131 same
Ecircumflex 202 230 same
Edieresis 203 232 same
Igrave 204 237 same
Iacute 205 234 same
Icircumflex 206 235 same
Idieresis 207 236 same
Eth 208 n/a same
Ntilde 209 132 same
Ograve 210 241 same
Oacute 211 238 same

Table C.2 Conversions from WindowsANSI 
Encoding (Continued) 

Character Name ANSI Mac ISOLatin1



C.2  Conversions from WindowsANSI Encoding 203

Ocircumflex 212 239 same
Otilde 213 205 same
Odieresis 214 133 same
multiply 215 n/a same
Oslash 216 175 same
Ugrave 217 244 same
Uacute 218 242 same
Ucircumflex 219 243 same
Udieresis 220 134 same
Yacute 221 n/a same
Thorn 222 n/a same
germandbls 223 167 same
agrave 224 136 same
aacute 225 135 same
acircumflex 226 137 same
atilde 227 139 same
adieresis 228 138 same
aring 229 140 same
ae 230 190 same
ccedilla 231 141 same
egrave 232 143 same
eacute 233 142 same
ecircumflex 234 144 same
edieresis 235 145 same
igrave 236 147 same
iacute 237 146 same
icircumflex 238 148 same
idieresis 239 149 same
eth 240 n/a same
ntilde 241 150 same
ograve 242 152 same
oacute 243 151 same
ocircumflex 244 153 same
otilde 245 155 same
odieresis 246 154 same
divide 247 214 same
oslash 248 191 same
ugrave 249 157 same
uacute 250 156 same
ucircumflex 251 158 same
udieresis 252 159 same
yacute 253 n/a same
thorn 254 n/a same
ydieresis 255 216 same

Table C.2 Conversions from WindowsANSI 
Encoding (Continued) 

Character Name ANSI Mac ISOLatin1



204 Appendix C: Character Encodings (9 Feb 1996)

Table C.3 Conversions from MacStandard Encoding

Character Name Mac ANSI ISOLatin1
hyphen 45 same 173
grave 96 same 145
Adieresis 128 196 196
Aring 129 197 197
Ccedilla 130 199 199
Eacute 131 201 201
Ntilde 132 209 209
Odieresis 133 214 214
Udieresis 134 220 220
aacute 135 225 225
agrave 136 224 224
acircumflex 137 226 226
adieresis 138 228 228
atilde 139 227 227
aring 140 229 229
ccedilla 141 231 231
eacute 142 233 233
egrave 143 232 232
ecircumflex 144 234 234
edieresis 145 235 235
iacute 146 237 237
igrave 147 236 236
icircumflex 148 238 238
idieresis 149 239 239
ntilde 150 241 241
oacute 151 243 243
ograve 152 242 242
ocircumflex 153 244 244
odieresis 154 246 246
otilde 155 245 245
uacute 156 250 250
ugrave 157 249 249
ucircumflex 158 251 251
udieresis 159 252 252
dagger 160 134 n/a
degree 161 176 176
section 164 167 167

bullet 165 149 n/a
paragraph 166 182 182
germandbls 167 223 223
registered 168 174 174
trademark    170 153 n/a
acute  171 180 146
dieresis     172 168 152
notequal 173 n/a n/a
AE 174 198 198
Oslash 175 216 216
infinity 176 n/a n/a
lessequal 178 n/a n/a
greaterequal 179 n/a n/a
yen 180 165 165
partialdiff 182 n/a n/a
summation 183 n/a n/a
product 184 n/a n/a
pi 185 n/a n/a
integral 186 n/a n/a
ordfeminine 187 170 170
ordmasculine 188 186 186
Omega 189 n/a n/a
ae 190 230 230
oslash 191 248 248
questiondown 192 191 191
exclamdown 193 161 161
logicalnot 194 172 172
radical 195 n/a n/a
florin 196 131 n/a
approxequal 197 n/a n/a
Delta 198 n/a n/a
guillemotleft 199 171 171
guillemotright 200 187 187
ellipsis    201 133 n/a
space 202 32 32
Agrave 203 192 192
Atilde 204 195 195

Table C.3 Conversions from MacStandard Encoding 

Character Name Mac ANSI ISOLatin1

C.3 Conversions from MacStandard Encoding

In Table C.3, the first two columns give the byte code and name of a character in 
the source encoding vector, MacStandard (abbreviated for space in the table as 
Mac). The third and fourth columns give the corresponding byte code in the des-
tination encoding vectors, WindowsANSI (abbreviated as ANSI) and ISOLatin1, respec-
tively. The word “same” in a column means that the destination byte code is the 
same as the source byte code. The string “n/a” in a column means that the char-
acter has no equivalent in the destination encoding vector.



C.3  Conversions from MacStandard Encoding 205

Otilde 205 213 213
OE    206 140 n/a
oe 207 156 n/a
endash 208 150 n/a
emdash 209 151 n/a
quotedblleft 210 147 n/a
quotedblright 211 148 n/a
quoteleft  212 145 96
quoteright 213 146 39
divide 214 247 247
lozenge 215 n/a n/a
ydieresis 216 255 255
Ydieresis   217 159 n/a
fraction 218 n/a n/a
currency 219 164 164
guilsinglleft  220 139 n/a
guilsinglright 221 155 n/a
fi 222 n/a n/a
fl 223 n/a n/a
daggerdbl 224 135 n/a
periodcentered 225 183 183
quotesinglbase 226 130 n/a
quotedblbase 227 132 n/a
perthousand   228 137 n/a
Acircumflex 229 194 194
Ecircumflex 230 202 202
Aacute 231 193 193
Edieresis 232 203 203
Egrave 233 200 200
Iacute 234 205 205
Icircumflex 235 206 206
Idieresis 236 207 207
Igrave 237 204 204
Oacute 238 211 211
Ocircumflex 239 212 212
apple 240 n/a n/a
Ograve 241 210 210
Uacute 242 218 218
Ucircumflex 243 219 219
Ugrave 244 217 217
dotlessi 245 n/a 144
circumflex 246 n/a 147
tilde 247 152 148
macron 248 175 149
breve 249 n/a 150
dotaccent   250 n/a 151

Table C.3 Conversions from MacStandard Encoding 

Character Name Mac ANSI ISOLatin1
ring  251 n/a 154
cedilla 252 184 155
hungarumlaut   253 n/a 157
ogonek 254 n/a 158
caron  255 n/a 159

Table C.3 Conversions from MacStandard Encoding 

Character Name Mac ANSI ISOLatin1



206 Appendix C: Character Encodings (9 Feb 1996)

Table C.4 Conversions from ISOLatin1 Encoding

Character Name ISOLatin1 ANSI Mac
quoteright 39 146 213
quoteleft 96 145 212
dotlessi 144 n/a 245
grave 145 96 96
acute  146 180 171
circumflex 147 n/a 246
tilde 148 152 247
macron 149 175 248
breve 150 n/a 249
dotaccent   151 n/a 250
dieresis     152 168 172
ring  154 n/a 251
cedilla 155 n/a 252
hungarumlaut   157 n/a 253
ogonek 158 n/a 254
caron  159 n/a 255
space 160 same 32
exclamdown 161 same 193
currency 164 same 219
yen 165 same 180
brokenbar 166 same n/a
section 167 same 164
dieresis 168 same 172
ordfeminine 170 same 187
guillemotleft 171 same 199
logicalnot 172 same 194
hyphen  173 same 45
registered 174 same 168
macron 175 same 248
degree 176 same 161
twosuperior 178 same n/a
threesuperior 179 same n/a
acute 180 same 171
paragraph 182 same 166
periodcentered 183 same 225
cedilla 184 same 252

onesuperior 185 same n/a
ordmasculine 186 same 188
guillemotright 187 same 200
onequarter 188 same n/a
onehalf 189 same n/a
threequarters 190 same n/a
questiondown 191 same 192
Agrave 192 same 203
Aacute 193 same 231
Acircumflex 194 same 229
Atilde 195 same 204
Adieresis 196 same 128
Aring 197 same 129
AE 198 same 174
Ccedilla 199 same 130
Egrave 200 same 233
Eacute 201 same 131
Ecircumflex 202 same 230
Edieresis 203 same 232
Igrave 204 same 237
Iacute 205 same 234
Icircumflex 206 same 235
Idieresis 207 same 236
Eth 208 same n/a
Ntilde 209 same 132
Ograve 210 same 241
Oacute 211 same 238
Ocircumflex 212 same 239
Otilde 213 same 205
Odieresis 214 same 133
multiply 215 same n/a
Oslash 216 same 175
Ugrave 217 same 244
Uacute 218 same 242
Ucircumflex 219 same 243
Udieresis 220 same 134

Table C.4 Conversions from ISOLatin1 Encoding 

Character Name ISOLatin1 ANSI Mac

C.4 Conversions from ISOLatin1 Encoding

In Table C.4, the first two columns give the byte code and name of a character in 
the source encoding vector, ISOLatin1. The third and fourth columns give the cor-
responding byte code in the destination encoding vectors, WindowsANSI (abbrevi-
ated for space in the table as ANSI) and MacStandard (abbreviated as Mac), 
respectively. The word “same” in a column means that the destination byte code 
is the same as the source byte code. The string “n/a” in a column means that the 
character has no equivalent in the destination encoding vector.



