POSTSCRIPT®

Software From Adobe

PostScript Printer
Description File Format

Specification

Adobe Developer Support

\Version 4.3

9 February 1996

Adobe Systems Incorporated

Corporate Headquarters

1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415)961-4400 Main Number

(415) 961-4111 Developer Support
Fax: (415)961-3769

Adobe Systems Europe B.V.
Europlaza

Hoogoorddreef 54a

1101 BE Amsterdam Z-O, Netherlands
+31-20-6511 200

Fax: +31-20-6511 300

PN LPS5003

Adobe Systems Eastern Region
24 New England

Executive Park

Burlington, MA 01803

(617) 273-2120

Fax: (617) 273-2336

Adobe Systems Japan
Swiss Bank House 7F

4-1-8 Toranomon, Minato-ku
Tokyo 105, Japan
+81-3-3437-8950

Fax: +81-3-3437-8968

Copyright[] 1987-1996 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language.

The sentences in this book that use “PostScript language” as an adjective phrase are so constructed to
reinforce that the name refers to the standard language definition as set forth by Adobe Systems
Incorporated.

PostScript, the PostScript logo, Display PostScript, Adobe, and the Adobe logo are trademarks of
Adobe Systems Incorporated which may be registered in certain jurisdictions. Apple, AppleTalk,
LaserWriter, and Macintosh are registered trademarks of Apple Computer, Inc. Other brand or product
names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

Contents

PostScript Printer Description File Format Specification
1 Introduction 1

1.1 ASCIl Code Chart 2
1.2 Definition of Terms 3

2 Using PPD Files 5

2.1 Building a User Interface for Printing 6
2.2 Inserting Print-Time Features 7

2.3 Post-Processing 8

2.4 Error Handling 9

2.5 Order Dependencies 10

2.6 Local Customization of PPD Files 11

3 Format 15

3.1 General Parsing Summary 15

3.2 Main Keywords 15

3.3 Option Keywords 17

3.4 Syntax of Values 20

3.5 Translation String Syntax 25

3.6 Human-Readable Comments 28
3.7 PostScript Language Sequences 28
3.8 PPD File Structure 31

4 Syntax of Specification 32

4.1 General Syntax 32

4.2 Sample Keyword Statements 34

4.3 Elementary Types 36

4.4 Standard Option Values for Main Keywords 38
4.5 Summary of Rules for *Default Keywords 40

5 Keywords 41

5.1 Creating Your Own Keywords 41
5.2 Structure Keywords 42

5.3 General Information Keywords 56
5.4 Installable Options 65

5.5 Basic Device Capabilities 68

5.6 System Management 72

5.7 Emulations and Protocols 78

iv

Contents

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
521
5.22
5.23

Features Accessible Only Through Job Control Language 81
Resolution and Appearance Control 84
Gray Levels and Halftoning 87

Color Adjustment 91

Introduction to Media Handling 95
Media Option Keywords 96

Media Selection 96

Information About Media Sizes 102
Custom Page Sizes 106

Media Handling Features 119
Finishing Features 123

Imagesetter Features 133

Font Related Keywords 136

Printer Messages 143

Color Separation Keywords 146
Symbolic References to Data 149

6 Sample PPD File Structure 153

6.1
6.2
6.3

Level 2 Color Printer 153
Level 2 Imagesetter 160
Examples of Custom Page Size Code 166

7 PPD File Summary 176

7.1

PPD Files for Kanji Products 179

Appendix A: Keyword Categories 181

Al
A2

Ul Keywords 181
Repeated Keywords 182

Appendix B: Registered mediaOption Keywords 183

B.1
B.2

Components of mediaOption Keywords 184
mediaOption Name Tables 186

Appendix C: Character Encodings 199

C1
C.z2
C3
C4

All Encodings Indexed By Byte Code 200
Conversions from WindowsANSI Encoding 202
Conversions from MacStandard Encoding 204
Conversions from ISOLatinl Encoding 206

Appendix D: Manufacturer’s Prefix List and *Manufacturer Strings 209

Appendix E: Changes Since Earlier Versions 213

E.l
E.2
E.3
E.4

Index

Changes since Version 4.2, March 29, 1994 213
Changes since Version 4.1, April 9, 1993 219
Changes since Version 4.0, October 14, 1992 220
Changes since Version 3.0, dated March 8, 1989 221

229

(9 Feb 1996)

PostScript Printer Description File
Format Specification

Introduction

PostScript' printer description files (PPD files) are text files that provide a
uniform approach to using the diverse features of devices that contain Post-
Script interpreters. Such features include different page sizes, different meth-
ods of paper and film handling, memory size, font availability, and finishing
features such as duplex printing and stapling. All devices do not have the
same set of features, and even devices with the same features do not necessar-
ily invoke those features in the same way. PPD files provide applications with
the necessary information about a device’s features, including the feature
options, the default settings, how to request the current settings, how to
change the settings, and other information that might be used for scheduling
jobs.

In this specification, the teralevicemeans any output device containing a
PostScript interpreter, such as a printer, imagesetter, or film recorder. Each
device has a PPD file associated with it. The PPD files for all devices that are
accessible to a given host computer are stored on that host computer. Appli-
cations on the host computer can then parse PPD files to discover the list of
features available on a device. PPD files contain structures that allow “blind”
parsing of a list of features. Applications can parse for these structures with-
out understanding the features they contain. Applications can then build a
user interface from the list of features found in the PPD file for the selected
device.

The PPD file also contains the PostScript language code to invoke each fea-
ture. In this specification, the teroutput filerefers to the file containing the
PostScript language description of the document composed by the user.
When a user selects a feature from the user interface, such as manual feed or
duplex printing, the code for each selected feature is extracted from the PPD
file and included in the appropriate place in the output file before the output
file is sent to the device.

Local customizations to a PPD file can be added at the user site to accommo-
date changes to the printer, such as the addition of fonts or memory, or to
configure a device a certain way (for example, to always print in duplex).

There is a close relationship between PPD files and the Adobe Sykiems

ment structuring conventiorfalso known a®SC). These comment conven-
tions can be used in an output file to identify the code that invokes device-
specific features. This allows the output file to be redirected from one device
to another by a spooler or other post-processing software. As an output file is
routed across a network, a spooler can extract device-specific code by parsing
for the associated DSC comments. The spooler can then parse the PPD file
for the new device, extract new device-specific code, and insert that code into
the output file before routing the file to the new device.

Every piece of code that is extracted from a PPD file and inserted into an
output file should be enclosed by the appropriate DSC comments. Version 3.0
of the Document Structuring Conventions specification is documented in
Appendix G of thd?ostScript Language Reference Manual, SecontibBEd

Any later versions of this specification can be obtained from the Atlobe
Developers Association.

1.1 ASCIl Code Chart

The following ASCII characters are referenced repeatedly in this document:

asterisk *' (decimal 42)

e caret V' (decimal 94)

e colon, "’ (decimal 58)

« double quote™ (decimal 34)

* newline— any combination of carriage return (decimal 13) and line feed
(decimal 10)

e period,‘. (decimal 4§

e question mark'?’ (decimal 63)

e slash /" (decimal 47)

* space(decimal 32)

 tab (horizontal) (decimal 9)

« open angle bracket<’ (decimal 60)

« closing angle braket >’ (decimal 62)

PostScript Printer Description File Format Specification (9 Feb 1996)

1.2

Definition of Terms
This section defines many of the terms used throughout this specification.

There are two basic types of keywords in a PPD ffilein keywordsand
option keywordsMain keywords denote a device feature, such as the set of
available page sizetPggeSize) or input slots*{nputSlot).

Option keywords, which modify main keywords, describe the list of available
options for a feature. For example, the option keywords for the main keyword
*PageSize describe the available page sizes, sudletas Legal, A4, Tabloid, and

so on. The option keywords for the main keywonglitSlot describe the avail-
able input slots, such agper, Lower, and so on.

Two subsets of the main keyword class@datault keywordandquery key-

words Default keywords provide information about the default state of the
device as shipped from the factory. Default keywords share the root name of a
main keyword, as irDefaultPageSize and*PageSize. When discussed as a class

of keywords, default keywords are also referred tefsult keywords,
becauseDefault is always their prefix. AStand-alonelefault keyword is one

that appears in the PPD file without its related main keyword (for example,
*DefaultResolution without *Resolution).

A querykeywordprovides a code sequence, which, when downloaded to the
device, returns information about the current state of the device. This can be
used by applications to determine the state of a device and perhaps request
operator intervention (for example, if the appropriate media tray is not
present). Note that queries can only be used when the physical interface to
the device permits feedback from the device. Also, queries must be emitted in
a “query job” that immediately precedes the print job. Among other things,
this allows spoolers to process queries without processing the actual print job.
(See theDSCspecificationfor a description of query jobs.)

Not every main keyword has an associated query keyword. Query keywords
have been defined only if they are possible and useful, and are completely
optional.

A statements a single instance of a main keyword, option keyword (if any),
and value. There are seven formats for statements:

1. *MainKey
2. *MainKey: StringValue
3. *MainKey: "QuotedValue"

4. *MainKey: "SymbolValue

1 Introduction 3

5. *MainKey OptionKey: StringValue
6. *MainKey OptionKey: "InvocationValue"
7. *MainKey OptionKey: *"SymbolValue

Each statement in a PPD file falls into one of these formats. The value types
are defined in section 3.4.

An entrydescribes a group of statements that logically belong together. An
entry usually includes @efault keyword, several instances of a main keyword
with different option keywords and values, and a query keyword. An entry
often also has surroundistructurekeywordswhich are discussed in section
5.2.

There are two general classes of main keywandsrmationalandUl (for

User Interface)lnformationalmain keywords provide information about a
feature, such as how much memory is available or which fonts are resident.
Such information is usually only useful to an application and does not appear
in the user interfacéJl keywordsrepresent features that would commonly
appear in a user interface (Ul). They provide the code to invoke a user-select-
able feature within the context of a print job; for example, the selection of an
input tray or manual feed. The entries of Ul keywords are surrounded by the
structure keywordSpenUl/*CloseUl or *JCLOpenUI/*JCLCloseUl (see section 5.2).

Theline lengthof any line in a PPD file must be less than or equal to 255
characters, including line termination characters. Line termination in PPD
files can consist of any combination of the ASCII characters carriage return
(decimal 13) and line feed (decimal 10). In this specification, the set of line
termination characters is referred tanasvline

White spacés defined as any combination of the ASCI charadpeseand

tab. Newline characters should not be treated the same as white space charac-
ters, because the newline character (or pair of characters) signals termination
of a statement (exceptions to this rule are noted on a case-by-case basis).

The following8-bit byte codeare allowed in a PPD file: decimal 32 through
decimal 255 inclusive, plus decimal 9 (ASCII horizontal tab), decimal 10
(ASCII line feed), and decimal 13 (ASCII carriage return). However, most
data types further restrict the allowable byte code range. Characters that fall
within the allowable range for a particular data type are cailednge byte
codes Characters that fall outside the allowable range for a particular data
type are calledut-of-range byte codes

Printable 7-bit ASCIlis the set of byte codes that fall within the range of dec-
imal 32 through decimal 126 inclusive, plus decimal 9 (ASCII horizontal
tab), decimal 10 (ASCII line feed), and decimal 13 (ASCII carriage return).

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

A hexadecimal substrinig used to represent out-of-range byte codes in cer-
tain data types (see section 3.5). A hexadecimal substring consists of a
sequence of zero or more pairs of hexadecimal digits, preceded by the < (less
than) character (decimal ASCII 60) and followed by the > (greater than) char-
acter (decimal ASCII 62). Hexadecimal digits consist of the characters 0
through 9, a through f, and A through F (case is insignificant). Spaces and
tabs can be intermixed with the hexadecimal digits and should be ignored.
Newlines may occur and should be ignored, except in translation strings,
where they are illegal. See section 3.5 for the treatment of newlines in transla-
tion strings. All other characters should be considered an error. An odd
number of hexadecimal digits is also an error.

Using PPD Files

PPD files can be used during several phases of document production. First,
during printer installation or setup, the user selects an output device and,
implicitly or explicitly, a PPD file. The association of the PPD file with the
printer can be handled by an application, or the user may select the PPD file
explicitly. An application can then parse the PPD file for a list of optional
accessories, and display a configuration panel that asks the user which acces-
sories are installed. This information can be used later by a printing applica-
tion to determine which options to display to the user at print time.

Some device features require additional memory or other hardware before
they can be invoked. For example, a device might need more than the mini-
mum amount of memory to print a legal-size page, or to do color separations,
or it might need an external device to fold paper. The PPD file will contain
information for all features that are supported by the device hardware and the
PostScript interpreter. It is up to the user to install the correct peripherals and
memory needed to make these features accessible, and to tell the printing
application that they are available.

This specification does not address the uses of PPD files at document compo-
sition time. For information about using a PPD file at document composition
time, see Technical Note #5117, “Supporting Device Features.”

At print time, the selected PPD file can be used to construct a user interface
that displays the available features of the requested device, such as duplex
printing or manual feeding. The default values for those features can be
obtained from the PPD file. Where applicable, there is also code that can be
used to determine the current settings of features (known as querying the
device). After the user selects various printing features, the code to invoke
those features can be extracted from the PPD file and inserted into the output
file.

2 Using PPD Files 5

Finally, PPD files for other devices can be used by a post-processor, such as a
spooler, to insert new device-specific code into the output file and route the
file to a different device. More detail on the use of PPD files in each phase of
document production is provided in the next few sub-sections.

In this specification, the application that parses the PPD file for device fea-
tures and provides the print panel function is referred tgpaimtamanager

Often, it is the same piece of software that converts an application’s internal
representation of a document to the PostScript language representation of the
same document. The function of the print manager might be provided by a
system-level driver, by a separate piece of software, or it might be part of an
application.

Among its other duties, the print manager

« takes input from the user via some user interface, such as a print panel or
command line,

« extracts from the PPD file the corresponding code sequences to invoke the
requested features,

 inserts the code sequences into the appropriate setup section of the output
file, and

« surrounds the code sequences with the appropriate DSC comments.

2.1 Building a User Interface for Printing

At print time, a user must be able to select various device features, such as
paper size or manual feed, through a user interface such as a print panel or a
command line. The features offered to the user by a print panel can be con-
structed by parsing the PPD file for the selected device, discovering the avail-
able features, and displaying them to the user for selection. For example, the
PPD file contains a list of paper sizes supported by the device. A user inter-
face can display that list to the user and allow the user to select a paper size
from the list.

The PPD file also contains information about the default state of the device as
it is shipped from the factory. The default state of the device can be used as a
starting point for setting the initial state of the user interface. For example,

the default state of optional accessories can be used to indicate whether or not
those accessories are installed, and, therefore, whether or not to display them
to the user.

Second, the default state of individual features can be used to determine how
they are initially displayed. For example, if the default state of the device is to
print on letter-size paper with manual feed turned off, the user interface could
initially appear with letter-size paper selected and manual feed not selected.

PostScript Printer Description File Format Specification (9 Feb 1996)

2.2

This tells the users that if they change nothing, their documents will be
printed on letter-size paper and the paper will be drawn from a tray other than
the manual feed tray. The PPD file can thus be used to tell users both what
they can do and what will happen if they do nothing.

It is important to realize that the defaults in the PPD file do not necessarily
reflect the current state of the device, as a system manager or a previous job
could have changed the state of the device. It is also important to realize that
a print manager is not required to use the PPD defaults as an initial starting
point for display. Some print managers save the user’s previous job settings
and use those as initial settings, rather than using the device’s default settings.

Inserting Print-Time Features

When the user has finished selecting features, the print manager can consult
the PPD file for additional information, such as

whether this is a Level 1 or a Level 2 device, so the print manager knows if
it can generate code that uses Level 2 features

« ifitis a Level 1 device, which extensions to the PostScript language are
supported, if any

« the code sequences that invoke the features the user has selected via the
user interface

e any additional information that the author of the print manager thinks
would be useful in generating an efficient output file.

Armed with information, the print manager converts the internal representa-
tion of the document into the PostScript language representation of the docu-
ment. It includes the device-specific code for the features requested by the
user, and surrounds these feature requests with DSC comments for possible
later parsing by other applications.

The following example shows a PostScript language output file that describes
a very small document. The output file does not yet contain DSC comments
or device-specific code. Throughout this section, this output file will grow as
DSC comments and device-specific code are added.

/sp /showpage load def
100 100 translate

20 50 moveto

20 100 lineto

stroke

sp

2 Using PPD Files 7

In the next example, assume that the user requested letter-size paper via some
user interface. The print manager extracts from the PPD file the device-spe-
cific code to invoke letter-size paper, inserts the code into the output file,
inserts the appropriate DSC comments, and sends the output file to the output
device.The following is the example with the DSC comments and the device-
specific code added.

%!PS-Adobe-3.0

%%Title: test.ps

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

%%BeginFeature: *PageSize Letter
statusdict /lettertray get exec

%%EndFeature

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

sp
%%EOF

When the output file is sent to the output device, the interpreter ignores the
comments and executes the PostScript language commands, including the
code sequence that sets up the letter-size input tray.

For most user-selectable features of a device, there is no clear inverse opera-
tion. That is, unsetting, for example, a ledger-size paper tray will typically
mean establishing a different paper tray as the current paper tray. Explicitly
setting the device back to its default condition has the same effect; it will
“undo” the effects of having previously set a given feature. Unless there is a
specific reason to do so, it is not necessary to reverse the effects of invoking
device-specific features for any particular print job, since the job server
should provide that service, returning device features to their default settings
at the end of each job.

2.3 Post-Processing

In some environments, there might be a post-processor, such as a spooler,
which also acts as a print manager. In this context, the requested device might
be unavailable, and the print manager/spooler might need to redirect an
output file from one device to another. If an output file is to be redirected, the
print manager parses the DSC comments in the output file, and strips out the
original device-specific code. It then parses the PPD file of the newly selected
device, extracts from the new PPD file the device-specific code requested by
the DSC comments, inserts the device-specific code from the new PPD file
into the output file, and sends the output file to the new device.

PostScript Printer Description File Format Specification (9 Feb 1996)

The following is the example file as it is sent to the new device (note that the
device-specific code is different):

%!PS-Adobe-3.0

%%Title: test.ps

%%LanguagelLevel: 2

%%EndComments

/sp /showpage load def

%%EndProlog

%%BeginSetup

%%BeginFeature: *PageSize Letter
(<<) cvx exec /PageSize [612 792] (>>) cvx exec setpagedevice

%%EndFeature

%%EndSetup

%%Page: one 1

100 100 translate

20 50 moveto

20 100 lineto

stroke

Sp
%%EOF

2.4 Error Handling

Print managers should include a reasonable level of error-handling, both
when parsing PPD files and when downloading code from PPD files to a
device. Examples of possible errors in a PPD file are dangling symbolic ref-
erences (section 5.23) missing information about page sizes (section 5.12,
section 5.14, and section 5.15), and missing required keywords (beginning of
section 5).

When querying a device, solicited and unsolicited status messages from the
device may interrupt the transmission of the query return value. On some
communication channels, this may cause buffer overflow when the maximum
number of characters retrievable by the host is exceeded. In such an environ-
ment, the print manager can alleviate the problem by limiting the number of
gueries sent at one time, waiting some period of time (such as 100 millisec-
onds) between queries, and by flushing the communication channel between
queries.

When inserting invocation code from a PPD file into a job stream, print man-
agers are encouraged to execute such codetdpped context to catch any
errors, and to surround the code withk andcleartomark to ensure that the
operand stack is cleaned up if an error occurs while executing the code.

2 Using PPD Files 9

Here is an example of error-handling code, using the same sample document
shown in previous examples:

%!PS-Adobe-3.0
%%Title: test.ps
%%LanguagelLevel: 2
%%EndComments
/sp /showpage load def
%%EndProlog
%%BeginSetup
countdictstack[{
%%BeginFeature: *PageSize Letter
(<<) cvx exec /PageSize [612 792] (>>) cvx exec setpagedevice
%%EndFeature
}stopped
cleartomark
countdictstack exch sub dup 0 gt
{
{end } repeat
K
pop
lifelse
%%EndSetup
%%Page: one 1
100 100 translate
20 50 moveto
20 100 lineto
stroke
sp
%%EOF

In this example, it is important that this line of code
countdictstack[{

appeardefore the%%BeginFeature: comment line, and that this line
}stopped

and the lines following it appeafter the%%EndFeature line. Otherwise, these
lines of code could be removed by a print manager replacing the code
between th@%BeginFeature and%%EndFeature comments.

2.5 Order Dependencies

When a print manager is inserting device-specific code into an output file, the
order of certain operators with respect to each other is important and must be
considered. The keywordgrderDependency and*NonUIOrderDependency,

described in section 5.@rovide information about the appropriate setup sec-
tion (described in the DSC) and relative ordering of each PostScript invoca-
tion. If a print manager is not coded to read*théerDependency and
*NonUIOrderDependency statements in a PPD file, it must take care of the proper
ordering of the code fragments by itself.

10 PostScript Printer Description File Format Specification (9 Feb 1996)

2.6

Specifically, the following guidelines for ordering should be applied:

« Any resolution invocation (available only on devices where the user can
change the resolution of the device via software) must occur before any
media tray or media size selection. This is important because, on many
devices, the resolution is not set until the tray or size selection occurs, so
the tray or size selection must occur after the resolution invocation.

 If both a specific media tray invocation (for example, Upper) and a spe-
cific page region invocation (for example, Letter) occur, the media tray
invocation should precede the imageable region invocation. Otherwise, the
tray invocation might override the imageable region invocation.

The following items should occur after media size selection:

« job control requests such as duplex, automatic tray switching, signaturing,
output bin selection, and finishing features such as folding, binding, and
stapling

 halftone invocations (including halftone screen setup, transfer functions,
and accurate screens). This is because the media size invocation will set
the halftone screen settings to their default settings. Modifications to the
halftone screens are not confined to the setup sections; they can occur any-
where on a page in the output file.

Local Customization of PPD Files

A PPD file is a static representation of the features available on a device. It
contains information on the features available on a device as it is shipped
from the factory. In general, this will be the minimumaamt of memory

available for that device, the minimum font set, and the maximum list of
optional accessories, such as paper trays, so that all the necessary invocation
code is present in the PPD file, even if the accessories are not installed when
shipped from the factory. Optional accessories will be marked as optional in
the PPD file and their treatment is discussed in section 5.4.

Once a device is installed, features such as additional memory, paper trays,
and fonts might be added to the device. In this specification, thestetem
administratoris used to mean the person who adds such features and is
responsible for the maintenance of the device. In a single-user, single-printer
environment, the role of system administrator is typically played by the user.

The task of managing a device is a dynamic issue that requires keeping track
of fonts downloaded to disk, error handlers, RAM-based fonts and procedure
sets, default device setup, and so forth. This kind of device management is
beyond the scope of PPD files. However, there are some provisions for cus-
tomizing the information contained in PPD files to adapt them to local
instances of devices or to specific applications when necessary.

2 Using PPD Files 11

One approach to system management is for a print manager to parse all of the
PPD files available on a host system and store the data into a database. The
print manager (or other utilities) can then query the user or the device or
watch for system changes and update the database dynamically to reflect
additional memory, fonts, available trays, and other changeable printer fea-
tures.

A less dynamic approach is provided in this specificatiolobsgl customiza-

tion files which contain only the changed or added items and a reference to
the primary PPD file. In a given computing environment, there is usually one
PPD file for each type or model of device in use. For example, there may be
seven Acme FunPrinters in the system, but there is usually only one Acme
FunPrinter PPD file, which is shared by or copied onto each host computer in
the system. However, if applications or users want to add to or modify the
contents of a PPD file, they can create a local customization file for a specific
instance of a device or for use by a particular application.

For example, a computing environment might contain a primary PPD file that
describes a generic Acme FunPrinter. If the FunPrinter in Room 13 has addi-
tional memory, and if the system does not provide utilities for querying the
user or watching the state of the printer, then the system administrator might
want to create a local customization file for the FunPrinter in Room 13 that
reflects the presence of additional memory. (This is better accomplished by
the use ofinstalledMemory in the primary PPD file, if the print manager sup-
ports it.) Or, if an application developer wants to add application-specific
entries to a PPD file for a particular printer model, he would do so by creating
a local customization file that would be used only by that application. For
example, a color-intensive application might want to parse a PPD file for
halftone information and add complementary halftone screens to a local cus-
tomization file.

The local customization file should generally contain only entries only for
items that are changed or added. However, to be understood by applications
parsing PPD files, the local customization file must conform to the PPD spec-
ification, so in a sense, the local customization file is a minimal PPD file. The
minimal set of required keywords listed in section 3.8 must be included at the
beginning of the file, so print managers can recognize it as a PPD file. Other
keywords that are mark&kquiredn this specification, such &@ageSize, are

not required in the local customization file, unless they are being customized.

The customization file should be given a unique name that represents a par-
ticular device (for examplédyPrntr.PPD). The.PPD extension should be
preserved, with case irrelevant, in case applications or print managers are
searching for files with that extension. Application developers can also create
customization files with different extensions, which are read only by their
application.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

The local customization file must contain a reference to the primary PPD file
in this format:

*Include: "filename"

wherefilenameis the name of the primary PPD file. This referencing allows a
system administrator to later replace the primary PPD file without forcing
users to edit their local customization files. If the new primary PPD file has
the same name as the old one, it will automatically be referenced by the local
customization file.

Before creating a local customization file, a system administrator should
make sure that computing environment provides support for the concept.
Some print managers might not processitiede statement, or the system

might not provide a way to install both the primary PPD file and the local
customization file.

When a primary PPD file is included by a local customization file, the pars-
ing details change somewhat. In particular, there might be several instances
of the same keyword in the “composite” file. In this cdke first instance

of a given keyword (or, if the keyword takes an option, of a keyword-

option pair) is correct. This enables a parser to ignore subsequent versions
of the same statement, possibly reducing the parsing time.

Because the first instance of a keyword is the correct instance, all keywords
in a local customization file should ocdugforethe*include statement that
references the primary PPD file.For example, assuming the primary PPD file
is calledTIMICRO1.PPD a local customization file might look like this

*0% Local Customization File for TI microLaser
*FreeVM: "1907408"

*Include: "TIMICRO1.PPD"

*0% end of local customization file

The local customization file might be namBECUSTOM.PPDA parser
reading this file would record the value*BtevM as shown above, and would
ignore subsequent occurrences of that keyword in the included PPD file,
TIMICRO1.PPD

To application developers: The situation in the example above would be
better handled through proper parsing of thstalledMemory keyword, elimi-
nating the need for a local customization file. This example is intended for
use with parsers that don't procetstalledVemory but do process local cus-
tomization files.

If a Ul keyword (see section 1.2) occurs in a local customization file, that
keyword’s entire entry must be present, to avoid confusing a print manager
with partial entries. For example, to change the valueetiiltManualFeed, the
entire*ManualFeed entry must appear, including main keywords, options,

2 Using PPD Files 13

Note

query, and theOpenUl/*CloseUl bracketing. It should also include any
*OpenGroup/*CloseGroup bracketing, if theManualFeed entry is surrounded by
*OpenGroup/*CloseGroup in the primary PPD file. (See section 5.2 for details on
the*OpenUl/*CloseUl and*OpenGroup/*CloseGroup keywords.) This means that a

print manager, when parsing the PPD file, must be prepared to find (and sub-
sequently ignore) niiiple instances of a give®penUl/*CloseUl entry in the
combination of the primary PPD file and any local customization files.

The concept of “first instance is correct” does not apply to certain keywords
that normally have multiple instances in a PPD fad which do not have
option keywords to distinguish those instances. For exarepstraints and
*PrinterError occur multiple times in a PPD file, with different values, but with

no option keyword to distinguish one instance from another. In these cases,
all instances must be parsed and recorded. This implies that a parser must
either know the semantics of PPD keywords when parsing, or it must save all
instances in some form for a later, smarter processor to decide which are
rightfully multiple instances. See Appendix A for a list of optionless keywords
that might occur multiple times in a file.

Using and Changing Default Settings

When building a user interface from a PPD file, a print manager can use the
*Default keywords to choose defaults for the features displayed to the user. For
example, if the PPD file for the selected device contains this statement:

*DefaultManualFeed: False

then the print manager can indicate in the user interface that manual feeding
of the media is, by default, turned off, and provide a way for the user to turn
on manual feeding.

The defaults listed in the original PPD file reflect the state of the device when
it is shipped from the factory. If the system administrator wants to set up the
device differently, the new defaults should be included in the local customiza-
tion files. For example, if the device in the previous example was set up to
always feed from the manual feed slot, then the local customization file
should contain the entirslanualFeed entry, copied from the original PPD file,
with the value ofDefaultManualFeed changed fronfralse to True:

*OpenUl *ManualFeed: Boolean
*OrderDependency: 20 AnySetup *ManualFeed
*DefaultManualFeed: True

*ManualFeed True: “code”

*ManualFeed False: “code”

*?ManualFeed: “query code”

*CloseUl: *ManualFeed

This allows the print manager to indicate in the user interface that manual
feeding of the media on this device is, by default, turned on.

PostScript Printer Description File Format Specification (9 Feb 1996)

3.1

3.2

Format

The syntax of PPD files is a simple line-oriented format where the options,
defaults, and invocation strings (PostScript language code sequences that
change a feature setting) are made available through a regular set of key-
words.

General Parsing Summary
The following are parsing rules that apply to the PPD file as a whole:
« Any line that exceeds 255 characters in length is an error.

« Any byte code that is not in the following list is an error: decimal 32
through decimal 255 inclusive, plus decimal 9 (ASCII horizontal tab), dec-
imal 10 (ASCII line feed), and decimal 13 (ASCII carriage return).

Main Keywords

All main keywords start with the leading special charac{decimal 42).

This makes recognition of keywords easier, and reduces the possibility of
keywords being confused with PostScript language identifiers in code
sequences.

Query keywords start with the leading charactgrdifferentiated from other
main keywords by the presence of the ? character (decimal 63).

Default keywords start with the prefiRefault, as in*DefaultPageSize. Where
applicable, there is a relationship between the three kinds of main keywords,
as in*PageSize, *DefaultPageSize, and+?PageSize. However, there is no require-
ment for aDefault keyword to have corresponding main and query keywords
in a PPD file. AsDefault keyword may appear alone if it makes sense.

There is also a relationship between keywords that start with the prefix
*Param, as in*ParamCustomPageSize, and the associated root keyword
(*CustomPageSize, in this case). The prefiraram signifies that this keyword
documents parameters needed by the root keywordC&smPageSize and
*ParamCustomPageSize for more explanation.

No single keyword is wholly contained as a substring in another keyword, so
that line-oriented searching programs suchrep can be used to parse for
complete keywords, including thas part of the keyword name. For exam-
ple, there will not be similar keywords suchteper and*PaperSize. However,
*PageSize and*CustomPageSize are legal, becauskageSize is not a substring of
*CustomPageSize.

3 Format 15

16

Since the format is line-oriented, all statements will start at the beginning of a
line. The* (asterisk) character that begins the main keyword in the statement
must be in the first column.

Main keywords can contain any printable ASCII characters within the range
of decimal 33 to decimal 126 inclusive, except for the characters colon and
slash, which serve as keyword delimiters. Note that space, tab, and newline
are outside this range. There is no escape mechanism for this prohibition,
such as using double quotes to surrollledal characters (for example,
*Quoted Keyword” is not legal, because of the space in the keyword name).

The basic format of an entry looks like this

*Default< main keyword >: < option >

*< main keyword > < option > " PostScript language code
*< main keyword > < option ,>:" some other PostScript language code
*?< query keyword >: " PostScript language query code

An example entry

*DefaultPageSize: Letter

*PageSize Letter: "lettertray"

*PageSize Legal: "legaltray”

*?PageSize: "save [(Letter)(Legal)] papertray get = flush restore"

The information is represented as tuples. They will typically either be
2-tuples (keyword/value pairs) or 3-tuples (keyword/option/value triplets).
Where simple information is supplied, such as the name of the device, a
simple keyword/value pair is used. Where there are optional parameters,
3-tuples are used (as in the example above) to provide information about a
specific option.

The format conveys the possibilities for a feature: the default setting for this
feature, the current setting, and how to invoke each of the options. By con-
vention, all lines that start with the same keyword will be gotis in the

PPD file, to make it easier to parse them. However, there is no mandatory
order to the lines in an entry; for example, the query could appear above the
default.

Parsing Summary for Main Keywords
When parsing main keywords, remember

e The absence of a main keyword means that the feature does not exist (or
does not make sense) on that particular device.

« Certain keywords are required to be present; see the beginning of section 5
for a list. For parsing, a chain of local customization files and included
PPD files are considered one file, so most required keywords can appear

PostScript Printer Description File Format Specification (9 Feb 1996)

3.3

anywhere in the chain of files and do not have to be repeated in each file in
the chain. (See section 2.6 for exceptions.) The absence of any of these
keywords might be considered an error, or the parser might have backup
strategies for handling their absence.

If a main keyword is not recognized, the entire statement (including multi-
line code segments) should be skipped. However, read section 5.2 and
keep in mind that the point of th@penuUl/*CloseUl structures is to allow new
main keywords to appear without a print manager explicitly recognizing
them. The most functionality will be provided to the user if a print man-
ager handles all main keywords that occur withirr@penul/*CloseUl struc-
ture, displaying them and invoking their associated code to the best of its
ability. Unrecognized main keywords that occur outside of@penUl/*Clo-

seUl structure should be skipped.

A *in the first column denotes the beginning of a main keyword. Any text
or white space before theshould be considered an error.

The case of main keywords is significant. For exanipdgeSize is distinct
from *Pagesize. The proliferation of keywords that are the same textually
except for case is strongly discouraged.

40 characters is the maximum length for main keywords.

Main keywords can contain any printable ASCII characters within the
range of decimal 33 to decimal 126 inclusive, excluding colon and slash.

Delimiters for main keywords are space, tab, colon, or newline. After the
initial * symbol is recognized, all characters through (but not including) the
next space, tab, colon, or newline character are considered part of the main
keyword.

If a main keyword is not terminated with a colon or newline, an option
keyword can be expected. See section 3.3 for information on option key-
words.

Option Keywords

Option keywords are provided whenever there are several choices for a par-
ticular feature. For example, there might be many different media sizes listed
in the*PageSize section. These choices are specified using option keywords.
The option keyword immediately follows the main keyword, separated from
it by one or more spaces. For example, in the following statement, the string
Letter is the option keyword:

*PaperDimension Letter: 612 792

3 Format 17

The list of option keywords is completely extensible by the person building
the PPD file. This enables a PPD file to be generated for a device, using
names specified by the device manufacturer, without making constant
updates to the PPD specification. See section 5.1 for information on keyword
creation.

The option keywords currently known for each main keyword are described
in this specification. As new option keywords are added, updates will be gen-
erated. It should be clear, however, that the list of option keywords is never
complete. That is, a new option keyword can be created at any time. Docu-
menting the option keywords is done to prevent redundancy in naming; it is
not meant to restrict the list of option keywords available.

Option keywords may contain any printable ASCII characters within the
range of decimal 33 to decimal 126 inclusive, except for the characters slash
and colon, which serve as keyword delimiters. Note that space, tab, and new-
line are outside this range.

An option keyword can be the name of a main keyword or of a symbol. The
following examples all contain valid option keywords in the second field:

*InputSlot Letter: "code"
*OpenUl *InputSlot: PickOne
*SymbolValue “MySymbol: "code"

An option keyword is terminated by a colon or a slash if there is a translation
string (see section 3.5 for information on translation strings). There is no
escape mechanism for the forbidden characters listed above.

Option keywords can have extensions called qualifiers. Qualifiers are
appended to option keywords with the . (period) charédezimal

ASCII 46) as a separator. Any number of these qualifiers can be appended to
an option keyword, as appropriate. For example:

*PageSize Letter
*PageSize Letter.Transverse
*PageSize Letter.2

In this example, qualifiers are used to differentiate between several instances
of a particular media type that differ only slightly. For example,Ttmaverse
qualifier signifies thatetter differs fromLetter.Transverse only in the direction

that the media is fed into the device.

The numeric qualifier in Letter.2 is called a serialization qualifier. A serial-
ization qualifier is an integer appended to an option keyword to distinguish it
from an otherwise identical option keyword (for example, a device with two
letter trays might refer to them beter.1 andLetter.2). Qualifiers will be regis-
tered when appropriate, with the exception of serialization qualifiers, which
make no sense to register.