C.4  Conversions from ISOLatin1 Encoding 207

Yacute 221 same n/a
Thorn 222 same n/a
germandbls 223 same 167
agrave 224 same 136
aacute 225 same 135
acircumflex 226 same 137
atilde 227 same 139
adieresis 228 same 138
aring 229 same 140
ae 230 same 190
ccedilla 231 same 141
egrave 232 same 143
eacute 233 same 142
ecircumflex 234 same 144
edieresis 235 same 145
igrave 236 same 147
iacute 237 same 146
icircumflex 238 same 148
idieresis 239 same 149
eth 240 same n/a
ntilde 241 same 150
ograve 242 same 152
oacute 243 same 151
ocircumflex 244 same 153
otilde 245 same 155
odieresis 246 same 154
divide 247 same 214
oslash 248 same 191
ugrave 249 same 157
uacute 250 same 156
ucircumflex 251 same 158
udieresis 252 same 159
yacute 253 same n/a
thorn 254 same n/a
ydieresis 255 same 216

Table C.4 Conversions from ISOLatin1 Encoding 

Character Name ISOLatin1 ANSI Mac



208 Appendix C: Character Encodings (9 Feb 1996)



209

Appendix D: Manufacturer’s Prefix 
List and *Manufacturer Strings

The first column of Table D.1 contains the formal, legal name of device man-
ufacturers who support Adobe PostScript in their devices.

The second column of Table D.1 contains a list of two-letter prefixes that 
have been assigned to device manufacturers. The manufacturer’s assigned 
prefix composes the first two characters of an initial PPD file name, the first 
two characters of *PCFileName, and the first two characters after the asterisk of 
any main keywords created by the manufacturer. Each manufacturer must 
have a unique prefix and the prefix must be the same in all PPD files for 
devices from that manufacturer. For example, all PPD files built for Agfa 
devices will have filenames and *PCFileName values that start with the charac-
ter sequence “AG”, and any main keywords created by Agfa will start with 
the character sequence *AG, as in *AGHalftone. See *PCFileName in section 5.3 for 
advice on naming PPD files. See section 5.1 for information about creating 
and properly prefixing keywords. 

The third column of Table D.1 contains the value of *Manufacturer (see section 
5.3), if known. The fourth column of Table D.1 contains the value of the tag 
icHeader.manufacturer in ICC color characterization profiles belonging to this 
manufacturer in the Windows environment, if known.

Note Because the *Manufacturer keyword is new in the 4.3 version of this specifica-
tion, very few *Manufacturer strings and icHeader.manufacturer profile tags are 
known at this time. By the time the next version of this specification is 
released, this table will be much more complete.

Note To builders of PPD files: If you do not have an assigned *Manufacturer string, 
before choosing one, please consult Table D.1 to avoid name conflicts. Also, 
if you plan to install ICC color profiles in the Windows environment, certain 
restrictions are placed on the first four characters of these names and they 
must not conflict with the first four characters of other manufacturer’s names. 
Please read the notes for *Manufacturer, *ModelName, and *ShortNickName in sec-
tion 5.3.

For updates to this list, please contact the appropriate address on the front 
cover of this document. 



210 Appendix D: Manufacturer’s Prefix List and *Manufacturer Strings (9 Feb 1996)

Table D.1  Assigned prefixes and *Manufacturer strings as of February 9, 1996

Company Name Prefix  *Manufacturer icHeader.manufacturer

3M Corporation 3M

Adobe Systems Inc. AD Adobe ADOB

Agfa-Gevaert N.V. (includes Agfa-Matrix, 
Agfa-Compugraphic, and Miles Inc.)

AG

Apple Computer, Inc. AP Apple APPL

AST Research Inc. AS AST AST

Autologic Incorporated (a subsidiary of 
Volt Information Sciences)

AU

Barco Graphics BC

Birmy Graphics Corporation BG

Bull HN Information Systems Italia S.P.A. BU Bull BULL

Cactus CC

CalComp, Inc. CA

Canon, Inc. CN Canon CANO

Colorbus Software CB

Colossal Graphics Inc. CG

Compaq Computer Corporation CP Compaq COMP

Crosfield Electronics Limited CF

Dainippon Screen Mfg. Co. Ltd. DS

Dataproducts Corporation DP Dataproducts DATA

Digital Equipment Corporation DC

DuPont see E.I.DuPont — — —

Eastman Kodak Company and 
Diconix (a Division of Kodak)

KD Kodak KODA

Eicon Technology Corporation (includes Escher-Grad Inc.)EG

E.I. DuPont deNemours and Company DU

EFI, Inc. (Electronics For Imaging, Inc.) EF

Epson see Seiko Epson — — —

Fargo Electronics, Inc. FE



   211

Fujitsu, Inc. FU

Fuji Film FF

Fuji Xerox FX

GCC Technologies GC

Gestetner Lasers Pty. Limited GS

Hewlett Packard Company HP HP HP

Hitachi Koki Co., Ltd. HK

IDT ID

Indigo IN

Integrated Computer Solutions, Inc. IC

International Business Machines Corp. IB IBM IBM

Kodak see Eastman Kodak — — —

Lasergraphics LG

Lexmark International LX Lexmark LEXM

Lincoln, A.J. LI

Linotype-Hell AG LH

Management Graphics MG

Mannesmann Scangraphic GmbH SC Mannesmann MANN

Matsushita Electric Industrial Co., Ltd. MT

Mitsubishi Electric Corporation ME

Monotype Corporation PLC MO

NEC Corporation (includes NEC Information Systems, Inc.
and NEC Technologies, Inc.)

NC NEC NEC

Network Computing Devices, Inc. ND

Newgen Corporation NW

NeXT Computer, Inc. NX

Nihon System Gijutsu Co. NP

Oce Graphics USA Inc. (formerly Schlumberger) OC Oce OCE

Ohio Electronic Engravers OE

Table D.1  Assigned prefixes and *Manufacturer strings as of February 9, 1996 (Continued)

Company Name Prefix  *Manufacturer icHeader.manufacturer



212 Appendix D: Manufacturer’s Prefix List and *Manufacturer Strings (9 Feb 1996)

Oki Electric Industry Co. (includes Okidata) OK Oki OKI

Optronics, a Division of Intergraph OP

Panasonic USA PA Panasonic PANA

PIX Computer Systems GmbH PX

PrePRESS Solutions, Inc. PP

QMS, Inc. QM QMS QMS

Radius RA

Ricoh Company, Ltd. RI Ricoh RICO

Scangraphic see Mannesmann — — —

Scitex Corporation Ltd. SX

Seiko Epson Corporation EP Epson EPSO

Seiko Instruments USA, Inc. SK Seiko SEIK

Silicon Graphics SG

Sony Corporation SO

Sun Microsystems, Inc. SN

SuperMac Technology, Inc. SM

Tektronix TK Tektronix TEKT

Texas Instruments Inc. TI TI TI

Total Integration, Inc. TO

Unisys UN

Ultimate Technographics UT

Varityper Inc. (now PrePRESS Solutions, Inc.) VT

VerTec Solutions, Inc. VS

Visual Edge Software Ltd. VE

Wang Laboratories Inc. WA Wang WANG

Xante Corporation XT

Xerox Corporation XR  Xerox XERO

Table D.1  Assigned prefixes and *Manufacturer strings as of February 9, 1996 (Continued)

Company Name Prefix  *Manufacturer icHeader.manufacturer



213

Appendix E: Changes Since 
Earlier Versions

E.1 Changes since Version 4.2, March 29, 1994

New Material

• Added the following new required keywords:

*Manufacturer 

• Added the following new non-required keywords:

*1284DeviceID *1284Modes *CloseSubGroup
*ContoneOnly *DefaultExitJamRecovery *DefaultHalftoneType
*DefaultLeadingEdge *DefaultUseHWMargins *ExitJamRecovery
*?ExitJamRecovery *FCacheSize *FDirSize
*HalftoneName *?InstalledMemory *LeadingEdge
*NonUIOrderDependency *NonUIConstraints *OpenSubGroup
*PageDeviceName *QueryOrderDependency *ReferencePunch
*RenderingIntent *SuggestedManualFeedTimeout
*UseHWMargins

• Added new section 4.5, “Summary of Rules for *Default Keywords”, to 
get all the information about *Default keywords into one place.

• Added new section 5.1, “Creating Your Own Keywords”, to document 
how device manufacturers can create their own main and option keywords 
when building PPD files for their devices. 

• Added new section 6.3, “Examples of Custom Page Size Code”, to assist 
builders of PPD files with writing *CustomPageSize invocation code for both 
roll-fed and cut-sheet devices.

• Added new section 7, “PPD File Summary”, for PPD file builders, con-
taining a summary of what goes into a PPD file, including changes to 
make for a Kanji PPD file. 



214 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

• Added new Appendix D: Manufacturer’s Prefix List and *Manufacturer 
Strings, to list PPD filename & keyword prefixes assigned to device manu-
facturers, known string values for *Manufacturer, and icHeader.manufacturer 
color profile tags, if known.

• Renamed old Appendix D (this appendix) to Appendix E. Removed 
Changes since February 14, 1992, as it only fixed minor typographical 
errors and provided no useful information.

• Combined Appendix B with Appendix A, renamed Appendix A: Keyword 
Categories. Added new Appendix B: Registered mediaOption Keywords. 
Moved all lists of mediaOption option keywords (page sizes) from section 
5.9, Media Option Keywords, into new Appendix B, and combined lists 
into two tables, sorted by name and size. 

• New Appendix B: Introduced the prefix Env to designate envelope page 
sizes. The following sizes had the prefix Env added to reflect this 
change:C0, C1, C2, C3, C4, C5, C6, C7, DL, and Monarch. Also, Comm10 was 
changed to Env10. These names were not changed in existing PPD files. 
The old names are still valid, but builders of new PPD files are encouraged 
to use the new names for easy recognition of envelopes by print managers.

• Indexed all previously deleted keywords for reference to old PPD files.

Changes to Existing Material

• Made *ShortNickName a required keyword. It was not required in previous 
versions of this specification. Added it to various examples. Also clarified 
that the *Default versions of required keywords are also required. For exam-
ple, *DefaultPageSize is required.

• Throughout document, changed all examples using setpagedevice  to use 
recommended method of construction dictionaries, by using (<<) cvx exec  
etc. Updated many examples from Level 1 to Level 2 code. Also added 
audience designators to many Notes: To builders of PPD files, and To 
application developers. Consolidated descriptions of main keywords with 
their associated *Default and query keywords, where it made sense to do so. 
Added Unknown to all *Default values. Specified valid return values, includ-
ing newline, for all query keywords in a standard format.

• Moved ASCII Code Chart and Definition of Terms closer to front of docu-
ment. Many other sections were moved, reorganized, and renumbered to 
be more internally consistent and consistent with the actual structure of 
most PPD files.

• Error Handling: Removed comments on file portability; covered else-
where.



E.1  Changes since Version 4.2, March 29, 1994 215

• Order Dependencies: Edited to clarify that the code ordering guidelines 
are only needed if a parser does not use the *OrderDependency statements 
provided in the PPD file. Removed redundant examples.

• Local Customization Files: Clarified that local customization files must 
include the minimal set of required keywords, and that any customization 
of UI keywords must include the entire *OpenUI/*CloseUI entry. Added warn-
ings about creation & use.

• Definition of Terms: Moved closer to front of document. Removed com-
ments about keyword registration, since this is now covered in section 5.1. 
Added note to state that query keywords do not exist for every main key-
word. Added definitions for, *Default keywords, and stand-alone *Default 
keywords. Changed allowable byte-code ranges to allow 8-bit ASCII in 
translation strings and QuotedValues. Changed definition of in-range and 
out-of-range byte codes.

• General Parsing Summary: Added material about 8-bit ASCII byte codes.

• Main Keywords: Changed 3rd paragraph to make it clear that *Default key-
words can appear alone in a PPD file, without a corresponding invocation 
or query keyword. Moved required keywords list from Parsing Summary 
to beginning of section 5.

• Option Keywords: Slightly reworded beginning of section to reflect 
changes in how option keywords are created.

• Syntax of Values, under Parsing Summary for Values: Changed several 
bullets to clarify use of stand-alone *Default keywords and use of Unknown. 
Added note to warn parsers about 8-bit ASCII appearing in certain Quot-
edValues in translated PPD files. Throughout document, changed the use 
of “StringValues” to “StringValue with multiple components separated by 
white space” where appropriate.

• Translation String Syntax: Clarified that *Default keywords may have a 
translation string on their value only if they are stand-alone keywords. 
Clarified that a given option keyword should have the same translation 
string across closely related entries such as *PageSize, *PageRegion, 

*ImageableArea, and *PaperDimension. Added note to warn parsers about 8-bit 
ASCII appearing in certain QuotedValues in translated PPD files. Added 
description of when hex must be used and when 8-bit ASCII may be used.

• PostScript Language Sequences: Added recommendations on writing 
Level 2 code that reduces the risk of errors if sent to a Level 1 device. 
Added advice on efficient Level 2 dictionary construction. Removed 
*?PageRegion query in example, as this query keyword does not exist. Clar-
ified example of how *End is used.



216 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

• PPD File Structure: Added *Manufacturer and *ShortNickName to list of 
required keywords usually found near front of file. Added info about PPD 
file size limits and keyword content imposed by common print managers.

• Syntax of Specification, General Syntax: Added that PostScript operators 
and dictionary keys appear in boldface type. In Elementary Types, under 
query, added that valid return values are defined for each query, that trans-
lation strings are not allowed on return values, and that return values must 
terminate with a newline. Added new type text for strings with spaces. In 
Standard Option Values for Main Keywords, under Unknown, added that 
stand-alone *Default keywords can’t have value of Unknown.

• General Information Keywords: Added more examples to most keywords; 
added guidelines for PPD file builders to many keywords. Changed the 
first part of a *PCFileName from an upper limit of 8 characters to specify that 
it must be 8 characters; added Adobe’s file naming conventions and exam-
ples. Added options of ISOLatin2 and ISOLatin5 to *LanguageEncoding and Turk-

ish to *LanguageVersion. Added explanation about ICC color profile matching 
to *ModelName and *ShortNickName. Changed value type of *ShortNickName, 
*ModelName, *NickName from string to text to accommodate spaces in value.

• Emulators and Protocols: From *Emulators, removed statement “ Multiple 
*Emulators statements may appear.” There is no need for multiple *Emulators 
statements, since *Emulators can list multiple emulators in a single 
StringValue. Explained odd syntax of *StopEmulator_ and *StartEmulator_ key-
words.

• Structure Keywords, *UIConstraints: Added new rule that *UIConstraints can no 
longer be used with non-UI keywords; instead, the new keyword 
*NonUIConstraints should be used. Also, *UIConstraints should be reciprocated 
and should be considered reciprocated by print managers even if the recip-
rocal constraint is missing. 

• Structure Keywords, *OrderDependency: *OrderDependency may only be used 
with UI keywords and the new keyword *NonUIOrderDependency must be 
used with non-UI keywords. AnySetup should be used for the section value if 
a specific section is not required. Adobe strongly recommends using 
*OrderDependency in every *OpenUI and *JCLOpenUI entry. Changed to say that 
order numbers define the order within a section, rather than across all sec-
tions, to accommodate printing the 1st page from a different bin, when the 
*InputSlot code is not emitted until the 2nd page. Added note about using the 
same order number if possible & how print managers can use this to reduce 
the number of setpagedevice  calls and improve performance. Removed this 
statement regarding code fragments that don’t have *OrderDependency state-
ments: “[Such fragments] are not assigned an ordering number or a sec-
tion. Such code fragments can be used anywhere during the imaging of a 



E.1  Changes since Version 4.2, March 29, 1994 217

page. Executing such code will affect the appearance of future imaging, 
but will not affect imaging already done.”. This left only the statement that 
non-ordered fragments should be emitted after ordered fragments.

• Structure Keywords: *OpenGroup/*CloseGroup may not be nested; the new 
keywords *OpenSubGroup/*CloseSubGroup should be used for nesting groups 
within groups. Removed requirement that main keywords surround by 
*OpenUI/*CloseUI be documented in the PPD spec, as OEMs can invent their 
own main keywords. Added reference to *JCLOpenUI/*JCLCloseUI. In 
*Resolution example at end of *OrderDependency description, changed 2504 to 
2504dpi. Rewrote entire section to be less verbose.

• Symbolic References to Data: Removed unnecessary titles on examples in 
description of *SymbolValue.

• Media Option Keywords: Removed lists of mediaOptions to Appendix B. 
Added explanation of how Transverse qualifier should and should not be 
used. Added explanations for other common qualifiers and page size sub-
strings.