PostScript Printer Description File Format Specification (9 Feb 1996)

Parsing Summary for Option Keywords

For print managers, the rapid extensibility of option keywords implies that a
print manager should not parse for specific option keywords for two reasons:

« There might be option keywords in the PPD file that are not in this specifi-
cation. New option keywords can be added to PPD files at build time when
necessary. If a parser only recognizes the option keywords registered in
this specification, it might limit the feature set that can be offered to the
user.

« Certain option keywords might not be present in the PPD file for a given
device. Manufacturers will inevitably call features by different names and
use different option keywords to describe those features, so parsing for
*PageSize Ledger is futile if the PPD file being parsed describes that particu-
lar feature asPageSize 17x11. Again, this can limit the feature set offered to
the user, and might cause an error if the parser cannot find a specific
option keyword.

Rather than parsing for specific option keywords, a print manager should
parse for main keywords and display all available option keywords found. To
facilitate easier parsing, all option keywords of a given main keyword (that is
conceivably part of a user interface) are bracketed byotiaeUl/*CloseUl key-
words (see section 5.2).

Other things to remember about parsing option keywords:

« An option keyword begins with the first character after white space after a
main keyword. In other words, if a main keyword is not terminated by a
colon, but is followed by white space instead, an option keyword will be
the next non-white-space text encountered.

* The case of option keywords is significant. For examgle,is distinct
from Letter.

e 40 characters is the maximum length for option keywords, including any
extensions or qualifiers separated by dots.

« Option keywords can contain any printable ASCII characters within the
range of decimal 33 to decimal 126 inclusive, except for the characters
colon and slash, which serve as keyword delimiters. Once the option key-
word is encountered, and before it is properly terminated, a space, tab, or
newline character should be regarded as an error.

3 Format 19

3.4

e The option keyword is terminated by either a colon or a slash. A slash
indicates the presence of a translation string. If a translation string is
present, it is terminated by a colon. White space and slashes are allowed in
the translation string. A newline encountered before the colon should be
considered an error.

Syntax of Values

The : (colon) character (decimal 58) is used to separate keywords (and
options, if any) from values. Any number of tabs and spaces are permitted
after the colon and before the value.

A simple key/value pair looks like this
*MainKeyword: value

and a 3-tuple typically looks like this:
*MainKeyword option: value

There are five basic types of values:

* InvocationValue

¢ QuotedValue

e SymbolValue

e StringValue

* NoValue

InvocationValue

An InvocationValue contains a syntactically correct PostScript language frag-
ment that is usable by the PostScript interpreter. This allows an
InvocationValue to be extracted from the PPD file and placed directly into the
output file.

An InvocationValue meets the following conditions:
« Occurs only in statements where there is an option keyword present.

« Starts and ends with the double quote character " (decimal 67).

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

« Everything between the double quotes is treated as literal; that is, newlines
and hexadecimal substrings are allowed and are placed in the output file to
be passed on to the interpreter. Note that, unlike other values, a newline
does not terminate an InvocationValue and a slash does not mark the
beginning of a translation string.

« The following characters are forbidden between the starting and ending
double quote characters:

- byte codes outside the range of printable 7-bit ASCII (see section 1.2)
- double quote character " (decimal 67)

There is no escape mechanism or alternate way to represent forbidden
characters.

QuotedValue
A QuotedValue meets the following conditions:

e Occurs only in statemenigthout an option keyword, with one excep-
tion: *JCL keywords, which may have both an option keyword and a
QuotedValue. See section 5.8 for informationa keywords.

« Starts and ends with a double quote character " (decimal 67).

« Between the double quote characters, a QuotedValue consists of a
sequence of literal and/or hexadecimal substrings (defined in section 1.2).
A literal substring is a sequence of 8-bit byte codes, as defined in section
1.2, with the following characters forbidden:

- double quote character " (decimal 67)

- open angle bracket < (decimal 60) because this character marks the
beginning of a hexadecimal substring

- closing angle bracket > (decimal 62) because this character marks the
end of a hexadecimal substring

Note that a QuotedValue is the only type of value in a PPD file that can con-
tain byte codes outside the range of printable 7-bit ASCII. Also, unlike an
InvocationValue, forbidden literal substring characters in a QuotedValue can
be represented as hexadecimal substrings, bounded by opening and closing
angle brackets < (decimal 60) and > (decimal 62) as defined in section 1.2.

To builders of PPD files: If you are concerned about the portability of a PPD
file across different platforms (for example, Windows and Macintosh), you
should also use hexadecimal substrings to represent any byte code that is out-

3 Format 21

Note

Note

side the range of printable 7-bit ASCII. Most PPD files are initially built in
English, using only printable 7-bit ASCII, but when a PPD file is translated

to another natural language, 8-bit byte codes may be needed. Such byte codes
are often specific to the platform and to the natural language environment. If
the file is being translated for a specific platform, the use of 8-bit byte codes
will probably not be a problem for that platform’s print managers, but if the
PPD file is supposed to remain portable across platforms, the use of 8-bit
byte codes may hinder portability.

A print manager parsing a QuotedValue is responsible for converting a hexa-
decimal substring into a sequence of bytes before using them.

e The < and > characters must be represented as hexadecimal substrings if
they occur in the value as anything other than hexadecimal substring
delimiters.

e The value can be intermixed literal and hexadecimal substrings. For exam-
ple, the following statements both have valid QuotedValues:

*MainKeyword: "Hi there <ABCDEF> everybody"

*MainKeyword: "<ABCDEF>"

To builders of PPD files: PostScript language code should not appear in a
QuotedValue, but rather in an InvocationValue. If older parsers expecting lit-
eral substrings encounter a hexadecimal substring, which is new as of the 4.0
specification, errors will probably result.

To application developers: 8-bit byte codes were not allowed in PPD files
prior to the 4.3 specification, but this rule was widely violated when PPD
files were translated to other natural languages. Most parsers simply pass the
8-bit byte codes along without rejecting them or attempting to translate them,
but any parsers that expect only printable 7-bit ASCII may have problems
with 8-bit byte codes in translated and newer PPD files.

SymbolValue

A SymbolValue is used as pointer to a body of PostScript language code (an
InvocationValue). A SymbolValue can occur in a statement whether or not
there is an option keyword present.

A SymbolValue is a value that meets the following conditions:
» Starts with a caret ~ (decimal 94)

« Contains only printable 7-bit ASCII byte codes and is terminated by a
newline. No white space is allowed.

PostScript Printer Description File Format Specification (9 Feb 1996)

e The actual text of the SymbolValue is further constrained by the require-
ments documented in section .

StringValue

A StringValue can occur in a statement whether or not there is an option key-
word present. A value of the form StringValue meets the following condi-
tions:

e The value is not surrounded by the double quote character.

« The first character of the value cannot be a double quote character, to
avoid a parser confusing a StringValue with a QuotedValue or an
InvocationValue.

« The first character of the value cannot be a caret * (decimal 94), to avoid
confusing a StringValue with a SymbolValue.

e The value is composed of printable 7-bit ASCII byte codes, possibly sepa-
rated by spaces and tabs into multiple components. It is terminated by a
newline, or by a slash, in the case of a translation string.

e There is no escape mechanism for forbidden characters.

NoValue

A value of type NoValue meets the following conditions:
» There is no option keyword present.

e There is no value present.

* The main keyword stands alone.

Parsing Summary for Values
When parsing values, be aware of the following:

« If there is an option keyword in a statement, and the first non-white-space
character after the colon is a double quote, " (decimal 67), the value is an
InvocationValue. The exception to this rule is that if the main keyword
starts with the stringgCL, the value should be treated like a QuotedValue.
See section 5.8 for a description of th&. keywords.

 |If there is an option keyword in a statement, and the first non-white-space

character after the colon is a caret, * (decimal 94), the value is a
SymbolValue.

3 Format 23

If there is an option keyword in a statement, and the first non-white-space
character after the colon is neither a double quote, " (decimal 67) nor a
caret, * (decimal 94), the value is a StringValue.

If there is no option keyword, and the first non-white-space character after
the colon is a double quote, " (decimal 67), the value is a QuotedValue.

If there is no option keyword, and the first non-white-space character after
the colon is a caret, * (decimal 94), the value is a SymbolValue.

If there is no option keyword, and the first non-white-space character after
the colon is neither a double quote, " (decimal 67) nor a caret, ~ (decimal
94), the value is a StringValue.

The value of a query keyword (one that starts with the charaejers
although formatted as a QuotedValue, should be treated as an Invocation-
Value.

The value of aDefault keyword statement must be a StringValue.

If a *Default keyword is not stand-alone (defined in section 1.2), the value
must be a string matching a valid option keyword in the surrounding entry,
or it may beunknown. If the *Default keyword is stand-alone, the value must
be one of the values registered in this specification for the main keyword
that it would normally accompany, and the value may nahkewn, as

that provides no useful information.

StringValues can contain spaces and tabs, because there might be multiple
components of a value.

An InvocationValue or a QuotedValue is terminated by the closing double
guote, and can be followed by a translation string, indicated by a slash
after the closing double quote and before the newline. If the value has a
translation string, the translation string is terminated by a newline.

A SymbolValue, StringValue, or NoValue is terminated by a newline.

When parsing an InvocationValue or a QuotedValue, parsing should con-
tinue until the matching closing double quote isrfd, even if it crosses a
line boundary. Line boundaries are considered significant white space
within an InvocationValue or QuotedValue. That is, lines will not be
broken in the middle of PostScript language tokens. An InvocationValue
or QuotedValue is considered a single “token” when parsing PPD files.

If an InvocationValue or QuotedValue breaks across a linegihidey-

word should occur as the next statement in the PPD file after the closing
double quote delimiter. If it is not found, this is considergase error

with a missing closing delimiter. Thend keyword appears only where an

PostScript Printer Description File Format Specification (9 Feb 1996)

InvocationValue or QuotedValue extends across a line boundary. Care
should be taken to preserve the line breaks in InvocationValues and
QuotedValues. This will ensure that comments within code segments will
end where they were intended to end.

« All characters inside an InvocationValue are treated as literals and are
placed directly in the output file. Particularly: a slash appearing within the
double quotes is not treated as a marker for the beginning of the translation
string, newlines do not terminate the statement, and hexadecimal sub-
strings should not be specially interpreted by the parser.

* When parsing a QuotedValue, an open angle bracket signifies the begin-
ning of a hexadecimal substring, which is terminated by a closing angle
bracket. Everything between the angle brackets should be converted to
byte codes before being used. Any non-hex data between the angle brack-
ets is considered an error, as is an odd number of hex digits. White space
and newlines between the angle brackets should be ignored.

» Afile referenced by thanclude keyword should be treated as though it
were in-line in the including (local customization) file. Be prepared for
nested includes. See section 2.6 for discussion on the semantics of
repeated statements and keywords.

3.5 Translation String Syntax

There are many entries in a PPD file that can be encountered at the user level,
including main keywords and option keywords displayed as selectable
choices in a user interface, and messages from the device. Sometimes these
keywords and device messages can be cryptically worded and must be
reworded for clarity, or they might need to be translated into another lan-
guage for the user to understand them.

If keywords and messages changed with each translation of the PPD file to a
new language, a parsing program would have to be written to recognize the
keywords in each new language, which would greatly expand the size of the
parser and the amount of work involved in writing it. Instead, a syntax is pro-
vided for the optional use trfanslation stringswhich are appended to the
original keywords and messages. Thus, normal keyword searches can be car-
ried out, and the translation strings can optionally be presented to users
instead of (or in addition to) the keywords.

If a PPD file is translated into several languages, there will be one PPD file
for each language. In various language versions of a PPD file, only the trans-
lation strings, certain QuotedValues that are used to identify the device, and
possibly the comments, will differ. All other information, including main
keywords and option keywords, will remain the same.

3 Format 25

26

Note

To builders of PPD files: The values of the following keywords may be trans-
lated directly, without using a translation strintnclude, *ModelName,

*NickName, *PCFileName, and*ShortNickName. Because these are QuotedValues,
they may include 8-bit byte codes.

A translation string can occur after any option keyword or after any type of
value except a SymbolValue. The value abeaault keyword may have a
translation string only if it appears as a stand-alone keyword (see section 1.2),
such agDefaultColorSep, Or *DefaultResolution without a correspondirigesolution
keyword. If therDefault keyword is not stand-alone (if it appears with an asso-
ciated main keyword and option keywords), it does not need a translation
string and should not have one, because such translation strings, if any,
should occur with the option keywords, to avoid confusing parsers. See sec-
tion 2.6, section 3.2, and section 4.5 for more informatiomeault key-

words.

With closely related statements, suchiRageSize and*PageRegion, it iS impos-

sible to predict which statement a print manager will read to get the transla-
tion string for an option keyword. For continuity of results, if a given option
keyword has a translation string, and that option keyword is used with multi-
ple main keywords and has the same semantics across those keywords, then
the translation string should be on every occurrence of the option keyword
and should be identical across occurrences. For example yphghgize

statement fotetter uses a translation strimgrtrait Letter, the*PageRegion,
*PaperDimension, and*imageableArea statements faretter should all use the same
translation string.

A translation string is detected by the presence of a Sladafacter (deci-
mal 47), and continues until a colon (if the translation string is on an option
keyword) or a newline (if the translation string is on a value) is encountered.

The following is an example of the translation string syntax showing both the
translation from English into French of an option keywaedger) and a
value (the message “out of paper”):

*LanguageVersion: French
*PageSize Ledger/ Papier Ledger : "statusdict /ledgertray get exec"
*PrinterError: "out of paper"/ Il n'y en a plus de papier.

This example shows the translation of two cryptic values into strings that are
more meaningful to the user (a “translation” into English):

*LanguageVersion: English
*DefaultColorSep: ProcessBlack.90Ipi.1200dpi/ 90 Ipi / 1200 dpi
*PrinterError: "CVR OPN'/ cover open

Translation strings in a PPD file are optional. If translation strings are
present, the translation strings should be used for display to the user, rather
than displaying the option keywords or messages themselves. If there are no

PostScript Printer Description File Format Specification (9 Feb 1996)

translation strings, the option keywords and values must be displayed directly
as appropriate. A parser must be especially careful not to confuse a transla-
tion string following an option keyword with the PostScript language
sequence that follows in the value field, after the colon.

To unambiguously relate natural-language characters to byte codes, an
encoding is specified for each natural language (such as English or French)
that can be used in a PPD file. These encodings are described by the key-
words*LanguageVersion and*LanguageEncoding, documentedh section 5.3.

Translation strings may include 8-bit byte codes, such as characters with
accents. See section 1.2 for the range of byte codes allowed in PPD files. If
the builder of the PPD file is concerned about file portability across plat-
forms, the byte code range in translation strings should be limited to printable
7-bit ASCII, with out-of-range byte codes represented by hexadecimal sub-
strings (defined in section 1.2). A translation string can be represented par-
tially or wholly as a hexadecimal substring. A print manager must convert the
hexadecimal substring to the appropriate sequence of byte codes before dis-
playing the translation string to the user.

The following example shows the Swedish translation string for the printer
error message “cover open,” using a hexadecimal substring to represent the
single eight-bit ISOLatin1 character “Odieresissmall.”

*LanguageVersion: Swedish
*PrinterError: "cover open'/lucka <F6>ppen

Here is the same message, with the Swedish translation displayed entirely as
a hexadecimal substring:

*PrinterError: "cover open'/<6C75636B61 20 F67070656E>
The following charactemust be represented as hexadecimal substrings:
« All byte codes outside the valid range, as described in section 1.2.

e The character colon : (decimal 58, if the translation string is on an option
keyword.

e The characters < and > (decimal 60 and 62), if they are part of the actual
text of the translation string.

Parsing Summary for Translation Strings
When parsing option keywords and values, remember:
* The translation string is optional. All parsers should bi&ewr to permit

them without requiring them. If present, translation strings should be used
for display to the user.

3 Format 27

3.6

3.7

« If present, the translation string consists of a sequence of literal and/or
hexadecimal substrings.

« A literal substring is a sequence of in-range byte codes (defined in section
1.2), except that it cannot contain the following characters: newline, <
(decimal 60) and > (decimal 62). Additionally, a colon is forbidden when
the translation string is on an option keyword, because an option keyword
is terminated by a colon.

* A hexadecimal substring is as defined in section 1.2 except that in a trans-
lation string, a newline in a hexadecimal string is illegal, since a newline
terminates the translation string.

« The translation string begins with the first character immediately after the
slash, even if it is white space. Note that the slash and white space charac-
ters are permitted in a literal substring.

« If the translation string occurs before a colon (that is, on an option key-
word), it is terminated by a colon (:) or a newline. However, a newline
encountered after an option keyword and before the collbwiglate the
syntax of option keywords.

« If the translation string occurs after a colon (that is, on a value), it is termi-
nated by a newline.

« Out-of-range byte codes should be considered an error.

Human-Readable Comments

Comments are supported in the PPD files using the main keyword\hy-

thing following this main keyword (through the end of the line on which it
appears) should be ignored by a parsing program* gharacter is the same
introductory symbol used for all main keywords, and#hsharacter is bor-

rowed from PostScript language syntax as its comment character. These com-
ments will begin only in column one, for simplicity.

There can also be comments in any PostScript language code, using the stan-
dard syntax of starting the comment witth.aComments in code should be
kept to a minimum, however, to reduce transmission time.

PostScript Language Sequences

The PostScript language sequences supplied for invoking device features are
usually represented as InvocationValues. Sometimes they are represented as
QuotedValues, for example, when they contain binary data.

PostScript Printer Description File Format Specification (9 Feb 1996)

For multiple-line InvocationValues or QuotedValues, the main keyv&nid

is used as an extra delimiter to help line-extraction programs (sgcépasr

awkin UNIX). The keywordEnd also makes the PPD file more easily read-
able by humans, because the double quote delimiter is sometimes difficult to
see at the end of a long string of code.

*End is used only when the code requires more than one line in the PPD file.
In the following two examples, theageSize statement fits on one line and
does not requireéEnd. The*?Smoothing Statement is an “extended” code
sequence that does requiked:

*PageSize Legal: "serverdict begin legaltray end"

*?Smoothing: "save
[(None)(Light)(Medium)(Dark)]
statusdict /doret {get exec}
stopped { pop pop (Unknown)} if
= flush restore"

*End

The PostScript language sequences supplied in the PPD files are guaranteed
to work only on the device for which the file was prepared. The sequences
assume the default state of the interpreter. Qeehfict andsystemdict (and

globaldict on Level 2 devices) are assumed to be on the dictionary stack. There
will be no memory usesdve andrestore are used where appropriate) except as

in setting frame buffers, where memory use is necessary.

Adobe recommends that the following syntax be used when building PPD
files

<dict> /foo get exec
rather than
<dict> begin foo end

This will prevent errors caused by a print manager not cleaning up the dictio-
nary stack properly after catching an error in a stopped context.

Level 2 PostScript language sequences

Sometimes a PostScript language file generated using a PPD file for a given
device is redirected to another, different device. This can happen if the file is
stored for later printing and the original device is not available at print time,

or if files are exchanged between users with different printers, or if an intelli-
gent spooler redirects the file to a more appropriate printing device. Although
there is absolutely no guarantee that a PostScript language file created for a

3 Format 29

specific device will work on another device, there is a reasonable chance that
it will, if the file contains few or no calls to special device features. One or
more of the following may happen:

* The file causes the PostScript language interpreter in the device to abnor-
mally terminate execution, possibly requiring the device to be reset.

« The file fails to print any pages.

» Features requested by the file, such as duplex or a certain size of paper, are
not available, so these feature requests are ignored and the file prints on
the device’s default paper with default feature settings.

« Some requested features exist but their settings have different meanings on
the current device, so the file prints but the results are unexpected. For
example, the printing might be darker, or the image might be oriented
sideways on the paper.

« The file prints correctly because all the feature requests are available and
the settings have the same semantics, or because there are no feature
requests and the default page size and default feature settings are accept-
able.

A print manager can guard against the first two cases by executing each fea-
ture request in a stopped context. Thus, a request for a feature that does not
exist on the current device will effectively be ignored. (See section 2.4 for
more information on error handling by print managers.)

In the next two cases, the printed effect may not be exactly what the user
requested, but at least they'll get something. For example, a file requesting
duplex printing may be sent to a simplex printer, and depending on the print
manager, it may print, but only on one side of each page.

To further the aim of printing whenever possible, even when Level 2 code is
sent to a Level 1 device, the following recommendations should be followed
when building a PPD file.

* Do not use the Level 2 dictionary syntax symbsland>> directly in
invocation code when constructing dictionaries. Doing so will cause a
syntaxerror if this code is re-directed to a Level 1 device. Sugmtaxerror
cannot be trapped insmpped context by a print manager. The two alterna-
tives are to use the more verbose Level 1 method:

N dict
dup /namel valuel put

dup /name2 value2 put

dup /nameN valueN put

PostScript Printer Description File Format Specification (9 Feb 1996)

3.8

or to put the more efficient Level 2 method into an executable string:

(<<) cvx exec /namel valuel /name2 value2

/nameN valueN (>>) cvx exec

This second methodillvavoid thesyntaxerror described above. It will con-
sume a tiny amount of VM, whichillvbe restored by automatic garbage col-
lection on a Level 2 device.

PPD File Structure
To enable parsing, there is some minimal structure to a PPD file.
The first line of a PPD file must be

*PPD-Adobe: " nnn"

where the value “nnn” is a real number that designates conformance to a ver-
sion of the PPD specification. (See section 5.2 for detaitBRomAdobe.)

Files conforming to this version of the specification would have the following
statement:

*PPD-Adobe: "4.3"

This line is generally followed by comment lines containing copyright and
licensing restrictions.

Certain keywords are required in a PPD file. Required keywords are marked
asRequiredin their individual descriptions in this document, and are listed at
the beginning of section 5. By convention, the followsndpsef required
keywords generally appears immediately after the copyright, in any order,
except thatShortNickname must occur beforeickName. This general informa-

tion is often needed by print managers, and parsing the PPD file may be faster
if the following information is included near the beginning of the file:

*PPD-Adobe *NickName *ModelName
*Product *PSVersion *PCFileName
*FormatVersion *LanguageEncoding *Language\Version
*FileVersion *Manufacturer *ShortNickName

The number of bytes in a PPD filerist limited by this specification. How-
ever, certain print managers impose limits on some aspects of a PPD file.
Builders of PPD files should be aware of the following restrictions:

* In the Windows environment, both PScript 4.x and AdobePS 4.x limit the
combined total of all invocation code, query code, keywords, options, and
translation strings in a PPD file to less than or equal to 64KB. Also, the
number ofOpenul and*JCLOpenUI entries must be less than 100.

3 Format 31

* In the Macintosh environment, both LaserWriter 8.x and PSPrinter 8.x
limit the size of each invocation code fragment to less than or equal to
32KB.

¢ Inthe Windows 95 environment, the Image Color Matching (ICM) system
places additional restrictions on the contertiviofielName, *ShortNickName,
and*Manufacturer in PPD files for color printers. See the descriptions of
those keywords for details.

4 Syntax of Specification

Throughout this specification, certain syntactical conventions are followed to
make things clearer for the reader.

4.1 General Syntax
The following notation is used to describe keywords.

* Main keywords, option keywords, and actual values always appear in sans
serif type:*Mainkeyword:, True, Null.

« Placeholder items (which will be replaced by an actual value in the PPD)
appear in sans italic typeediaOption, invocation.

« Boldface type in prose denotes a PostScript language operator or dictio-
nary key, such as thsetpagedevice keyPageSize.

e The vertical bar (|) character is used to mean “or”, where “or” is an exclu-
sive or. For example, this statement in the PPD file specification

*DefaultManualFeed: True | False

means that this statement in the PPD file will read either
*DefaultManualFeed: True

or

*DefaultManualFeed: False

butTrue andFalse cannot both appear in this statement.

32 PostScript Printer Description File Format Specification (9 Feb 1996)

« The ellipsis (...) means that more than one instance of a token can appear,
separated by white space. For example, this statement in the PPD file spec-
ification

*Extensions: extension

means that this main keyword has several possible values, indicating
which language extensions are supported by the device. Because a device
can support several language extensions, this keyword can hiigenu
values, separated by white space.

For example, both of these PPD file statements are valid

*Extensions: FileSystem
*Extensions: CMYK FileSystem Composite

Main keywords that are commonly bracketed with*thpenul/*CloseUl key-
words in PPD files are marked in this specification with this symbol (“Ul” for
“user interface”) next to the keyword definition. This does mean that the
main keywordmnust be bracketed byopenuUl/*CloseUl; it only informs builders

of PPD files that this keyword is commonly considered to be a Ul keyword.
See section 5.2 for details &@penul/*CloseUl.

A few of the main keywords may require starting an unencapsulated job (for-
merly known as “exiting the server loop”) for correct execution. These have
been flagged by a dagger in the left margin as shown here. If handling such a
keyword, the print manager must perform the following tasks:

« declare an unencapsulated job using the DSC comment:
%!PS-Adobe-3.0 ExitServer

« obtain a password from the user, from system software, or from the key-
word *Password in the PPD file, and put the password on the operand stack

« emit the code from the daggered keyword
* end the job and use the DSC comnignEOF

Builders of PPD files must ensure that the code contained in the value of a
daggered keyword does the following:

» checks for the existence and validity of a password on the operand stack

« begins an unencapsulated job by usiiteerver (Level 1) orstartiob (Level
2)

« performs the function of the daggered keyword (for example, changes the
resolution or fixes a bug)

4 Syntax of Specification 33

34

4.2

*MainKeyword

The code to perform the first two functions can usually be copied from the
value of theExitServer keyword in the PPD file.

Sample Keyword Statements

The format of section 5, which documents the individual keywords, shows
the main keyword, the possible option keywords, and a pseudo-code syntax
to illustrate its value. A main keyword can have either a restricted option key-
word list (option keywords are restricted to those listed), an unlimited option
keyword list (option keywords can be added at any time), or no option key-
words at all.

The value type of each keyword (InvocationValue, QuotedValue,
SymbolValue, StringValue) is recorded in the description of the keyword,
with the following exceptions:

* Query keywords, which are always of type QuotedValue
» *Default keywords, which are always of type StringValue

Here are examples of what each type of keyword looks like in this specifica-
tion:

Optionl | Option2: “invocation”

This indicates that for the main keywahthinKeyword, there is a restricted
option keyword list consisting of two legal option keywordgsignl and

Option2), and the appropriate syntax for the value is a PostScript language
invocation string enclosed in double quotes. In the PPD file, there would be
one statement for each main keyword-option keyword pair:

*MainKeyword Optionl: "invocation”
*MainKeyword Option2: "different invocation"

A typical example of a restricted option list would be a keyword whose only
options ardrue andFalse:

*Collate True: "(<<) cvx exec /Collate true
(>>) cvx exec setpagedevice"

*End

*Collate False: "(<<) cvx exec /Collate false
(>>) cvx exec setpagedevice"

*End

PostScript Printer Description File Format Specification (9 Feb 1996)

*MainKeyword

*MainKeyword:

*?MainKeyword:

optiontype: “invocation”

This indicates that for the keywotdainKeyword, there can be many legal

option keywords. The currently known option keywords will be listed in this
specification with the main keyword, but others can be added at any time. As
above, the appropriate syntax for the value of the tuple is a PostScript lan-
guage invocation string enclosed in double quotes. Again, in the PPD file,
there would be one statement for each main keyword-option keyword pair:

*DifferentKeyword Option 1: "invocation"

*DifferentKeyword Option n: "invocation”
For example, the list of page sizes offered by a device is an extensible list:

*OpenUl *PageSize: PickOne
*DefaultPageSize: Letter
*OrderDependency: 30 AnySetup *PageSize
*PageSize Letter: "(<<) cvx exec

/PageSize [612 792] (>>) cvx exec setpagedevice"
*End
*PageSize Legal: "(<<) cvx exec

/PageSize [612 1008] (>>) cvx exec setpagedevice"
*End
*PageSize Ledger: "(<<) cvx exec

/PageSize [1224 792] (>>) cvx exec setpagedevice"
*End
*?PageSize: “query code to get current /PageSize”
*CloseUl: *PageSize

ul'ntu

This main keyword has no option keywords, and the appropriate syntax for
the value of the tuple is an integer enclosed in double quotes. For example

*FreeVM: "110980"
“query’ (returns: keywordOption | Unknown)

This is a query keyword, evidenced by th@refix. Its value is guery, as

defined in section 4.3. The valid return values for this query are documented
in this specification to the right of the sample query statement; they are not
part of the statement itself. That is, the PPD file would contain:

*?MainKeyword: “code to perform query”

4 Syntax of Specification 35

*MainKeyword
*DefaultMainKeyword:

*?MainKeyword:

4.3

option: “invocation”
keywordOption | Unknown
“query’ (returns: keywordOption | Unknown)

Where it makes sense, the main keyword, default keyword, and query key-
word are documented in a block together, as shown here. The valid return
values for the query keyword are documented to the right of the sample query
statement.

Elementary Types

The PPD specification employs various elementary types of expressions.
These types are defined in this section.

filename

A filename is a QuotedValue and is subject to the rules of QuotedValues. Cur-
rently, filename is used only by thanclude keyword. It can be the name of the
file itself, or it might be a path to the file. The following are all examples of
legal filenames:

*Include: "MyDevice.PPD"

*Include: "/home/adobe/PPDfiles/myfile.ppd"
*Include: "My<3C>test<3C>file.ppd"
*Include: "C:\lib\MyDevice.PPD"

In the third example, thiééename contains the double quote character, repre-
sented as a hex string. The encoding @mame is system-dependent and is

not necessarily portable to other systems. At minimum, the filename or path-
name might have to be edited when porting.

fontname

A fontname is a special case ofsaing, which is defined in this section. fat-
name is delimited by blanks. Examples of standfanthames can be found in
Standard Character Sets and Encoding Vectors, in Appendix E Bbskhe
Script Language Reference Manual, Seconitidtd and some are listed
here:

Times-Roman
Helvetica-Bold
NewCenturySchoolbook-Italic

Notice thatntname does not start with a slash character (/) as it does in the
PostScript language when the font name is specified as a literal.

int

An integer, as used in this specification, is a non-fractional number that has no
sign. There are practical limitations for afgers maximum value, but as a
default it should range between 0 and 4.295% 3D bits).

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

invocation

An invocation is a sequence of valid PostScript language commandsvoéan

tion is generally used to perform some manipulation of the device. It can be
represented either as a QuotedValue or an InvocationValue, depending on the
keyword described.

JCL

JCL is an arbitrary sequence of valid job control language commands. This
code is generally used to perform some manipulation of the device outside of
the control of the PostScript interpreter. It is represented as a QuotedValue
because it may contain 8-bit byte codes.

option

An option keywordor simplyoption, is astring subject to the rules defined in
section 3.1 and section 3.3. In this specification, the placeholders for option
keywords are generally preceded by a descriptive qualifier, meliaOption

or trayOption.

query
A query is a sequence of valid PostScript language commands that requests
information from the device and returns a string, terminated by a newline, to
the host via the reverse channel of the device. Translation strings are not
allowed on the values returned from queries. Valid return values for a query
are determined as follows:

« If the associated main keyword is a Ul keyword (defined in section 1.2),
the query must return one of the option keywords listed in the PPD file for
that main keyword, or it can return the strisgnown. For example, if
*PageSize is a Ul keyword, then th@PageSize query can only return valid
page size options (such lasgter andLegal, without translation strings) that
are listed undeiPageSize, or it can returtunknown, terminated by a newline.

« If the associated main keyword is not a Ul keyword, then the valid return
values for the query keyword are documented in this specification. For
examples, se@FontQuery, *?FontList, *?ImageableArea, *?InsertSheet, and
*?FileSystem. The return value must be terminated by a newline.

To builders of PPD files: Because of its format, the value of a query is a
QuotedValue, but you should follow the rules for InvocationValues when writ-
ing queries, as the query must be a valid PostScript code fragment.

real

A real number is a fractional number that can be signed or unsigned. There are
practical limitations on the maximum size oka, but as a default it should
range between 34 1038to 3.4x 1038, A realin a PPD file will not include
scientific or exponential notation. That is, the following are all valid:

1.4-4.2273 .165 0.165

4 Syntax of Specification 37

4.4

but the following are not valid:

1.4e-4 -1.45E7 -1.45E+7

string

A string is comprised of any printable characters, but is delimited by white
space. The length ofszing is limited by the 255 characters-per-line limit
described in section 3.1.

text

A text string may contain any characters that are legal in the value type. For
exampleext in a QuotedValue may contain any character that is legal in a
QuotedValue, including spaces, hexadecimal substrings, and 8-bit byte codes.
Individual keywords may further restrict the allowable charactersei a

string, sotext strings cannot be treated uniformly by a print manager. The
length of atext string is limited by the 255 characters-per-line limit described

in section 3.1.

Standard Option Values for Main Keywords

The following option keywords are used with many different main keywords
and have universal meaning throughout a PPD file.

True

True is used in a PPD file in two ways. When used as the valueDehait
keyword,True means that the default state of that particular feature is “on”.
For example, the following statement means that this device will feed media
from the manual feed slot unless explicitly told to do otherwise.

*DefaultManualFeed: True

When used as an option to a main keywdn@, means that the value of that
option of the keyword is the PostScript language code required to “turn on”
or invoke the feature. For example, the following statement contains the code
to enable the manual feed slot:

*ManualFeed True: "statusdict /manualfeed true put"

False

Like True, False is used throughout a PPD file in two ways. When used as the
value of aDefault keyword whose value is a booleaue or False, False means
that the default state of that particular feature is “off.” For example, the fol-
lowing statement means that this device nilt feed media from the manual
feed slot unless explicitly told to do so.

*DefaultManualFeed: False

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

Note

When used as an option to a main keyweide means that the value of that
option of the keyword is the PostScript language code required to “turn off”
or deselect the feature. For example, the following statement contains the
code to deselect the manual feed slot.

*ManualFeed False: "statusdict /manualfeed false put"

None

Like False, None is used to indicate that a certain feature is deselected (off) by
default, and also to indicate how to deselect (turn off) a feaseis used

with boolean featuresipne is used for features with more than two states. For
example:

*DefaultFoldType: None

*FoldType None: "code to turn off folding"
*FoldType Saddle: "code to invoke a saddle fold"
*FoldType ZFold: "code to invoke a z-gate fold"

Code associated withnane option will explicitly turn off the feature. In the
example above, thiéone option would contain code to invoke “no folding.”

None is never used to indicate the absence of a feature. If a feature is absent,
the feature’s keywords will be omitted from the PPD file. For example, if a
device does not support manual feed, the manualfeed keywordsitieglom
entirely and*DefaultManualFeed: None is invalid.

Unknown

This string is returned from queries if the correct information can not be
determined, or none of the valid keywords can be returned. It is also used as a
value forDefault keywords, to denote that there is no specific default state (for
exampleDefaultPageSize: Unknown on a device whose page size is not set until
the user requests a page size). However, a stand:akfsue keyword should

never have a value ofiknown, as that provides no useful information for a

print manager.

LikeNone, Unknown is not used to indicate complete absence of a feature; if a

feature is absent, the feature’s keywords will be completely omitted from the
PPD file.

4 Syntax of Specification 39

40

45 Summary of Rules for *Default Keywords

Because information abothefault keywords is distributed throughout the
preceding part of this document, this section summarizes the rulesfiol
keywords, both for print manager authors and for builders of PPD files.

* A *Default keyword may appear as part of an entry or by itsetbefault
keyword appearing by itself is referred to asand-aloneDefault keyword
(see section 1.2). Somefault keywords are always stand-alone.

* The value of aDefault keyword must be a StringValue (no quotes).

* If a*Default keyword is part of an entry, its value must be one of the options
of the main keyword in the entry, or it may Wxénown.

* If a *Default keyword is stand-alone, its value must be one of the options
registered in this specification for the main keyword that it would nor-
mally accompany, or th®efault keyword must have its own set of valid
values documented in this specification and the value must be one of
those. A stand-alonm®efault keyword may not appear with the value of
Unknown, as that provides no useful information to a print manager.

» A stand-aloneDefault keyword may have a translation string on its value.

* A *Default keyword that is part of an entry may not have a translation string
on its value, because it is likely that translation strings will occur on the
option keywords of the main keyword in the entry, and a print manager
would not know which translation string to use.

PostScript Printer Description File Format Specification (9 Feb 1996)

5 Keywords

This section contains a description of how builders of PPD files can define
their own main keywords, followed by documentation of the currently
defined keywords and a description of their uses. The keywords are grouped
according to their functionality. Where appropriate, registered option key-
words are documented along with the keywords with which they are associ-
ated. This is to prevent a given combination of main keyword and option
keyword from having multiple meanings across multiple PPD files.