• Custom Page Sizes: Made substantial changes to how custom page sizes 
are handled on cut-sheet devices. Orientation, WidthOffset, and HeightOffset are 
now allowed. All parameters are now defined the same for roll-fed & cut-
sheet media. Orientation can now be used with *HWMargins to figure out 
which edge is leading into the device, so the imageable area can now be 
more accurately determined by subtracting the correct values of *HWMargins 
from the correct edges of the page. Added section for print manager 
authors on how to handle custom page sizes. All complete examples of 
custom page size entries were moved to section 6.4. The keyword 
*VariablePaperSize was removed from the specification, as it was superceded 
by *CustomPageSize in version 4.0.

• Media Handling Features, *InputSlot: Added Microsoft #defines for input 
slots to list of inputSlotOptions. Removed LargeFormat as an inputSlotOption 
because it duplicated the function of AnyLargeFormat and was not used in 
any existing PPD files. Added note to *InputSlot about combining function-
ality such as *MediaType and *ManualFeed with *InputSlot. Added example of 
*InputSlot entry for single-slot or roll-fed devices.

• Media Handling Features: Removed OnlyOne as an option for *OutputBin, as 
this keyword should be omitted if there is only one output bin. Rewrote 
*RequiresPageRegion to clarify that *PageRegion code may be required for rea-
sons other than input slots not sensing page size. Added note to *DefaultOut-
putBin; it should not be present without *OutputBin. To *DefaultOutputOrder, 
added that if this keyword is stand-alone, its value may not be Unknown.



218 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

• Finishing Features: Added option EndOfPage to *Slipsheet. Removed UI 
symbol from *InsertSheet, as this keyword requires the print manager to 
build a special UI to accommodate it, so it cannot be blindly parsed and 
displayed. Noted symbol removal. Added examples to folding, binding, 
and stapling keywords of how to write *UIConstraints so a print manager 
would understand the interdependencies between them.

• Resolution and Appearance Control: Combined descriptions of 
*ScreenAngle, *ScreenFreq, and *DefaultScreenProc. Added material to these 
keywords related to *DefaultHalftoneType and *ContoneOnly. Added note to 
description of *DefaultResolution to clarify that this keyword may appear 
alone, without *Resolution or *SetResolution. Changed *ResScreenFreq and 
*ResScreenAngle to say that they should be omitted in the PPD file of a 
Level 2 device if the default Halftone dictionary type is not “1”. In *BitsPer-
Pixel, deleted requirement that one of the options be None. Changed defini-
tion of None from “1 bit per pixel” to “lowest number of bits per pixel”. 
Added options Off, On, True, False.

• Color Issues: Under *ColorRenderDict, changed how color rendering dictio-
naries are named, to correspond to the new Adobe CRD naming conven-
tion. Clarified how a CRD can be added to the device via *ColorRenderDict.

• Font Related Keywords: Clarified that fonts in the *Font list do not have to 
be Type 1 fonts. Added many new charset and encoding options to cover 
composite and CID-keyed fonts. Clarified how to deal with aftermarket 
plug-in fonts and host-downloaded fonts. Removed recommendation to 
put these in local customization file. Added note about future use of *Font 
with *NonUIConstraints. Added note to *?FontList and *?FontQuery about slowing 
down query responses.

• Printer Messages: Under *Source, added that this keyword lists the names 
of the communications channels. Changed the value type of *PrinterError, 
*Status, and *Message from string to text, to accommodate spaces in the value.

• Features Accessible Only Through Job Control Language: Added advice 
against including both the PS and JCL methods of invoking a given fea-
ture, if both methods exist. Added Unknown to list of valid return values 
from queries.

• Sample PPD File Structure: Added examples of custom page size entries 
and advice on how to write them. Removed Level 1 examples. Expanded 
Level 2 color printer and imagesetter examples.

• Appendix A.2 (formerly Appendix B): Removed the following keywords 
from the list of optionless repeated keywords (these are optionless, but not 
repeated): *Emulators, *Extensions, *FaxSupport, and *Protocols.



E.2  Changes since Version 4.1, April 9, 1993 219

• Appendix C, Table C.2: Added “character set 0 or Western” to definition of 
WindowsANSI and “Script Manager script 0” to definition of MacStandard. 
Removed byte codes 157 and 158 from the WindowsANSI encoding table, 
because these byte codes are unused, not bullets as was previously stated. 
Added footnotes about codes 160 and 173 to the WindowsANSI table (these 
codes may have different names than shown in the table).

• Globally changed several values that were recorded as “invocation code” 
to simply “invocation”. Fixed various formatting errors and typos and 
made minor rewording changes. Improved indexing.

• Changed spec version number from 4.2 to 4.3.

E.2 Changes since Version 4.1, April 9, 1993

• Changed spec version number from 4.1 to 4.2 in all appropriate places.

• Added the following new keywords:

*PrintPSErrors *SuggestedJobTimeout *SuggestedWaitTimeout
*ResScreenAngle *ResScreenFreq *InstalledMemory
*DefaultInstalledMemory

• Added a new option TrueImage to *TTRasterizer.

• Moved description of *VMOption from section 5.4 to section 5.22, System 
Management, after the description of *FreeVM. Removed examples of using 
*UIConstraints on *VMOption to show how much VM is available (this method 
has been replaced by *InstalledMemory). Rewrote description of *FreeVM for 
clarity & accuracy with regard to *VMOption.

• Made the following changes to section 5.7, Installable Options: It is now 
legal, when necessary, to have named keywords, like *InstalledMemory, in the 
InstallableOptions group (instead of the generic *Option1 type of keyword). It is 
now legal to have PostScript code in the value of an entry in the Installable-
Options group. If there is such code, the entry must also have an *OrderDepen-
dency statement. Removed section on Keyword-Value pairs; they are no 
longer recommended in *UIConstraints.

• Added paragraph to description of *UIConstraints to say that constraints 
should only be used with UI keywords.

• Section 2.1, last paragraph: Removed the following sentence from the end 
of the description of defaults, as the PPD specification should not be dic-
tating print manager behavior, only recommending it: “Print managers 
should ensure that if the user selects nothing else, the defaults shown in 



220 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

the user interface are invoked.” Replaced with description of how some 
print managers behave regarding defaults. Removed similar statement dic-
tating print manager behavior from last paragraph of section 2.6.

• Section 5.9: Under Folio page size, changed incorrect reference to 8.5”x13” 
page to correct metric size of 210mm x 330mm. Changed point size of 
page from [595 936] to [595 935] for greater accuracy. Changed imagea-
ble area description to “approximate”. Removed references to “folio 
sheet” and “quarto sheet” (under the definition of Quarto page size).

• Section 5.14: Fixed typo “F*” at beginning of several keywords.

• Appendix A: Removed *AccurateScreensSupport from the list, as it was never 
an *OpenUI keyword. Added *InstalledMemory.

E.3 Changes since Version 4.0, October 14, 1992

• Changed spec version number from 4.0 to 4.1 in all appropriate places.

• Changed this section from Appendix C to Appendix D.

• Inserted new Appendix C, Character Encodings, for use with the new 
*LanguageEncoding keyword.

• Added the following new keywords

*TTRasterizer *LanguageEncoding *ShortNickName
*ColorModel *?ColorModel *DefaultColorModel
*JCLOpenUI *JCLCloseUI *JCLToPSInterpreter
*JCLBegin *JCLEnd
*JCLFrameBufferSize *?JCLFrameBufferSize *DefaultJCLFrameBufferSize
*JCLResolution *?JCLResolution *DefaultJCLResolution
*MaxMediaHeight *?CurrentMediaHeight

• Substantially rewrote section 5.12, Custom Page Sizes, to define the mean-
ing of custom page sizes on cut-sheet devices (old version dealt only with 
roll-fed devices). Added definitions for cut-sheet devices to the custom 
page size parameters and to all relevant keywords. Divided roll-fed and 
cut-sheet devices into two subsections, wrote new introduction to cover 
both sections. Clarified portions of *HWMargins and added info about how to 
use it. Added new illustrations and examples. Changed *MaxMediaWidth 
from int to real. Added explanation to *CurrentMediaWidth.

• Added new section 5.23, “Features Accessible Only Through Job Control 
Language”, to document new *JCL keywords.



E.4  Changes since Version 3.0, dated March 8, 1989 221

• In section 3.6, “Syntax of Values”, under the subheadings QuotedValues 
and Parsing Summary For Values, added exception for *JCL keywords to 
the first rule, regarding the presence of option keywords. *JCL keywords 
are treated like QuotedValues even if they have an option and look like 
InvocationValues.

• In section 4.2, Elementary Types, added new elementary type: JCL. Under 
*Protocols, added note to subsection on PJL regarding the interaction of the 
PJL value and the *JCL keywords. Added JCLSetup section to *OrderDepen-
dency.

• Added reference to *ShortNickName in *NickName description. Also under 
*NickName, clarified use of translation strings and encodings with *NickName.