All keywords are optional in a PPD file, unless note®eagquiredin the key-
word description. The following keywords are currently required:

*DefaultimageableArea *DefaultPageRegion *DefaultPageSize*
*DefaultPaperDimension *FileVersion *FormatVersion
*ImageableArea *LanguageEncoding *LanguageVersion
*Manufacturer *ModelName *NickName
*PageRegion *PageSize *PaperDimension
*PCFileName *PPD-Adobe *Product
*PSVersion *ShortNickName

Note *Manufacturer is new as of the 4.3 version of this specificatiSirtNickName is
newly required in the 4.3 version; it was not required in previous versions.

Every feature of the device that can be described by a PPD keyword should
be included in the PPD file. Inclusion of all relevant keywords in the PPD file
produces the most complete picture of the device for the print manager and
user. Builders of PPD files should consider all non-required keywords to be
recommended for inclusion in the PPD file if they are relevant to the device.

On the other hand, if a feature is not supported by a device, that feature’s
default, invocation, and query keywonagist be omitted from the PPD file.
To a print manager, absence of a feature in the PPD implies lack of device
support for that feature.

5.1 Creating Your Own Keywords

Device manufacturers and other builders of PPD files may create their own
main keywords by following the rules in this specification. For tracking pur-
poses, such keywords must be named with a prefix unique to the creator. For
example, Acme Printer Co. might use the prefixC* and their keywords
would have names likaCHalftone. The same prefix must be used on all key-
words created by one company. For ease of tracking and guaranteed prefix
uniqueness, Adobe recommends using the same two-letter prefix already in
use by the creator for their PPD file names (@qdileName). The list of
assigned prefixes can be founddippendix D: Manufacturer’s Prefix List

and *Manufacturer Stringsand updates can be obtained from the address on
the front cover.

5 Keywords 41

Keywords created outside of Adobe must not conflict with or duplicate the
definition of keywords already existing in this specification. To avoid unnec-
essary proliferation of keywords, builders of PPD files should make every
effort to see if their device’s feature can be defined by an existing keyword,
before creating a new keyword.

Print managers cannot be expected to know how to deal with an unknown
keyword, unless the keyword is enclosed by+tpenul/*CloseUl construction

and follows all the rules associated with that construction. See section 5.2 for
information aboutOpenul and*CloseUl.

Builders of PPD files may also create their own option keywords if necessary.
No unique prefix is necessary for option keywords, but all rules pertaining to
option keywords must be followed. Again, every effort should be made to use
an existing option keyword before defining a new option keyword. See sec-
tion 3.3 for rules pertaining to option keywords. In addition, although it is not
required, option keywords usually have the first letter capitalized, for better
readability of the user interface created by a print manager.

5.2 Structure Keywords

The keywords in this section do not invoke any device features. Instead, they
provide structure to a PPD file and are intended to aid in parsing the PPD file
and building a user interface.

*PPD-Adobe: “4.3"

Required This keyword must be the first line in a valid PPD fllee Quoted-

Value of “4.3” signifies that this file conforms to the 4.3 version of this speci-
fication. Conformance to a later version of this specification would be
indicated by a higher number. A parser can assume that a changed digit to the
right of the decimal indicates a minor revision to the specification, and the

file can be safely parsed by older parsers. A change in the digit to the left of
the decimal indicates a more significant change in the specification, and a file
that conforms to the newer version of the specification may be incompatible
with older parsers.

*OpenUl mainKeyword: PickOne | PickMany | Boolean
*CloseUl: mainKeyword

These keywords allow a parser to differentiate between Ul keywords, which
would typically be displayed in the user interface, and informational key-
words, which would typically not be displayedpenul and*CloseUl are used

to bracket all the information about a Ul keyword, if that keyword describes
device features that can be selected by the user.

42 PostScript Printer Description File Format Specification (9 Feb 1996)

For example, the list of page size options offered byPdyesSize keyword

will be bracketed withOpenUl/*CloseUl, because the device supports the user
selection of a page size, but the keywargoughput, which describes the
rated printing capacity of the device, would not be bracketeahknul/

*CloseUl, because the throughput is not selectable by the user. Query key-
words,*Default keywords, and any other associated keywords, suthras-
keywords andOrderDependency, are included in th&penul/*Closeul bracketing
for convenience and readability. (Adobe strongly recommends that every
*OpenUl/*CloseUl entry contain an appropriat@rderDependency statement, so
that the print manager knows where to emit the code in the output file.)

The StringValue valuegickOne, PickMany, andBoolean denote the type of
option list for this feature.

* PickOne means that, for this feature, the device supports only one choice at

a time from the list of available options. The print manager can use this

information when building a user interface, so that when a user selects any
single choice from the list, the other choices are deselected. An example of

aPickOne type of list is‘PageSize, which displays the list of available page

sizes. A page must always have a size, and it cannot be two sizes at once.

The optionNone has special meaning. Code associated Neitk explicitly
deselects the other options in the list. For example, a list of stapling
options might includelone, meaning “do not staple.” If the user selects

None, the print manager should send the code supplied to disable stapling,

in case the device is set up to staple by default.

* PickMany means that, for this feature, the device supports one or more

choices at a time from the list of available options. For example, a device
might allow two kinds of folding to occur at once. The print manager can
use this information when building a user interface, so that when a user

selects any single choice, the other choices in the list are not disabled or
deselected.

In aPickMany type of option list, one of the options musitNaee. The code
associated witNone explicitly deselects all other options in the list. This is
an exception to the generidkMany rule of allowing more than one choice
at atime. In a user interface, if a user selgats, all other options for that
feature should be deselected by the print manager. If a user selects any
option other thamone, thenNone should be deselected.

Boolean means that there are only two choices, andralse. This tells a

print manager that this feature could be displayed as a check box or radio
buttons, rather than as a menu list.

5 Keywords 43

The parametenainkeyword, which is both the option of th@penul statement
and the StringValue atloseul, is the keyword whose options are listed
within the*OpenUl/*CloseUl pair. The value may optionally have a translation
string to show the manufacturer’s preferred name for the feature.

Here is a sample entry:

*OpenUl *Smoothing/Smooth Characters: Boolean
*DefaultSmoothing: False

*OrderDependency: 40 AnySetup *Smoothing
*Smoothing True: "invocation code"

*Smoothing False: "invocation code"
*?Smoothing: “query code”

*CloseUl: *Smoothing

Given this entry in a PPD file, the print manager could use this information to
display a menu, checkbox, or radio buttons labeled “Smooth Characters”
with two options;True andFalse.

The*OpenUl/*CloseUl structure provides several benefits:

It allows a print manager to build a user interface automatically and uni-
formly. The user-selectable options bracketedpgnul/*Closeul follow a
certain form. Each entry contains one or more statements consisting of a
main keyword, option keyword, and a value, which is a code sequence.
The print manager can display the options, record the user’s selection of
an option, extract the code for that option, and send the code to the device,
all without having any semantic knowledge of the feature and its options.

* New options can be added to a main keyword without the print manager
having to be rewritten to parse for them. Assuming that a print manager
simply displays the options and executes the associated code, the print
manager does not need to recognize the option or know anything about the
code it is sending to the output file.

« New main keywords can be parsed, if they are of the proper form that can
be enclosed irDpenul/*CloseUl. A print manager that pars&penul/*CloseUl
properly should not parse for a specific main keyword, and should not care
if a new main keyword is added. Not all new main keywords fall into the
*OpenUl/*CloseUl category, but if they do, a print manager should read them,
display their options, and execute the associated code.

@ Main keywords that are commonly bracketed witfenui/*CloseUl are marked
in this specification with the Ul symbol (shown here) next to the keyword
definition. Some features that appear in the user interface require extra work
from the print manager, such as opening a communication channel or
requesting information from a user. These more complex features are not

44 PostScript Printer Description File Format Specification (9 Feb 1996)

*OpenGroup:

*CloseGroup:

amenable to the simplistic syntax*0fenuUl/*CloseUl, so their entries will not
be bracketed witkOpenUl/*Closeul, even though they might appear in the user
interface via special handling by the print manager.

The keywordgJCLOpenUl and*JCLCloseUl provide the same structure fiaL
keywords. See section 5.8 for their description.

*OpenUl*CloseUl is provided as a supplementary service designed to assist in
building a user interface. It is not intended to constrain a print manager or
other application in any way. If a print manager does not want to display to
the user a feature marked withpenUl/*CloseUl, the print manager can parse

for that feature’s keyword and not display the feature. Likewise, if a print
manager wants to display additional features not markedpbyul/*CloseUl,

the print manager can parse for that feature’s keyword and display the feature
to the user.

The*Openul/*CloseUl provides most of what typically constitutes a user inter-
face, so that a “dumb” parser could construct a reasonable user interface
simply by reading all the features marked-@yenul/*CloseUl and displaying
them. It is not meant to be a complete user interface design tool.

string
string

Like *OpenUl/*CloseUl, this pair of keywords is provided to assist in building a
user interface. Because of the limited physical space of some displays, print
manager writers often need a way to group certain features behind one “but-
ton” or menu item. A selection of features can be grouped by placing a
*OpenGroup/*CloseGroup pair around the feature set. If nested groups are needed
(groups within groups)PpenSubGroup and*CloseSubGroup must be used.
*OpenGroup/*CloseGroup may not appear inside the bracketing of another
*OpenGroup/*CloseGroup pair.

Features in a group are not mutually exclusive; several features can be chosen
from a group. For example, a group of finishing features might contain sta-
pling, folding, binding, and other features that do not exclude each other.

The StringValue value of botopenGroup and*CloseGroup is a descriptive

string that represents the name of the group. It is provided for the print man-
ager to display to the user. The group name string must conform to the rules
for the elementary typsring (see section 4.3) and it must be unique; there can
be only one group or sub-group with a given name.

5 Keywords 45

The example below groups all of the finishing features of the device (the
invocation code is omitted to save space, and the blank lines are only for
readability):

*OpenGroup: Finishing

*OpenUI *FoldType: PickOne
*DefaultFoldType: None
*FoldType Saddle: " "
*FoldType None: " "
*CloseUl: *FoldType

*OpenUI *Collate: Boolean
*DefaultCollate: True
*Collate True: " "

*Collate False: " "
*CloseUl: *Collate

*CloseGroup: Finishing

The sample PPD file in section 6.2 shows imagesetter features in a group.
Another logical group is finishing features. By parsing for the keywords
*OpenGroup/*CloseGroup, & print manager can displaiyishing andimagesetting to

the user as buttons or menu items, and all the finishing features and imageset-
ting features can be hidden from the user until they are needed.

This syntax, like the syntax epenUl/*CloseUl, allows features to be added to

a group without the print manager needing to know about them*®pemu/

CloseUl features can be added within@penGroup/*CloseGroup grouping, and

a print manager that parses fopenUl/*CloseUl correctly should be able to

parse for the new features in the same manner. This enables a print manager
to add new items to the user interface without the print manager itself having
to be rewritten.

*OpenSubGroup: string
*CloseSubGroup: string

These keywords are used to designated groups within groups. They can only
appear within aOpenGroup/*CloseGroup bracketing keyword pair. Groups may

be nested to any level witbpenSubGroup/*CloseSubGroup. The group name

string must conform to the rules for the elementary tytyg (see section

4.3) and it must be unique; there can be only one group or sub-group with a
given name. See the description@genGroup/*CloseGroup in this section.

46 PostScript Printer Description File Format Specification (9 Feb 1996)

Here is an example of the syntax of these keywords (be aware that the
*OpenUl/*CloseUl entries are not syntactically complete in this example):

*OpenGroup: ProductionPrinting

*OpenSubGroup: MediaSelection
*OpenUl *PageSize ...

*CloseUl: *PageSize
*OpenUl *MediaType ...

*CloseUl: *MediaType
*CloseSubGroup: MediaSelection

*OpenSubGroup: Administration
*OpenUl ...

*CloseUl

*OpenSubGroup: TopSecret

...may include several *OpenUI/*CloseUl entries
*CloseSubGroup: TopSecret

*OpenUl ...

*CloseUl
*CloseSubGroup: Administration

*CloseGroup: ProductionPrinting

The sub-groupopSecret is nested within the sub-grodpministration, which is
nested within the grouproductionPrinting. Note that thedministration group con-
tains a mix ofOpenSubGroup and*OpenUl entries at the same level.

The result of this might be that the print manager would display a panel with
a button or menu item label@dductionPrinting. SelectingProductionPrinting

would produce a menu or a button panel advertigimi@Selection and

Administration. SelectingviediaSelection would display twaOpenUl choices

*PageSize and*MediaType for the user. Selectingiministration would display two
*OpenUl choices and a button or menu item labéatgdecret, which, when
selected, would display more buttons or menu items.

5 Keywords 47

48

*OrderDependency:

*NonUIOrderDependency:

real section mainKeyword optionKeyword
real section mainKeyword optionKeyword

These keywords provide a partial ordering of the fragments of device-specific
code in a PPD file. This allows a print manager to output the code in the cor-
rect order, so that later fragments will motdo the effects of earlier frag-

ments. See section 2.5 for information about why order dependencies exist.

*OrderDependency is used only with Ul keywords (keywords surrounded by the
*OpenUl/*CloseUl or *JCLOpenUI/*JCLCloseUl keywords) *OrderDependency must

occur inside theOpenul/*CloseUl or *JCLOpenUI/*JCLCloseUl bracketing for that
keyword.

*NonUIOrderDependency is used only with the few non-Ul keywords that emit
code. For exampleCustomPageSize is not a Ulkkeyword because it requires
user input, which is not accommodated by+*thgenul choices oPickOne,

PickMany, andBoolean. Yet*CustomPageSize typically would appear in a user
interface specially built by a print manager, and when selected by the user,
*CustomPageSize emits code fragments. A print manager needs to know the
order in which these code fragments should be emitted, relative to all other
code fragmentsNonUIOrderDependency provides that information for non-Ul
keywords.

Although*OrderDependency and*NonUIOrderDependency are not required key-

words, to ensure correct results during printing, Adobe strongly recommends
that every DpenUl/*CloseUl entry and everyiCLOpenUI/*JCLCloseUl entry con-

tain a*OrderDependency statement and that all non-Ul keywords that emit code
have an associateronUlOrderDependency Statement.

The value is a StringValue with multiple components separated by white
space. Each component is defined identically for both keywords. The value of
real specifies the relative order in which this code should be emitted. It defines
the ordering across all device-specific code fragments witkdrrien

(defined later). The absolute values of the order numbers are not important,
only their values relative to other order numbers within the sacti@.

Within asection, code assigned a lower number should be emitted before code
assigned a higher number. Multiple code fragments in a siegta can be
assigned the same order number. If the order numbers assigned to two code
fragments are equal, the code fragments can be emitted in either order. Code
fragments that do not have #derDependency or *NonUIOrderDependency State-

ment should be emitted after all fragments that do have ordering numbers.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

The value ofection describes where in the job the code fragment can be emit-
ted. The possible values fgaction correspond to the sections of a document
file, as defined by thAdobe Document Structuring Conventions, version 3.0
Valid values forsection are as follows:

* ExitServer—This code makes a change to the device that will take effect at
the start of the next job. This code should be sent as a separate job, before
the job it will affect. The correct password (the valugPadsword) must be
supplied before this invocation.

* Prolog—This code supplies resources that must be in the Prolog section of
a document.

* DocumentSetup—This code must be emitted in the Document Setup section,
after the%%BeginSetup comment

* PageSetup—This code must be emitted in the Page Setup section after the
%%BeginPageSetup comment and before the page lexset.

* JCLSetup—This code provides job level control for devices that support a
job control language. This code must be emitted after the code emitted by
*JCLBegin and before the code emitted H@LToPSInterpreter.

* AnySetup—This code must be emitted in either the Document Setup or
Page Setup section and must follow the rules defined for the values
DocumentSetup Or PageSetup accordingly.

To builders of PPD files: UgaySetup as thesection name if there is no spe-

cific reason to speciffageSetup or DocumentSetup. This lets a print manager

make the most efficient decision about where to emit the code fragment. How-
ever, to be labelednySetup, the code fragment must work correctly when
emitted in either section,

The values ofmainkeyword andaptionkeyword specify a statement in the PPD file
that emits device-specific code, which must be emitted in the order defined
by section andorder. The parametedptionkeyword will be omitted if mainkeyword

has no option keyword. Theptionkeyword may be omitted if the code frag-
ments for all option keywords for the given feature have the same classifica-
tion and ordering (this is the common case).

5 Keywords 49

The following example specifies that the code to change the resolution must
be emitted before the code to change the input slot (these entries are not syn-
tactically complete):

*OpenUI *Resolution: PickOne
*OrderDependency: 10 AnySetup *Resolution
*DefaultResolution: 1200dpi

*Resolution 2504dpi: "..."

*Resolution 1200dpi: "..."

*?Resolution:"..."

*CloseUl: *Resolution

*OpenUI *InputSlot: PickOne
*OrderDependency: 20 AnySetup *InputSlot
*DefaultinputSlot: Upper

*InputSlot Upper: "..."

*InputSlot Lower: "..."

*?InputSlot: “...”

*CloseUl: *InputSlot

Note Builders of PPD files for Level 2 devices can facilitate optimized perfor-
mance by assigning the san®@ederDependency section and order number to as
many keywords as possible. A print manager can then bundle all of the code
fragments that have the same valueséation andorder into onesetpagedevice
call, by redefiningsetpagedevice to collect the key-value pairs into a single
dictionary that is then executed with a single regdagedevice call. Very few
keywords require a different order number on Level 2 devices, so keywords
should be assigned the same order number unless there is some reason to
assign a different order number. If a given code fragment would cause differ-
ent results when executed alone than it would when bundled with other
parameters (in any order) into a singl&pagedevice call, that code fragment
should be assigned a separate order number. For example, if the code frag-
ments forManualFeed and *Duplex are both emitted in th&nySetup section, and
the result of emitting the code fragments separately, like this:

<</ManualFeed true>> setpagedevice
<</Duplex true>> setpagedevice

produces the same result asittimg the code fragments together, like this:
<</ManualFeed true /Duplex true>> setpagedevice

or in a different order, like this:
<</Duplex true /ManualFeed true>> setpagedevice

then*ManualFeed and *Duplex can be given the same order number. Otherwise,
if any one of these methods givesféetent result than the other ninetds,
*ManualFeed and *Duplex should be assignedfférent @nd appropriate) order
numbers.

PostScript Printer Description File Format Specification (9 Feb 1996)

*QueryOrderDependency:

Code fragments ordered by eithigenUIOrderDependency or *OrderDependency

should be considered to be a single set; that is, their order numbers within a
section are relative to each other. For example, a code fragment with a
*NonUIOrderDependency order number of 20 andsection of PageSetup would be
emitted before a code fragment witkOaderDependency order number of 30

and asection of PageSetup.

real mainKeyword optionKeyword

If there are device queries accompanying a print job, all such queries must be
emitted in a “query job”, which immediately precedes the print job. Among
other things, this allows spoolers to process the queries without processing
the actual print job. (See tiESCfor a description of query jobs.) In some
cases, the query job must also contain the invocation code from certain main
keywords, emitted before certain queries, in order for the query response to
be accurate. For example, changing the resolution of the device can affect the
amount of free VM, so to obtain a more accurate estimate of free VM, the
device resolution code should be emitted in the query job before querying for
free VM.

*QueryOrderDependency identifies main keywords whose invocation code needs
to be emitted in the query job, before any queries, in order for the query
response to be accurate. If a print manager queries for any of the following
items: free VM, device resolution, available fonts (and there may be others),
any invocation code referenced#yeryOrderDependency should be efitted in

the query job before any of these queries are emitted.

The structure ofQueryOrderDependency is very similar to the structure of
*OrderDependency, although there is nsection parameter because the entire
guery job is considered to be a single section. The value is a StringValue with
multiple components separated by white space. The parasatsecifies

the relative order in which this invocation code should be emitted within the
guery job. Code with a lower order number should be emitted before code
with a higher order number. If two main keywords have the same
*QueryOrderDependency order number, their code fragments may be emitted in
either order relative to each other. All invocation code from main keywords
flagged byQueryOrderDependency should be emitted before any queries are
emitted.

The parametenainkeyword will be a valid Ul keyword (defined in section 1.2)
or a valid non-Ul keyword can be constrainedNunuUIConstraints (see the
description ofNonUIConstraints for a list of legal keywords). Thgarameter
optionKeyword will be a valid option for that main keyword. If the main key-
word has no options, the paramedgionKeyword will be omitted. The parame-
ter optionkeyword may be omitted if all of the options for the main keyword

5 Keywords 51

*UlConstraints:

would otherwise have the same order number (this is usually the case). The
*QueryOrderDependency statement for a given Ul keyword should be within the
*OpenUl/*CloseUl bracketing for that keyword. For example:

*OpenUl *Resolution: PickOne
*OrderDependency: 10 AnySetup *Resolution
*QueryOrderDependency: 10 *Resolution
*Resolution 600dpi: "..."

*Resolution 1200dpi: "..."

*?Resolution: "..."

*CloseUl: *Resolution

This tells the print manager that the invocation code for the resolution chosen
by the user should be emitted in the query job, before any queries, and then
emitted again in the print job. There is no relationship between the order
numbers ofOrderDependency and*QueryOrderDependency.

keyword1 option1 keyword? option2

This keyword, whose value is a StringValue with multiple porrents sepa-

rated by white space, denotes exclusionary relationships between pairs of
device features. It tells a print manager which device features cannot be sup-
ported together, allowing the print manager to prevent the selection of both
features at once in the user interface. For example, a device might forbid
duplex printing when feeding from the envelope tray, or perhaps A4 size
paper can only be fed from the upper slot, which would be expressed as a
constraint between the A4 page size and all input slots other than the upper
slot.

*UlConstraints can also be used to express the relationship between an optional
hardware component and the user-selectable features it enables. For example,
the presence of an envelope feeder would enable printing on envelopes, or the
presence of an extra memory board might enable higher resolution settings,
but the absence of these optional components would prevent the display and
use of their associated features. See section 5.4 for a description of the
InstallableOptions group and how it interacts withiConstraints.

A print manager can use the information found fti@onstraints statement to
make constrained choices unavailable to the user, either by “graying out” or
removing these items from the print panel, or by some other method appro-
priate to the user interface. To obtain consistent behavior from print manag-
ers,*UIConstraints may only be used between pairs of Ul main keywords
(keywords whose entries are surrounded byahenul/*CloseUl or *JCLOpenUl/
*JCLCloseUl keyword pairs). Since all Ul keywords are presented to the user as
choices in a user interface, their behavior is consistent; when they are con-
strained, that choice should not be offered to the user. For information on

PostScript Printer Description File Format Specification (9 Feb 1996)

constraining non-Ul keywords, see the descriptiomafulConstraints in this
section. If either of the keywords in the constraint pair is a non-Ul keyword,
you must useNonUIConstraints.

The syntax ofUIConstraints is that the first keyword-option pair invalidates the
second keyword-option pair. That is, if the first keyword-option pair is
invoked, the device will not allow the sea keyword-option pair to be
invoked.

Constraints on Ul features are reciprocal, so there will be two statements for
each pair of features. One statement tells you that FeatureA-Optionl con-
strains FeatureB-Option5, and the other statement tells you that
FeatureB-Option5 constrains FeatureA-Optionl. The PPD file builder must
ensure that both statements appear, for the benefit of print managers that do
not enforce automatic reciprocity. If one of the reciprocal statements is miss-
ing, a print manager should operate as if it were present.

For example, a device might not allow transparencies to be output into the
upper output bin, because transparency stock is too stiff to go through the
convoluted paper path leading to the upper output bin*Ulbestraints entry
would look like this:

*UlConstraints: *MediaType Transparent *OutputBin Upper
*UlConstraints: *OutputBin Upper *MediaType Transparent

The semantics of this in a user interface might be as follows: When the media
typeTransparent has been selected, the output bin labepgel is not available.

The reverse is also true; when the output bin labgdpsl has been selected,

the media typ@ransparent is not available.

Each feature or both features may also be specified without any options. For
example, a constraint might take this form:

*UlConstraints: *FeatureA *FeatureB Optionl

If no option is specified for Feature A, then Feature B is unconstrained until
some option of the first feature, other thane or False, is selected. At that
point, Option 1 of Feature B becomes constrained. For example:

*UlConstraints: *StapleWhen *MediaType Transparent

The semantics of this are as follows: If any optior¢$eaplewhen, other than
None oOfr False, is selected, transparent media cannot be selected.

Likewise, this format is legal:

*UlConstraints: *FeatureA Optionl *FeatureB

5 Keywords 53

Note

*NonUIConstraints:

If no option is specified for Feature B, and Option 1 of Feature A is selected,
the constraint forces the selection of toge or False option of Feature B. For
example:

*UlConstraints: *MediaType Transparent *Staple

If transparent media is selected,*8@ple options can be selected, except for
None Ofr False.

Finally, it is legal to omit options for both Feature A and Feature B. This
means that if the option selected for Feature Mong or False, Feature B is
unconstrained, but if any other option of Feature A is selected, the only valid
options for Feature B anane or False.

Itis illegal to omit an option for Feature B if it i®@kOne style without a

None option, because that effectively disables all options of Feature B. It is
also illegal to omit an option for Feature A if it is a style withoNtre style,
because it effectively disables the specified option of Feature B for all cases.

Print managers must be careful to avoid permanently excluding the selection
of a feature that is constrained by other features. For example, if selecting a
page size of A4 disables the selection of the Lower input slot, how will the
user select the Lower input slot when they want to switch to a different page
size? The user could try selecting each page size, hoping to find one that
works with the Lower slot. A better choice would be for the print manager to
allow the selection of constrained items, but to automatically modify the
other component(s) of the constraint (and inform the user), or to warn the
user of the conflict and ask the user to resolve it.

To builders of PPD fileUiConstraints is used only between pairs of main key-
words. Do not write constraints between the various options of a single main
keyword. For example, do not write a constraint betweeageSize Letter and
*PageSize Legal. Options are already constrained against each other by their
PickOne or Boolean type, so additional constraints are unnecessaryibeghal.

keyword1 option1 keyword? option2

This keyword works exactly lik&JiConstraints except that it is used with non-
Ul keywords (keywords not surrounded #genuUl/*CloseUl or *JCLOpenUI/
*JCLCloseUl). Please see the descriptiori@€onstraints for the complete syntax
and semantics afionUIConstraints. All of the rules specified fotIConstraints
apply to*NonUIConstraints, except where noted in this description.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

*Include:

*End

*NonUIConstraints must be used #itherthe constraining or constrained key-
word is a non-Ul keyword. For example, here is a Ul keyword constraining a
non-Ul keyword:

*NonUIConstraints: *InputSlot Upper *CustomPageSize True

This indicates that if the user has choserutiper input tray, a custom page
size cannot be requested.

The semantics ofNonUIConstraints are that a constrained feature is “not avail-
able”. Because non-Ul keywords are not consistent in behavior, the exact
action taken is up to the print manager. Advice to the print manager encoun-
tering a constrained non-Ul keyword might be “don’t do what you would nor-
mally do”. For example, for keywords suclhrasstomPageSize and*insertSheet,

which require a print manager to display a specialized user interface, that
interface should not be displayed or should be grayed out.

The following keywords are the only non-Ul keywords that can appear in a
*NonUIConstraints statement:*CustomPageSize, *LeadingEdge, *UseHWMargins,

*InsertSheet, *FaxSupport, and*SetResolution. More keywords may be added to this
list in future versions of this specification, after an analysis to determine the
impact on existing applications.

To application developers: In a future edition of this specificatfom,will
be added to the list of keywords which can be constraineéxbhtyiConstraints.
See the description ¢font for a discussion of how application authors
should handle this pending change.

*NonUIConstraints arenot automatically reciprocal. If the reciprocal constraint
makes sense, it will be included in the PPD file, and a print manager should
honor it, but if a reciprocal constraint is missing, a print manager should not
attempt to create and enforce such a constraint.

“filename”

This allows the explicit inclusion of another PPD file (or partial file) into the
current PPD file. The QuotedValtilename is the name of the file to be
included. See section 4.3 for details on the syntdiemine and section 2.6

for details on including one PPD file within another.

This keyword is used to close multiple-line InvocationValues and
QuotedValues. The double quotes dikkssed to delimit the code sequence,
but as an extra parsing check and for added human readabiligndhey-

word is included after the closing double quote of a multiple-line PostScript
language sequence. The keyword itself is of type NoValue.

5 Keywords 55

5.3

*FileVersion;

*FormatVersion:

*LanguageEncoding:

General Information Keywords

The keywords in this section provide general information about the PPD file
and the device it describes. The keywords in this section do not invoke any
device features.

“string”

Required This keyword identifies the version number of the PPD file itself. It
is used only to distinguish between releases of the same file, not to distin-
guish one file from another.

The value, a QuotedValue, is a string of the form “1.0”. A standard version
numbering scheme is employed. For major changes to the device and the
PPD file, including upgrading the PPD file to match a new version of the
PPD File Format Specificatigrthe entire number will be incremented to the
next whole number (for example, from 1.0 to 2.0). For minor fixes to the PPD
file (including typographical errors), the integer to the right of the decimal
will be incremented (for example, from 1.0 to 1.1 and from 1.9 to 1.10). This
permits the various versions of a PPD file to be identical in most ways
(including file name) but still be distjuished from one another. All released
PPD files will initially have the string “1.0” in this field.

“string”

Required This provides the version number of the PPD file format specifica-
tion to which the PPD file conforms. It is retained primarily for backward
compatibility, as the newer keyworePD-Adobe provides both the information
that this file is a PPD filand the specification version to which the file con-
forms.

The value, a QuotedValue, is a string of the faroy For a PPD file to con-
form to the version of the specification detailed in this document, the value of
*FormatVersion must be4.3". If a PPD file is updated to reflect changes in the
PPD File Format Specificatigrthis statement should be changed to match
the new specification version number.

encodingOption

Required This keyword complements and partially supersedes the older
*LanguageVersion keyword.*LanguageEncoding identifies the encoding (mapping

from natural language characters to byte codes) used in the human-readable
comments, translation strings, and certain QuotedValues such as the value of
*NickName. The encoding of any part of the PPD file other than these strings is
system-dependent.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

*LanguageVersion:

*LanguageEncoding does not identify the natural language of the PPD file; that is
the role of theLanguageVersion keyword. In most cases, a parser needs only to
parse thelLanguageEncoding keyword, andLanguageVersion can be ignored. The
value of*LanguageEncoding contains the information needed to allow a parser

to convert text strings from the encoding used in the PPD file to the encoding
used on the host system.

If *LanguageEncoding is present, its value overrides the default encoding
implied by thefLanguageVersion keyword.

The values oéncodingOption, a StringValue, are as follows:

ISOLatinl—Uses the ISOLatin1 encoding
* |SOLatin—Uses the 1ISOLatin2 encoding
* ISOLatins—Uses the ISOLatin5 encoding

* JIS83-RKSJ—Uses the RKSJ (informally known as “Shift JIS”) encoding
and the JIS X0208-1983 character set

* MacStandard—Uses Macintosh® standard encoding

* WindowsANSI—Uses Windows® ANSI encoding, as defined by Microsoft®
for use in the Windows operating system

* None—The encoding is not specified.

Appendix C provides tables to convert between3eatinl, MacStandard, and
WindowsANSI encodings. See section 3.5 for details on translation string syn-
tax.

To builders of PPD files: If the initial PPD file is built in English, the value of
*LanguageEncoding is ISOLatin1. If you are building the file ianother language,

or if you are translating the file to another language, change the values of
*LanguageVersion and *LanguageEncoding to reflect that language.

languageQption

Required This identifies the natural language used in the PPD file. For sim-
plicity, the valid values ofnguageOption are the English words for the natural
languages. The value fahguageOption (for instanceFrench or German) affects

only the human-readable comments, translation strings, and certain Quoted-
Values such as the value*afckName. The encoding (mapping from natural
language characters to byte codes) of any part of the PPD file other than these
strings is system-dependent.

5 Keywords 57

*Manufacturer:

The*LanguageEncoding keyword specifies the encoding for the strings men-
tioned above. IfLanguageEncoding is absent, the encoding of these strings can
be deduced from the value*finguageVversion. The currently registered values
for languageOption, which is a StringValue, and their corresponding encodings
(defined undetLanguageEncoding) are:

Table 1 Values for languageOption and their encodings

languageQption encoding
English ISOLatinl
Chinese None
Danish ISOLatin1
Dutch ISOLatin1
Finnish ISOLatin1
French ISOLatin1
German ISOLatin1
Italian ISOLatin1
Japanese JIS83-RKSJ
Norwegian ISOLatinl
Portuguese ISOLatinl
Russian None
Spanish ISOLatinl
Swedish ISOLatin1
Turkish varies; check value ofanguageEncoding

oxt"

Required This QuotedValue provides the name of the company that manu-
factured the device. If a device is OEM'ed from one manufacturer to another,
this name will be the name of the manufacturer who is marketing the device
under their own name. A given manufacturer must use the same name string
in each of their PPD files. For example, the name must not be "Acme Printer
Co." in one PPD file and just "Acme" in another. Also, the string must be
unique among manufacturers; two or more manufacturers may not use the
same string. Appendix D provides the current list of known manufacturer
strings.

This keyword gives print managers a way to group together several devices
provided by one manufacturer. Given a set of PPD files, a print manager can
provide a list of manufacturers for the user to choose from, and then provide a
list of PPD files available from the chosen manufacturer.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

Note

*ModelName:

To builders of PPD files: For ease of sorting and display by a print manager,
we recommend leaving out unnecessary words like “Incorporated,” “Com-
pany,” “Ltd.”, and “Corporation” when creating this string. The purpose of
this keyword is for a print manager and a user to be able to distinguish one
manufacturer from another, not to provide a complete account of the manu-
facturer's full legal name.

To builders of PPD files: In order for the Windows 95 Image Color Matching
(ICM) system to match InterColor Consortium (ICC) color characterization
profiles to deviceand drivers, the first 4 characters (or until a space or
hyphen is found, whichever comes firstiMahufacturer must be a unique

string, which must match the value of #teader.manufacturer tag in the ICC
profile. Practically speaking, this means that in addition to the entire string
being uniqgue among manufacturers, the first 4 charactetgaofifacturer must
also be unique, at least for color printers that have ICC profiles in the Win-
dows 95 system. See the Microsoft document “Image Color Matching and
Printer Drivers in Windows 95" for details on how color profiles are matched
to devices and drivers. See Appendix D for a list of currently known
icHeader.manufacturer profile tags.

oyt

Required This value, a QuotedValue, is a string created by the builder of the
PPD file that represents the common name of the device. It must be unique
for a given model of device. Becausenduct is not always unique or descrip-
tive, *ModelName is used by print managers to identify a PPD file for a specific
device model. For example:

*Product: "(LaserPrinter)"
*ModelName: "Acme SuperPrinter Turbo v2011.108"

BecauseModelName is used as a base for the PPD file name in some environ-
ments, certain punctuation characters are illegal. The valwedaiName can
containonly the following characters, whose decimal values are defined here
or in section 1.1: alphanumeric characters, space, period, slash, hyphen (dec-
imal 45), and plus (decimal 43). No other punctuation characters are allowed.

BecauseModelName describes a unique printer model, and because it may be
used as a filename in some environments, there should be only one
*ModelName statement per PPD file. If a PPD file describes two or more mod-
els, that fact should be reflected in the valuaofelName. For example:

*ModelName: “Acme FunPrinter or NiftyPrinter”

If the product is a PostScript language cartridge or other external add-on
device, include that fact in the name. For exambeie PostScript Cartridge for
FunPrinter III".

5 Keywords 59

Note

*NickName:

To builders of PPD files: As a guidelifdgde/Name should contain the manu-
facturer's name followed by the device’'s name. In order for the Windows 95
Image Color Matching (ICM) system to match InterColor Consortium (ICC)
color characterization profiles to devices, tiMadelName string must exactly
match the string used to generate the value otHeeder.model tag in the ICC
profile. In addition,under certain circumstances some print managers
assume that the first 4 characters (or until a space or hyphewiglj of
*ModelName will be the name of the manufacturer and will match the
icHeader.manufacturer tag in the ICC profile. Practically speaking, this means
that the first 4 characters dflodelName must match the first 4 characters of
*Manufacturer, at least for color printers that have ICC profiles in the Windows
95 system. Finally, because some print managersstug#vickName instead of
*ModelName for ICC profile matching, and the builder of the PPD file doesn’t
know which print manager will be usetfiodeiName should match

*ShortNickName to ensure consistent ICC profile matching. See the Microsoft
document “Image Color Matching and Printer Drivers in Windows 95" for
details on how color profiles are matched to devices and drivers and how the
ic.model profile tagis generated.

oyt

Required This QuotedValue is the local name for the device. It is unique for
an instance of a device model. It is used primarily at the user interface level
when selecting a device or to distinguish between two otherwise indistin-
guishable devices (for example, if a single controller is used to drive more
than one type of marking engine).