• Changed description of *UIConstraints and the Installable Options section to 
include keyword-value pairs as well as keyword-option pairs.

• *ImageableArea: Added description of PPD files for devices that have pages 
with an imageable area that can vary depending on resolution and other 
factors.

• Added subheading Syntax and Use in section 5.7, Installable Options. 
Added new section of info: Keyword-Value Pairs.

• Various minor wording changes were made for clarification or brevity. 
Minor typographical errors were fixed. Updated examples at end to 
include some of the new keywords.

E.4 Changes since Version 3.0, dated March 8, 1989

Changes to Text

Significant rewriting and reorganizing occurred in this version of the spec, so 
rather than documenting line-by-line changes, only the major semantic and 
syntactical changes are described here.

• The specification version number was increased to 4.0. International head-
quarters’ addresses added to front cover; updated copyright. “PostScript 
Printer Description files” was changed to “PPD files” in all but the first 
few times it is mentioned; “Printer Description files” were likewise 
changed to “PPD files” in all cases. Changed “printer” to “device” in most 
cases. Changed “paper” to “media” in text, not in keywords.

• The option keyword section at the end of the document was removed; all 
currently registered option keywords are now documented with their 
respective main keywords. Added section with several sample PPD files.



222 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

• Introduction became a section (section 1) and was rewritten to reflect new 
focus on building a user interface from a PPD file and to get more basic 
information on the first page.

• Using PPD Files: Completely rewritten to show how document composi-
tion application and print manager interact to create PostScript language 
code, and how code sample grows as it passes through various phases 
(DSC comments added). Added sections on building a user interface, 
inserting print-time features, error-handling, post-processing, and order 
dependencies within a file.

• Local Customization and *Include: Entire section was rewritten to explain 
what kind of information is in the initial PPD file, what kind of informa-
tion a user or system administrator might want to change or add, the draw-
backs of editing a PPD file directly, and alternative suggestions to 
managing PPD files. Explained local customization files in more detail 
and emphasized consistent use of that title for them. Added subsection on 
changing *Default- values in local customization file. Expanded meaning of 
defaults—in original PPD file, defaults are the factory defaults, but they 
can now be changed in a local customization file. New rule for *Include: 
filenames must be enclosed in quotes. 

• The Format: Significantly rewritten. Added sentence about how queries 
only work if the physical interface to the device allows feedback. Added 
ASCII code chart for commonly referenced characters, definition of terms, 
and descriptions of canonical forms of keyword entries. A bullet was 
added to point out the maximum line length of 255 characters. The maxi-
mum length of 40 characters per keyword was clarified under Main Key-
words. Split apart Parsing Details and reintegrated into subsections on 
main keywords, option keywords, and values. Divided descriptions of 
main keywords, option keywords, and values into subsections for PPD 
writers and PPD parsers.

• Details: Section was split apart and integrated into separate sections on 
main keywords, option keywords, and values. Under Main Keywords, it 
was clarified that a grep for a complete keyword includes the asterisk in 
the keyword name (so “*PageSize” is not a substring of “*DefaultPageSize” ).

• Semantics of Main Keywords: Section was removed and information 
moved to either The Format or Main Keywords. 

• The following keywords are now required in a a PPD file, whereas previ-
ously there was no requirement. Some are old keywords, some are new: 
*PPD-Adobe, *Product, *PSVersion, *PCFileName, *ModelName, *NickName, *PageSize, 
*PageRegion, *ImageableArea, *PaperDimension, *FileVersion, *FormatVersion, and 

*LanguageVersion.



E.4  Changes since Version 3.0, dated March 8, 1989 223

• Option Keywords: Significantly rewritten. Added advice for parsers and 
emphasized extensibility of option keywords.

• Translation String Syntax: This section was moved and retitled from 
Foreign Language Customization: Translation String Syntax, because it 
applies to more than foreign languages. Section was expanded to include 
examples of translating cryptic keywords “from English to English”. In 
the French example, the nonexistent keyword *PaperSize was changed to 
*PageSize and syntactically incorrect percent signs and brackets and the 
word PrinterError were all removed. Added section about 7-bit ASCII PPD 
files and how to represent 8-bit characters (for foreign languages) as hex 
strings. Provided reasons and noted that translation strings, if present, 
should always be displayed to the user rather than the original option key-
word. Added Parsing Summary for translation strings.

• Human-Readable Comments: Added paragraph about comments in Post-
Script language code.

• PostScript Language Sequences: The prohibition against leaving anything 
on the operand and dictionary stacks was removed, as it is already violated 
by the color separation keywords, the halftone screen keywords, the trans-
fer function keywords, and probably others.

• Parsing Details section was removed and integrated into previous 
sections.

• Syntax of Specification: New section to document syntax of spec itself. 
Added syntax and elementary types. Changed the symbols used for “or” in 
the meta-syntax from a slash to a vertical bar, to be consistent with the 
DSC. Inclusive “or” is now defined to be ellipsis, like the DSC. Added 
explanations and examples of each type of PPD entry (main keyword with 
fixed option list, main keyword with variable option list, and keyword 
with no options).

• Paper Handling, was merged with a later section, Introduction to Media 
Handling. The Color Extensions section was removed and its material was 
moved to the beginning of the Color Keywords section.

• In the Keywords introduction, added paragraph about how if a feature is 
not supported by a device, it should be omitted from the PPD. Moved 
Standard Option Values For Main Keywords from back of document to 
beginning of section, to document global options like True, False, None, and 
Unknown. Added examples for each of these and added note about not using 
None or Unknown to indicate absence of a feature on a device.



224 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

• Keywords: Rearranged all keywords into more logical sections and order. 
Removed all option keywords from end of document and integrated them 
into their respective main keyword sections. Added UI symbol (shown 
here) throughout document to mark keywords that should be bracketed 
with *OpenUI/*CloseUI. 

New Keywords

*AdvanceMedia *?AdvanceMedia *DefaultAdvanceMedia
*BindColor *?BindColor *DefaultBindColor
*BindEdge *?BindEdge *DefaultBindEdge
*BindType *?BindType *DefaultBindType
*BindWhen *?BindWhen *DefaultBindWhen
*BitsPerPixel *?BitsPerPixel *DefaultBitsPerPixel
*BlackSubstitution *?BlackSubstitution *DefaultBlackSubstitution
*Booklet *?Booklet *DefaultBooklet
*Collate *?Collate *DefaultCollate
*CutMedia *?CutMedia *DefaultCutMedia
*Duplex *?Duplex *DefaultDuplex
*FoldType *?FoldType *DefaultFoldType
*FoldWhen *?FoldWhen *DefaultFoldWhen
*InsertSheet *?InsertSheet *DefaultInsertSheet
*Jog *?Jog *DefaultJog
*MediaColor *?MediaColor *DefaultMediaColor
*MediaType *?MediaType *DefaultMediaType
*MediaWeight *?MediaWeight *DefaultMediaWeight
*MirrorPrint *?MirrorPrint *DefaultMirrorPrint
*NegativePrint *?NegativePrint *DefaultNegativePrint
*OutputMode *?OutputMode *DefaultOutputMode
*Separations *?Separations *DefaultSeparations
*Signature *?Signature *DefaultSignature
*Slipsheet *?Slipsheet *DefaultSlipsheet
*Smoothing *?Smoothing *DefaultSmoothing
*Sorter *?Sorter *DefaultSorter
*StapleLocation *?StapleLocation *DefaultStapleLocation
*StapleOrientation *?StapleOrientation *DefaultStapleOrientation
*StapleWhen *?StapleWhen *DefaultStapleWhen
*StapleX *?StapleX *DefaultStapleX
*StapleY *?StapleY *DefaultStapleY
*TraySwitch *?TraySwitch *DefaultTraySwitch

*OpenUI *CloseUI *Extensions
*OpenGroup *CloseGroup *Protocols
*StartEmulator_ *StopEmulator_ *Emulators
*FaxSupport *JobPatchFile *?PatchFile
*CustomPageSize *ParamCustomPageSize *?CurrentMediaWidth
*MaxMediaWidth *CenterRegistered *PageStackOrder
*Resolution *HWMargins *LandscapeOrientation

UIU I




E.4  Changes since Version 3.0, dated March 8, 1989 225

*ColorRenderDict *OrderDependency *PCFileName
*DefaultColorSpace *LanguageLevel *ModelName
*RequiresPageRegion *UIConstraints *AccurateScreensSupport

Changes to Existing Keywords

The changes to the syntax and semantics of actual keywords from version 3.0 
are as follows:

• *Include: The filename must now be enclosed in double quotes.

• *ImageableArea, *?ImageableArea: The numbers in the value (and the numbers 
returned by the query) are now real numbers; previously, they were inte-
gers.

• *DefaultResolution, *?Resolution, *SetResolution: These can now take an option of 
the form 300x600dpi. Previously, the only format was 300dpi. This change is 
necessary to accommodate printers with anamorphic resolution.

• *Font: Two more fields were added to the value to describe the character set 
of the font and whether the font is removable or not.

• *PaperTray, *?PaperTray, and *DefaultPaperTray were removed, as their code had 
always been redundant with *PageSize and no tools were found to depend 
upon their presence.

• *Collator, *?Collator, *DefaultCollator: These were changed to *Collate, *?Collate, 
and *DefaultCollate, since they had not previously been used in PPD files and 
this brought them more in line with other keyword usage.

Changes to Descriptions of Existing Keywords

• General Information Keywords: This section title was changed from 
General Defaults and Information Keywords. In *FileVersion, the structure 
of the version number and how to update it was clarified. In *FormatVersion, 
the conformance number of the spec was changed to “4.0.” In 
*LanguageVersion, added material about the encoding of foreign translation 
strings and how to represent non-English characters in translation strings. 
Added new language option keywords Swedish and Danish. Added Level 1 
and Level 2 code fragments to *Product. The definition and examples of 
*Nickname were corrected to be a string within quotation marks but without 
parentheses (for example, “Apple LaserWriter® II NTX v49.3”), since all 
existing PPD files had been built that way (without parentheses). 

• Basic Device Capabilities: *ColorDevice: clarified that this keyword indi-
cates physical color output. Added reference to *Extensions, for devices that 
support color extensions but may or may not physically output color. 
Moved *FileSystem keywords here. *FileSystem was clarified as referring to 



226 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

the capacity for a file system; example was added for a device that has the 
capacity but does not have a file system installed; reemphasized that this 
entry should be omitted if there is no capacity for having a file system. 
Clarified meaning of return values of *?FileSystem. Moved *Throughput to this 
section.

• Keywords: Added new section Structure Keywords. Moved *Include and *End 
to this section. Moved information on device resolution to new section 
Resolution and Appearance Control.

• Introduction to Media Handling: New section created from Paper 
Handling. Significantly rewritten. Added setpagedevice  to the list of exam-
ple invocations.

• Media Option Keywords: New section, created from several old sections. 
Significantly rewritten. Added info about the extensibility of media option 
keywords. PaperKeyword became mediaOption throughout the document. 
Refined explanation of how to handle Envelopes. Explained parsing for 
*OpenUI/*CloseUI rather than a specific list of options. Clarified meaning of 
Transverse (long edge perpendicular to feed direction).

• Media Option Keywords: Rewrote all dimensions in consistent format. 
Built tables of ISO and JIS standard paper and envelope sizes and added 
most sizes. Moved most U.S. standard definitions to a separate table, 
except for the ones that needed extra text to explain them, and included 
several new media sizes. Changed imageable area definition of A4Small 
from inches to points (all others were already in points). Changed imagea-
ble area of LetterSmall from 553x731.5 points to 552x730 points, because 
that is what 8 out of 9 PPD files had for that imageable area. 

• Paper Size Invocation became Media Selection Under *DefaultPageSize, 
Unknown is now an option. Clarified, with examples, how *PageSize is meant 
to be used. Explained how *PageRegion should be used. Removed *PaperTray 
and associated default and query. 

• Information About Media Sizes: Under *DefaultImageableArea and *DefaultPa-
perDimension, the sentence “The value should always be Letter.” was 
removed. “This value may be Unknown or one of the media options listed 
under *ImageableArea/*PaperDimension.” was added. For *ImageableArea, clari-
fied that imageable area was measured in PostScript default units. 
Changed “integers” to “reals” for all imageable area and paper dimension 
keywords. Added that x and y axes should correspond in *ImageableArea and 
*PaperDimension.

• Media Handling Features: For the *InputSlot keywords, the list of options 
was replaced by trayOption and explanation was added. Current options 
were brought forward from the rear of the document. In the definition of 
*ManualFeed the value None was removed from the list of valid choices and 



E.4  Changes since Version 3.0, dated March 8, 1989 227

the explanation changed. The *OutputBin keywords were changed to accept 
an extensible list of bin names, the current options were integrated into 
this section from the rear of the document, and return values were speci-
fied for the query. Added Rear option for output trays. The explanation of 
*OutputOrder was modified to address how most devices handle page stack 
order today.

• Resolution and Appearance Control: This new section was created to con-
tain *SetResolution, *DefaultResolution, *?Resolution, and resolution information. 
Expanded format of the resolution option keyword to include “300x300dpi” 
(as well as the old format of “300dpi”), to accommodate devices with 
anamorphic resolution.

• Gray Levels & Halftoning: The description on *ScreenFreq was changed 
from “the second argument” to “the frequency argument”. The description 
on *ScreenAngle was changed from “the first argument” to “the angle argu-
ment”. Both *ScreenFreq and *ScreenAngle were changed to be a real instead 
of an integer, since that is what is returned by currentscreen . Throughout 
this section, “the .Invert qualifier” was changed to “the .Inverse qualifier”. 
This was a typo in the spec; the .Invert qualifier never appeared in a PPD 
file. Spot options were integrated into this section. Several option key-
words were added to *Transfer to include the ability to define transfer func-
tions for each process color. Options added to Null and Normalized were Red, 
Green, and Blue. The option Factory was added to distinguish between trans-
fer functions that are built-in and transfer functions that are suggested. 
Entire section was rewritten for more detail and clarification.

• Color Separation Keywords: Merged earlier color separation section (used 
to be 3.0) into the intro of this section. Added DiamondDot spot function.

• Font Related: Error was added as a legal value for *DefaultFont. Added charset 
and status fields to *Font, with explanatory table for status. 

• Printer Messages: General rewording throughout section. Under *Message, 
added “Messages that appear under *Status or *PrinterError should not be 
repeated here.” Clarified that a message may appear under both *Status and 
*PrinterError, added examples of entries and translation strings to *PrinterError, 
added Level 2 device names to the list of options for *Source. 

• System Management: Reworded *PatchFile explanation for clarity and added 
requirements for behavior of patch file code. The description of *Password 
was changed to refer to the current password instead of the default pass-
word. *DeviceAdjustMatrix should be commented out if it is not used. Added 
reference to Localization section to *DeviceAdjustMatrix).

• Cleaned up all sample code to eliminate “begin...end” so no dictionaries 
are left on the stack if the code fails.



228 Appendix E: Changes Since Earlier Versions (9 Feb 1996)



229

Index

Symbols

* (first character of main keywords, 
PPD files)   15

*% (comment characters in PPD files)   
28

*? (first characters of query keywords, 
PPD files)   15

/  (translation string marker in PPD 
files)   26

^  (caret, marks a symbol name)   149
| (exclusive OR)   32

Numerics

*1284DeviceID    72
*1284Modes    71
7-bit ASCII byte codes. See byte 

codes
8-bit byte codes. See byte codes

A

Accept68K (*TTRasterizer)    70
*AccurateScreensSupport    87
*?AdvanceMedia    134
*AdvanceMedia    134
anti-aliasing   86
AnySetup (*OrderDependency)    49
ASCII characters

definition of commonly used   2
in main keywords   16
range allowed in PPD file   4

B

basic device capabilities keywords   
68–72

BCP (*Protocols)    78

binary communications protocol   78
*?BindColor    130
*BindColor    130
*?BindEdge    129
*BindEdge    129
*?BindType    130
*BindType    130
*?BindWhen    130
*BindWhen    130
bit smoothing   86
*?BitsPerPixel    87
*BitsPerPixel    87
*?BlackSubstitution    91
*BlackSubstitution    91
*?Booklet    131
*Booklet    131
Boolean (*OpenUI)    42
bounding box (imageable area)   102
byte codes

8-bit allowed in QuotedValue   21
in StringValues   23
in SymbolValues   22
in translation strings   27
range in InvocationValues   21
range in PPD files   4, 15
translating PPD files   27

C

Cassette (*InputSlot)    97
*CenterRegistered    111

use by print manager   117
when to omit   175

charset
value of *Font    138

CID-keyed composite fonts
*Font charset value   139
*Font encoding value   138
version  in *Font    138



230 Index (7 Dec 1995)

clear channel
needed for BCP   78
needed for emulators   80

clipping path (*ImageableArea)    102
*CloseGroup    45
*CloseSubGroup    46
*CloseUI    42
CMap

used as encoding value of *Font    
138

*?Collate    123
*Collate    123
colon, in PPD files   20
color issues in PPD files   91–95

black substitution   91
color depths, invoking   87
color matching   146
color rendering dictionaries   92

color separation keywords   146–149
custom color   148
option keywords defined   146
process color   146