There may be only on@lickName in a PPD file. If the PPD file is valid for

more than one product, that fact must be reflected iNidk®ame value, as in
*ModelName. Initially, the value of *NickName is usually the same as the value of
*ModelName, but it can be edited in a local customization file if necessary,
whereasModelName should not be changed. Alternatively, the value may have
a translation string for localization.

Note that the value ofickName, as a QuotedValue, can include hexadecimal
substrings. These substrings should be translated to natural language charac-
ters according to the values+*ofinguageEncoding and/or:LanguageVersion.

The length of the value aflickName is unrestricted, except for line length. For
situations where the length of the nickname must be restricted, see the
description ofShortNickName.

PostScript Printer Description File Format Specification (9 Feb 1996)

*PCFileName:

Note

“string”

Required This value, a QuotedValue, provides the name of the PPD file as it
would appear in a PC environment. This name must be eight characters fol-
lowed by a dot and a three character suffix. It is provided in the PPD file so
that a PPD file with a longer name, transferred from another platform, can be
renamed to a unique PPD filename appropriate to the PC environment.

The file naming scheme employed by Adobe Systems for these PPD files is
an attempt at a mnemonic name as constricted by the DOS operating system.
The naming scheme is partially algorithmic. Filenames and the keyword
*PCFileName are constructed as follows:

e The first 2 characters designate the manufacturer. A list of manufacturer
prefixes is kept by Adobe Systems to ensure uniqueness of names. Please
refer toAppendix D: Manufacturer’s Prefix List and *Manufacturer
Stringsfor the current prefix list.

« The next 6 characters consist of a string that uniquely identifies the device
model.

* The suffix of the file is “.PPD".

« For consistent readability and to minimize confusion of letters with num-
bers, only capital (uppercase) letters are used.

To builders of PPD files: If a released PPD file is changed, but the product
itself hasnot changed, the PPD file name (atmtFieName) will not change.
Examples of this type of change to a Pi®include, but are not limited to,
fixing a typographical error in the PPD file, fixing an incorrect value for
*FreeVM, fixing feature code that was not tested properly and has been found
to be incorrect, adding or changing translation strings, changing the names
of option keywords, removing a keyword that was never supported by the
device, and fixing incorrect information in*gont statement

If a released PPD file is changed because the product itself has changed, the
upgraded product must be issued a new PPD file with a new name. Any new
features must be thoroughly tested. If the "old" and "upgraded" products are
substantially the same product, marketed under similar names, Adobe recom-
mends keeping the filenames substantially the same, but using the 8th charac-
ter of the new filename as a version number for the file. For example, if the
Acme SpiffyPrinter is upgraded with more memory, you might change
ACSPIFFY.PPD to ACSPIFF2.PPD. Using the 8th character as a version
number is a recommendation of common practice, but is not a requirement of
this specification. If the "old" and "upgraded" products are substantially dif-
ferent, or marketed under different names, yoautd give the new PPfile a

unique name that corresponds as closely as possible to the name under which
the product is marketed.

5 Keywords 61

*Product:

*PSVersion:

Examples of filenames constructed according to the naming scheme:

APLWIIG1.PPD Apple LaserWriter 1lg v2011.113
DPLZ9601.PPD Dataproducts LZR 960 v2010.105
OKOL8701.PPD Okidata OL870 v2013.108
TKPHZR21.PPD Tektronix Phaser Il PXi v2010.116
TKPHZR22.PPD Tektronix Phaser Il PXi v2011.108
XR_88121.PPD Xerox 8812 v2012.016

When a PPD file is translated into another language, Adobe recommends that
you keep the same file name, but isolate the different language-version files
from each other through directory structures or other physical isolation tech-
niques. Different language versions of PPD files are essentially interchange-
able at the software level, but need to be organized separately at the user
level.

u(text)u

Required This QuotedValue corresponds exactly to the product string of the
device. On Level 1 devices, it is the value returned by the code sequence

statusdict /product get exec == flush end
and on Level 2 devices, the value is returned by this code sequence
product == flush

There can be more than one instance offtheauct keyword if the PPD file is
valid for more than one product. For example, if two devices have identical
PPD files, they can be combined into a single PPD file with the following two
statements

*Product: "(LaserPrinter)"
*Product: "(LaserPrinterll)"

and*ModelName, *NickName, and*ShortNickName would reflect the fact that the
PPD file is valid for two products, like this:

*ModelName: “Acme LaserPrinter or LaserPrinterll”

“(string) int”

Required This QuotedValue is composed of two parts. The string in paren-
theses is the version number of the PostScript interpreter, as returned by the
code sequence

version == flush

PostScript Printer Description File Format Specification (9 Feb 1996)

The integer following the parentheses is the interpreter’s revision number. On
Level 2 devices, this number is returned by the code sequence

revision == flush
On Level 1 devices, the revision number is returned by the code sequence
statusdict /revision get exec == flush

The values are presented in PostScript language form so that they can be
compared with the actual values in the device to determine whether or not the
PPD file matches the device.

There can be more than one instance offtBeersion keyword if the PPD file

is valid for more than one version (and revision) of the interpreter. For exam-
ple, if, for a given device, the PPD files for interpreter version 2011 revision
108 and interpreter version 2011 revision 120 are identical, they can be com-
bined into one PPD file with the following statements:

*PSVersion: "(2011) 108"
*PSVersion: "(2011) 120"

Matching a PPD file to a device request

*PSVersion can be used by a print manager to match a particular version of a
PPD file to a request for that file. However, in general, a PPD file for an older
version of an interpreter can be safely used with a newer version of the inter-
preter, and vice versa. Interpreter upgrades are often based on performance
and bug fixes that don’t affect the PPD file. Likewise, a match between the
version number in the PPD file and the version number of the interpreter is
not necessarily significant. For example, a manufacturer might use a single
controller to drive several different marking engines. In this case, separate
PPD files should be lluto describe each controller-engine combination.
However, the product name, version, and revision number all describe only
the controller, and thus would be the same in each PPD file.

For example, imagine a controller called SuperRIP, which can drive two dif-
ferent engines called the S2500 and the S7000. The SuperRIP controller con-
tains interpreter version 2012, and the product name is always “SuperRIP,”
regardless of which engine is attached to the controller. In this case, there
would be two PPD files: one for the combination of SuperRIP and the S2500
engine, and one for the combination of SuperRIP and the S7000 engine.
These PPD files might be called, respectivBly2500_1.PPand

SU7000_1.PPD

5 Keywords 63

*ShortNickName:

Note

Note

The relevant statements$UJ2500 1.PPDRvould look like this:

*PSVersion: (2012) 1
*Product: "(SuperRIP)"
*NickName: "SuperRIP with S2500 v.2012"

and the relevant statementsSbi7000_1.PPDvould look like this

*PSVersion: (2012) 1
*Product: "(SuperRIP)"
*NickName: "SuperRIP with S7000 v.2012"

These two PPD files, while matching*moduct and*PSversion, are differenti-
ated by theirNickName statements and their filenames. A print manager trying
to choose the correct PPD file for a device must take all these things into
account, or it can simply ask the user to select the correct file.

oyt

Required This keyword is identical to the semantics and syntax of the
*NickName keyword, but the length of the string value is limited to 31 or fewer
characters. Common practice is to make it the sarmcki¢ame, but without

the PostScript interpreter version number. This keyword is provided to over-
come certain string length restrictions in some host environments. The value,
a QuotedValue describing the device, must be unique within the set of PPD
files on the local system. That is, there should not be two different PPD files
with the same value faghortNickN\ame. There may be only one instance of
*ShortNickName per PPD file. Due to limitations in certain print managers,
*ShortNickName must appear in the PPD file befokekName.

*ShortNickName was not required in previous versions of this specification. It is
required in files that conform to the 4.3 specification.

To builders of PPD files: As a guidelinghortNickName should contain the
manufacturer’s name followed by the device's name. In order for the Win-
dows 95 Image Color Matching (ICM) system to match InterColor Consor-
tium (ICC) color characterization profiles to devices, the PScript 4.x print
manager requires that thshortNickName string exactly match the string used
to generate the value of thiweleader.model tag in the ICC profile. In addition,
under certain circumstances some print managers assume that the first 4
characters (or until a space or hyphenasimd) of*ShortNickName will be the
name of the manufacturer andlwnatch theicHeader.manufacturer tag in the

ICC profile. Practically speaking, this means that the first 4 characters of
*ShortNickName must match the first 4 characters*ofnufacturer, at least for
color printers that have ICC profiles in the Windows 95 system. Finally,
because some print managers egede/Name instead ofShortNickName for

ICC profile matching, and the builder of the PPD file doesn’t know which
print manager will be usedMode/lName should matcHShortNickName to ensure

PostScript Printer Description File Format Specification (9 Feb 1996)

5.4

consistent ICC profile matching. See the Microsoft document “Image Color
Matching and Printer Drivers in Windows 95" for details on how color pro-
files are matched to devices and drivers and howcihedel profile tagis
generated.

Installable Options

Most printers ship in some standard, minimal configuration but accept
optional features or accessories, usually sold separately. ifisestable
optionscan be paper trays, envelope feeders, memory modules, and so on.
The PPD specification provides a way to describe these accessories, to label
them as optional and initially not installed, and a way to install them later.
Thus an application can list the installable options in its user interface, but
can display them in some special way (for instance, grayed out) to indicate
that the basic configuration does not support them.

Additionally, a customization file can be created to reflect a specific printer,
and within that customization file, certain accessories can be marked as
installed, so that applications can then allow them to be selected from the
user interface. The PPD specification also offers a way for an application to
guery the user for this configuration information, which can be used to
update an application’s internal database.

Without this information, an application might display all installable options,
whether they are installed or not, and risk having the user select an option that
is not installed and get errors or unexpected results.

Syntax and Use

The*OpenGroup structure keyword (described in section 5.2) is used to denote
the beginning of the installable options group. The option keyword
InstallableOptions describes this special grougstallableOptions is a registered

option keyword that should not be used as an option for any other group in a
PPD file. Like other values, it can have a translation string attached for clar-

ity.
For example:
*OpenGroup: InstallableOptions/Options Installed

ThelnstallableOptions group contains one entry for each optional accessory that
the printer can accept. Each entry consists edpanUl/*CloseUl keyword pair,
which surrounds the choices for the accessory. Within the entrpethet
keyword initially denotes the state of the accessory in the minimal configura-
tion; that is, whether it is installed or not when the device leaves the factory.
If the state of the accessory can be determined by querying the PostScript

5 Keywords 65

66

interpreter, there may also be query code, which a print manager operating in
a bidirectional environment could use to update its information about the
device’s configuration.

Because there is no need for them to have meaningful names, the main key-
words used within th&penUI/*CloseUl entries consist of the generic string

*Option followed by an integer; for exampl®ption1, *Option2. Each installable
option (eachOpenul entry) must have a uniqgue main keywoeime. The
*UlConstraints section then maps the genetetion keywords to the actual PPD
feature entries. For example:

*OpenGroup: InstallableOptions/Options Installed
*OpenUl *Option1/Envelope Feeder: Boolean
*DefaultOptionl: False

*Optionl True/Installed: "™

*Optionl False/Not Installed: "™

*CloseUl: *Option1

*CloseGroup: InstallableOptions

*UlConstraints: *Option1 False *InputSlot Envelope

The *UIConstraints Statement tells a print manager thajftionl is False (the
envelope feeder is not installed), then Ehelope option of thesfinputSlot key-
word is not available for selection by the user.

It is also legal to have a named keyword withinlikellableOptions group.

This might be done for a keyword whose effect is important enough or com-
plex enough that a print manager might want to generate a separate configu-
ration panel for that keyword. A named keyword might also be used where
that keyword needs to be matched to other keywords by some method other
than*UiConstraints. In either case, the print manager needs to be able to recog-
nize that keyword. For an example, see the discussitmstaffedMemory in

section 5.6 and later in this section. In general, the use of the generic key-
words is recommended, to discourage special casing by print managers, key-
word proliferation, and additional documentation.

A print manager can use thetallableOptions group in at least two ways. First,

at printer installation or configuration time, a print manager can create a con-
figuration panel based on the information found inliktellableOptions group.

On this configuration panel the print manager posts the optional accessories
listed, using th@ickOne andBoolean values of theOpenUl entries to determine
whether an accessory requires a menu of choices or a boolean check box that
denotes whether or not an accessory is installed. The user then informs the
print manager which printer accessories are installed by selecting from the
menus or checking the check boxes for each optional accessory. The print
manager then stores this information in an internal database and later uses it
to decide which options to offer the user at print time.

PostScript Printer Description File Format Specification (9 Feb 1996)

Second, a user or application might permanently configure the print manager
by providing a local customization file that contaibsfault settings that
reflect the installation of accessories.

For example, a local customization file might contain the following:

*OpenUl *Option1/Envelope Feeder: Boolean
*DefaultOptionl1: True
*CloseUl: *Option1

From this entry, a print manager can record that the valt@ptahl is cur-

rently True and use that information, in conjunction with tbonstraints

entry in the base PPD file, to later decide which other options to offer to the
user at print time. If the author of the print manager does not want to offer a
configuration panel that interacts with the user, the print manager can be
coded so that it looks at th#efault setting and treats it as if it were a selection
from the user. Instead of querying the user for configuration information, the
print manager relies on theefault settings to be correct. This method is per-
haps simpler to implement, but is less flexible for the user and requires that
the user or some application edit a local customization file to record the con-
figuration information.

Most*OpenUl entries in thenstallableOptions group are Boolean choices, as

shown in the previous examples, but PickOne entries are equally legal. For
example, the following entry provides a short list of mutually exclusive
choices (the user can install 2MB or 4MB of memory, but not both at once).
This is also an example of using a named keyword instead of a generic main
keyword:

*OpenGroup: InstallableOptions

*OpenUI *InstalledMemory/Memory Configuration: PickOne
*DefaultinstalledMemory: None

*InstalledMemory None/Basic Memory: ™
*InstalledMemory 2Meg/2Meg Memory Upgrade: ™
*InstalledMemory 4Meg/4Meg Memory Upgrade: ™
*CloseUl: *InstalledMemory

*CloseGroup: InstallableOptions

*UlConstraints: *InstalledMemory None *Smoothing Medium
*UlConstraints: *InstalledMemory None *Smoothing Dark
*UlConstraints: *InstalledMemory 2Meg *Smoothing Dark

This*UIConstraints entry tells a print manager thatidne has been selected for
*InstalledMemory, then neither th®ledium nor Dark options of theSmoothing key-
word are available, andafleg has been selected farstalledMemory, then only
theDark option of*Smoothing is not available. This provides a way for the print
manager to present various options to the user based on the amount of
memory installed in the printer.

5 Keywords 67

55

*ColorDevice:

*DefaultColorSpace:

*Extensions:

The InvocationValues of the main keywords are typically null quotes because
no code is invoked during configuration; the print manager is simply record-
ing information either from the user or from tidefault statements. However,

in some cases, there may be actual PostScript code between the quotes, per-
haps to perform some type of job setup related to the device’s configuration.
In that case, th®penul entry must also contain abrderDependency Statement,

so that the print manager knows where to insert the code in the job stream.

Basic Device Capabilities

The keywords in this section provide information about the device’s basic
capabilities.

True | False

This keyword indicates whether or not the device physically outputs color.
See*Extensions for information about black and white devices that support the
color extensions to the PostScript language. The value is of type StringValue.

colorspaceOption

This keyword indicates the default native color space of the device. The
native color space is the color space that all colors are converted into before
rendering. The currently registered valuescbdarspaceOption (a StringValue)

are

* CMY—This device uses the cyan-magenta-yellow color space as its native
color space.

* CMYK—This device uses the cyan-magenta-yellow-black color space as its
native color space.

* RGB—This device uses the red-green-blue color space as its native color
space.

» Gray—This device uses a gray-scale native color space.

extensionOption ...

This keyword indicates that this device supports the PostScript language
extensions listed. One or more extensions may be listed, separated by white
space. Operators specific to each extension are documented in Appendix A of
thePostScript Language Reference Manual, Second Edition

PostScript Printer Description File Format Specification (9 Feb 1996)

*FaxSupport:

*FileSystem:

*?FileSystem:

The currently registered values ttensionOption (a StringValuepre

* DPS—This device contains a PostScript Level 1 implementation that also
supports the Display PostScripExtensions.

* CMYK—This device contains a PostScript Level 1 implementation that also
supports the Color Extensions

» Composite—This device contains a PostScript Level 1 implementation that
also supports the Composite Font Extensions

* FileSystem—This device contains a PostScript Level 1 implementation that
also supports the File System Extensions

faxOption...

If the device can act as a facsimile (fax) device, this keyword lists the various
fax-related capabilities of the device. One or more capabilities can be listed,
separated by white space.

Currently, the only registered value (a StringValue) is

* Base—This device can encode the rasterized version of a document in fax
format and transmit the fax to another fax device.

True | False

This StringValue indicates whether or not the PostScript device has the capa-
bility for a writable file system. Normally this means the presence of a hard
disk or SCSI controller on the device. This information can be used by a print
manager to determine the capability for internal file sysigopart. Note

that some devices might have the capability for a file system but might not in
fact have a disk installed (in this case the value for this keyword would be
True, but the associated query would retBaise). The*?FileSystem query can

be used to dynamically determine whether or not a file system is actually
present. If the device has no capability of having a file system, this statement
will be omitted.

“query”

This query will returriiue if a writable file system is currently onlinejse if

not, andunknown if the state cannot be determined. The results of this query
do not convey any information about whether or not the disktialined, or
how many free pages there are. If this device cannot support a file system,
this statement will be omitted.

5 Keywords 69

*LanguageLevel:

*Throughput:

*TTRasterizer:

ul'ntu

This QuotedValue designates the PostScript language level supported by the
PostScript interpreter in this device. If the value is 2, the PostScript inter-
preter in this device supports all PostScript Level 2 features. If the value is 1
or if this keyword is not present, the PostScript interpreter supports all Post-
Script Level 1 features. Segxtensions for further information.

ul'ntu

This QuotedValue is the nominal throughput in pages per minute. It repre-
sents the marking engine’s rated capacity for throughput. It might be used to
determine the fastest of a number of devices if there are many to choose from,
but should not be construed as any kind of “benchmark” figure.

In the case of roll-fed machines, the number indicates the number of 8-1/2
inch sections of media that can be fed in one minute by the marking engine.
In the case of duplex devices, which can print on both sides of the paper, the
number indicates the number of pages that can be printed in one minute in
simplex (one-sided) mode. If the value is fractional, it is rounded up to the
nearest number (it must be 1 or larger).

rasterizerOption

This keyword indicates whether or not this device contains software to create
font bitmaps from Type 42 (TrueTyPefont outlines. If the device does con-
tain such “rasterizer” software, thasterizerOptionindicates whether the
software is built into the device, is downloadable, or other details.

The currently registered values (of type StringValue)dsurizerOption are

* None—This device does not contain a Type 42 rasterizer and the device is
not capable of receiving a downloaded rasterizer.

* Accept68K—This device does not contain a Type 42 rasterizer, but the device
can accept a downloaded rasterizer that is 68000-compatible. A driver
wishing to download a rasterizer should also query the current state of free
VM on the device to determine whether there is enough memory to accept
the rasterizer.

* Type42—This device contains a Type 42 rasterizer in ROM.

» Truelmage—This device contains a Truelmage rasterizer, which accepts the
Truelmage version of a TrueType font.

PostScript Printer Description File Format Specification (9 Feb 1996)

*?TTRasterizer: “query”

This query returns theasterizerOptioncorresponding to the device’s capa-
bility regarding Type 42 rasterizer software. The value returned must be one
of therasterizerOptiongisted underTTRasterizer or it will be Unknown. If

Accept68K is returned by this query, a parser should also query the current state
of free VM to determine whether there is enough memory to download the
rasterizer.

*1284Modes channelOption. mode...

The StringValue of this keyword describes the level of compliance of each
communication channel with the IEEE 1284-1994 specificatilBE Stan-
dard Signaling Method for a Bidirectional Parallel Peripheral Interface for
Personal Computerst tells which communication modes are supported, on a
per-channel basis. For example:

*1284Modes Parallel: Compat Nibble

The channelOption must match one of the channel names listed uisdete.

(See section 5.21 for information tBource.) More than onenode may be

listed in the value field, separated by white space, meaning multiple modes
are supported on that channel. Tiwee definitions are taken from the 1284-
1994 specification, and are as follows:

* Compat—Compatibility mode (unidirectional host-to-peripheral parallel
communication). Many older devices support only this mode.

* Nibble—4-bit reverse (peripheral-to-host) communication

» Byte—38-bit reverse (peripheral-to-host) communication

* ECP—Extended Capabilities Port (8-bit bidirectional)

* EPP—EnNhanced Parallel Port (8-bit bidirectional)

Currently, the only channel described by the 1284-1994 specification is
Parallel, but other channels may add support in the future, so other channel

options are permitted. There may also be variatiomaralkl on a device,
such a%arallelB for a second parallel channel.

5 Keywords 71

72

*1284DevicelD:

ot"

For a device that is compliant with the IEEE 1284-1994 specification men-
tioned under1284Modes, the QuotedValue of this keyword provides the
Device ID string returned by the device. For example:

*1284DevicelD: "MFG:Acme;MODEL:SuperSpiffy; COMMAND SET: POSTSCRIPT,PJL,PCL”

5.6

T *PatchFile:

If the device does not return a valid string in response to a request for
Device ID, this statement will be omitted from the PPD file.

System Management

“invocation”

This represents a (perhaps large) PostScript language sequence that is a
downloadable patch to ROM code, which must be downloaded outside the
server loop, into initial VM. It is represented as a QuotedValue. It can be used
if there are any known bugs in existing PostScript devices or to provide some
initial state to all jobs. A program that is managing a PostScript device should
make every attempt to guarantee that this information is resident in the Post-
Script interpreter's memory before any jobs are run.

Code in a patch file must adhere to certain requirements. These restrictions
are intended to ensure that this patch code will only execute on the printer for
which it was intended, and will not execute if it has already been executed on
this particular printer (to conserve memory space and avoid possible con-
flicts). A conforming patch file must do the following:

* Check a unique key to see if the patch has already been downloaded to the
printer.

« Compare theroduct , version , andrevision strings on the printer to the
values of theProduct and*PSVersion statements in the PPD file to make sure
that this patch will be downloaded only to the printer for which it was
written.

« If downloading the patch, define or set a unique key in a dictionary or oth-
erwise indicate the patch’s presence, so that its existence can be checked
later.

Please see the comments on daggered keywords at the end of section 4.1 for a
list of the additional responsibilities of the builder of the PPD file and of print
manager authors.

T This keyword requires the *Password value to be supplied in front of the invocation.

PostScript Printer Description File Format Specification (9 Feb 1996)

*?PatchFile:

*JobPatchFile

*FreeVM:

“query’

This query checks the key set by the cod@adthFile and returngrue if the

patch file is present behind the server loop, raisd if it is not. This allows a
print manager to decide whether it is necessary to download the patch file
outside the server loop as a separate job. The patch file’'s presence is deter-
mined by the presence or absence of a certain key in a dictionary, or by any
other method that the implementor of the patch file chooses. If a patch file is
implemented, a patch file query must be provided.

int. “invocation”

Like *PatchFile, this is used to download a PostScript language sequence to
apply a bug fix or to set up an initial state for a job, but it does not require a
password and is not downloaded outside the server loop. Its code should be
attached to the beginning of the job and the pair of files should be down-
loaded as one job. The option keyword is provided so that multiple patch files
for a device may be numbered.

“int”

This keyword gives the maximum amount of memory available for use by a
PostScript language job in the product’s minimal memory configuration. The
QuotedValue is the integer returned by the PostScript language sequence

vmstatus exch sub == pop
or, on a Level 2 device,
2 vmreclaim vmstatus exch sub == pop

executed immediately after the device is first powered on.

For a print managetfreevM does not necessarily reflect the current amount
of VM available on the device, since either more memory may have been
added or VM may have been used up by downloaded fonts or other resources.
It should be regarded as a maximum limit of free VM in the minimal memory
configuration, rather than as a measure of current availability. Historically
*FreeVM has been used by print managers to determine which of several
devices has more memory built into it. Beca#seVM is generated using the
product’s minimal memory configuration, it is of limited use on devices that
support additional memory modules. In that case, the combination of
*InstalledMemory and+*VMOption is more useful for determining how much
memory might be available.

5 Keywords 73

*VMOption

Note

*InstalledMemory
*DefaultinstalledMemory :

*?InstalledMemory:

vmOption: ‘“int”

This keyword provides potential values of theevM keyword with various
optional memory (VM) configurations installed. The values are obtained by
inserting each additional memory module, one at a time, and recording the
value returned by the code fragment listed in the descriptitiee¥M.

The vmOption None denotes the basic, standard memory configuration, with no
additional memory upgrades. The otheoptions must match themOptions in
the*nstalledMemory entry, and are generally of the foaweg or 2MB, denoting

the size of the total installed memory. The value, although in the form of an
InvocationValue, must be an integer.

A PPD file with a*vMOption entry must also haveraeeVM statement. At least
one*VMOption statement must contain the same value asteM statement.

For example, the following entry indicates that the standard configuration
contains 100,000 bytes of free memory at boot time, while the upgrade called
2Meg provides 1,100,000 bytes of free memory:

*FreeVM: "100000"
*VMOption None/Standard: "100000"
*\VMOption 2Meg: "1100000"

*VMOption is used withinstalledMemory to determine how much memory is
installed and how much VM is available as a result. See the description of
*InstalledMemory for an explanation.

To builders of PPD files: PPD files witformatVersion statements greater than
4.1 should not haveUiConstraints between an installable memory module and
*YMOption. This method is obsolete. Instead, there shoulthkgledMemory
entries in thenstallableOptions group for each additional amount of memory.
*InstalledMemory is automatically linked tévMOption by the use of identical
option keywords, so there is no need*téiConstraints on *VMOption.

vmOption: "invocation” @

vmOption | Unknown
“‘query” (returns:vmOption | Unknown)

*InstalledMemory is used to link the amount of physical memory in the device
with the amount of available VM. The strimgOption must match a valid
vmOption listed undervMOption. *DefaultinstalledMemory indicates the default
amount of memory installeekinstalledMemory returns aimOption that corre-
sponds to the current memory configuration. Note that tmistithe amount
of free VM, but an indicator of the physical memory installed.

PostScript Printer Description File Format Specification (9 Feb 1996)

This entry would typically appear in tihstallableOptions group. If the
*?InstalledMemory query is present and a bidirectional communication channel
is available, the print manager can use*thnstalledMemory query to ask the
device how much memory is installed. If a bidirectional communication
channel is not available, the print manager cartinsaledMemory to ask the

user how much memory is installed. (See section 5.4 for a description of the
InstallableOptions group.) The print manager would then match the user’s choice
of an option forinstalledMemory (or the string returned byinstalledMemory) to

the same option of/MOption to find out how much VM is available.

For example, in a unidirectional environment, the print manager could read
the following entry and add it to a configuration panel, asking the user to
select which memory module had been installed in their printer:

*OpenGroup: InstallableOptions
*OpenUI *InstalledMemory: PickOne
*DefaultinstalledMemory: 2MB
*InstalledMemory 2MB/Standard: " "
*InstalledMemory 3MB/3 MB Upgrade: " "
*InstalledMemory 4MB/4 MB Upgrade: " "
*CloseUl: *InstalledMemory
*CloseGroup: InstallableOptions

The print manager could then take the user’s selection (let’s say it was 4MB)
and search the following statements to find out how much VM would be pro-
vided by the 4MB option:

*VMOption 2MB: "1234567"
*VMOption 3MB: "2345678"
*VMOption 4MB: "3456789"

This provides a rough method of obtaining an updated valuerdevM.

While this value still may not reflect the true amount of VM available, due to
resource downloading, in a communications environment where the print
manager cannot query the printer for the actual amount of VM available, this
provides something closer to the truth.

In most cases, the invocation value HostalledMemory will be null; that is,

there will be no code between the quotes (like most values in the
InstallableOptions group). However, in some cases, the invocation value might
contain code, in which case the print manager should treat it as normal invo-
cation code. If there is actual code in the quotes)rthaledMemory entry

must have arOrderDependency Statement specifying where the code should be
emitted. TheinstalledMemory keyword can also occur outside the

InstallableOptions group.

5 Keywords 75

T *Reset:

*Password:

*ExitJamRecovery
*DefaultExitJamRecovery:

*?ExitJamRecovery:

T *ExitServer:

“invocation”

This QuotedValue is a PostScript language sequence ithpeviorm a

“soft” restart of the PostScript interpreter. It can be used by a printing man-
ager to reboot the device under some circumstances. Please see the comments
on daggered keywords at the end of section 4.1 for a list of the additional
responsibilities of the builder of the PPD file and of print manager authors.

“invocation”

This QuotedValue provides the password required to persistently set values in
initial VM on the device. It is used in conjunction with tBetServer keyword

and other keywords that are flagged with the dagger. See section 2.6 for
details on local customization for instructions on changing this password for
a specific device.

True | False: "invocation” @
True | False | Unknown
"query" (returns:True | False | Unknown)

This keyword provides the code to invoke the “exit jam recovery” feature. If
True, pages that jam in the exit path are reprinteraldé, jammed pages are

not reprinted, which may result in a performance improvement because more
overlapping of page processing is possitilefaultExitlamRecovery denotes the
default state*?ExitlamRecovery returns the current state.

“invocation”

This QuotedValue provides the appropriate PostScript language sequence to
exit the job server loop (on a Level 1 device, this code would typically use the
exitserver operator, and on a Level 2 device, tagjob operator). This should

be used carefully, if at all, by a print manager. Its purpose is to make changes
to device memory permanent until the device is turned off. It is usually only
used to apply bug fixes or to change the system defaults on a device. The
value of*Password or the current password input by a user must precede this
invocation. Please see the comments on daggered keywords at the end of sec-
tion 4.1 for a list of the additional responsibilities of the builder of the PPD

file and of print manager authors.

T This keyword requires the *Password value to be supplied in front of the invocation.

PostScript Printer Description File Format Specification (9 Feb 1996)

*SuggestedJobTimeout:

*SuggestedManualfFeedTimeout:

*SuggestedWaitTimeout:

*PrintPSErrors:

Note

"int"

This QuotedValue provides the time, in seconds, that the device manufacturer
suggests for the value of the user paramiet@imeout (Level 2) or the argu-

ment tosetjobtimeout (Level 1). This value may be the default value set in the
device at the factory, or it may be an alternative to the factory-set value, pro-
vided for performance or other reasons. This keyword is intended for print
managers that allow the user to change the job timeout value; it provides an
initial value for display to the user.

"int"

This QuotedValue provides the time, in seconds, that the device manufacturer
suggests for the value of the page device parameteaiFeedTimeout (Level

2) or the argument teetmanualfeedtimeout (Level 1). This value may be the
default value set in the device at the factory, or it may be an alternative to the
factory-set value, provided for performance or other reasons. This keyword is
intended for print managers that allow the user to change the manualfeed
timeout value; it provides an initial value for display to the user.

"int"

This QuotedValue provides the time, in seconds, that the device manufacturer
suggests for the value of the user paramedgTimeout (Level 2) or the argu-
ment tosetwaittimeout (Level 1). This value may be the default value set in the
device at the factory, or it may be an alternative to the factory-set value, pro-
vided for performance or other reasons.This keyword is intended for print
managers that allow the user to change the wait timeout value; it provides an
initial value for display to the user.

True | False

This StringValue indicates to a print manager whether or not the device man-
ufacturer thinks that PostScript interpreter error information should be
printed on the device. Printing interpreter error information is appropriate on
some devices, but not on otherskrig, the device manufacturer suggests that
printing interpreter error information is appropriate for this device. A print
manager may, of course, let the user override this suggetiad;siis key-

word is intended to provide default behavior for a print manager, and a value
for initial display to the user if the behavior is to be changed.

To builders of PPD files: As a rule of thuntfintPSErrors is usually set tarue
for cut-sheet devices arrdise for roll-fed devices.

5 Keywords 77

*DeviceAdjustMatrix:

Note

5.7

*Protocols:

‘[transformation matrix |”

This QuotedValue provides a device-specific transformation matrix to com-
pensate for any anamorphic scaling or offset problems inherent in the under-
lying mechanical marking device. If the device has no such problems, the
value of*DeviceAdjustMatrix is the identity matrix [1 0 0 1 O 0], and the entire
statement will be omitted from the PPD file.

A system administrator might need to abeliceAdjustMatrix to a local custom-
ization file for a particular device to compensate for slight shrinkage or mag-
nification caused by motor speeds, media thicknesses, and so on. See section
2.6 for information on local customization files.

ThetimageableArea figures given in the PPD files will no longer be exactly
accurate if the device matrix is adjusted. Bear in mind, if this field is
changed, any operations sensitive to the page boundaries might have to be
recomputed slightly, or the results might be off the page.

Emulations and Protocols

The keywords in this section provide information about emulators and proto-
cols supported by the device.

protocolOption ...

This provides a StringValue that indicates the protocols supported by this
device. One or more protocols can be listed, separated by white space. Valid
values forprotocolOption are:

* BCP—This device supports the Adobe binary communications protocols, as
documented in section 3 of Technical Note #5@8be Serial and Par-
allel Communications Protocols Specificati@vailable from the Adobe
Developers Association. The binary communications protocol provides a
clear channel on a serial or parallel line and is used to transparently pass
certain control characters that might be contained in binary data. On a
clear channel, switching between the PostScript language and certain emu-
lators can be accomplished transparently using language commands from
within a job.

* PJL—This device can support multiple printer languages, including the
PostScript language. Hewlett Packard’s printer job language (PJL) pro-
vides a means of switching between languages. This device supports the
PJL language switching sequences that begin and end PostScript language
jobs.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note PPD files that conform to specification version 4.1 and higher and that con-
tain this statement will also contain thEL keywords that provide the appro-
priate PJL language switching sequences. In version 4.0 PPD filegcthe
keywords do not exist and the print manager must provide the appropriate
PJL commands.

* TBCP—This device supports the tagged binary communications protocol,
as documented in section 4 of Technical Note #5808be Serial and
Parallel Communications Protocols Specificatiawvailable from the
Adobe Developers Association.

*Emulators: emulatorOption ...

This keyword provides a StringValue that enumerates the emulators that can
be invoked from within a PostScript language job on this device. The value
consists of one or moeulatorOption keywords, separated by white space.

For eachemulatorOption listed underEmulators, there must also be correspond-
ing main keywords that describe the command sequence necessary to start
and stop the emulator namenulatorOption. These main keywords are formed
by concatenating the string&artEmulator_ and*StopEmulator_ with the

emulatorOption string. This odd syntax allows the values to be QuotedValues.

For example:

*Emulators: hplj proprinter
*StartEmulator_hplj: "code"
*StopEmulator_hplj: "code"
*StartEmulator_proprinter: "code”
*StopEmulator_proprinter: "code"

An emulatorOption must appear in &mulators statement before the correspond-
ing *StartEmulator_ and*StopEmulator_ keywords appeatr.

The currently registered option keywords éowlatorOption are

diablo630—Diablo 630

* decppl3—Digital ANSI-Compliant Printing Protocol (level 3)

* hpg—Hewlett Packard Graphics Language

* hpl—Hewlett Packard LaserJet and LaserJet Plus (HP-PCL)
* proprinter—IBM ProPrinter

e ti855—Texas Instruments 855

5 Keywords 79

*StartEmulator_emulatorOption:

Note

*StopEmulator_emulatorOption:

80

“invocation”

This QuotedValue provides the PostScript language code to invoke the emu-
lator namecamulatorOption, from within the current job. The invocation is rep-
resented as a QuotedValue in case the invocation code contains 8-bit control
characters, which must be represented as hexadecimal substrings. This key-
word is formed by concatenating the striggrtEmulator_ with the string from

the list of validemulatorOptions listed underEmulators.