*ColorDevice    68
*?ColorModel    92
*ColorModel    92
*ColorRenderDict    92
colorsepkey option keyword   147
*ColorSepScreenAngle    148
*ColorSepScreenFreq    148
*ColorSepScreenProc    148
*ColorSepTransfer    148
Comm10

changed to Env10    184
comments in PPD files   28
configuration panel, created from 

PPD file   66
*ContoneOnly    87
*?CurrentMediaHeight    111

when to omit   175
*?CurrentMediaWidth    111

when to omit   175
custom page sizes   106–119

code examples   166–175
responsibilities of a print manager   

117
*CustomCMYK    148

use with *InkName    149

*CustomPageSize    109
and  *NonUIOrderDependency    

48
examples   166–175
parameters defined   108
relationship to 

*ParamCustomPageSize    110
*?CutMedia    135
*CutMedia    135
cut-sheet media

example of custom page size entry   
173, 175

keywords defined for custom page 
sizes   113

D

*Default
example of format   16
in InstallableOptions entry   65, 68
in local customization files   67
prefix   15
summary of rules   40
translation string allowed   26
use of value False   38
use of value None   39
use of value True   38
use of value Unknown   39
valid values   24

default keywords in PPD files
*Default syntax   15
definition   3
summary of rules   40
using and changing default settings   

14
default state of the device   6
*DefaultAdvanceMedia    134
*DefaultBindColor    130
*DefaultBindEdge    129
*DefaultBindType    130
*DefaultBindWhen    130
*DefaultBitsPerPixel    87
*DefaultBlackSubstitution    91
*DefaultBooklet    131
*DefaultCollate    123
*DefaultColorModel    92
*DefaultColorSep    148
*DefaultColorSpace    68
*DefaultCutMedia    135
*DefaultDuplex    122
*DefaultExitJamRecovery    76

*DefaultFoldType    123
*DefaultFoldWhen    124
*DefaultFont    141
*DefaultHalftoneType    88
*DefaultImageableArea    102
*DefaultInputSlot    97
*DefaultInsertSheet    132
*DefaultInstalledMemory    74
*DefaultJCLFrameBufferSize    82
*DefaultJCLResolution    83
*DefaultJog    133
*DefaultLeadingEdge    112

example   168
*DefaultManualFeed    99
*DefaultMediaType    101
*DefaultMediaWeight    101
*DefaultMirrorPrint    134
*DefaultNegativePrint    134
*DefaultOutputBin    119
*DefaultOutputMode    122
*DefaultOutputOrder    120
*DefaultPageRegion    100
*DefaultPageSize    99
*DefaultPaperDimension    103
*DefaultPaperTray keyword removed   

225
*DefaultResolution    84
*DefaultScreenProc    88
*DefaultSeparations    149
*DefaultSignature    121
*DefaultSlipsheet    132
*DefaultSmoothing    86
*DefaultSorter    125
*DefaultStapleLocation    125
*DefaultStapleOrientation    128
*DefaultStapleWhen    128
*DefaultStapleX    126
*DefaultStapleY    127
*DefaultTransfer    90
*DefaultTraySwitch    121
*DefaultUseHWMargins    115
device, definition of   1
*DeviceAdjustMatrix    78
Disk

status value of *Font    140
document structuring conventions

relationship to PPD files   2
surrounding PPD file features   7, 8
use in unencapsulated jobs   33

DocumentSetup 
(*OrderDependency)    49



Index 231

DSC. See document structuring 
conventions

*?Duplex    122
*Duplex    122

E

elementary types of a PPD file   36
*Emulators    79
emulators and protocols keywords   

78–80
encoding

*LanguageEncoding option   57
encoding

value of *Font    137
*End    29, 55
Env

prefix for envelope names   184
Envelope (*InputSlot)    97
Envelope page size name   184
envelopes

requesting unnamed sizes   184
error handling, in PPD files   9
EUC (font encoding option)   137
Executive page size variations   184
exiting the server loop, PPD keywords 

marked   33
*?ExitJamRecovery    76
*ExitJamRecovery    76
*ExitServer    76
ExitServer (*OrderDependency)    49
Expert

font charset value   139
font encoding option   137

ExpertSubset

font charset value   139
font encoding option   137

*Extensions    68
Extra in page size name   185

F, G

Factory transfer function   91
False , defined   38
*FaxSupport    69
*FCacheSize    136
*FDirSize    136
filename, elementary type defined   36
*?FileSystem    69
*FileSystem    69
filmsetter (imagesetter) features   133

finishing features   123–133
folding a job after printing   123
*?FoldType    123
*FoldType    123
*?FoldWhen    124
*FoldWhen    124
*Font    136

charset value   138
encoding value   136
status value   140

font related keywords in PPD files   
136–139

font encoding options   140
fonts in ROM   140
fonts on disk   140

*?FontList    141
fontname

*Font option   136
fontname, elementary type defined   

36
*?FontQuery    142
Forced

*LeadingEdge option defined   
112

example   167
foreign language translation   25–28, 

180
format of PPD files   15–31
*FormatVersion    56
*FreeVM   73

relationship to *VMOption    74
globaldict , assumptions in PPD files   

29
gray levels and halftoning   87–91

transfer functions   91

H

halftone screen
angle, frequency, spot function 

components   88
list of spot options   89
order of invocation   11

*HalftoneName    94
hard disk, presence listed   69
HeadToToe duplex printing   122
Height  (custom page size parameter)

defined   108
example   166

HeightOffset

custom page size parameter 
defined   108

discarded by Level 1 devices   168
discarded if not supported   174, 

175
range if not supported   174

hexadecimal substrings
defined   5
in *JCL keywords   82, 83
in *NickName    60
in emulator code   80
in InvocationValues   21
in QuotedValues   21
in translation strings   27
parsing rules   25
when to use   21

*HWMargins    113–115
example   166
use by print manager   118, 119

I

*?ImageableArea    103
*ImageableArea    102

use   96
imagesetter features   133–136
ImageShift  in *CustomPageSize  

code   174
*Include    25, 55

example   13
use with *SymbolValue    152

informational main keywords, 
definition   4

*InkName    149
*?InputSlot    97
*InputSlot    97

combined with *MediaType    98
use by print managers   100

in-range byte codes   4
*?InsertSheet    132
*InsertSheet    132
installable options (PPD file group)   

65–68
InstallableOptions

and *InstalledMemory    75
option keyword definition   65

*?InstalledMemory    74
*InstalledMemory    73, 74, 75

in InstallableOptions group   66, 67
int, elementary type defined   36



232 Index (7 Dec 1995)

invocation, elementary type defined   
37

InvocationValue   20
in InstallableOptions entry   68
symbol name in place of   149

ISOLatin1
*LanguageEncoding value   57
encoding conversion tables   199–

207
font charset value   139
font encoding option   137

ISOLatin2 (*LanguageEncoding)    
57

ISOLatin5 (*LanguageEncoding)    
57

J, K

JCL keywords
and *Procotols    79
defined   81

JCL, elementary type defined   37
*JCLBegin    81
*JCLCloseUI    82
*JCLEnd    81
*?JCLFrameBufferSize    82
*JCLFrameBufferSize    82
*JCLOpenUI    82
*?JCLResolution    83
*JCLResolution    83
JCLSetup (*OrderDependency)    49
*JCLToPSInterpreter    81
JIS

character set options   139
font encoding option   137

JIS83-RKSJ (*LanguageEncoding)    
57

job control language keywords   81
*JobPatchFile    73
*?Jog    133
*Jog    133
Kanji PPD files   179
keywords in PPD files   41–152

L

landscape orientation, relationship to 
Transverse   185

*LandscapeOrientation    104
language extensions, support in PPD 

files   68

*LanguageEncoding    56
byte code conversion tables   199–

207
*LanguageLevel    70
*LanguageVersion    57
LargeCapacity (*InputSlot)    97
*LeadingEdge    112

examples   166
use by print manager   117, 118

Level 1
presence noted in PPD file   7, 70

Level 2
presence noted in PPD file   7, 70
recommendations for code 

sequences   30
line length in PPD file   4
local customization (PPD) file

defined   12
parsing order   13
warnings about using   13

local customization of PPD files   1, 
11–14

Long (*LeadingEdge)

example   166
option defined   112

Lower (*InputSlot)    97
Lower (*OutputBin)    120

M

MacStandard
*LanguageEncoding value   57
encoding conversion tables   199–

205
main keywords in PPD files   15–17

ASCII characters   17
case   17
creating your own keywords   41–

42
definition   3
delimiters   17
general format   16
length limit   17
manufacturer prefix list   209
parsing   16
sample entry   34
standard option values   38–39
terminators   17
unrecognized   17

managing a device via PPD files   11
*?ManualFeed    99

*ManualFeed    99
*Manufacturer    58

list of names   209
Margins  in *CustomPageSize  code   

174
*MaxMediaHeight    111

example   166
*MaxMediaWidth    111

example   166
MaxPage page size name   185
media handling features in PPD files   

95, 119–122
automatic tray switching   121
duplex printing   122
output order options, list of   120
select a media tray   97
selecting letterhead   97
selecting special paper   97
tumbling a duplex print job   122

media option keywords   96, 183–198
media saving page orientation   112
media selection   96–101
media size information   102–106

bounding box query   103
margins   102
physical height   103
physical width   103

*?MediaColor    101
*MediaColor    101
*?MediaType    101
*MediaType    101
*?MediaWeight    101
*MediaWeight    101
*Message    145
Middle (*InputSlot)    97
Minus90 (*LandscapeOrientation)    

105
*?MirrorPrint    134
*MirrorPrint    134
*ModelName    59

same as *NickName    60



Index 233

N

*?NegativePrint    134
*NegativePrint    134
*NickName    60

relation to *ShortNickName    64
use of   64

None

defined as option and value   39
in PickMany option list   43
in PickOne option list   43

*NonUIConstraints    54
examples   167

*NonUIOrderDependency    10, 48
Normal , output order defined   120
Normalized transfer function   91
NoValue   20, 23
Null transfer function   90

O

OldStandard

font charset value   139
one-sided printing   122
*OpenGroup    14, 45
*OpenSubGroup    46
*OpenUI

defined   42
in local customization file   13
list of UI keywords   181
UI symbol in spec   33

*Option, in InstallableOptions entry   
66

option keywords in PPD files   17–20
ASCII characters   19
capitalization conventions   183
case   19, 42
creating your own   42
definition   3
forbidden characters   18
length limit   19
parsing   19
qualifier   18
serialization   18

option, elementary type defined   37
optional features, handling in PPD 

files   65
order dependency in PPD files   10
*OrderDependency    10, 48

Orientation

calculation by print manager   118
table for use by print manager   119
custom page size parameter 

defined   108
discarded if not supported   175
range in *ParamCustomPageSize    

110
used to figure imageable area of 

custom page size   118
uses   108

out-of-range byte codes   4
output bin options, list   120
output file, definition of   1
*OutputBin    119
?OutputBin    119
*?OutputMode    122
*OutputMode    122
*?OutputOrder    120
*OutputOrder    120

P

*PageDeviceName    94
PageOffset  in *CustomPageSize  

code   170, 174
*PageRegion    100

can be overridden by *PageSize    
100

use with manual feed   95
pages per minute   70
PageSetup (*OrderDependency)    49
*?PageSize    99
*PageSize    99

use   95
use of *PageRegion  instead of   

100
*PageStackOrder    121
*PaperDimension    103

relationship to *ImageableArea    
102

use   96
*?PaperTray keyword removed   225
*PaperTray keyword removed   225
*Param, prefix   15
*ParamCustomPageSize    110

example   166, 168
parsing rules for PPD files   15
parsing summary for values   23
*Password    76
*?PatchFile    73

*PatchFile    72
*PCFileName    61

list of OEM prefixes   209
PickMany (*OpenUI)    42
PickOne (*OpenUI)    42
PJL (*Protocols)    78
Plus90 (*LandscapeOrientation)    

105
PostScript language sequences in PPD 

files   28
Level 2 vs Level 1   29

PostScript printer description files. 
See PPD files

PPD file format specification
changes from earlier versions   213

PPD files
local customization (PPD) file

naming   13
post-processing   8

*PPD-Adobe    42
PreferLong (*LeadingEdge)    112

example   167
print manager, defined in PPD spec   6
printable 7-bit ASCII. See byte codes
printer messages in PPD files   143–

146
*PrinterError    143
*PrintPSErrors    77
*Product    62
Prolog (*OrderDependency)    49
*Protocols    78, 80
*PSVersion    62

Q

qualifier
defined   18
for mediaOption keywords   184

query keywords in PPD files
definition   3

query, elementary type defined   37
querying the device via a PPD file   5
*QueryOrderDependency    51
QuotedValue   20, 21

R

real, elementary type defined   37
Rear (*InputSlot)    97
Rear (*OutputBin)    120
*ReferencePunch    135



234 Index (7 Dec 1995)

*RenderingIntent    93
repeated keywords   14, 182
required keywords

handling missing   9
in local customization file   16
list of   41
order of appearance   31

*RequiresPageRegion    103
*Reset    76
*?Resolution    86
*Resolution    85
resolution

enhancement   86
resolution and appearance control   

84–87
*ResScreenAngle    89
*ResScreenFreq    89
Reverse , output order defined   120
RKSJ  (font encoding option)   137
roll-fed media

example of custom page size entry, 
Level 1   168, 169

example of custom page size entry, 
Level 2   171, 172

ROM

status value of *Font    140
Rotated  in page size name   185

S

sample of spec format   34
sample PPD files   153–175

custom page size examples   166
Level 2 Color Printer   153
Level 2 Imagesetter   160

*ScreenAngle    88
*ScreenFreq    88
*ScreenProc    89
*?Separations    149
*Separations    149
serialization qualifier

for media size, defined   184
*SetResolution    85
Shift-JIS  (font encoding option)   137
Short (*LeadingEdge)    112

example   166
*ShortNickName    64

relationship to *NickName    60
*?Signature    121
*Signature    121
simplex (one-sided) printing   122

size limits of PPD files   31
*?Slipsheet    132
*Slipsheet    132
Small in page size name   185
*?Smoothing    86
*Smoothing    86
*?Sorter    125
*Sorter    125
*Source    145
Special

font charset value   139
font encoding option   137

spooler, using PPD files   8
spot color   146
stand-alone default keywords

definition   3
rule summary   40
rules   24, 26, 39

Standard

font charset value   138
font encoding option   137

*?StapleLocation    125
*StapleLocation    125

relationship to *StapleX    126
*?StapleOrientation    128
*StapleOrientation    128
*?StapleWhen    128
*StapleWhen    128
*?StapleX    126
*StapleX    126
*?StapleY    127
*StapleY    127
stapling a job after printing   125
*StartEmulator_emulatorOption    80
startjob , use in *ExitServer code    76
*Status    144
status

value of *Font    140
*StopEmulator_emulatorOption    80
string, elementary type defined   38
StringValue   20, 23
structure keywords (PPD files)   42–

55
structure of PPD files   31
*SuggestedJobTimeout    77
*SuggestedManualFeedTimeout    77
*SuggestedWaitTimeout    77
summary of PPD file contents   176
*SymbolEnd    152

use with *SymbolLength    150

symbolic references to data in PPD 
files   149–152

*SymbolLength    150
symbolNames, use with *Symbol 

keywords   152
*SymbolValue    151

use   150
use with *SymbolEnd    152
use with *SymbolLength    150

SymbolValue   20, 22
translation string not allowed   26

syntax of PPD specification   32–35
system administrator, defined   11
system management in PPD files   72–

78
system management of PPD files   12
systemdict , assumptions in PPD files   

29

T

tagged binary communications 
protocol   79

TBCP (*Protocols)    79
*Throughput    70
*Transfer    90
translation strings

defined   25
on *Default keywords   26
on query keywords, not allowed   

37
on related keywords   26, 96
parsing rules   27
rules   26
syntax in PPD files   25–28

transverse
as used on roll-fed devices   112
common use by print managers   

113
Transverse mediaOption qualifier

definition   185
usage advice   177

*?TraySwitch    121
*TraySwitch    121
True , defined   38
TrueImage (*TTRasterizer)    70
*?TTRasterizer    71
*TTRasterizer    70
tuples, defined in PPD files   16
two-sided printing   122
Type42 (*TTRasterizer)    70



Index 235

typesetter (imagesetter) features   133

U

UI graphic symbol, definition   44
UI keywords

definition   4
list of   181
use with *OpenUI/*CloseUI    42

*UIConstraints    52
in InstallableOptions entry   66, 67

unencapsulated job   33
Unknown

*LeadingEdge option defined   
113

generic option/value defined   39
use with *LeadingEdge    167

unsetting a feature in PPD files   8
Upper (*InputSlot)    97
Upper (*OutputBin)    120
*UseHWMargins    115

example of *NonUIConstraints    
167

use by print manager   117, 118
when to omit   175

user interface
building from a PPD file   5, 6

user-defined page sizes in PPD files   
106

userdict , assumption in PPD files   29
using PPD files   5–14

V

*VariablePaperSize keyword 
removed   217

version
value of *Font    138

*VMOption    74

W, X, Y, Z

Width

custom page size parameter   108
example   166

WidthOffset

custom page size parameter   108
discarded if not supported   174, 

175
range if not supported   174
use with *CenterRegistered    111

WindowsANSI
*LanguageEncoding value   57
encoding conversion tables   199–

207



236 Index (7 Dec 1995)