The code in the QuotedValue must end with a space or newline, so that the
final PostScript language token is executed. Any data sent by the print man-
ager following the invocation code will be executed by the named emulator.

For example:

*Emulators: hplj
*StartEmulator_hplj: "currentfile

/hpcl statusdict /emulate get exec "
*End

Before invoking any emulators, a clear channel must be established. See the
description of the keywortProtocols for more information about establishing
a clear channel.

Before beginning an emulation, most emulators will erase the current page,
initialize the gaphics state, and clear the operand and execution stacks.

‘hexadecimal data”

This QuotedValue provides the data needed to exit the emulator named
emulatorOption and return to PostScript interpretation. The invocation is repre-
sented as a QuotedValue because typically the code contains control charac-
ters, which must be represented as hexadecimal substrings.These
hexadecimal substrings should be parsed by the print manager, and the appro-
priate 8-bit characters should be sent to the device.

This keyword is formed by concatenating the strigpEmulator_ with the a
string from the list of validmulatorOptions listed underEmulators. For example:

*Emulators: hplj
*StartEmulator_hplj: "currentfile
/hpcl statusdict /emulate get exec "
*End
*StopEmulator_hplj: "<1B7F>0"

PostScript Printer Description File Format Specification (9 Feb 1996)

5.8 Features Accessible Only Through Job Control Language

On some devices, certain features can be accessed only through a job control
language (JCL), which is managed independently from the PostScript lan-
guage interpreter. Keywords pertaining to such features are referred to
throughout this document aSCL keywords”. A typical job that accesses cer-
tain features via JCL code would contain these components in this order:

 the code fromJCLBegin, which starts the JCL job

« the code, if any, to change the desired feature, sugBL&ssolution or
*JCLFrameBufferSize

 the code fromJCLToPSInterpreter, which invokes the PostScript interpreter
« the PostScript language job

 the code fromJCLEnd, which ends the job and returns the device to its idle
state, awaiting further JCL commands.

If a feature can be selected either through the PostScript interpreter or
through JCL, the device manufacturer should decide which method is pre-
ferred and should use only one method in the PPD file. Although it is legal to
include both the PostScript and JCL methods of invoking a feature in the
PPD file, it is not recommended for the following reasons:

e The result is undefined. For example, if a user sets the resolution using
*JCLResolution and later sets the resolution differently usiResolution, the
resolution result will depend on the order in which the print manager per-
forms the operations and on how the two methods interact in the device.

* A print manager, parsing blindly farxCLOpenuUl and*Openul, may offer the
user two methods of changing the resolution on the same print panel,
which would be confusing.

*JCLBegin: "JcL"
*JCLToPSInterpreter: "JCL"
*JCLENd: "JcL"

These QuotedValues provide the JCL commands to bracket one or more
PostScript language jobs into one printed document. The joltieeim the
order shown in the introduction to this section. If any ofibe- keywords
are present in a PPD file, then these three keywords must all be present.

5 Keywords 81

82

*JCLOpenUl

*JCLCloseUl:

*JCLFrameBufferSize

*DefaultJCLFrameBufferSize :

*?JCLFrameBufferSize :

Here is an example of these keywords, using Hewlett Packard's PJL as the
JCL:

*JCLBegin: "<1B>%-12345X@PJL JOB<0A>"
*JCLToPSInterpreter: "@PJL ENTER LANGUAGE = POSTSCRIPT <0A>"
*JCLENd: "<1B>%-12345X@PJL EOJ<0A><1B>%-12345X"

mainKeyword: PickOne | PickMany | Boolean
mainKeyword

These keywords are identical to tlopenUl/*CloseUl keywords (see section 5.2

for a description), except that they are used to enclose:Janlikeywords.

Like keywords for other selectable features, JCL keywords affect the user
interface, and as such must be presented to the user in a consistent fashion.
All JCL keywords that provide the user with selectable features will be
enclosed in th&JCLOpenUI*JCLCloseUl keywords. If a print manager does not
wish to offer selection of features via JCL to the user, the parser can simply
skip all sections of the PPD file that are bracketetitiypenUI/*JCLCloseUl.

frameBufferOption; "JCL"
frameBufferOption | Unknown
"query" (returns:frameBufferOption | Unknown)

*JCLFrameBufferSize provides the JCL code to change the frame buffer size.
Note that requesting a larger frame buffer size means that less memory is
available for resources such as downloaded fonts.

Although the value looks like an InvocationValue, ti& keywords have
special parsing rules and such values are treated like QuotedValues. This is
because the values may contain out-of-range byte codes in hexadecimal
strings, which the print manager must translate before emitting to the job
stream.

The values foframeBufferOption are device-specific. One of the options must be
Off, with a corresponding QuotedValue that sends the JCL code to turn off the
ability to set the frame buffer size. The results of this action are device-
dependent. Other possibilities for options include any of the media size
options supported by the device, with the corresponding JCL code requesting
the frame buffer size appropriate for that media size. See section 5.13 for a
description of media option keywords.

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

*JCLResolution

*DefaultJCLResolution :

*?JCLResolution :

Note

On some devices, setting the frame buffer size may cause the device’s memory

to be reinitialized, removing anything tHzad previously been downloaded

outside the server loop (at save level 0). For example, downloaded fonts, pat-

terns, prologs, forms, and other downloaded resources would be removed
from the device’s memory.

Here is an example of the frame buffer size keywords in a PPD file:

*JCLOpenUI *JCLFrameBufferSize/Frame Buffer Size: PickOne
*DefaultJCLFrameBufferSize: Letter

*OrderDependency: 20 JCLSetup *JCLFrameBufferSize
*JCLFrameBufferSize Off: '@PJL SET PAGEPROTECT = OFF<0A>'
*JCLFrameBufferSize Letter: '@PJL SET PAGEPROTECT = LTR<0A>'
*JCLFrameBufferSize Legal: '@PJL SET PAGEPROTECT = LGL<0A>'
*JCLCloseUl: *JCLFrameBufferSize

*Default)CLFrameBufferSize indicates the default frame buffer size set by a JCL

command*?JCLFrameBufferSize returns a string denoting the current frame
buffer size set by a JCL command. If it is never possible to determine the

frame buffer size, theJCLFrameBufferSize query will be omitted.

resolutionOption; "JCL"
resolutionOption | Unknown

“‘query” (returns:resolutionOption | Unknown)

*JCLResolution provides the JCL code to change the resolution. There is one

statement for each resolution supported by the device. For a complete expla-
nation ofresolutionOption and its possible values, see the description of

*DefaultResolution in section 5.9.

Although the value looks like an InvocationValue, ti& keywords have

special parsing rules and such values are treated like QuotedValues. This is
because the values usually contain out-of-range byte codes in hexadecimal
strings, which the print manager must translate before emitting into the job
stream.

On some devices, setting the resolution may cause the device’s memory to be
reinitialized, removing anything that had previously been downloaded out-

side the server loop (at savevkl 0). For example, dowsdded fonts, pat-
terns, prologs, forms, and other downloaded resources would be removed
from the device’s memory.

5 Keywords 83

5.9

*DefaultResolution:

Here is a typical entry, using PJL as the JCL.:

*JCLOpenUI *JCLResolution/Resolution Settings: PickOne
*DefaultJCLResolution: 300dpi

*OrderDependency: 10 JCLSetup *JCLResolution

*JCLResolution 300dpi/300 DPI: "@PJL SET RESOLUTION = 300<0A>"
*JCLResolution 600dpi/600 DPI: "@PJL SET RESOLUTION = 600<0A>"
*JCLCloseUl: *JCLResolution

*Default)CLResolution indicates the default resolution set by a JCL command.
*?2JCLResolution returns a string denoting the device resolution set by a JCL
command. If it is never possible to determine the resolution, this query will
be omitted.

Resolution and Appearance Control

This section contains keywords that control the resolution and related appear-
ance characteristics of the device.

resolutionOption | Unknown

This statement provides the default resolution of the device. The resolution is
measured in dots (spots) per linear inch, in lxathdy dimensions, in Post-
Script default user space. The valeslutionOption must be a string either of

the form300dpi or of the form300x300dpi, or it can benknown if the resolution
cannot be determined at power-up:DHfaultResolution is part of an entry, the
value ofresolutionOption appearing here must be a valid resolution listed under
*SetResolution Or *Resolution.

If the format ofresolutionOption is 300x300dpi, this signifies that the device sup-
ports anamorphic resolution; that is, the resolution irxttienension can be
different from the resolution in thedimension. For example, a printer might
support a resolution @H0x600dpi. The first number denotes the resolution in
thex dimension; the second number denotes the resolution jndineen-

sion. The %" in the middle is a convenient separator, anddfheignifies

“dots per inch.” This format should be used only for a device that supports
anamorphic resolution.

The format300dpi is a shorthand form @60x300dpi and means that the resolu-
tion is the same in both the x and y dimensions (the device does not support
anamorphic resolution). This is the most common format found in PPD files.

PostScript Printer Description File Format Specification (9 Feb 1996)

T

Note

*Resolution

Note

*SetResolution

Note

The format ofresolutionOption used byDefaultResolution must be used consis-
tently wherever @esolutionOption appears. The two format&0dpi and
300x300dpi cannot be intermixed in a PPD file.

Builders of PPD files: If the device has only one resolutiefaultResolution

may appear by itself, withoeresolution, *SetResolution, or any*OpenUl/*CloseUl
bracketing. See section 3.2 and section 4.5 for information on stand-alone
default keywords.

resolutionOption: “invocation” @

For devices that support resolution changes from within a PostScript lan-
guage job, this keyword will provide the proper InvocationValue for each res-
olution supported by the device. There can be several of these statements, if
the PostScript device supports multiple selectable resolutions. The string
resolutionOption is of the form specified in th®efaultResolution statement. Print
managers need to ensure that any resolution changes occur before the page
size is selected.

To builders of PPD files:Resolution does not require a password to precede
the invocation. If a device requires a password to change the resolution, the
PPD file should containSetResolution, instead ofResolution.

resolutionOption: “invocation”

For devices that support resolution changes from software and require that
the resolution be changed “outside the server loop, ftialinirtual memory,

this keyword will provide the proper InvocationValue for each resolution sup-
ported by the device. There can be several of these statements, if the Post-
Script device supports multiple selectable resolutions. The string
resolutionOption is of the form specified undé&befaultResolution. Print managers

need to ensure that any resolution changes occur before the page size is
selected. Please see the comments on daggered keywords at the end of sec-
tion 4.1 for a list of the additional responsibilities of the builder of the PPD

file and of print manager authors.

To builders of PPD files:SetResolution should be present only in the PH2s
of devices that require a password to change the resolution. Devices that do
not require a password to change the resolution shouldRsseution.

T This keyword requires the *Password value to be supplied in front of the invocation.

5 Keywords 85

*?Resolution:

*Smoothing
*DefaultSmoothing:

*?Smoothing:

“‘query” (returns:resolutionOption | Unknown)

This query returns a string denoting the current resolution of the device. The
returned value will be a string in the format specifieddefaultResolution,

including the string dpi”, or it will be Unknown. The resolution returned must

be a valid resolution listed undesetResolution or *Resolution, if those entries

are present. Upon device power-up, downloading?kezolution code to the
device should return the value*dgfaultResolution.

smoothOption: “invocation” @
smoothOption | Unknown
“‘query” (returns:smoothOption | Unknown)

*Smoothing provides the InvocationValues to invoke various levels of “smooth-
ing” the edges of text and graphics after they have been rendered by the
device. This is also sometimes referred to as “bit smoothing,” “anti-aliasing,”
or “resolution enhancement,” Option keywords describe the level of smooth-
ing. One of the options must Nene or False to turn off smoothing.

The currently registered values &aroothOption are:

* None—No smoothing.

* Light—Turn on light smoothing.

* Medium—Turn on medium smoothing

* Dark—Turn on dark smoothing

* True—Turn on smoothing (for a device that has only a binary setting).
* False—Turn off smoothing (for a device that has only a binary setting).
*DefaultSmoothing denotes the default state of the smoothing mechanism.

*?Smoothing returns a string that denotes the current state of the smoothing
mechanism.

PostScript Printer Description File Format Specification (9 Feb 1996)

*BitsPerPixel
*DefaultBitsPerPixel:

*?BitsPerPixel:

5.10

*AccurateScreensSupport:

*ContoneOnly

depthOption: “invocation” @

depthOption | Unknown
“‘query” (returns:depthOption | Unknown)

*BitsPerPixel provides the InvocationValues to select various gray-scale levels

or color depthsdepthOptionis a string that denotes the number of bits per pixel
that should be used to represent a color when rendering the job on the device.
The currently registered values tigpthOption are:

* None, Off, False—Used to represent the lowest number of bits per pixel,
which is typically 1.

+ On, True—Used withOff andFalse respectively when this feature has only
two states. Represents the highest number of bits per pixel available.

* 2—Use 2 bits per pixel.
* 4—Use 4 bits per pixel.
» 8—Use 8 bits per pixel.

*DefaultBitsPerPixel denotes the default state of color depiBitsPerPixel returns
a string that denotes the current color depth.

Gray Levels and Halftoning

True | False

This StringValue indicates whether or not the device supports Adobe’s
Accurate Screens technology. The valugusif accurate screens are sup-
ported, otherwise it iRalse. The accurate screens feature is documented in
section 6.4 of th@ostScript Language Reference Manual, Second Edition

True | False

This StringValue indicates the continuous tone céipiab of the device. This
keyword only appears if the device can reproduce color (including grayscale)
as continuous tone®ue means the device can reproduce color and grayscale
only as continuous tones; it cannot halftcfage means the device can repro-
duce color and grayscale either as continuous tones or halftones. The absence
of this keyword means that the device cannot produce continuous tones at all,
but can only produce halftones. An application can use this information to
decide whether or not to download special halftone dictionaries, or whether

to even offer this capability to the user. There is no point in downloading half-
tone dictionaries ifContoneOnly is True.

5 Keywords 87

*DefaultHalftoneType:

*ScreenAngle:
*ScreenFreq:

*DefaultScreenProc:

Note

Note

int

This StringValue is the integer valueHafftoneType in the defaulHalftone dic-
tionary. This keyword applies only to Level 2 devices. This keyword is
present only if the device is capable of halftoning and if the default state of
the device is to produce halftones rather than continuous tone color.
(*ContoneOnly:True and*DefaultHalftoneType may not appear in the same file.)

*DefaultHalftoneType provides a hint to the print manager about the accuracy of
the values forScreenFreq, *ScreenAngle, and*DefaultScreenProc. See their descrip-
tions for further information.

“real”
“real”
spotOption

These keywords provide the default halftone screen angle, frequency, and
spot function, respectively. On Level 1 devices, these values asegkhe
frequency, andproc arguments returned by th@rentscreen operator after pow-
ering on the device. On Level 2 devices, only a type 1 halftone dictionary can
be easily represented by these keywords. Therefore, if the value of
*DefaultHalftoneType iS 1, or if *DefaultHalftoneType is not present, these values are
theFrequency, Angle, andSpotFunction entriesin the defaultalftone dictionary.

If the value ofDefaultHalftoneType is anything other thaty the values of
*ScreenAngle, *ScreenFreq, and *DefaultScreenProc may be meaningless and applica-
tion authors may not want to rely on them for anything important.

To builders of PPD files: Although these are not required keywords,

* Screenfreq, * ScreenAngle, and*DefaultScreenProc should be present even for
contone-only devices, because many applications have come to depend on
their presence, even though their values may be useless on a particular
device. You should assume that some applicatidhex&cutesetscreen with
the values provided byStreenFreq, * ScreenAngle, and*DefaultScreenProc. To pre-
pare for this, if the value abefaultHalftoneType is anything other tham, you
should put reasonable values faorgle, frequency, andspotOption in the key-
words above. If you don’t know what values to use4afgr angle, 60 for
frequency, andDot for spotOption, and make sure thatStreenProc Dot is defined in
the PPD file.

Some older PPD files for Level 2 devices may need to have these values cor-
rected. Prior to the 4.3 version of this specification, there was no requirement
that these values represent theguency, Angle , and SpotFunction entries in the
defaultHalftone dictionary in a Level 2 device, ancktthalftone was use to set

these values, therrentscreen operator used to build the PPD files would not
have returned the correct values.

PostScript Printer Description File Format Specification (9 Feb 1996)

*ResScreenFreq

*ResScreenAngle

*ScreenProc

*ScreenAngle and*ScreenFreq are QuotedValues, anbefaultScreenProc is a
StringValue. ForDefaultScreenProc, thespotOption must correspond to one of the
options listed undetcreenProc.

resolutionOption: "real”
resolutionOption: "real”

On devices with user-settable resolution, the halftone screen frequency and
angle may be changed by the device when the resolution is changed by the
user. These keywords provide the halftone screen frequency and angle that is
applied by the device for each settable resolution. The option must be a valid
resolutionOption listed underResolution, *SetResolution, or *JCLResolution in the PPD

file for this device. There should be omResScreenFreq and*ResScreenAngle

statement for each settable resolution. See section 5.9 for an explanation of
the format ofresolutionOption.

On Level 2 devices, only a type 1 halftone dictionary can be easily repre-
sented by these keywords. Therefore, for a Level 2 device, if the value of
*DefaultHalftoneType is anything other than these keywords should be ii@ad
from the PPD file.

spotOption: “{ procedure } "

This InvocationValue provides a procedure body that is suitable for use as a
“spot function” with thesetscreen or sethalftone (Level 3 operator. The

spotOption represents the name of the spot function. These options are used to
specify an alternate shape for the halftone spot. There can be one or more of
these spot shape options in a PPD file.

These spot options are used by *$ueeenProc keyword to set the halftone
screen spot function. Any of these options can also hawerse qualifier,
which would invert the color of the spot function, or it can have a serializa-
tion qualifier to distinguish it from other options.

The currently registered values #&pbtOption are:

* Dot—This keyword represents a standard dot-shaped halftone screen func-
tion. This is the default shape for the halftone cell on many PostScript lan-
guage implementations, and basically consists of small, black, roughly
circular spots that vary in size with the gray level. This keyword also
encompasses more sophisticated functions that also produce circular dots
(for example, as found on higher-resolution devices), but which might
slightly differ from the most basic dot screen.

5 Keywords 89

*Transfer

*DefaultTransfer:

Note

* Line—This keyword represents a line screen halftone function. Gray levels
will be rendered by parallel lines that vary in thickness according to the
gray level.

* Ellipse—This keyword provides an “elliptical spot” screen, which is similar
to a dot screen except that the dots are elliptical rather than circular.

* Cross—This provides a “crosshatch” screen halftone function.

* Mezzo—This provides a pseudorandom “mezzotint” screen function for the
halftone mechanism.

* DiamondDot—This provides a screen in which low gray levels produce round
dots, medium gray levels produce diamond-shaped dots, and high gray
levels produce negative dots. This screen produces smoothéidrans
among medium gray levels.

transferOption: “ { procedure } "
Null | Factory

*Transfer provides InvocationValues for possible transfer functions, which may
be invoked with the operatossttransfer , setcolortransfer , andsethalftone (Level

2 only). A transfer function is a procedure that corrects for the characteristics
of a particular marking engine or display technology to obtain “true” optical
gray or color densities. A transfer function is expected to return accurate
results at the 10% increments and should return reasonable values at any
point between 0 and 1.

Since transfer functions are inherently specific tnatanceof a type of
device, any transfer functions should be entered into a local customization
file for a specific device. Most PPD files will ship without any transfer func-
tions defined for a class of devices.

To print manager authors: When transfer functions are used at the PostScript
language level, always concatenate the transfer function with the existing
one, rather than replacing it. See section 6.3 of the PostScript Language Ref-
erence Manual, Second Edition for more information about transfer functions
and their uses.

The currently registered values tansferOption are:

* Nul—This is provided to indicate a null procedure body for the transfer
function. A null procedure body is represented in the PostScript language
as a pair of curly braceg.

PostScript Printer Description File Format Specification (9 Feb 1996)

5.11

*BlackSubstitution

*DefaultBlackSubstitution:

*?BlackSubstitution:

* Factory—For a monochrome device that ships from the factory withla bu
in non-null transfer function, this option lists the transfer function built
into the device.

* Normalized—For a monochrome device, this provides a normalized transfer
function to obtain “true” optical gray densities. For a color devicejdhe
malized option provides the transfer function to correct the gray values on
an RGB device and the black colorant on a CMYK device.

» Red—For a color device, this provides a normalized transfer function to
correct the red colorant on an RGB device or the cyan colorant on a
CMYK device.

» Green—For a color device, this provides a normalized transfer function to
correct the green colorant on an RGB device or the magenta colorant on a
CMYK device.

» Blue—For a color device, this provides a normalized transfer function to
correct the blue colorant on an RGB device or the yellow colorant on a
CMYK device.

Any of these transfer option keywords can also haventleme qualifier or a
serialization qualifier to distinguish it from other options. Inversion is typi-
cally performed by appendirigexch sub to the existing transfer function, but
an inverse normalized function can be much more complex.

On monochrome device'®efaultTransfer provides the built-in transfer func-
tion, as returned by tharrenttransfer operator immediately after powering up
the device. Most devices ship with a null default transfer function.

Color Adjustment

This section contains keywords used to adjust colors on color devices.

True | False: “invocation” @
True | False | Unknown
“‘query” (returns:True | False | Unknown)

*BlackSubstitution provides the InvocationValue to invoke black substitution.
WhenTrue, it indicates that the printer should substitute process black ink for
any pixel that is marked in composite black (cyan, magenta, and yellow inks
all requested), to produce a better blabkfaultBlackSubstitution denotes the
default state of the black substitution featarBlackSubstitution returnstrue if

black substitution is currently invoked areke if it is not.

5 Keywords 91

*ColorModel

*DefaultColorModel:

*?ColorModel:

*ColorRenderDict

colormodelOption: “invocation” @
colormodelOption | Unknown
“‘query” (returns:colormodelOption | Unknown)

*ColorModel provides InvocationValues to select different native color models
to be used by the device for imaging. The native color model is the color
model to which all colors are converted before renderivegultColorModel
denotes the default native color model of the devi@alorModel returns the
current native color model. The currently registered values/fonodel/Option

are

* CMY—Cyan-magenta-yellow color model.
* CMYK—Cyan-magenta-yellow-black color model.
* RGB—Red-green-blue color model.

» Gray—Gray-scale color model.

dictOption: “invocation”

On Level 2 color devices, manufacturers can supply built-in color rendering
dictionaries (CRDs) to calibrate the device colors for different rendering
intents, different types of paper, different halftone screens, or for other pur-
poses. This keyword lists the CRDs that are built into the device and provides
the InvocationValue code to invoke each CRD referred tdct®ption. There

will be one instance of this keyword for each built-in color rendering dictio-
nary. The invocation code sets up the named CRD to be the current CRD,
which will affect all imaging done after this code appears in the output file.

In devices with interpreter versions below 2015, CRD names were arbitrary
strings. In devices with interpreter versions of 2015 and later, CRDs must be
named according to Adobe’s CRD naming conventions. For more informa-
tion on naming and using color rendering dictionaries, see sectioGSM,
Selection Based on Rendering InténtthePostScript Language Reference
Manual Supplement for Version 2Q0Hvailable from the Adobe Developers
Association.

The dictOption name will be a concatenation of rendering intent, device setup,
and halftone names, separated by dots:

renderingintent.devicesetup.halftone

PostScript Printer Description File Format Specification (9 Feb 1996)

The name will also typically have a translation string. For example:

*ColorRenderDict Saturated.6x6Transparency.Dot/Saturated Color, 600x600 dpi, Transparency, Dot:
"/Saturated.6x6Transparency.Dot /ColorRendering findresource setcolorrendering”

*End

Note

*Renderinglntent:

An application might provide the list of built-in CRDs to the user for selec-
tion, so a meaningful translation string is important. ‘Be@eringintent,
*PageDeviceName, and+HalftoneName for more information on the components of
a CRD name.

In addition, if a user wants to supply new CRDs that are not built into the
device, new instances of this keyword can be added to a local customization
PPD file for a given device. This is rarely used because it greatly increases
the size of the PPD file. For a new CRD in a local customization file, the
*ColorRenderDict code would have to create the CRD, fill it with the appropriate
values for color calibration, and invoke the CRD vgitfolorrendering . If the

CRD is to be made available for future use as a resource, the appropriate
defineresource code and any other necessary procedures must also be included.

To application developers: There is a close relationship between the current
device setup (page device), the current halftone dictionary, and the appropri-
ate CRD. ThecColorRenderDict code does not take these things into account.
Application developers who wish to uselorRenderDict should ensure that the
appropriate halftone and device setup are invoked correctly before executing
the *ColorRenderDict code, or the results will be unpredictable. Better yet, appli-
cations should us#ndcolorrendering to find and set up the appropriate CRD.

string

This keyword provides the list of rendering intents supported by the device.
At minimum, all of the intents named in the built-in CRDs must appear here,
as StringValues. These should correspond to the first component of each
dictOption listed undercColorRenderDict. The manufacturer may also choose to

list any additional built-in intents.

Here is an example, listing the four standard rendering intents:

*Renderinglntent: AbsoluteColorimetric
*Renderinglntent: RelativeColorimetric
*Renderinglntent: Saturation
*Renderinglntent: Perceptual

For more information on the name components of color rendering dictionar-
ies, see section 5.€RD Selection Based on Rendering InténthePost-

Script Language Reference Manual Supplement for Version 20a#able

from the Adobe Developers Association.

5 Keywords 93

*PageDeviceName:

*HalftoneName:

Note

string

This keyword provides the list of device setups (page device names) sup-
ported by the device. At minimum, all of the device setups named in the built-
in CRDs must appear here, as StringValues. These should correspond to the
second component of eadhtOption listed underColorRenderDict. The manu-
facturer may also choose to list any additionalttin page device names.

These page device hames must correspond either to instances of the
setpagedevice keyPageDeviceName , or to the list of names returned by the built-

in proceduresetPageDeviceName , or the list may include all of the above

names.

For example:

*PageDeviceName: 6x6Transparency
*PageDeviceName: 3x3Transparency
*PageDeviceName: Paper

For more information on the name components of color rendering dictionar-
ies, see section 5.€RD Selection Based on Rendering InténthePost-

Script Language Reference Manual Supplement for Version 20a#able

from the Adobe Developers Association.

string

This keyword provides the list of halftone nhames supported by the device. At
minimum, all of the halftones named in the built-in CRDs must appear here,
as StringValues. These should correspond to the third component of each
dictOption listed undercColorRenderDict. The manufacturer may also choose to

list any additional built-in halftone names. These halftone names must corre-
spond either to instances of thaftone dictionary keyHalftoneName , or to the

list of names returned by the built-in proced@etalftoneName , or the list

may include all of the above names.

For example:

*HalftoneName: ScatterDot
*HalftoneName: QuadDot

For more information on the name components of color rendering dictionar-
ies, see section 5.€RD Selection Based on Rendering InténthePost-

Script Language Reference Manual Supplement for Version 20a#able

from the Adobe Developers Association.

*Renderingintent, *PageDeviceName, and*HalftoneName may be useful to an appli-
cation that wishes to download a new CRD without immediately invoking it
(*ColorrenderDict immediately invokes the new CRD). In that case, the applica-
tion or user must provide the contents of the new CRD and the code to down-

PostScript Printer Description File Format Specification (9 Feb 1996)

5.12

Note

load it to the device, name it properly, define it as a resource, and perform
any other necessary procedures. These keywords provide components for the
new CRD name.

Introduction to Media Handling

PPD files are most commonly used to take advantage of the different media
sizes supported by a device. There are many devices on the market and many
different sizes and types of media and finishing features supported on each
device. The actual invocation code for a particular type of media often varies
from one device to another—it might require the use of the operator
setpageparams Oh one devicesetpapertray on another, ansktpagedevice on a

third. The keywords in the next several sections are used to address the issues
of choosing the input media, selecting a method of output, and requesting
various finishing features.

In many instances, what the user wants is “please print this on ledger paper,”
where the user does not care from which tray the paper comes. For this situa-
tion, there is a keywordpageSize, whose corresponding invocation code

selects a tray that contains the requested size of paper. Unless there are spe-
cial media handling needs, print managers should useatdesize keyword

to request media.

For more control over the media handling capabilities, there are keywords for
directly selecting the input slots, the output bins, the output order of the

pages, the imageable area of a given page, and finishing features, such as sta-
pling. Each of these has a specific use that might be needed beyond the notion
“please give me ledger paper.” For instance, if the manual feed feature is

used, thePageRegion keyword should be used to set up an imageable area for
the manually fed sheet of paper.

The author of a print manager should assume that all media handling
requests (requests for a particular page size, media tray, and salbim)-w

tiate a new, blank page. That is, assume that a request for a media handling
feature will clear the frame buffand perform the equivalent of the

PostScript language operatoigigraphics anderasepage . This does not

happen on all PostScript Level 1 devices, but is true for all PostScript Level 2
devices, and to be safe, you should assume it will happen on all Level 1
devices. Print managers should ensure that all media handling requests are
placed in the output file before any page manipulation is performed, before
any marks are made on the page, and outside of any pagedexvel

A primary use of a PPD file is for a print manager to be able to determine a
list of all supported media types and to be able to determine the salient fea-
tures of each page size (for example, the media dimensions and the imagea-
ble area). This list can then be displayed to the user in a user interface, or
consulted by the print manager when a user requests a certain page size.

5 Keywords 95

5.13

5.14

In addition to the keywords that supply invocation code for the various media
types, there are keywords that provide information about each media size. For
example, the physical media dimensions are described byaplaedimension
keyword, and the actual area of the page which is “writable” by the Post-
Script language interpreter is described bythageableArea keyword.

Media Option Keywords

In a PPD file, each type of media is described by an option keyword. The
same option keyword is used with several different main keywords to
describe different aspects of a given media type. For example, the statements
*PageSize Letter, *PaperDimension Letter, and*imageableArea Letter all address differ-

ent characteristics of a letter-size page.

Tables of the currently registered media option keywords, sorted by both
name and size, can be founddippendix B: Registered mediaOption Key-
words.The media option names in those tables can be substituted for any
occurrence of the placeholder wawetiiaOption anywhere in this specification.

Additional media option keywords can be added to the list of registered
option keywords at any time. To ensure that the set of device features is not
artificially limited, a print manager should parse the PPD file for the com-
plete list of option keywords in a main keyword entry, rather than parsing for
specific option keywords. See section 5.1 for more information about the
extensibility of option keywords and the rules for creating new ones.

With closely related statements, such as the media handling keywords, it is
impossible to predict which statement a print manager will read to get the
translation string for an option keyword. For continuity of results, if a
mediaOption of one main keyword has a translation string, andrbditOption

is used with multiple main keywords and has the same semantics across those
keywords, then the translation string should be on every occurrence of the
mediaOption and should be identical across occurrences. For example, if the
*PageSize statement fotetter uses a translation strimgrtrait Letter, then the
*PageRegion, *PaperDimension, and*imageableArea statements faretter should all

use the same translation strivugtrait Letter.

Media Selection

The keywords in this section allow the user to control the selection of media
by specifying characteristics such as page size, input slot, media type, media
color, and other attributes.

PostScript Printer Description File Format Specification (9 Feb 1996)

*InputSlot
*DefaultinputSlot:

*?InputSlot:

inputSlotOption: “invocation” @
inputSlotOption | Unknown
“‘query” (returns:inputSlotOption | Unknown)

*InputSlot provides the InvocationValue to select media by specifying the name
of the input tray in which the media is located, rather than the page size or
other characteristics of the media. For example, the media can be selected by
specifying the upper or the lower slot and accepting whatever is found there.
The most common use of this keyword is to select a media tray that contains
letterhead or other special paper. There will be one statement for each soft-
ware-selectable input slobefaultinputSlot provides the name of the default

input slot.*?InputSlot returns the name of the current input slot.

Any arbitrary strings that appropriately describe the devices’s input slots are
valid inputSlotOptions. The following list documents commonly used

inputSlotOptions. For Windows print managers, Microsoft has defined C lan-
guage constructs calledefines, which are used to match Windows applica-

tion requests for input slots to timputSiotOption names in PPD files. If one

exists, the appropriateefine is listed in thenputSlotOption description, for use

by print managers. Builders of PPD files are encouraged to use these standard
inputSlotOption names so that Windows print managers can correctly match
application requests to input slots:

* Lower—This is used for any tray which has no particular distinguishing fea-
ture other than it is lower than another tray similar to it.
#define: DMBIN_LOWER

* Middle—This designates a tray that is between other trays.osee
#define: DMBIN_MIDDLE

* Upper—This designates a tray that is above other traysL&ee
#define: DMBIN_UPPER

* Rear—This designates a tray at the rear of the device.
* Envelope—This denotes an envelope trégefine: DMBIN_ENVELOPE

* Cassette—This keyword can be used wheer, Middle, andLower make
little sense (for example, if there is only one input slot, or if the printer is a
roll-fed device). Since many print managers display the choices of input
slot and manual feed on a single metussette provides differentiation for
the user between the paper or film cassette and the manual feed slot, if one
exists #define: DMBIN_CASSETTE

* LargeCapacity—This is used to refer to a large capacity media tray, such as an
input paper tray that can hold more than one ream of paper.
#define: DMBIN_LARGECAPACITY

5 Keywords 97

Note

Note

* AnySmallFormat—This is used to indicate a media tray that can hold any of
the smaller format medias. This includes any media size that is up to (and
including) 11 inches on the longer sidégfine: DMBIN_SMALLFMT

* AnyLargeFormat—This option allows selection of a “universal” media tray
that can contain any of the large format media sizes (those with one
dimension greater than 11 inchégdfine: DMBIN_LARGEFMT

Option keywords may also combine other attributes sucheaaType or
*ManualFeed with *InputSlot. For example:

*InputSlot ManualPaper: “code”
*InputSlot ManualTransparency: “code”

The code fragments would select the manual feed slot and set up the printer
(perhaps adjusting color densities) to print on paper or transparency, respec-
tively.

To builders of PPD files: If features are combined into an option keyword as
shown above, the relevant feature keyword should usually be omitted, to
avoid presenting the user with two different ways to choose a feature. In this
example, theManualFeed and *MediaType entries should be aditted, since the

use ofinputSiot allows selection of those features. Likewisd&pgfitSlot Manual

is present, theManualFeed entry should be omitted, to avoid providing two
methods of invoking the manual feed slot. Use common sense and test the
PPD file with print managers to make sure a feature is not presented in multi-
ple ways, confusing the user.

To builders of PPD files: ThiaputSlot entry is not required. However, even if
there is only one input slot, a minintéajputSiot entry is usually included. This
allows the manufacturer to dictate the slot name (as an option keyword or
translation string) for a print manager to display, rather than using the print
manager’s default choice of a slot namassette is the most commonly used
name for single-slot or roll-fed devices. For example:

*OpenUl *InputSlot: PickOne
*OrderDependency: 20 AnySetup *InputSlot
*DefaultinputSlot: Cassette

*InputSlot Cassette: "

*CloseUl: *InputSlot

There is no need to include thanputSlot query, since it provides no useful
information and increases the size of the) but it can be included,
with code that simply flushes back the strtagsette. For example:

*?InputSlot: “save (Cassette) = flush restore”

PostScript Printer Description File Format Specification (9 Feb 1996)

*ManualFeed
*DefaultManualFeed:

*?ManualFeed:

Note

*PageSize
*DefaultPageSize:

*?PageSize:

True | False: “invocation” @
True | False | Unknown
“query” (returns:True | False | Unknown)

*ManualFeed provides the InvocationValue to turn manual feedTae)(and off
(False). *DefaultManualFeed denotes the default state of the manualfeed mecha-
nism.*?ManualFeed returns the current state of the manual feed mechanism.

Some manufacturers prefer to handle the manual feed slot as a regular input
slot, naming one of thenputSlot optionsManual or ManualFeed and invoking

manual feeding in the code for that option. In this caseayalFeed should not

be present, as that would cause a print manager to offer the user two different
methods of choosing manual feed, which would be confusing.

To builders of PPD files: The existenceMahualFeed as a separate feature is
an historic anomaly. Adobe recommends that you @mitialFeed and

instead includeinputSiot Manual or *InputSlot ManualFeed. This provides a cleaner
interface for print managers, which usually regard the manual feed slot as
just another input slot. It also means that you don’t have to wtiGenstraints
betweertManualFeed and everyinputSiot option, thus reducing both the size of
the PPD file and the time it takes to build it.

mediaOption; “invocation” @
mediaOption | Unknown
“query” (returns mediaOption | Unknown)

Required*PageSize provides the InvocationValue to invoke supported page
sizes*DefaultPageSize indicates the default page size set by the device when it
is first powered up. Since there can be only one default page size, this value
should be the same as the valueDefaultPageRegion, *DefaultimageableArea, and
*DefaultPaperDimension. *?PageSize returns the media option corresponding to the
current page size, and is not required if it is not possible to write such a query.

The*PageSize invocations will establish both an input slot and a frame buffer
(an area in device memory to hold the imageable region of the page). The
exception to this is on roll-fed devices, such as imagesetters, where there are
no selectable input slots and the invocatidth enly set up the frame buffer.

*PageSize should be used by a print manager for the common case of a request
for a certain size of media, with no special handling of media requested (for
example, the user says, “give me legal size paper,” but does not care which
tray is used):PageSize is intended to be used in all but very specific circum-
stances (such as when using manual feed or when directly controlling a
media tray).

5 Keywords 99

Note To print manager authors: An invocation string supplieéPyeSize will
usually override an invocation string supplied #ygeRegion. Therefore, if,
for some reason, both*RageRegion invocation and apPageSize invocation for
a single page are going into the output file, thegeRegion invocation must
come after thePageSize invocation to achieve the expected results.

Note To builders of PPD files: In a PPD file for an imagesetter, the invocation
strings for*PageSize and *PageRegion are usually identical. On devices that
support multiple page sizes, the valueDefaultPageSize will often beUnknown,
as it may be impossible to predict which media tray will be inserted or desig-
nated as the default tray. Also, read the end of section 5.13 for a discussion of
translation strings on media option keywords.

Currently registered values forediaOption may be found ippendix B: Reg-
istered mediaOption Keywords

*PageRegion mediaOption: “invocation” @
*DefaultPageRegion: mediaOption | Unknown

Required The InvocationValues oPageRegion set the imageable area to the
appropriate media type without explicitly specifying the source of the media.
Itis intended to be used in conjunction with manual feed so that the imagea-
ble area is appropriate for the media to be fed. It is also used instead of the
*PageSize invocations when the user specifies an input tray and a page size (for
example, Upper Tray, Letter Size), becauseRrimeSize invocations gener-

ally select an input tray and would override the user’s previous selection of a
specific input tray.

*DefaultPageRegion indicates the default imageable area (in terms of media
options) for the device when powered on. Since there can be only one default
page size, this value should be the same as the vaiDefaofPageSize,
*DefaultimageableArea, and*DefaultPaperDimension.

Note To print manager author$ageSize should be used to select a particular size
of paper,*PageRegion should be used to select a particular imageable area for
manualfeed, andnputSiot should be used to select a specific media tray.
*InputSlot is documented in section 5.17.

Note To builders of PPD files: In a PPD file for an imagesetter, the invocation
strings for*PageSize and *PageRegion are usually identical. On devices that
support multiple page sizes, the valuebefaultPageRegion will often be
Unknown, as it may be impossible to predict which media tray will be inserted
or designated as the default tray. Also, read the end of section 5.13 for a dis-
cussion of translation strings on media option keywords.

100 PostScript Printer Description File Format Specification (9 Feb 1996)

*MediaType
*DefaultMediaType:

*?MediaType:

*MediaColor
*DefaultMediaColor:

*?MediaColor:

*MediaWeight
*DefaultMediaWeight:

*?MediaWeight:

typeOption: “invocation” @

typeOption | Unknown
“query’ (returns typeOption | Unknown)

*MediaType provides the InvocationValue to select media by some characteris-
tic other than size (or in addition to size). TypeOptions are product-depen-

dent strings that describe the media. For example, a user might be able to
select letterhead paper by specifyirgerhead as a media type. This method
usually requires prior device setup, so that the device knows how to access a
certain type of mediaDefaultMediaType provides the default media type.
*?MediaType returns the current media type.

colorOption: “invocation” @

colorOption | Unknown
“query’ (returns colorOption | Unknown)

*MediaColor provides InvocationValues to select media by color. The

colorOptions are product-dependent strings that describe the available colors of
media, such aBiue andBuff. This method usually requires prior device setup,
so that the device knows how to access a certain color of media.
*DefaultMediaColor provides the default media col&mediaColor returns the cur-

rent media color.

weightOption: “invocation” @
weightOption | Unknown

“query” (returns weightOption | Unknown)

*MediaWeight provides InvocationValues to select media by weight. The
weightOptions are product-dependent strings that describe the available media
weights. This method of media selection usually requires prior device setup,
so that the device knows how to access a certain weight of media.
*DefaultMediaWeight provides the default media weigtavediaweight returns the
current media weight.

5 Keywords 101

5.15 Information About Media Sizes

The keywords in this section provide information about the media sizes that
are available on the device. They do not invoke any device features.

*ImageableArea mediaOption: ‘ll, Ml, ur, ur,”
*DefaultimageableArea: mediaOption | Unknown

Required *imageableArea provides the bounding box of the imageable area for
the page size nameddiaOption. There will be one statement for each named
page size supported by the devitefaultimageableArea provides the

mediaOption name of the default imageable area. Since there can be only one
default page size, this value should be the same as the value of
*DefaultPageSize, *DefaultPageRegion, and*DefaultPaperDimension.

The bounding box value @ifnageableArea is given as four real numbers, repre-
senting the x and y coordinates of the lower left and upper right corners of the
region, respectively, in the PostScript language default user space coordinate
system. Thex andy axes of a given page size correspond tocthedy axes

of that page size in theaperDimension entry.

The imageable region is defined as the part of the page where marks can actu-
ally be made. On many devices, there are margins imposed by the media
transport mechanism in the marking engine that might prevent marks from
being made close to the edges of the media*hhgeableArea entry will

supply a region that represents a “reliable” area of the page in which marks
can be made. This might exactly correspond tclipping pathset by the
PostScript interpreter. The value is represented as an InvocationValue.

On some devices, the imageable area of a given page size varies as a result of
the current resolution, amount of memory, the direction of paper feed, and
other factors. For example, the imageable area of a Legal size page might be
smaller at higher resolutions on a printer with variable resolution, or it might
be shifted left or right depending on whether the page was fed long-edge-first
or short-edge-first. In PPD files where the imageable area of a given page
size can vary depending on other factors, the imageable area recorded for that
page size will be the intersection of all possible imageable areas for that page
size. While this means that the imageable area available in the current config-
uration might actually be larger than the imageable area shown in the PPD
file, it at least guarantees that the available imageable area will not be smaller
than that shown in the PPD file, and all marks made within the given imagea-
ble area will be visible.

102 PostScript Printer Description File Format Specification (9 Feb 1996)

Note

*?lmageableArea:

*PaperDimension

*DefaultPaperDimension:

Note

*RequiresPageRegion

To builders of PPD files: On devices that support multiple page sizes, the
value of*DefaultimageableArea will often beUnknown, as it may be impossible to
predict which media tray will be inserted or designated as the default tray.
Also, read the end of section 5.13 for a discussion of translation strings on
media option keywords.

“query” (returns ‘il Il, ur, ur,”] Unknown)

This query returns a string composed of four real numbers representing the
bounding box of the imageable area, as defined umdgeableArea. Since it

is virtually impossible to determine hardware restrictions from software poll-
ing, this query will usually return the default clipping region for the page size
in effect. In general, it is better for a print manager to use the values supplied
by the*imageableArea Statements, since they can be adjusted by hand for partic-
ular hardware constraints.

mediaOption: ‘real real”
mediaOption | Unknown

Required The InvocationValue aPaperDimension lists the physical dimen-
sions of a particular media size, independent of the imageable area of the
page. There are only two numbers specified, which represenidtig(in the

x dimension) andheight(in they dimension) of the media, respectively, in
PostScript default units. Theandy axes of a given page size correspond to
thex andy axes of that page size in tieageableArea entry.

*DefaultPaperDimension provides thenediaOption name of the default physical
media dimension. Since there can be only one default page size, this value
should be the same as the valueDefaultPageSize, *DefaultPageRegion, and
*DefaultimageableArea.

To builders of PPD files: On devices that support multiple page sizes, the
value of*DefaultPaperDimension will often beUnknown, as it may be impossible to
predict which media tray will be inserted or designated as the default tray.
Also, read the end of section 5.13 for a discussion of translation strings on
media option keywords.

inputSlotOption: True | False

This keyword provides a StringValue that indicates, for each input slot,
whether or not th&PageRegion invocation code must be sent with timgutSlot
invocation code when the user requests media from that input slot. For exam-
ple, if the device cannot sense what page size is installed in a given input slot,

5 Keywords 103

any invocation of that input slot must be followed by an invocation of the
appropriatePageRegion code to set up the requested frame buffer and imagea-
ble area for the page.

Therefore, if the device cannot sense the page size in a given input slot, the
*PageRegion code is required, and the valuesRdquiresPageRegion will be True

for that slot. ThePageRegion code may be required for any reason. If the
*PageRegion code is not required for a given slot, then the value of
*RequiresPageRegion for that slot will beFalse.

The option keywordnputSlotOption must be a validiputSiotOption listed in the
*InputSlot entry in the PPD file. For example:

*InputSlot Lower: "code"
*InputSlot Envelope: "code"

*RequiresPageRegion Lower: False
*RequiresPageRegion Envelope: True

An additional special option keywondl means that the statement applies to
all media sources on the device. For example:

*RequiresPageRegion All: False

This statement indicates that ttregeRegion code is never required after an
input slot invocation.

If *RequiresPageRegion for any slot (or all slots) is omitted from a PPD file, it is
assumed to bralse for those slots. That is, theageRegion code should not be
invoked after an input slot invocation.

*LandscapeOrientation: Plus90 | Minus90 | Any

Every print manager makes assumptions about the location of the origin of
default user space on the physical page. When a user selects landscape orien-
tation, a print manager must rotate and translate the origin of default user
space on the page. On certain printers, the orientation of the physical page is
dictated by either physical markings on the printer case, or by instructions in
the user manual. This dictated orientation might be incompatible with the
print manager's assumptions about the orientation of the physical page. This
is not significant for blank paper, but for pre-marked paper, such as letter-
head, 3-hole-punched paper, or envelopes, the printed output might appear
upside-down with respect to the letterhead, punch holes, envelope flap, or
other pre-markings on the page.

This keyword, whose StringValue is determined from knowledge of the

printer's markings and instructions, provides a hint to a print manager about
which way it should rotate and translate the page, for the printed output to be

104 PostScript Printer Description File Format Specification (9 Feb 1996)

compatible with the page feeding instructions on the printer or in the printer's
user manual. If this keyword is present, it means that the printer requires the
use of the transformations listed below for the correct printing results to
occur.

The values have the following meanings:

* Plus90—This means that the print manager should perform the functional
equivalent of the following fragment of PostScript language code:

90 rotate 0 pagewidth neg translate

wherepagewidthis the width of the page in default user space. For exam-
ple, on a letter-size page in portrait mode, after this transformation has
been performed, the default user space would look like this:

+X

+y
* Minus90—This means that the print manager should perform the functional
equivalent of the following fragment of PostScript language code:
90 neg rotate pageheight neg 0 translate

wherepageheights the height of the page in default user space. For exam-
ple, on a letter-size page in portrait mode, after this transformation has
been performed, the default user space would look like this:

+y

+X

5 Keywords 105

106

Note

5.16

* Any—This means that no hint is provided and the driver can follow its
normal assumptions, but the results might be incorrect for certain printers.

*LandscapeOrientation should appear only in the PPD files of printers in which
the orientation of page feeding is dictated by printer markings or the printer's
user manual. If this keyword is missing, assumeAhgais the default value.

If a printer treats envelopes differently from paper (for example, when an
envelope size is requested, the printer performs its own rotations and transla-
tions to print “correctly” on the envelope), this keyword might not provide

any assistance and the printing results might still be incorrect.

Custom Page Sizes

Some devices support user-definedwstompage sizes by allowing the user

to supply the page dimensions and other characteristics, rather than selecting
from a list of pre-defined page sizes. The keywords in this section support
that capability.

Custom page sizes are handled differently depending on whether the media is
roll-fed or cut-sheetSome devices accept both roll-fed and cut-sheet media.
With roll-fed media, such as a roll of film or paper, the media is larger than
the page size requested by the user. The requested page size is positioned
somewhere on the larger physical media, and the imageable area may be
assumed to be identical to the requested page size, which means the entire
page area is imageable.

When using cut-sheet media, the user is expected to supply an individual
sheet of the requested physical size, often in a tray that adjusts to different
sizes. The page size requested by the user is identical to the physical page
size. However, due to media handling hardware requirements, the imageable
area may be smaller than the requested page size. The unimageable margin
area required by the hardware is described by the keywrslargins.

PostScript Printer Description File Format Specification (9 Feb 1996)

Custom Page Size Parameters

The location and orientation of the page image on the media and of the initial
PostScript coordinate system depends on the combination of the custom page
size parameters. Custom page size and orientation parameters are specified
relative to themedia feed directioror roll-fed media, the media feed direc-

tion is parallel to the length of the roll of media, as shown in Figure 1:

Figure 1 Media feed direction on roll-fed media

media feed direction
4—
roll-fed media roll-fed media
(capstan imagesetter) (drum imagesetter)

For cut-sheet media, media feed direction is the direction in which media is
fed into the device, as shown in Figure 2.

Figure 2 Media feed direction on cut-sheet media

media feed direction
-
- -
long-edge feed short-edge feed

5 Keywords 107

108

Custom page sizes are defined in terms of the following parameters:

Width—This indicates the width of the page perpendicular to the direction
of media feed, in PostScript default units.

Height— This indicates the height of the page parallel to the direction of
media feed, in PostScript default units.

WidthOffset—This indicates the amount, in PostScript default units, to offset
the image perpendicular to the direction of media feed. The direction of
the offset is in the direction of increasinin user space whedientation
(defined below) is 0. A negative number indicates an offset in the direction
of decreasing in user space whedrientation is O.

HeightOffset—T his indicates the amount, in PostScript default units, to offset
the image parallel to the direction of media feed. The direction of the
offset is in the direction of increasixgn user space whedrientation

(defined below) is 0. A negative number indicates an offset in the direction
of decreasing in user space whedrientation is 0.

Orientation—This indicates the orientation of the image with respect to the
media feed direction. Devices support a subset of four possible integer val-
ues. In orientation 0, theaxis in user space decreases in the media feed
direction. They axis therefore increases 90 degrees counterclockwise rela-
tive to increasing, perpendicular to media feed direction. Orientations 1,

2, and 3 are rotated 90, 180, and 270 degrees (respectively) counterclock-
wise from orientation 0.

Note thatOrientation does not provide a method of requesting a specific orien-
tation of the physical page relative to the device. Thatigtation does not
request short-edge feed or long-edge feed of the physical page; it only
requests a specific orientation of the image relative to the device. It is up to
the user to feed the paper into the device in a direction that is compatible with
the image they have requested.

The Orientation parameter can be used in several ways:

* If the device supports i@Qrientation can be used in tht€ustomPageSize code

to request a specific image orientation from the device. Most roll-fed
devices support this; most cut-sheet devices do not.

For cut-sheet media, the primary use for@hentation parameter is for the
print manager to calculate the imageable area of the page, using the values
provided by*HwWMargins. See the description &iwMargins for details.

Orientation may also be used by the print manager in offering the user a pic-
torial representation of the image on the page.

PostScript Printer Description File Format Specification (9 Feb 1996)

*CustomPageSize

Note

Figure 3 shows the interaction betwentth, Height andOrientation. Although

this figure depicts roll-fed media, the same principles apply to cut-sheet
media. Note thawidth andHeight are always defined with respect to the media
feed direction. For a givewidth andHeight, two values obrientation will pro-
duce a landscap#® € x) coordinate system and two valueaéntation will
produce a portraitx(< y) coordinate system.

Figure 3 Interaction ofWidth, Height, and Orientation

Width > Height,
Orientation: 0 1 2 3

+X +y
0,0 0,0
' +y +X .
Width Jyax media feed

0o 0o direction
D . X Ty -

Height

Height > Width,
Orientation: 0 1 2 3

+X +y
0,0 0,0
+X '
*y +y +X
0,0 0,0
+X +y

True: “invocation”

This InvocationValue provides the code to set up a custom page size. The
print manager is responsible for obtaining five parameters from the user and
placing them on the operand stack in the correct order before executing the
invocation code. The parameters Wigth, Height, WidthOffset, HeightOffset, and
Orientation, as described earlier. The order in which these parameters must be
placed on the stack is described un@emmCustomPageSize.

BecauseCustomPageSize emits code, there must beNanUIOrderDependency
statement forCustomPageSize. There may béNonUIConstraints between
*CustomPageSize and*InputSlot or other features.

The*CustomPageSize code can be quite complex. See section 6.3 for several
examples of complete custom page size entries on various types of devices.

On a roll-fed device, the actual orientation of a page might not match the
request, due to device configuration. For example, an imagesetter manufac-
turer might configure a product to conserve media by rotating a page auto-
matically so that it feeds long-edge first, if the requested page size will fit that
way. TheCustomPageSize invocation code cannot be expected to override such
behavior.

5 Keywords 109

Note To be compatible with existing parse€sistomPageSize conforms to the
syntax of otheffue/False keywords, but there is no reason to ever have a
*CustomPageSize False statement, since there is no sensible corresponding invo-
cation code.

*ParamCustomPageSize paramOption: order type min max

This provides the allowable types and ranges for each of the custom page size
parameterspéramOption) required by the invocation code of tttastomPage-

Size statement. There must be gR&amCustomPageSize statement for each of

the custom page parametessdth, Height, WidthOffset, HeightOffset, andOrienta-

tion. Like any option keyword, these options can have translation strings,
allowing a print manager a more meaningful string to display to the user.

For example:

*ParamCustomPageSize Width: 1 points 1 792
*ParamCustomPageSize Height: 2 points 1 5184
*ParamCustomPageSize WidthOffset: 3 points 0 791
*ParamCustomPageSize HeightOffset: 4 points 0 0
*ParamCustomPageSize Orientation: 5int 0 1

The value is a StringValue with multiple components separated by white
space. The value ofderindicates the order in which the parameter named by
paramOption must be placed on the stack and passed t@tktemPageSize

code. A parameter with an order of “1” is placed on the stack first, followed
by a parameter with an order of “2”, and so on. An application program is
responsible for obtaining these parameters from the user and putting them on
the stack in the correct order before invoking*thstomPageSize code.

Thetype of each parameter is eithitr real, or points, wherepoints means a real
number of PostScript default units. The print manager or application is
responsible for converting user-supplied values into the correct type. For
example, a value @bints tells an application that, although the units might be
obtained from the user in any form offered by the application, such as inches
or millimeters, they must be translated to PostScript interpreter’'s default units
(1/72 inch) before they are placed on the stack.

The allowable range for each parameter is expresseid asdmax, repre-

senting the minimum and maximum acceptable numbers, inclusive, with the
minimum value first. The type afin andmax must match thepe value for

that parameter. For examplepyfe is int, thenmin andmax must both be inte-

gers. A print manager should use the minimum and maximum values for each
parameter to ensure that the user provides parameters in the valid range.

110 PostScript Printer Description File Format Specification (9 Feb 1996)

*MaxMediaWidth :

*MaxMediaHeight :

*?CurrentMediaWidth:

*?CurrentMediaHeight:

*CenterRegistered:

If the device does not support offsetting the image on the mediajrtaed

max range values fowidthOffset or HeightOffset (or both, if offsetting is not sup-
ported in either direction) will both be 0 (zero). The print manager can use
this information to limit or disable user selection of the offsetting feature.

nrealu
nrealu

On devices that support custom page sizes, these QuotedValue statements
indicate the maximum media width and height allowed by the device when a
custom page size is requested. BotixMediawidth and*MaxMediaHeight are
expressed in PostScript default unitgxMediawidth is measured perpendicu-

lar to the media feed direction afhxMediaHeight is measured parallel to the
media feed direction.

A print manager must ensure that the surwidgth plusWwidthOffset does not
exceed the value oflaxMediawidth. Likewise, it must ensure that the sum of
Height plusHeightOffset does not exceed the valueaéxMediaHeight.

“query’
"query”

The absolute maximum width and height of media supported by the device
can be obtained from the valueso&xMediawidth and*MaxMediaHeight respec-
tively. However, some devices support different sizes of media cassettes, so
the currentmaximum width or height might be less than the absolute maxi-
mum width or height respectivelpCurrentMediawidth returns a real number
specifying the maximum width, in PostScript default units, of the currently
installed media*?CurrentMediaHeight returns a real number specifying the max-
imum height, in PostScript default units, of the currently installed media.

If these queries are available, a print manager can use them to replace the
values ofMaxMediawidth and*MaxMediaHeight in the print manager’s internal

data structures with the value returned by the query. The print manager can
then proceed with range-checking as described umeleMediawidth and
*MaxMediaHeight.

True | False

This keyword provides a StringValue that tells whether the device registers
the film or paper stock from the center or from the edge of the scan. If a
device uses center-registering, it is up to the user or the application to provide
the correct value fawidthOffset, to move the image to the beginning edge of

the stock. For example, on a center-registered device, if the user installs 10-

5 Keywords 111

inch wide stock on a 12-inch wide transport mechanism, either the user or the
application must provide a 1-in@¥idthOffset to get the image to start at the

edge of the stock. On a device that does not use center-registering, this addi-
tional calculation is unnecessary.

*LeadingEdge edgeOption: *
*DefaultLeadingEdge: edgeOption

*LeadingEdge allows the user to tell the print manager howdheentinput

slot has been configured to feed the page. This is both an assertion of how an
input slot is set up (for cut-sheet media) and a partial request for page image
orientation (for roll-fed media). Ségesponsibilities of a Print Manager
Regarding Custom Page Sizgghe end of this section for a description of

how the print manager can use this information to determine the orientation
and imageable area of the pageadingEdge should be displayed asPakOne

menu and should follow the rules feickOne keywords, although it is not sur-
rounded byOpenuUI/*CloseUl (see the description efpenul/*CloseUl for informa-

tion onPickOne). The value ofDefaultLeadingEdge provides a default state for the
print manager to display.

The options foedgeOption are:

* Short—The currently selected input slot expects the page to be fed short-
edge first, or the user would like the page image printed short-edge first on
roll-fed media.

* Long—The currently selected input slot expects the page to be fed long-
edge first, or the user would like the page image printed long-edge first on
roll-fed media. On roll-fed media, this is often also catladsverseor
media saving

» Preferlong—The currently selected input slot has been configured to rotate
the page image to correspond to long-edge ifedrgk page will fit that
way. That is, ifwidth is less thamieight (which would normally produce a
short-edge feed), andtkight is less than or equal tdaxMediawidth, the
device will rotate the page image to bad-edge feed. Width is less than
Height andHeight is greater than the value ™faxMediawidth, the page will
remain short-edge feed.

* Forced—The device performs no page image rotation. The user can request
a custom page size whoslth andHeight define it as short-edge feed, and
if the device is configured for long-edge feed, the short-edge feed image
will be printed on the long-edge feed page, so clipping will probably
occur. Likewise, a long-edge feed image can be printed on a short-edge
feed page, with clipping equally likely to occur.

112 PostScript Printer Description File Format Specification (9 Feb 1996)

Note

Note

*HWMargins:

* Unknown—Nothing is known about the leading edgepsentation and the
imageable area cannot be calculated accurately.

Only the options that are supported by the deviitlde listed. If a particular
input slot places restrictions on the choice of leading edge, there will be
*NonUIConstraints betweernLeadingEdge and*InputSlot or *ManualFeed. For exam-
ple, this device supports ordytort andLong for *LeadingEdge, and supports
only short-edge feed from the manual feed slot:

*LeadingEdge Short: *

*LeadingEdge Long: ““

*DefaultLeadingEdge: Short

*NonUIConstraints: *ManualFeed True *LeadingEdge Long
*NonUIConstraints: *LeadingEdge Long *ManualFeed True

Note thatLeadingEdge does not control the device in any direct way; it is an
assertion from the user to the print manager about how the device has been
configured, and it aids the print manager in determining the value of the
Orientation parameter. This keyword is in the form of an InvocationValue for
convenience, but the InvocationValue quotdslve empty. This keyword

will not be surrounded bypenUl/*CloseUl because it requires extra action on
the part of a print manager and is therefore not suitable for blind parsing. A
*NonUIOrderDependency Sstatement is not necessary, as no code will be down-
loaded from this keyword.

To print manager authors: Some print managers provide leading-edge con-
trol in the form of a two-state checkbox labeladsverse. In that case, an

empty box Tansverse Off) should causeleadingEdge to be set t&hort, and a
checked boxTansverse On) should causéleadingEdge to be set taong.

To builders of PPD files: See section 6.3 for examples of how to determine
which *LeadingEdge options are supported on a device and how to write
*NonUIConstraints entries for‘LeadingEdge. Be careful, when writing the
*NonUIConstraints entries, to not exclude all options at once. At any given time,
at least one option fotLeadingEdge must be available to the user.

Cut-Sheet Keywords

The following keywords apply only to devices that can accept cut-sheet pages
or can treat roll-fed pages as if they were individual sheets, imaging within an
area smaller than the requested page size.

left bottom right top

This keyword describes how much space around the outer edge of the page
cannotbe imaged because of hardware restrictions. A print manager can use
this information to calculate the imageable area and tell a user when the
entire requested custom page size cannot be printed upon, or to show the user

5 Keywords 113

which part of the page can be imaged. For non-custom page sizes, the key-
word *ImageableArea provides the same information (in the form of imageable
area, rather than non-imageable area) for each supported page size. See
Responsiltities of a Print Manager Regarding Custom Page Sitdabe end

of this section for a description of how the print manager carHuéargins.

The StringValue of this keyword is composed of multiple components, sepa-
rated by white space. The components are real numbers of PostScript default
units, and are defined in default user space as follows:

top = distance, in PostScript default units, from the top edge of the page to
the nearest beginning of imageable area. The top edge is the edge of the
page that enters the printer first (the leading edge in the direction of media
feed).

right, left, andbottom are similarly defined, as shown in FigureThis is a top
view; you are looking down at the paper going into the device.

Figure 4 Margins of*HWMargins

. -
device media feed
direction
: right : right
< bott
< ottom
<> bottom op

top

short-edge feed

¢|eft

long-edge feed

For example, a printer might have an adjustable tray that accepts several sizes
of paper, but the printer always needs 1 inch along the sides and 1/2 inch at
the top and bottom to handle paper of any size *HlW8argins statement to
describe this would be

*HWMargins: 72 36 72 36

Any or all of the values may be 0 (zero). If the margin requirements of the
printer vary with the paper size (for example, if the printer needs a 1 inch
margin to handle some page sizes, and a 2 inch margin to handle other page
sizes), the values efiwMargins will reflect the largest margin required by the
printer (in this case, the 2 inch margin). For some page sizes, this might pro-

114 PostScript Printer Description File Format Specification (9 Feb 1996)

Note

Note

*UseHWMargins

*DefaultUseHWMargins:

vide a smaller imageable area than is actually achievable by the printer, but at
least it guarantees that marks made within the indicated imageable area will
be visible on the page.

This keyword will be present only if the device supports custom page sizes
and has hardware-imposed margins or can be configured to behave as though
it has hardware-imposed margins, imaging in an area that is smaller than the
requested page size.

To builders of PPD files: Typically, PPD files for devices that accept only cut-
sheet media will hav#/WMargins. Typically, PPD files for devices that accept
only roll-fed media will not hav&/WMargins. Devices that accept only roll-fed
media are usually able to image over the entire requested page area; any
restrictions on page size due to hardware control mechanisms are described
by *MaxMediaWidth and *MaxMediaHeight. However, if the device supports both
roll-fed media and cut-sheet media, or if the device supports only roll-fed
media but can be configured to image within a smaller area as if the pages
were individual sheetgHWMargins will be needed in the PPD file. See the
description ofUseHWMargins in this section.

Because of varying margin widths, the interaction of custom page sizes with
duplexing (or other operations that may shift the image on the page) on cut-
sheet media is unpredictable.

wn

True | False:
True | False

The presence ofiseHWMargins indicates a device that can switch between
imaging over the entire page area (typical roll-fed media behavior) and imag-
ing only in the area dictated lywMargins (typical cut-sheet media behavior).
*UseHWMargins allows the user to tell the print manager how to define the
imageable area of the requested custom page size. Although not surrounded
by *OpenUl/*CloseUl, *UseHWMargins should be displayed and treated @soean
feature. (Se&penul/*CloseUl for a description oBoolean.)*DefaultUseHWMargins
provides a default state fagseHWMargins for the print manager to display.

True means the print manager should treat the requested page as a cut-sheet
page with hardware-imposed margins, and shouldHy#eargins to calculate

the imageable area of the paggse meanghe print manager should treat the
requested page as a roll-fed page, imaging over the entire area of the page.

Note thatUseHWMargins does not control the device in any way; it is merely a
request from the user to the print manager for a specific action. The print
manager should warn the user that the device must be set up properly to
achieve the correct result, as many devices require user interaction at the
device’s front panel to establish cut-sheet behavior vs. roll-fed behavior.

5 Keywords 115

116

Note

Note

This keyword is in the form of an InvocationValue for convenience, but the
InvocationValue quotes will be empty.*RonUIOrderDependency Statement is

not necessary, as no code will be downloaded from this keyword. This key-
word will not be surwunded byOpenui/*CloseUl because it requires extra
action on the part of a print manager and is therefore not suitable for blind
parsing. If cut-sheet behavior is only available through certain input slots,
there will be*NonUIConstraints betweertuseHWMargins and*InputSlot or

*ManualFeed. If the device cannot provide both types of imaging (entire page
area vs. smaller imageable area), this keyword will be omitted. If
*UseHWMargins iS presentiHWMargins must also be present.

To print manager authors: #iWMargins is missing from the PPD file, assume
that all four values are zero. t#iWMargins is present anduseHWMargins is
missing, assume th&tWMargins should always be used.

To builders of PPD files: UsuallyseHWMargins will not be present in PPD

files for devices that accept only cut-sheet mdtiaause such devices can
image only within the smaller area imposed#iyMargins, So there is no

choice for the user to make about ustAgMargins. Likewise *UseHWMargins
(and*HWMargins) will not usually be present in PPD files for devices that

accept only roll-fed medidecause such devices usually cannot impose a
smaller imageable area on the requested page*gszgWMargins will usually

be needed only in the PPD file of a device that supports both roll-fed and cut-
sheet media, or a device that supports only roll-fed media but can be config-
ured to image within a smaller area as if the pages were individual sheets, or
a device that supports only cut-sheet media but can be configured to image
across the entire page area. In these cases, there is a choice of imaging meth-
ods and the user must tell the print manager about the device’s current con-
figuration or how the page should be imaged.

PostScript Printer Description File Format Specification (9 Feb 1996)

Responsibilities of a Print Manager Regarding Custom Page Sizes

If *UseHWMargins is present, it should be offered as a two-state menu or check-
box in the custom page size user interfai@adingEdge, if presentshould be
offered as @ickOne type of menu. Throughout the user selection process, the
print manager must consult amgnUIConstraints Statements fotuseHWMargins,
*CustomPageSize, and*LeadingEdge.

If *UseHWMargins is True, the print manager should warn the user that the device
may require setup at the device’s front panelJdéHWMargins is not present
and*LeadingEdge is changed by the user from its default state, the print man-
ager should warn the user that the device may require adjustment of the input
trays.

When obtaining the values fa#idth, Height, WidthOffset, HeightOffset, and
Orientation from the user, the print manager must

» convert the value to the appropriate units listed urRdeimCustomPageSize
for that parameter, if necessary. For exampidth andHeight may be
obtained from the user in inches or millimeters and must be converted to
points before any further calculations occur.

* ensure that each value falls within the appropriate range listed under
*ParamCustomPageSize for that parameter. If the range is limited to a single
choice (for example, the range farientation may be 0..0), the print man-
ager might wish to prevent the user from typing values in that field in the
user interface.

* if *CenterRegistered is True, the print manager should warn the user to pro-
vide the correct value favidthOffset if the installed media is narrower than
the transport mechanism.

* ensure that the sum wfdth pluswidthOffset does not exceed the value of
*MaxMediawidth. Likewise, it must ensure that the sunHeifjht plus
HeightOffset does not exceed the valuetafixMediaHeight.

Emitting the correctCustomPageSize parameters in the correct order can be
complicated. Here are the key points that must be considered:

* If *LeadingEdge is Short, Long, or PreferLong, the device will rotate the page
image in device space so that the long axis is parallel to the long axis of
the physical page. To calculate the imageable area correctly, the print man-
ager must generatédth andHeight so that they match the physical page
orientation. If the user sefiadingEdge to Long, Width must be greater than
or equal tcHeight. Likewise, if the user setseadingEdge to Short, Height must
be greater than or equalwiith. Depending on how the print manager pre-

5 Keywords 117

sents the dimensions of the page to the user, the print manager may have to
perform some manipulation on the dimensions to produce the ceidtct
andHeight before placing them on the operand stack.

* If *LeadingEdge is PreferLong: If Width =Height, or if Width < Height andHeight <
*MaxMediawidth, the print manager should behave aseddingEdge is Long
when consultingable 2. Ifwidth < Height andHeight >*MaxMediawidth, the
print manager should behave ad.¢hdingEdge is Short when consulting
Table 2.

* If *LeadingEdge is Forced, the print manager must accept the valuesidf
andHeight as provided by the user, and *tetdingEdge accordingly for its
internal use. Ifidth < Height, *LeadingEdge should beshort. If Width = Height,
*LeadingEdge should be.ong. The print manager may also wish to warn the
user that if the device is not set up accordingly, the choieewf may
result in the clipping and apparent rotation of the image.

* If *LeadingEdge is Unknown, see the note after Table 3.

* Unless the print manager lets the user ebientation directly, the print
manager must deduce the valu®nddntation from a combination of user
requests, as shown in Table 2.

Table 2 Determining the value drientation

User chooses: Dimensiorjs Portrait (x < Landscape (y < X)

*LeadingEdge: Long Width > Height | Orientation =0 or 2 Orientation =1 or 3

*LeadingEdge: Short Height > Width | Orientation =1 or 3 Orientation = 0 or 2

* Most print managers restrict the choicesdgntation to 0 and1, and must
choose accordingly from Table 2. To offer the user a choigens for
Orientation, the print manager must offer a user interface that allows the user
to choose all four orientations pictorially or by entering the value directly.

Once the value djrientation has been determined, the print manager can
decide whether or not it is necessary to calculate and display the imageable
area, using the following algorithms:

* If *HWMargins is not present or fuseHWMargins is False, the page will be
imaged over its entire imageable area, so no imageable area calculations
are necessary. The print manager may skip to the last step in this section.

* If *HWMargins is present antUseHWMargins iS not present or iBue, and all
*NonUIConstraints conflicts have been resolved, then the print manager can
calculate the imageable area of the custom page size and show a pictorial
to the user. Usingrientation as a key, the print manager can use Table 3 to

118 PostScript Printer Description File Format Specification (9 Feb 1996)

calculate the imageable area. The imageable area is expressed asthe
y coordinates of the lower left and upper right corners of the imageable
area. These coordinates are referred t, #sur,, andur, respectivelytop,
bottom, left, andright are defined in the description ®fwMargins.

Table 3 Using Orientation and *HWMargins to determine imageable area

Orientation I Il ur, ur,
0 top left Height minusbottom | Width minusright
1 left bottom | Width minusright Height minustop
2 bottom | right Height minustop Width minusleft
3 right top Width minusl/eft Height minushottom

Note Previous versions of this specification, which did noOuaseation to deter-
mine the correspondence of image edge to page edge, recommended using the
simpler but less accurate method of subtracting the largest of the four
*HWMargins values from each edge of the page. This method may produce a
much smaller imageable area than the device is capable of handling, but it
does guarantee that all marks made in the calculated imageable area will be
visible. For maximum user satisfaction, print managers should l&mwto
use the newer, more accurate method, usitegtation as a key. However, if
*LeadingEdge is Unknown, the print manager cannot calcula®@entation and
must resort to a fallback position such as described above.

Finally, the print manager must ensure that the parameters are placed on the
operand stack in the proper order (documentetdmymCustomPageSize) and
followed by the invocation code fror@ustomPageSize.

5.17 Media Handling Features

The keywords in this section provide handling of media other than media
selection, such as output attributes.

*OutputBin binOption: “invocation” @
*DefaultOutputBin: binOption | Unknown
*0utputBin: “query” (returns:binOption | Unknown)

*OutputBin provides the InvocationValue to select different output paths for
media.*DefaultOutputBin denotes the default output patfOutputBin returns a
string denoting the current output path. If the device does not provide soft-
ware-selectable output paths, these keywords will be omitted.

5 Keywords 119

The currently registered values tarOption are:

* Upper—This refers to an output bin located above any other output bins.
* Lower—This refers to an output bin located below any other output bins.
» Rear—This designates an output bin located to the rear of the device.

Note To builders of PPD files: Although older PPD files (and the tools that built
them) often includetDefaultOutputBin, it provides no useful information to a
print manager unless the comple@iputBin entry is also present. If the
output bins are not software-selectable, omit these keywords.

*QutputOrder orderOption: “invocation” @
*DefaultOutputOrder: orderOption | Unknown
*?0utputOrder: “query” (returns:orderOption | Unknown)

*OutputOrder provides the InvocationValue to invoke a specific page stacking
order for the duration of the current job. On many devices, the output order is
tied to the selection of the output bin. On some devices, invoking a new page
stacking order will cause a new output bin to be selected. On other devices, a
new output bin must be explicitly selectekfaultOutputOrder indicates the

default page stacking order of the default output®0utputOrder returns a

string denoting the current page stacking order of the current output bin.

The currently registered values tmderOption are:

* Normal—This keyword indicates that if the pages are transmitted to the
device inl-norder, they will be iri-n order when they are picked up from
the output tray. This usually, but not always, means that the output pages
are stacked face down in the output tray.

» Reverse—This keyword indicates that if the pages are transmitted to the
device inl-norder, they will be im-1 order when they are picked up from
the output tray (the last page will be on the top of the stack). This usually,
but not always, means that the output pages are stacked face up in the
output tray.

Note To builders of PPD filegbefaultOutputOrder can be used by a print manager to
determine in which order to send the pages of the job, so it should usually be
included in the PPD file even when the output order cannot be changed. If
*DefaultOutputOrder is stand-alone, its value must B@mal or Reverse. See the
note undetUnknown in section 4.4, and section 4.5.

120 PostScript Printer Description File Format Specification (9 Feb 1996)

*PageStackOrder binOption: Normal | Reverse

This is an informational statement that indicates the page stacking order of
each output bin. It is useful only if the device has multiple software-select-
able output bins. The option keywaidOption must be a valid option key-

word listed undetOutputBin. The StringValuesiormal andReverse have the

same meaning as defined und®itputOrder.

There is an implicit assumption that the stacking order of a given bin cannot
be changed. This keyword is useful in determining either which output path
to select (to get the proper page ordering) or in which order the pages should
be sent from the host (to utilize the stacking order of the chosen output path).
This keyword will not be present if the device has only one output bin.

*TraySwitch True | False: “invocation” @
*DefaultTraySwitch: True | False | Unknown
*?TraySwitch. “query” (returns:True | False | Unknown)

*TraySwitch provides the InvocationValue to turn automatic tray switching on
(True) and off €alse). Automatic tray switching is provided by some devices
with multiple input trays, so that when one input tray runs out of media,
another tray with the same type of media can be automatically used.
*DefaultTraySwitch denotes the default state of the automatic tray switching
mechanism#?TraySwitch returns the current state of tray switching.

*Signature signatureQOption: “invocation” @
*DefaultSignature: signatureOption | Unknown
*?Signature: “query’ (returns:signatureOption | Unknown)

*Signature provides the InvocationValue to invoke signature options. Signatur-
ing is the automatic ordering of virtual pages on physical pages, so that the
output, when properly folded and collated, will have all the virtual pages in
the proper orderDefaultSignature denotes the default state of the automatic sig-
nature feature?Signature returns a string denoting the current state of the
automatic signature feature.

One of thesignatureOptions must beNone or False, to turn off the automatic sig-
nature feature. Other option keywords might include the number of virtual
images per physical page. The currently registered valusgrfaureOption

are:

* True—Turn on the signature option.

* False—Turn off the signature option.

5 Keywords 121

*Duplex duplexOption: “invocation” @
*DefaultDuplex: duplexOption | Unknown
*?Duplex: “query” (returns:duplexOption | Unknown)

*Duplex provides the InvocationValue to control the duplex (two-sided print-
ing) feature*DefaultDuplex denotes the default state of the duplex feature.
*?Duplex returns a string denoting the current state of the duplexing mecha-
nism.

The currently registered values tiyplexOption are listed below. One of the
options must b&one or False, for “no duplexing” (that is, produce simplex or
one-sided printing)Tumblingis defined in section 4.11 of tiRestScript
Language Reference Manual, Second EditRniefly, to print a book, where

the binding is along the left edge, the user selmitanble. To print a calen-

dar, bound along the top edge so that successive pages are flipped upward,
the user select®mble. Tumble is also referred to as “HeadToToe.”

* DuplexTumble—Print on both sides of the paper and tumble the images while
printing.

* DuplexNoTumble—Print on both sides of the paper but do not tumble the
images.

* SimplexTumble—Print on only one side of the paper, but tumble the images
while printing.

* None—Print the image on one side of the paper and do not tumble succes-
sive images (this is “normal” one-sided printing, equivalent to
SimplexNoTumble).

*OutputMode modeOption: “invocation” @
*DefaultOutputMode: modeOption | Unknown
*?QutputMode: “query” (returns:modeOption | Unknown)

*OutputMode provides the InvocationValues to invoke different output modes.
Output modes might be caused by mechanical variations in the printer, such
as varying print-head direction or speed. The valid valuesditzOption are
strings that describe the level of output quality (for exantpaé,or

LetterQuality). *DefaultOutputMode denotes the default output modeodtputMode
returns a string denoting the current output mode.

122 PostScript Printer Description File Format Specification (9 Feb 1996)

5.18

*Collate
*DefaultCollate:

*?Collate:

*FoldType
*DefaultFoldType:

*?FoldType:

Finishing Features

This section documents finishing features, which typically affect a document
after it has been printed or imaged. For the convenience of print managers, all
finishing features in a PPD file should be groupeddpgnGroup/*CloseGroup.

For a complete example, refer to the sample PPD files in section 6.

collateOption: “invocation” @
collateOption | Unknown
“‘query” (returns:collateOption | Unknown)

*Collate provides the InvocationValue to control collating. Collating is defined

as follows: for three copies of a three-page document, collated pages are pro-
duced in the order 1-2-3-1-2-3-1-2-3, while uncollated pages are produced in
the order 1-1-1-2-2-2-3-3-3. One of the options mustdpe or False, to turn

off collating.

The currently registered values toflateOption are
* True—Turn on collation.
* False—Turn off collation.

*DefaultCollate denotes the default state of the collator mechari&uilate
returns a string denoting the current state of the collator mechanism.

foldOption: “invocation” @
foldOption | Unknown
“query’ (returns:foldOption | Unknown)

*FoldType provides the InvocationValue to control which type of fold is
invoked, if any*DefaultFoldType denotes the default type of foldroldType
returns a string denoting the current type of fold.

The following are the curreftfiidOptions. Many of these folds are illustrated by
Figure G.3 in Appendix G of theostScript Language Reference Manual,
Second Eition.

ZFold Saddle DoubleGate LeftGate
RightGate Letter XFold None

5 Keywords 123

One of the options must biene or False, to turn off folding. Builders of PPD
files should include the followingiConstraints statementso disableFoldType
unlessFoldwhen has been invoked with a value other tNaire:

*UlConstraints: *FoldWhen None *FoldType
*UlConstraints: *FoldType None *FoldWhen

*FoldWhen foldOption: “invocation” @
*DefaultFoldWhen: foldOption | Unknown
*?FoldWhen: “query’ (returns:foldOption | Unknown)

*FoldWhen provides the InvocationValue to control when a job is folded, if
folding has been invoketbefaultFoldwhen denotes the default state of when
the job will be folded*?Foldwhen returns a string denoting the current state of
*FoldWhen. The followingfldOptions are used with th&oldwhen keyword to
determine when the document should be folded:

* None—Do not fold.
* DeviceDeactivation—Fold immediately after the device has been deactivated.

» EndOflob—Fold when the last page has joined the other pages in the job, so
the entire job can be folded together. The notion of “job” is explained in
section 3.7.7 of thPostScript Language Reference Manual, Second
Edition.

» EndOfSet—Fold when the last page has joined the other pages in the set, so
the entire set can be folded together. The definition of “set” depends on
whether the document is collated. For a definition of “set, Ne@€opies
andCollate in Table 4.11 of th®ostScript Language Reference Manual,
Second Eition.

e EndOfPage—Fold after eackhowpage or copypage .

One of the options must Iene or False, to turn off folding. Builders of PPD
files should include the followingiConstraints statementso disableFoldType
unlessFoldwhen has been invoked with a value other tNaire:

*UlConstraints: *FoldWhen None *FoldType
*UlConstraints: *FoldType None *FoldWhen

124 PostScript Printer Description File Format Specification (9 Feb 1996)

*Sorter
*DefaultSorter:

*?Sorter:

*StapleLocation
*DefaultStapleLocation:

*?StapleLocation:

sortOption: “invocation” @

sortOption | Unknown

“ query” (returns:sortOption | Unknown)

*Sorter provides the InvocationValue to invoke sorting. On some devices, there
might be different kinds of sorting; on other devices, sorting may simply be
on or off.

The currently registered values #ortOption are:
* True—Turn on sorting.
* False—Turn off sorting.

One of the options must INene or False to turn off sorting*DefaultSorter
denotes the default state of the sorter mechantSonter returns a string
denoting the current state of the sorter mechanism.

stapleOption: “invocation” @

stapleOption | Unknown
“query’ (returns:stapleOption | Unknown)

*StapleLocation provides an InvocationValue that controls where the staple is
placed on the page—for devices where the location is expressed as a single
parameter. A PPD file will contain eitheStapleLocation or *StapleX and+*StapleY

but not both*DefaultStapleLocation denotes the default location for stapling.
*?StapleLocation returns a string that denotes the current stapling location.

The following stapleOptions are used with th&StapleLocation keyword to deter-
mine the location of staples:

* SinglePortrait—With the page in portrait orientation, a single staple is put at
the upper left.

* SingleLandscape—With the page in landscape orientation, a single staple is
put at the upper left.

* DualLandscape—With the page in landscape orientation, two staples are put
along the top edge of the page, approximately 1/3 and 2/3 of the way

across the page, respectively.

* None—No stapling.

5 Keywords 125

One of the options must Ixene or False, to turn off stapling. Builders of PPD
files should include the followingiConstraints Statementso disable
*StapleLocation unlessStaplewhen has been invoked with a value other than
None:

*UlConstraints: *StapleWhen None *StapleLocation
*UlConstraints: *StapleLocation None *StapleWhen

*StapleX stapleOption: “invocation” @
*DefaultStapleX: stapleOption | Unknown
*?StapleX: “query’ (returns:stapleOption | Unknown)

*StapleX provides an InvocationValue that controls #dimension (in default

user space) of where the staple is placed on the page—for devices where the
location is expressed as two parameteasidy. This keyword must appear in

PPD files in whichtStapley appears. A PPD file will contain either

*StapleLocation, Or *StapleX and+*StapleY, but not both.

ThesestapleOptions are used with th&stapleX keyword to determine the loca-
tion of staples in relation to theaxis when the page is in portrait orientation:

» Left—The staple is placed along the left side of the page. Exactly where it is
placed in relation to the left edge is device-dependent.

» Right—The staple is placed along the right side of the page. Exactly where
it is placed in relation to the right edge is device-dependent.

* Saddle—The staple is placed halfway along thaxis of the page. This is
commonly used when the page is to be stapled along the center and then
folded in half along the staple line to form a booklet.

* None—No stapling.

One of the options must Ixene or False, to turn off stapling. Builders of PPD
files should include the followingiConstraints statement$o disable StapleX
unlessStaplewhen has been invoked with a value other tNaie:

*UlConstraints: *StapleWhen None *StapleX
*UlConstraints: *StapleX None *StapleWhen

*DefaultStapleX denotes the default location for stapliri$tapleX returns a
string that denotes the current stapling location.

126 PostScript Printer Description File Format Specification (9 Feb 1996)

*StapleY stapleOption: “invocation” @
*DefaultStapleY: stapleOption | Unknown
*?StapleY: “query’ (returns:stapleOption | Unknown)

*StapleY provides an InvocationValue that controls yr@imension (in default

user space) of where the staple is placed on the page—for devices where the
location is expressed as two parameteasidy. This keyword must appear in

PPD files in whichtStaplex appears. A PPD file will contain either

*StapleLocation Or *StapleX and*StapleY but not both.

ThesestapleOptions are used with thestapley keyword to determine the loca-
tion of staples in relation to theaxis with the page in portrait orientation:

* Top—The staple is placed at the top of the page. Exactly where it is placed
in relation to the top edge is device-dependent

* OneThird—The staple is placed 1/3 of the way down the page.
* Middle—The staple is placed halfway down the page.
* TwoThirds—The staple is placed 2/3 of the way down the page.

* Bottom—The staple is placed at the bottom of the page. Exactly where it is
placed in relation to the bottom edge is device-dependent

* None—No stapling.

One of the options must Ixene or False, to turn off stapling. Builders of PPD
files should include the followingiConstraints statement$o disable StapleY
unlessStaplewhen has been invoked with a value other tNaie:

*UlConstraints: *StapleWhen None *StapleY
*UlConstraints: *StapleY None *StapleWhen

*DefaultStapleY denotes the default location for stapliri$tapleY returns a
string that denotes the current stapling location.

5 Keywords 127

*StapleWhen stapleOption: “invocation” @
*DefaultStapleWhen: stapleOption | Unknown
*?StapleWhen: “query’ (returns:stapleOption | Unknown)

*Staplewhen provides the InvocationValue to control when a job is stapled.
Examples include “end of job,” “end of group.” One of the options must be
None Or False to turn off stapling. See the descriptiongSdpleX, *Stapley,
*StapleOrientation, and+StapleLocation for examples ofUiConstraints that should be
written for*Staplewhen.

ThesestapleOptions are used with the&staplewhen keyword to determine when
the document should be stapled:

* None—Do not staple.

* DeviceDeactivation—Staple immediately after the device has been deacti-
vated.

» EndOflob—Staple when the last page has joined the other pages in the job,
so the entire job can be stapled together. The notion of “job” is explained
in section 3.7.7 of thBostScript Language Reference Manual, Second
Edition.

» EndOfSet—Staple when the last page has joined the other pages in the set, so
the entire set can be stapled together. The definition of “set” depends on
whether or not the document is collated. For a definition of “set,” see
NumCopies andCollate in Table 4.11 of th€ostScript Language Reference
Manual, Second Etion.

e EndOfPage—Staple after eacthowpage orcopypage .

*DefaultStaplewhen denotes the default time for staplingStaplewhen returns a
string that denotes when stapling will occur under the current setting.

*StapleOrientation orientationOption: “invocation” @
*DefaultStapleOrientation: orientationOption | Unknown
*?StapleQrientation: “query’ (returns:orientationOption | Unknown)

*StapleOrientation provides the InvocationValue to control the orientation of the
staple; for example, 45 degrees.The®etationOptions are used with the
*StapleOrientation keyword to determine the orientation of the staple with
respect to default user space:

* 0—The staple is not turned. That is, the staple is horizontal, or parallel to
thex axis of the page.

128 PostScript Printer Description File Format Specification (9 Feb 1996)

* 45—The staple is rotated 45 degrees clockwise fronx tinds of the page.

* 90—The staple is rotated 90 degrees clockwise fronx #eds of the page.
That is, the staple is vertical, or parallel to the y axis of the page.

* 135—The staple is rotated 135 degrees clockwise fronx thes of the
page.

» None—No specific staple orientation requested (empty code).

One of the options must biene or False. Builders of PPD files should include
the following*UIConstraints statement$o disableStapleOrientation unless
*StapleWhen has been invoked with a value other tNaue:

*UlConstraints: *StapleWhen None *StapleOrientation
*UlConstraints: *StapleOrientation *StapleWhen None

*DefaultStapleQrientation denotes the default orientation for the staple.
*?StapleOrientation returns a string that denotes the current staple orientation.

*BindEdge bindOption: “invocation” @
*DefaultBindEdge: bindOption | Unknown
*?BindEdge: “query’ (returns:bindOption | Unknown)

*BindEdge provides the InvocationValue to control which edge is bound.
*DefaultBindEdge denotes the default edge for bindirf@indEdge returns a
string denoting which edge will be bound under the current setting.

ThesebindOptions are used with th&indEdge keyword to determine the loca-
tion of binding relative to the page in default user space (portrait orientation):

» Left—The binding is placed along the left side of the page.

Right—The binding is placed along the right side of the page.
» Bottom—The binding is placed along the bottom of the page.
* Top—The binding is placed along the top of the page.

* None—No binding.

One of the options must Iiene or False, to turn off binding. Builders of PPD
files should include the followingiConstraints statement$o disableBindEdge
unlessBindwhen has been invoked with a value other thame:

*UlConstraints: *BindWhen None *BindEdge
*UlConstraints: *BindEdge None *BindWhen

5 Keywords 129

*BindType bindtypeOption: “invocation” @
*DefaultBindType: bindtypeOption | Unknown
*?BindType: “query’ (returns:bindtypeOption | Unknown)

*BindType provides the InvocationValue to control the type of binding.
*DefaultBindType denotes the default type of binditrgindType returns a string
indicating which type of binding will occur given the current setting.
bindtypeOption is a product-dependent string describing the type of binding
available (for examplepiral). One of the options must Nene or False, to dis-
able binding. Builders of PPD files should writgConstraints entries to dis-
able*BindType when*BindWhen is None; see*BindEdge for an example.

*BindColor colorOption: “invocation” @
*DefaultBindColor: colorOption | Unknown
*?BindColor: “query’ (returns:colorOption | Unknown)

*BindColor provides the InvocationValues to control the binding color.
*DefaultBindColor denotes the default color of bindirggindColor returns a string
indicating which binding color will be useadhder the current setting. The
valid values forolorOption are product-dependent strings describing the color
of the binding, such a3ue or Red. One of the options must Inene or False.
Builders of PPD files should writ®IConstraints entries to disabl&indColor
when*BindWhen is None; see*BindEdge for an example.

*BindWhen bindOption: ‘invocation” @
*DefaultBindWhen: bindOption | Unknown
*?BindWhen: “query” (returns:bindOption | Unknown)

*BindWhen provides the InvocationValue to turn on binding and to control
when a job is boundDefaultBindwhen denotes the default time for binding.
*?BindWhen returns a string that denotes when binding will occur under the
current setting.

ThesebindOptions are used with th&indwhen keyword to determine when the
document should be bound:

* None—Do not bind.

* DeviceDeactivation—Bind immediately after the device has been deactivated.

130 PostScript Printer Description File Format Specification (9 Feb 1996)

*Booklet

*DefaultBooklet:

*?Booklet:

* EndOflob—Bind when the last page has joined the other pages in the job, so
the entire job can be bound together. The notion of “job” is explained in
section 3.7.7 of thPostScript Language Reference Manual, Second Edi-
tion.

» EndOfSet—Bind when the last page has joined the other pages in the set, so
the whole set can be bound together. The definition of “set” depends on
whether or not the document is collated. For a definition of “set,” see
NumCopies andCollate in Table 4.11 of th€ostScript Language Reference
Manual, Second Etion.

One of the options must Iene or False to turn off binding. See the descrip-
tion of *BindEdge for an example ofUIConstraints that should be written
betweenBindwWhen and *BindColor, *BindType, and *BindEdge.

bookletOption: “invocation” @
bookletOption | Unknown
“query’ (returns:bookletOption | Unknown)

*Booklet provides the InvocationValue to make booklets. Booklets are created
by saddle stitching, folding, and trimming. One of the options musbrize
or False, to turn off booklet-making.

The currently registered values tmokletOption are:
* True—Make a booklet.
* False—Do not make a booklet.

*DefaultBooklet denotes the default state of booklet makiPgpoklet returns a
string denoting the current state of booklet making.

5 Keywords 131

132

*Slipsheet
*DefaultSlipsheet:

*?Slipsheet:

*InsertSheet
*DefaultinsertSheet:

*?InsertSheet;

slipsheetOption: “invocation” @
slipsheetOption | Unknown
“query’ (returns:slipsheetOption | Unknown)

*Slipsheet provides the InvocationValue to control slipsheeting. Slipsheeting is
the insertion of pages of a different color or type between sets of documents.
One of the options must Iene or False to turn off slipsheeting.

The currently registered values ftigsheetOption are:
* None—Turn off slipsheeting.
* DeviceDeactivation—Insert slipsheet at device deactivation.

» EndOflob—Insert slipsheet at the end of the current joiplAis defined in
section 3.7.7 of thBPostScript Language Reference Manual, Second Edi-
tion.

» EndOfSet—Insert slipsheet at the end of the current set. For a definition of
“set,” seeNumCopies andCollate in Table 4.11 of th®ostScript Language
Reference Manual, Secondifimh.

* EndOfPage—Insert slipsheet at the end of the current page.

* True—Turn on slipsheeting—for devices in which slipsheeting is a binary
state. Whether this activates slipsheeting at the end of the job, end of set,
or device deactivation is device-dependent.

* False—Turn off slipsheeting—for devices in which slipsheeting is a binary
state.

*DefaultSlipsheet denotes the default state of slipsheetingjipsheet returns a
string denoting the current state of slipsheeting.

True | False: “invocation”
True | False | Unknown
“‘query” (returns:True | False | Unknown)

*InsertSheet provides the InvocationValue to insert a sheet at a specific place in
the documentlrue means that the next page will be drawn from a special

input tray and inserted in the page sequefis. means that the next page

will be drawn from the regular input tray. For example, a printer might allow
the insertion of a photograph between specific pages of the document after
the pages have passed through the heated elements in the printer. To accom-

PostScript Printer Description File Format Specification (9 Feb 1996)

Note

*Jog
*DefaultJog:

*2J0g:

5.19

plish this, a print manager would emit the code fauavalue at the begin-
ning of the specific page, emit thi@wpage operator to insert the special
sheet, and then emit the code for Ehise value oftinsertSheet.

*DefaultinsertSheet denotes the default state*mfertSheet. *?InsertSheet returns a
string denoting the current state*ofertSheet.

To builders of PPD files: This feature was marked with the “Ul” symbol in
previous versions of this specification. Upon further study, it was found that
this keyword should not be surrounded@yenui/*CloseUl because the print
manager must do more than blindly post the feature and execute the code; it
must provide a method for the user to specify where the page should be
inserted and then perform the procedures described above.

jogOption: “invocation” @
JjogOption | Unknown
“‘query” (returns:jogOption | Unknown)

*Jog provides the InvocationValue to control jogging.When jogging is
invoked, the next job or set is offset to the left or right from the previous job
or set in the output bin. Jogging is also known as “offset stacking”. One of the
options must b@one or False to turn off jogging.

The currently registered values jagOption are:
* None—Turn off jogging.

* DeviceDeactivation— Jog at device deactivation.

EndOflob— Jog at the end of the current job.

EndOfSet— Jog at the end of the current set.

*Defaultlog denotes the default state of joggirgog returns a string denoting
the current state of jogging.

Imagesetter Features

This section contains features that are usually found only on imagesetters
(also referred to as typesetters and filmsetters). These features are imple-
mented by device-dependent means, but a uniform interface to them is pro-
vided by the PostScript interpreter. Each of these features, with the exception
of *ReferencePunch, is documented in section 4.11 of estScript Language
Reference Manual, Secondifimh.

5 Keywords 133

*MirrorPrint
*DefaultMirrorPrint;

*?MirrorPrint;

*NegativePrint
*DefaultNegativePrint:

*?NegativePrint:

*AdvanceMedia
*DefaultAdvanceMedia:

*?AdvanceMedia:

True | False: “invocation” @
True | False | Unknown
“query” (returns:True | False | Unknown)

*MirrorPrint provides the InvocationValue to turn the mirror print feature on
(True) and off €alse). *DefaultMirrorPrint denotes the default state of mirror print-
ing. *?MirrorPrint returns the current setup for mirror printing.

True | False: “invocation” @
True | False | Unknown
“‘query” (returns:True | False | Unknown)

*NegativePrint provides the InvocationValue to turn the negative print feature on
(True) and off €alse).*DefaultNegativePrint denotes the default state of negative
printing. *?NegativePrint returns the current setup for negative printing.

advanceOption: “invocation” @
advanceOption | Unknown
“‘query” (returns:advanceOption | Unknown)

*AdvanceMedia provides the InvocationValue to tell the device when to advance
roll-fed media by a preset distance. The currently registered values for
advanceQption are:

¢ None—Do not advance the medium.

* DeviceDeactivation—Advance the medium at device deactivation.

EndOflob—Advance the medium at the end of the job.

EndOfSet—Advance the medium after each set.
* EndOfPage—Advance the medium after eastiowpage oOr copypage.

*DefaultAdvanceMedia denotes the default state*afivanceMedia. The query
*?AdvanceMedia returns a string denoting the current state\dknceMedia.

134 PostScript Printer Description File Format Specification (9 Feb 1996)

*CutMedia

*DefaultCutMedia:

*?CutMedia:

*ReferencePunch

cutOption: “invocation” @

cutOption | Unknown
“‘query” (returns:cutOption | Unknown)

*CutMedia provides the InvocationValue to tell the device when to cut roll-fed
media.*DefaultCutMedia denotes the default state*OiitMedia. *?CutMedia returns
a string denoting the current state@ftMedia.

The currently registered values ttOption are:

* None—Do not cut the medium.

* DeviceDeactivation—Cut the medium at device deactivation.
* EndOflob—Cut the medium at the end of the job.

* EndOfSet—Cut the medium after each set.

e EndOfPage—Cut the medium after eashowpage or copypage.

mediaOption; X y

Printing plates are typically punched along their leading edge ititafeec
mounting on printing presses. Some devices provide an equivalent punch
system for film so that the film may be accurately contacted to a printing
plate. This keyword provides the location of the reference punch (the center
point of the center hole on the punch rack) so that an application may posi-
tion the image on the film relative to the punch.

The parametemediaOption designates the page size. It must be one of the
option keywords listed undefageSize and*PageRegion in the PPD file. There
must be oneReferencePunch statement for every page size that can be
punched.

The parametersandy provide the coordinates, in default user space, of the
reference punch. For example, if the punch rack was 1/8 inch ahead of the
page image along the media feed direction, and the reference punch was cen-
tered along the page in the direction perpendicular to media feed direction,
the PPD file would contain the following statements for the page |sizes
andLetter. Transverse:

*ReferencePunch Letter: 792.125 306
*ReferencePunch Letter. Transverse: -0.125 396

5 Keywords 135

This example assumes that, on this devieey has a width of 612, a height
of 792, and an orientation of 1, angter.Transverse has a width of 792, a

height of 612, and an orientation of 0, where width, height, and orientation
are defined as in Figure 3 on page 109.

Note: There is currently ntReferencePunch support for custom page sizes.

5.20 Font Related Keywords

This section contains keywords that provide information about the fonts on
the device.

*EDirSize. int

This provides the size, in bytes, of the font directory in the device’s inter-
preter. This is only useful for Level 1 devices, which have a fixed-size font
directory. This keyword will not appear in the PPD file of a Level 2 device. If

a print manager is keeping track of how many fonts have been downloaded to
the device, this StringValue tells a print manager when the directory is getting
full, so the print manager can flush out old fonts to make room for new ones.
Without this information, a print manager may either flush too often or
encounter dictfull error.

*FCacheSize ~ vmOption: int

This StringValue provides the size of the font cache, in bytes, for a given
level of memory installed in the devia@Option must be a valid option listed
under-vMOption and*InstalledMemory. (See the description of those keywords
for details orvmOption.) If the device accepts installable memory modules,
there should be &CacheSize statement for each module size.

*Font fontname: encoding “(version)” charset status

This keyword provides one line of information for each font that may be resi-
dent on the product. (To understand which fonts are listedjstégy fontsat

the end of this keyword description.) The optiomame is the valid Post-

Script language name of the font, without the leading slash. The StringValue
has multiple cormponents separated by white space.

Value of encoding

The encoding value has slightly varying meanings depending on the font type.
If the encoding cannot be determined, the valusating may beunknown.

136 PostScript Printer Description File Format Specification (9 Feb 1996)

For Roman (one byte per character) fonts etlaeding value indicates the

default encoding of each font. Fonts are usually re-encoded by applications or
print managers to provide other encodings;ctaeset value (described later)

for each font indicates which encodings are possible for that font.

The following are the currently definedcoding values for Roman fonts:
* Standard—This font, by default, uses the Ado®endardEncoding vector.

* Special—This font has a nonstandard font-specific encoding (for example,
the font named Sonata, which is composed of musical symbols).

* ISOLatin1—This font, by default, uses the AdolS@LatinlEncoding vector.
* Expert—This font, by default, uses the Adobe Expert encoding vector.

* ExpertSubset—This font, by default, uses the Adobe ExpertSubset encoding
vector.

Older composite fonts use the followiagoding values:

* JIS—A Japanese font with JIS (Japan Industrial Standard) encoding. (This
is a two byte-per-character encoding.)

* RKSJ—A Japanese font with RKSJ (Romaji-Kana-Shift-JIS) encoding.
(This is a mixed one and two byte-per-character encoding, commaon on
PCs, and often informally referred to as “Shift JIS.” In this specification,
“Shift-JIS” refers to the two byte-per-character encoding, which is a
proper subset of RKSJ.)

* EUC—A Japanese font with EUC (Extended UNIX Code) encoding. (This
is a two byte-per-character encoding.)

* Shift-JIS—A Japanese font with Shift-JIS encoding. (This is a two byte-per-
character encoding. It is a proper subset of RKSJ. The Japanese PC encod-
ing commonly referred to as “Shift JIS,” which includes one-byte Romaiji
and Katakana codes, is referred to in this specification as RKSJ.)

5 Keywords 137

CID-keyed composite fonts use threoding value to record the CMagmpmpo-
nentof the font. For details on CMaps in CID-keyed composite fonts, includ-
ing the CMap names for Chinese and Korean fonts, see Technical Note
#5094 ,Adobe CJK Character Collections and CMaps for CID-Keyed Fonts
available from the Adobe Developers Association. The following is a list of
the currently registered values #roding for Japanese CID-keyed fonts:

78-H 78-V 78-RKSJ-H 78-RKSJ-V
78-EUC-H 78-EUC-V 83pv-RKSJ-H

90pv-RKSJ-H 90ms-RKSJ-H 90ms-RKSJ-V

Add-RKSJ-H Add-RKSJ-V Add-H Add-v
Ext-RKSJ-H Ext-RKSJ-V Ext-H Ext-V
EUC-H EUC-V RKSJ-H RKSJ-V
Hankaku Hiragana H \Y

Katakana Roman WP-Symbol

NWP-H NWP-V

Note The encodings nam#@/P-H and NWP-V are obsolete and may be removed
from a future version of this specification.

Note To builders of PPD files: The currently registered valuesrimting are pri-
marily for the most common Japanese fonts. If a font has a CMap name that
is not listed here, the appropriate CMap name from Technical Note #5094
should be inserted in thecoding field. However, print managers, depending
on how they use theacoding field, might not recognize neawcoding values
until they are listed in this specificati@md the print manager is updated.

Value of version

The value ofrersion is the version number of the font; for most fonts, it is the
value of the keyersion in theFontinfo dictionary that is a subdictionary of the
font dictionary. For CID-keyed composite fonts, it is the value of the key
CIDFontVersion in the dictionary for th€IDFont resource instance.

Value of charset

The charset value of theFont keyword indicates which shape descriptions
(glyphs) are contained in the font and are available for re-encoding. If this
information cannot be determined, the valuehafset may beunknown.

Valid charset values for Western (Roman) fonts are:

« Standard—This indicates a Roman font that contains the character set that
supports both thgétandard andiSOLatin1 encodings. Most Roman fonts from
Adobe will have this value in theharset field of their*Font statements.

138 PostScript Printer Description File Format Specification (9 Feb 1996)

Note

» OldStandard—This indicates a Roman font that contains the character set
necessary to support tBeandard encodingOldStandard is a subset of the
Standard character set.

* Special—This indicates a font that supports a font-specific character set (for
example, Sonata).

¢ |SOLatinl—This indicates a Roman font that contains the character set that
supports thésoLatin1 encodinglSOLatinl is a subset of th&andard charac-
ter set.

» Expert—This indicates a Roman font that contains the character set that sup-
ports the Expert encoding.

 ExpertSubset—This indicates a Roman font that contains the character set
that supports the ExpertSubset encoding.

Older composite fonts use the followingrset values:

* JIS-83—Supports the JIS X0208-1983 character set.

* JIS-78—Supports the JIS 1978 character set.

» 83pv—Supports the 83pv (AppteMacintosh-compatible) character set.
* Add—Supports the Add (Fiisu FM system-compatible) character set.
* Ext—Supports the Extended (NEC PC-98-compatible) character set.
* NWP—Supports the NWP (NEC Word Processor) character set.

CID-keyed composite fonts use tttarset value to record theegistry, order-

ing, andsupplemenvalues of the font. For details on CID-keyed fonts, see
Technical Note #5094 dobe CJK Character Collections and CMaps for
CID-Keyed Fontsavailable from the Adobe Developers Association. When
creating acharset value, the registry, ordering, and supplement fields are sepa-
rated by hyphens. The following is a list of the currently registered values for
charset for CID-keyed fonts:

Adobe-Japan1-0 Adobe-Japanl-1 Adobe-Japanl-2
Adobe-Japan2-0 Adobe-Koreal-0 Adobe-Koreal-1
Adobe-GB1-0 Adobe-CNS1-0

To builders of PPD files: If a font contains a registry, ordering, and supple-
ment combination that does not appear on this list, you may createea

value composed of the registry, ordering, and supplement values from the
font, in that order, separated by hyphens. Some print managers might not rec-
ognize such newly-createbhrset values; depending on whether or not the

print manager uses thaarset information, this might not matter.

5 Keywords 139

Value of status

The status field indicates whether or not the font can be removed without
causing the printer to cease its normal functioning.Valid values fetathe
field areROM andDisk. The distinction betweeROM andDisk is that upon
powering up the device, a font from tReM list will be inaccessible only if
there is a printer malfunction. A font from thisk list, while usually avail-
able, could possibly be inaccessible without a printer malfunction.

Table 4 contains examples of font distribution methods and assostated
keywords. This table is not exhaustive as to the different methods of font dis-

tribution.

Table 4 Designation of fonts: ROM versus Disk

Font distribution Erasable Removable Status
ROM-resident No No ROM
auto-loaded into RAM, read-only No No ROM
internal read-only CD-ROM No No ROM
downloaded to RAM, writable Yes No Disk
external read-only CD-ROM No Yes Disk
internal writable hard disk Yes No Disk
external writable hard disk Yes Yes Disk

While most devices include fonts in ROM, a device could ship with all fonts
having astatus of Disk. For example, all of a device’s fonts could be shipped on
an external CD-ROM.

Listing fonts

All valid font dictionaries found on the device will hawent statements; the

list is not limited to Type 1 fonts. All fonts shipped with the product in its
minimal configuration are listed. These fonts may be in ROM or on a periph-
eral device such as a hard disk, as long as they are always shipped with the
product.

Note To builders of PPD files: If additional fonts are available on a plug-in car-
tridge, hard disk, or similar peripheral device that does ship with the
product in its minimal configuration, a separate PPD file should be created
to represent the primary device with the peripheral device attached. For
example, there might be a PPD file for “Acme FunPrinter” and a separate
PPD file for “Acme FunPrinter with Display Font Cartridge”. The second
PPD file would be a duplicate of the first PPD file, except that the second
PPD file would contain extré&Font statements to list the fonts available on the

140 PostScript Printer Description File Format Specification (9 Feb 1996)

Note

*DefaultFont;

*?FontList:

Display Font Cartridge. Theoretically, this could also be accomplished by
creating a local customization file with the extra fonts listed, but support for
the installation of local customization files is extremely limited or nonexistent
in most common operating environments, so this has little practical value.
See the next note for long-term plans to make the inclusion of aftermarket
font devices more streamlined.

To print manager authors: Although it is not legal now, in a futuiteadf
this specification, it will be legal to ugonUiConstraints to constrain*Font. For
example, ifOption1 represents a plug-in font cartridge in tiatallableOptions
group, a future version of this specification will allow

*NonUIConstraints: *Optionl False *Font Palatino

which would tell a print manager that the Palatino font is not available if the
*Option1 font cartridge is not installed on the device. The PPD file could con-
tain *Font entries for fonts available on peripheral devices for this product,
along with the appropriatéNonUIConstraints statement that ties the presence of
the font to the presence of the peripheral device. If you are writing or upgrad-
ing an application that read%ont statements, we recommend that you
include support for this future feature. That is, instead of assuming that all
fonts listed undetfont are always present on the device, applications should
be written to check fatonUIConstraints on *Font and only register the font as
available if the appropriate peripheral device has been registered as
installed.

Fonts that are later downloaded to the device from the host via software are
usually monitored by system software (the print manager, a font downloading
utility, or any application) and are not covered by this specification.

Error | fontname

This gives the name of the default font providedidofont if the requested

font is not available. Note that in some devices this might not be well-defined

(especially where there might be a network font server, for instance), and in

these cases, this statement might not be present. For many devices this field
will contain the nameourier. If this value isError, an execution error will

occur if the font is not found. Any other value implies that a fonttgutien

will take place (such as substituting Courier).

“query”

Provides a PostScript language sequence to return a list of all available fonts.
It should consult théontDirectory dictionary as well as any mass storage
devices available to the device. The list does not need to be in any particular
order, but each name is returned separated by a Slesaracter. This is nor-

5 Keywords 141

mally the way the PostScript languageoperator will return a font name.
All white space characters should be ignored. The end of the font list is indi-
cated by a trailing sign on a line by itself (decimal 42).

The following is a look at two valid returns from the query:

/Optima/Optima-Bold/Optima-Oblique/Optima-BoldOblique/Courier/Symbol

*

and

/Courier
/Symbol

/Times-Roman
*

Note To builders of PPD files: This keyword can return a large amount of data. If
the host or communication channel cannot retrieve the data fast enough, the
device’s output buffer may overflow, causing data to be lost before it can be
retrieved. If the device ships with a large number of fonts or will regularly be
attached to a mass storage device containing many font&fteist code
should be tested over all available communication channels. If data is lost,
the*?FontList code should be altered to slow down the output. One method is to
output the font names in groups separated by small time delays.

*?FontQuery: “query”

This provides a PostScript language query that should be combined with a
particular list of font names being sought. It looks for any number of names
on the stack, and will print a list of values depending on whether or not the
font is known to the PostScript interpreter. The font names must be provided
on the operand stack by the print manager. This is done birenthe

names, with leading slash tharacters, before emitting the query itself. To
avoid stack overflow, the number of names on the stack should be less than
150.

So that the print manager does not have to keep track of the precise order in
which the values are returned and to guard against errors from dropped infor-
mation, the syntax of the returned value will/bname:Yes or /fontname:No,

where each font in the list is returned in this manner. The slashes delimit the
individually returned font names, althougéwlinesshould be expected (and
ignored) between them. A finatharacter will follow the returned values.

142 PostScript Printer Description File Format Specification (9 Feb 1996)

Note

Note

5.21

*PrinterError;

For example:

/Times-Roman:Yes
/Optima:Yes
[CircleFont:No
/Adobe-Garamond:No

*

To print manager authors: The query provided#gntQuery is often prefera-

ble to the*?FontList query, since that query can return a very long list of fonts
in some devices, such as those with access to built-in hard disks or network
font servers.

To builders of PPD files: Given a large list of font names to query, this key-
word could return a large amount of data, although not typically as large as
*?FontList. If the host or communication channel cannot retrieve the data fast
enough, the device’s output buffer may overflow, causing data to be lost
before it can be retrieved. If the device ships with a large number of fonts or
will regularly be attached to a mass storage device containing many fonts, the
*?FontQuery code should be tested with a large list of font names over all avail-
able communication channels. If data is lost*2RmtQuery code should be
altered to slow down the output. One method is to output the responses in
smaller groups separated by small time delays.

Printer Messages

In an environment where the output device is connected to the host by a bi-
directional channel, such as serial communication, the output device can
return various status messages to the host. A print manager can recognize
these messages and convert some of them to a more readable form before dis-
playing them to the user. The messages are divided into categories and enu-
merated in the PPD file for recognition purposes.

oyt

Printer errors are reported automatically by the output device when some-
thing is wrong. The same printer errors can often be returned in a status mes-
sage as a response to a request for statuss(stes). This provides a list of
QuotedValues that are possible Printer Error messages returned by the device
in the following form:

%%][PrinterError: cover open]%%
%%[PrinterError: paper exit misfeed]%%

5 Keywords 143

The PPD file statements for these error messages would be as follows:

*PrinterError: "cover open"
*PrinterError: "paper exit misfeed"

The brackets, percent signs, and the word “PrinterError” from the original
error message are not included in the PPD file.

If a translation string were included, the PPD file statement would look like
this:

*PrinterError: "cover open'/lucka <F6>ppen

The translation string translates the error message into Swedish; the hexadec-
imal substring ‘F6’ represents the 8-bit character ‘Odieresissmall’. See sec-
tion 3.5 for details on translation string syntax.

*Status: “text”

This lists the possible responses to a status query as QuotedValues. A status
query is typically accomplished by sending ~T (control-T, decimal 20) over a
serial connection or by a special status packet if a network protocol is used
(for instance, AppleTaig.

The status message may be composed of up to three parts. There is always at
least the wordstatus: message” with an appropriate status message (those
messages are listed in this section of the PPD file). There may also be two
other sections in the message from the device, listing the currently executing
job name job: name) as defined by the variabjtbname in statusdict , and a

source field, like thissource: connection.

The following are examples of status messages returned by a PostScript
output device:

%%[status: warming up]%%

%%[status: busy; source: AppleTalk]%%

%%[job: userjob; status: waiting; source: serial25]%%

%%[job: myjob; status: PrinterError: cvr opn; source: serial25]%%

The statements in the PPD file will not have the brackets, the percent signs, or
the extraneous fields f@mname andsource. The PPD file will contain only the
message field:

*Status: "warming up"

*Status: "busy”

*Status: "waiting"

*Status: "PrinterError: cover open”

144 PostScript Printer Description File Format Specification (9 Feb 1996)

Note that the message portion of a status message can contain a printer error,
so the same list of printer errors that appears uirdeerError may appear
under+Status.

*Source: “sourceOption”

This lists the possible sources for print jobs, as QuotedValues. These corre-
spond to theource: field in the status message (as shown undestites sec-

tion). This effectively provides a list of the names of the communications
channels on the device, plus any other possible sources for jobs. The follow-
ing are example statements for Level 1 devices:

*Source: "serial25"
*Source: "serial9"
*Source: "AppleTalk"
*Source: "Centronics"

and for Level 2 devices:

*Source: "Serial"
*Source: "SerialB"
*Source: "LocalTalk"
*Source: "Parallel"

The status message in which the source is found can contain other fields (as
in the example undestatus), depending on the valuesjafname in statusdict

and whether or not there is an active job (in which cassotlve is listed).

Just the strings for theurce field are provided in this section.

*Message: ‘“fext”

This provides, as QuotedValues, a list of possible device messages that do not
fit into the categories abtatus, *PrinterError, or*Source. Messages that are listed
under those keywords are not repeated here. The strings listed under the key-
word *Message Will contain the text delimiters (brackets and percent signs), if
they exist in the original error message generated by the device.

The following are two examples. The first example contains the delimiters as
the device generated them. The second example contains no delimiters
because the device generates this message without delimiters. The second
example also contains a translation string and some special syntax, which is
explained below.

*Message: "%%[exitserver: permanent state may be changed]%%"
*Message: "\fontname\ not found, using Courier"/no \fontname\ on this printer

5 Keywords 145

Notice thelfontname! notation in the last example, with the backslashes. The
exact text of this message depends on which font was requested by the user
program. This backslash notation is a PPD file syntax that indicates that any
arbitrary PostScript language name may be found at the beginning of that
message (substituted fifantnamel). A parser, parsing a PPD file, should parse
for the complete stringontnamel. Special significance should not be given to
the single character \, because a backslash can occur in other contexts.

5.22 Color Separation Keywords

Color separations are device-dependent. A color separation is a monochrome
print that represents a single color plate that is later printed in combination
with other plates on a full color press system. In this sense, a color separation
can be one of the four standgmbcess colorgcyan, magenta, yellow, and

black) from which all other colors are simulated by mixing, or it can be a par-
ticular spot color which is simply an ink of a particular color.

For color separations to work well, it must be possible to print several layers
one on top of the other on a color printing press. The way the color mixing is
optimized is to print each color plate with a different halftone screen, usually
rotated at some specific angle to minimize both dot interference with other
plates and to avoid moiré patterns.

The selection of these halftone screens is typically done by hand for a partic-
ular device, taking resolution and other device characteristics into account
(even variations in the speed of media travel). Once a good set of screen
parameters have been established, they are used for almost all separations on
that machine, unless screens of different granularity are desired, in which
case the process is repeated.

In addition to the halftoning process necessary for producing separations,
there are issues of color matching that are equally device-dependent. As an
example, many companies have specific names for their entire range of col-
ored inks. These colors can be simulated or approximated with various color
technologies (screen phosphors or process inks) but it might not be possible
to render them exactly. There is usually a color mapping table that associates
a particular combination of process inks (or screen phosphoriiregsho

one of the named colors. This is, of course, device-specific.

Option Keywords

Color separation option keywords (the notatiaivsepkey in the keyword list-

ings) are designed to reflect particular combinations of separation character-
istics. For example, a given separation typically is designed for a particular
process color (for example, the cyan separation), at a certain halftone screen
frequency, for a particular resolution device. To this end, the color separation

146 PostScript Printer Description File Format Specification (9 Feb 1996)

option keywords are complex and modular, but they can be made more
human-readable through use of the general translation string mechanism pro-
vided in the file format.

A colorsepkey consists of a name that can optionally have any number of quali-
fiers (sub-components), each separated by a dot (., decimal 46). The key is
typically a color name, and the qualifiers typically refer to a screen fre-

guency, a resolution, and sometimes to vendor-specific or printer-specific
features that can affect the appearance of the color separation, such as a spe-
cial screening method or a specific type of controller.

Two common qualifiers are defined in this spec: screen frequency, which
must end in the strinigi, and resolution, which must end in the stripig
These qualifiers occur in the following relationship:

colorname.frequency.resolution

Any number of other qualifiers can appear after the resolution qualifier and
will be separated from each other by a dot.

The idea is to be able to associate many different components of a color sepa-
ration package by keyword. The keywords are arbitrary, but the structured
gualifiers make it possible for an application to separate the components, if
necessary, to allow a user to choose from several frequencies, optional resolu-
tions, and so on. Otherwise, these keywords behave similarly to any other
option keywords in PPD files. For devices where the resolution cannot be
varied (most of them), the resolution qualifier will usually be omitted from

the colorsepkey keyword.

The following are several examples, to help illustrate the format more clearly:

*ColorSepScreenAngle ProcessCyan.60Ipi.1270dpi: "37"
*ColorSepScreenAngle ProcessMagenta.60Ipi.1270dpi: "45"
*ColorSepScreenAngle ProcessYellow.60Ipi.1270dpi: "75"
*ColorSepScreenAngle ProcessBlack.60Ipi.1270dpi: "0"
*ColorSepScreenFreq ProcessBlack.60Ipi.1270dpi: "60"
*ColorSepScreenProc ProcessBlack.60Ipi.1270dpi: "{ pop }"
*ColorSepTransfer ProcessBlack.60Ipi.1270dpi: "{ 1 exch sub }"
*ColorSepScreenFreq ProcessCyan.90Ipi.1270dpi: "90"
*ColorSepScreenFreq ProcessCyan.60Ipi.600dpi: "60"

The following keywords provide suggested values for manipulating the
PostScript language halftone machinery to provide good color separations.
Each separate process color should be printed with a different screen angle
and perhaps different transfer functions or at various screen frequencies.

Be aware that all color separation statements are optional. If a statement does
not exist for a specific color, the default value should be used. For example,
there might be statements for screen frequencies and screen angles for a color
but not a statement for a screen procedure for that color.

5 Keywords 147

*DefaultColorSep: colorsepkey

This keyword provides the default color separation in the forncadrsepkey
keyword. This is used in conjunction with the other keywords listed below.

*ColorSepScreenFreq colorsepkey: “real”

This keyword provides the InvocationValue for the appropriate screen fre-
guency for a color separation keyed to the giscmsepkey.

*ColorSepScreenAngle colorsepkey: “real”

This statement gives the halftone screen angle InvocationValue for the given
color separation.

*ColorSepScreenProc colorsepkey: “{procedure}”

This provides the halftone spot function InvocationValue for the specified
color separation.

*ColorSepTransfer colorsepkey: “{procedure}”

This keyword provides the transfer function InvocationValue appropriate for
the given color separation keyword.

*CustomCMYK inkname: “cyan magenta yellow black”

This keyword provides an InvocationValue containing the CMYK equivalents

for a named custom color. These can be user-defined or names used in a com-
mercial color matching system that can provide CMYK approximations for
particular marking technologies. The idea is to associate any given named ink
(whether it be from a commercial color matching system or a local custom
color) with a set of process color values to approximate it. For example:

*CustomCMYK HarvestGold: "0 .01 .9 .01"

The keywordCustomCMYK is kept deliberately brief because there might be
hundreds of statements of this sort in a PPD file. For some devices, in fact,
these statements can be put into a separate file that references the original
PPD file with thetinclude convention, discussed in section 2.6.

148 PostScript Printer Description File Format Specification (9 Feb 1996)

*InkName:

*Separations
*DefaultSeparations:

*?Separations:

5.23

inkname | alias

This keyword provides a StringValue that is an alternative name for one of
the inkname keywords used in ttastomCMYK section. It provides slightly

more human-readable versions of the keywords that can be presented in a
user interface (the keywords themselves cannot contain spaces). Here is an
example:

*InkName: p305/COLORNAME 305

Alternatively, you can omit thenkName entry and simply supply a translation
string for the option keyword of thf€ustomCMYK entry. For example:

*CustomCMYK p305/Harvest Gold 305: "0 .01 .9 0.1"

True | False: “invocation” @
True | False | Unknown
“‘query” (returns:True | False | Unknown)

If the device can provide automatic generation of color separations,
*Separations provides the InvocationValue to tell the device to output either
color separationsiiie) or composite colorréise). True means that the device

will produce each page by printing multiple color separations, one for each
device colorantralse means that the device will produce each page as a
single composite page with all the colors, if any, combined on the same page.
*DefaultSeparations denotes the default state of the automatic separations mech-
anismx?Separations will return the current state of the separations mechanism

Color separations are explained in section 4.8 oPdstScript Language
Reference Manual, Second Editidine print manager may wish to provide a
more complex user interface for the user to declare which pages should be
produced as separations and which should not, in which case this keyword
should not be treated as a simple Ul keyword.

Symbolic References to Data

The keywords in this section provide a way for parsers to skip large amounts
of data contained in a PPD file when the parsers are not interested in that par-
ticular type of data. This is accomplished by providing a symbolic reference

in place of a large body of PostScript language code.

Where an InvocationValue is normally permitted, it is legal to have a symbol

name instead. A symbol name must start with the character c@etimal
94). This symbol name is associated with a PostScript language sequence

5 Keywords 149

(InvocationValue) that appears at some later place in the PPD file (or in an
attached local customization file). Since the InvocationValue might be large,
a length hint can be provided t8ymbolLength to allow parsers to skip the

large value quickly.

For example:

*OpenUl *MainFeature: PickOne
*MainFeature Option1: "MySymbol
*MainFeature Option2: "..."
*CloseUl: *MainFeature

*SymbolLength “MySymbol: bytecount EOLcount
*SymbolValue “MySymbol: "
... bulky data here (e.g. color rendering dictionary)

*SymbolEnd: “MySymbol

If a parser encounters a symbol name as a value, the parser should expect to
find a*Symbolvalue statement with the same symbol name later in the file. The
rest of this section describes the individual keywords used to indicate sym-
bolic pointers to bodies of data.

Note The use of a symbol name in place of an InvocationValue is incompatible with
version 3.0 of the PPD file specification and might cause problems for older
parsers. It is intended for use only when the code is very large—on the order
of tens of kilobytes. Symbol names should not be used as the values of key-
words that existed in version 3.0 of this specification or for commonly-refer-
enced keywords, such #ageSize.

*SymbolLength symbolName: bytecount EOLcount

This keyword tells a parser how long the body of data is, so the parser knows
how many bytes to skip if it wants to skip this data. The opti@bolName
must be thaymbolName used in the associategimbolvalue Statement.

The StringValue componentgecount andEOLcount are unsigned integers,
separated by white space. Together they measure the length in bytes of the
data from the* byte of*Symbolvalue to the *' byte of*SymbolEnd. The first

value gives the number of bytes, excluding the bytes that comprise end-of-
line sequences. The second value gives the number of end-of-line sequences.

The parser must determine the number of bytes in an end-of-line sequence in
the PPD file (usually 1 or 2).This number is usually a function of the operat-
ing system or platform on which the parser is operating, so it is usually
known to the parser. It can then compute the byte offset afythiolEnd key-

word in the file by the formula

ibEnd = ibValue + bytecount + (cbEOL*EOLcount)

150 PostScript Printer Description File Format Specification (9 Feb 1996)

*SymbolValue

where

ibEnd = byte offset of *' in *SymbolEnd'
ibValue = byte offset of *' in *SymbolValue'
CcbEOL = number of bytes per end-of-line sequence

and the values diftecount andEOLcount are taken from th&SymbolLength key-
word.

The information given by theSymbolLength keyword is a hint only; parsers

must not rely on it being correct or even present. If it is not correct or present,
the parser must skip the value definition by scanning through the file until it
reaches th&symbolEnd keyword with the appropriatgmbolName.

*SymbolLength must occur in a PPD file immediately befeggnbolvalue.

symbolName: “invocation”

This keyword marks the beginning of a body of data of type InvocationValue.
Symbol names must be defined irsgmbolvalue statement if they are refer-

enced by a main keyword. It is an error for a PPD file to reference a symbol
name that is not later defined. If a name is referenced but not defined, parsers
can substitute a value of " " (empty quotes). ™ymbolvalue statement for a

given symbolName must occur after the referencesymbolName by a main key-

word. That is, once a parser encounters a main keyword referencing
symbolName, it can expect to find a correspondisgnbolvalue Statement either

later in the PPD file or in an included PPD file.

The following two examples are both valid.
*%File: A
;jog True: "JogTrue
;“SymboILength ~JogTrue: 2000 500
*SymbolValue ~JogTrue: "..."
*SymbolEnd: "JogTrue
*%File: B
;jog True: ~JogTrue
;.I.nclude: "C" —mmem- > *%File: C
*S.)./.mboILength ~JogTrue: 2000 500

*SymbolValue ~JogTrue: "..."
*SymbolEnd: "JogTrue

5 Keywords 151

Alternatively, the reference wymbolName can be in an included PPD file as
long as theSymbolvalue statement is encountered aftertheude statement in
the including file. For example, the following is valid because included files
are treated as in-line files, so the parser must finish parsing File E before it
encounters th&ymbolvalue in File D:

*0pFile: D

AT 1Te T = — > S
*Jog True: "JogTrue

*SymbolLength ~JogTrue: 2000 500

*SymbolValue ~JogTrue: "..."
*SymbolEnd: "JogTrue

The rules for legadymbolNames are the same as for legal option keywords. By
convention, Adobe-generated PPD files will construct symbol names by con-
catenating the main and option keywords together (omittingstegiskfrom

the main keyword). For example:

*ColorRenderDict Saturated.Bond.Dot: ~ColorRenderDictSaturated.Bond.Dot

*SymbolValue *ColorRenderDictSaturated.Bond.Dot: “..."

If there are multiple occurrences*8ymbolvalue for a givensymbolName, the
first occurrence has precedence.

*SymbolEnd: symbolName

This keyword must appear on the next line following the clodogle
guoteof the symbol value. The StringValue valsgnbolName, must be the
same as theymbolName used in the associate®ymbolvalue statement.

152 PostScript Printer Description File Format Specification (9 Feb 1996)

6 Sample PPD File Structure
This section contains examples of
e ageneric Level 2 color printer PPD file
e ageneric Level 2 imagesetter PPD file

e custom page size entries for various devices

6.1 Level 2 Color Printer

This PPD file describes a Level 2 color printer with one resolution, one regu-
lar input slot, one manual feed slot, two output bins, an optional envelope
feeder, and three supported page sizes. The printer can have a hard disk
attached to it. It supports duplexing, choosing the media by type, and HP
LaserJet emulation. It can also do color separations at the printer, when sent a
composite color file.

*PPD-Adobe: "4.3"

*FormatVersion: "4.3"

*FileVersion: "1.0"

*LanguageEncoding: ISOLatinl
*LanguageVersion: English

*Product: "(Acme Color Printer)"
*PSVersion: "(2017.0) 0"

*Manufacturer: “Acme”

*ModelName: "Acme Color Printer v.2017"
*ShortNickName: “Acme Color Printer”
*NickName: "Acme Color Printer v.2017"
*PCFileName: “ACCOLOR1.PPD”

*0p=== Basic Capabilities ===============
*Languagelevel: “2”
*ColorDevice: True
*DefaultColorSpace: CMYK
*FreeVM: "8134935"
*FileSystem: True
*?FileSystem: "
save false
(%disk?%)
{ currentdevparams dup /Writeable known
{ /Writeable get {pop true} if } { pop } ifelse
} 10 string /I0ODevice resourceforall
{(True)H{(False)} ifelse = flush
restore”
*End

*Throughput: "1"
*Password: "0"

6 Sample PPD File Structure 153

*ExitServer: " count 0 eq
{ false } { true exch startjob } ifelse
not { (WARNING: Cannot modify initial VM.) =
(Missing or invalid password.) =
(Please contact the author of this software.) = flush quit
}if"
*End

*Reset: " count 0 eq { false } { true exch startjob } ifelse
not { (WARNING: Cannot reset printer.) =
(Missing or invalid password.) =
(Please contact the author of this software.) = flush quit
yif
systemdict /quit get exec
(WARNING : Printer Reset Failed.) = flush"
*End

*Protocols: BCP PJL

*Emulators: hplj

*StartEmulator_hplj: "currentfile /hpcl statusdict /emulate get exec "
*StopEmulator_hplj: "<1B7F>0"

*JCLBegin: "<1B>%-12345X@PJL JOB<0A>"

*JCLToPSlInterpreter: "@PJL ENTER LANGUAGE = POSTSCRIPT <0A>"
*JCLENd: "<1B>%-12345X@PJL EOJ<0A><1B>%-12345X"

*0p===== Installable Options =============
*OpenGroup: InstallableOptions/Options Installed
*OpenUl *Option1/Optional Envelope Feeder: Boolean
*DefaultOptionl: False

*Optionl True/Installed: “

*Optionl False/Not Installed: ““

*CloseUl: *Optionl

*CloseGroup: InstallableOptions

*0p ====== Constraints ===========

*% This device cannot print duplex on envelopes or transparencies,

*% It cannot output legal size paper to the rear output tray. It

*% cannot print from the envelope feeder unless the feeder is installed

*% Envelopes must be fed from the envelope feeder. Only envelopes may be fed
*% from the envelope feeder. Envelopes may not be transparent.

*UlConstraints: *PageSize Env10 *Duplex

*UlConstraints: *Duplex *PageSize Env10

*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:
*UlConstraints:

*Duplex *MediaType Transparent
*MediaType Transparent *Duplex

*PageSize Legal *OutputBin Rear
*QutputBin Rear *PageSize Legal

*Optionl False *InputSlot Envelope
*InputSlot Envelope *Optionl False
*PageSize Env10 *InputSlot Upper

*InputSlot Upper *PageSize Env10
*PageSize Legal *InputSlot Envelope
*InputSlot Envelope *PageSize Legal
*PageSize Letter *InputSlot Envelope
*InputSlot Envelope *PageSize Letter
*PageSize Env10 *MediaType Transparent
*MediaType Transparent *PageSize Env10
*InputSlot Envelope *MediaType Transparent
*MediaType Transparent *InputSlot Envelope

154 PostScript Printer Description File Format Specification

(9 Feb 1996)

*%=== Resolution Information
*DefaultResolution: 300dpi
*?Resolution: "save
currentpagedevice /HWResolution get
0 get
() cvs print (dpi) = flush
restore

*End

*% Halftone Information
*ScreenFreq: "60.0"
*ScreenAngle: "45.0"
*DefaultScreenProc: Dot
*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1
sub}{dup mul exch dup mul add 1 exch sub}ifelse}

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

sqrt 1 exch sub}"

*End

*DefaultTransfer: Null
*Transfer Null: "{}"
*Transfer Null.Inverse: "{1 exch sub}"

*% Paper Handling
*% Print managers should use these entries to set paper size, unless there is
*% a specific reason to use PageRegion, such as with manual feed.
*OpenUl *PageSize: PickOne
*OrderDependency: 20 AnySetup *PageSize
*PageSize Letter: "(<<) cvx exec
/PageSize [612 792] /imagingBBox null (>>) cvx exec setpagedevice"
*End
*PageSize Legal: "(<<) cvx exec
/PageSize [612 1008] /ImagingBBox null (>>) cvx exec setpagedevice"
*End
*PageSize Env10: “(<<) cvx exec /PageSize [297 684] /ImagingBBox null
(>>) cvx exec setpagedevice”
*End
*DefaultPageSize: Letter
*?PageSize: "save
currentpagedevice /PageSize get aload pop
2 copy gt {exch} if (Unknown)
(<<) cvx exec
[612 792] (Letter)
[612 1008] (Legal)
[297 684] (Env10)
(>>) cvx exec
{ exch aload pop 4 index sub abs 5 le exch 5 index sub abs 5 le and
{ exch pop exit } {pop} ifelse
} bind forall = flush pop pop
restore
*End
*CloseUl: *PageSize

6 Sample PPD File Structure

155

*% These entries set up the frame buffer. Usually used with manual feed.

*OpenUl *PageRegion: PickOne

*OrderDependency: 30 AnySetup *PageRegion

*PageRegion Letter: "(<<) cvx exec /PageSize [612 792] /ImagingBBox null
(>>) cvx exec setpagedevice"

*End

*PageRegion Legal: "(<<) cvx exec /PageSize [612 1008] /ImagingBBox null
(>>) cvx exec setpagedevice"

*End

*PageRegion Env10: “(<<) cvx exec /PageSize [297 684] /ImagingBBox null
(>>) cvx exec setpagedevice”

*End

*DefaultPageRegion: Letter

*CloseUl: *PageRegion

*% The following entries provide information about specific paper keywords.

*DefaultimageableArea: Letter
*ImageableArea Letter: "13 12 596 774 "
*ImageableArea Legal: "15 13 597 991 "
*ImageableArea Env10: "15 13 280 670"
*?ImageableArea: " save /cvp { cvi () cvs
print () print } bind def
newpath clippath pathbbox
4 -2 roll exch 2 {ceiling cvp} repeat
exch 2 {floor cvp} repeat () = flush
restore

*End

*% These provide the physical dimensions of the paper (by keyword)
*DefaultPaperDimension: Letter

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*PaperDimension Env10: "297 684"

*% On this device, the Upper tray is tray 0 and the Envelope tray is tray 1.
*OpenUl *InputSlot: PickOne
*OrderDependency: 15 AnySetup *InputSlot
*DefaultinputSlot: Upper
*InputSlot Upper: " mark {

(<<) cvx exec

/InputAttributes (<<) cvx exec /Priority [0] (>>) cvx exec
(>>) cvx exec setpagedevice
} stopped cleartomark "

*End

*InputSlot Envelope: " mark {
(<<) cvx exec
/InputAttributes (<<) cvx exec /Priority [1] (>>) cvx exec
(>>) cvx exec setpagedevice
} stopped cleartomark "
*End

156 PostScript Printer Description File Format Specification

(9 Feb 1996)

*?InputSlot: "
save
(<<) cvx exec
/1 (Envelope)
/0 (Upper)
(>>) cvx exec
currentpagedevice /InputAttributes get
dup /Priority known
{/Priority get O get () cvs cvn get }
{
dup length 1 eq
{ {pop} forall () cvs cvn get }
{ pop pop (Unknown) } ifelse
} ifelse
= flush
restore
*End
*CloseUl: *InputSlot

*OpenUl *MediaType: PickOne
*OrderDependency: 20 AnySetup *MediaType
*DefaultMediaType: Paper
*MediaType Transparent: "(<<) cvx exec /MediaType Transparent (>>) cvx exec setpagedevice"
*MediaType Paper: "(<<) cvx exec /MediaType Paper (>>) cvx exec setpagedevice"
*?MediaType: " save
currentpagedevice /MediaType {get} stopped
{pop pop (Unknown)} {dup null eq {pop (Unknown)} if} ifelse = flush restore "
*End
*CloseUl: *MediaType

*OpenUl *Duplex: PickOne
*OrderDependency: 30 AnySetup *Duplex
*DefaultDuplex: None
*Duplex DuplexTumble: "(<<) cvx exec /Duplex true /Tumble true (>>) cvx exec setpagedevice"
*Duplex DuplexNoTumble: "(<<) cvx exec /Duplex true /Tumble false (>>) cvx exec setpagedevice”
*Duplex None: "(<<) cvx exec /Duplex false /Tumble false (>>) cvx exec setpagedevice"
*?Duplex: "save currentpagedevice /Duplex get
{ currentpagedevice /Tumble get
{(DuplexTumble)}{(DuplexNoTumble)}ifelse

}
{ (None)}
ifelse = flush
restore
*End

*CloseUl: *Duplex

*% Font Information

*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard ROM

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard ROM
*Font AvantGarde-Demi: Standard "(001.003)" Standard ROM

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard ROM
*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM

6 Sample PPD File Structure

157

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM
*Font Times-Boldltalic: Standard "(001.004)" Standard ROM
*Font Times-ltalic: Standard "(001.002)" Standard ROM
*Font Times-Roman: Standard "(001.002)" Standard ROM
*Font ZapfDingbats: Special "(001.002)" Special ROM

*?FontQuery: "
save
{count 1 gt
{ exch dup 127 string cvs (/) print print (:) print
/Font resourcestatus {pop pop (Yes)} {(No)} ifelse =
} { exit } ifelse
} bind loop
(*) = flush
restore”
*End

*?FontList: "
save (*) {cvn ==} 128 string /Font resourceforall
(*) = flush restore"

*End

*% Printer Messages (verbatim from printer):
*Message: "%%[exitserver: permanent state may be changed]%%"
*Message: "\FontName\ not found, using Courier"

*0p Status (format: %%[status: <one of these>]%%)

*Status: "idle"

*Status: "busy”

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: "Optical System Error "

*Status: "PrinterError: " Cover Open "

*Status: "PrinterError: "Prnter Wrmng"/PrinterError: Printer Warming Up

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)
*Source: "%Serial%"

*Source: "%SerialB%"

*Source: "%LocalTalk%"

*Source: "%Parallel%"

*% Printer Error (format: %% PrinterError: <one of these> [%%)
*PrinterError: "Optical System Error "

*PrinterError: " Cover Open "

*PrinterError: "Prnter Wrmng"/Printer Warming Up

*% Color Separation Information
*OpenUl *Separations: Boolean
*QOrderDependency: 40 AnySetup *Separations
*Separations True: "(<<) cvx exec /Separations true (>>) cvx exec setpagedevice"
*Separations False: "(<<) cvx exec /Separations false (>>) cvx exec setpagedevice"
*DefaultSeparations: False
*?Separations: "save currentpagedevice /Separations get

{(True)}{(False)}ifelse = flush restore"
*End
*CloseUl: *Separations

158 PostScript Printer Description File Format Specification

(9 Feb 1996)

*DefaultColorSep: ProcessBlack.60Ipi.300dpi/60 Ipi / 300 dpi

*InkName: ProcessBlack/Process Black
*InkName: CustomColor/Custom Color
*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta
*InkName: ProcessYellow/Process Yellow

*% For 60 Ipi / 300 dpi

*ColorSepScreenAngle ProcessBlack.601pi.300dpi/60 Ipi / 300 dpi: "45"
*ColorSepScreenAngle CustomColor.60Ipi.300dpi/60 Ipi / 300 dpi: "45"
*ColorSepScreenAngle ProcessCyan.60Ipi.300dpi/60 Ipi / 300 dpi: "15"
*ColorSepScreenAngle ProcessMagenta.60Ipi.300dpi/60 Ipi / 300 dpi: "75"
*ColorSepScreenAngle ProcessYellow.601pi.300dpi/60 Ipi / 300 dpi: "0"

*ColorSepScreenFreq ProcessBlack.60Ipi.300dpi/60 Ipi / 300 dpi: "60"
*ColorSepScreenFreq CustomColor.60Ipi.300dpi/60 Ipi / 300 dpi: "60"
*ColorSepScreenFreq ProcessCyan.60Ipi.300dpi/60 Ipi / 300 dpi: "60"
*ColorSepScreenFreq ProcessMagenta.60Ipi.300dpi/60 Ipi / 300 dpi: "60"
*ColorSepScreenFreq ProcessYellow.601pi.300dpi/60 Ipi / 300 dpi: "60"

*% For 53 Ipi / 300 dpi

*ColorSepScreenAngle ProcessBlack.531pi.300dpi/53 Ipi / 300 dpi: "45.0"
*ColorSepScreenAngle CustomColor.53Ipi.300dpi/53 Ipi / 300 dpi: "45.0"
*ColorSepScreenAngle ProcessCyan.53Ipi.300dpi/53 Ipi / 300 dpi: "71.5651"
*ColorSepScreenAngle ProcessMagenta.53Ipi.300dpi/53 Ipi / 300 dpi: "18.43"
*ColorSepScreenAngle ProcessYellow.53Ipi.300dpi/53 Ipi / 300 dpi: "0.0"

*ColorSepScreenFreq ProcessBlack.531pi.300dpi/53 Ipi / 300 dpi: "53.033"
*ColorSepScreenFreq CustomColor.53Ipi.300dpi/53 Ipi / 300 dpi: "53.033"
*ColorSepScreenFreq ProcessCyan.53Ipi.300dpi/53 Ipi / 300 dpi: "47.43"
*ColorSepScreenFreq ProcessMagenta.53Ipi.300dpi/53 Ipi / 300 dpi: "47.43"
*ColorSepScreenFreq ProcessYellow.53Ipi.300dpi/53 Ipi / 300 dpi: "50.0"

*% end of PPD file for Acme Color Printer

6 Sample PPD File Structure

159

6.2 Level 2 Imagesetter

This PPD file describes a generic Level 2 roll-fed imagesetter. It supports
Adobe’s Accurate Screens technology and several resolutions. It supports the
features mirror print and negative print, which have been grouped together by
the*OpenGroup/*CloseGroup keyword pair. This device ships with several fonts
built into the ROM of the device, and the font Avant-Garde on a separate hard
disk. While most imagesetters support custom page sizes, the custom page
size section is not shown here because of its complexity; see section 6.3 for
examples of custom page size code.

*PPD-Adobe: "4.3"
*FormatVersion: "4.3"
*FileVersion: "1.0"
*LanguageEncoding: ISOLatinl
*LanguageVersion: English
*Product: "(Acme Imagesetter)"
*PSVersion: "(2015.11) 7"
*Manufacturer: “Acme”
*ModelName: "Acme Imagesetter v.2015.11"
*ShortNickName: “Acme Imagesetter”
*NickName: "Acme Imagesetter v.2015.11"
*PCFileName: “ACIMAGE1.PPD”
*0%p Basic Capabilities ===============
*Languagelevel: “2”
*ColorDevice: False
*DefaultColorSpace: Gray
*FreeVM: "8134935"
*FileSystem: True
*?FileSystem: "
save false
(%disk?%)
{ currentdevparams dup /Writeable known
{ /Writeable get {pop true} if } { pop } ifelse
} 10 string /I0ODevice resourceforall
{(True)}{(False)} ifelse = flush
restore”
*End

*Throughput: "1"
*Password: "0"
*ExitServer: " count 0 eq
{ false } { true exch startjob } ifelse
not { (WARNING: Cannot modify initial VM.) =
(Missing or invalid password.) =
(Please contact the author of this software.) = flush quit
}if*
*End

160 PostScript Printer Description File Format Specification (9 Feb 1996)

*Reset: " count 0 eq
{ false } { true exch startjob } ifelse
not { (WARNING: Cannot reset printer.) =
(Missing or invalid password.) =
(Please contact the author of this software.) = flush quit
}if
systemdict /quit get exec
(WARNING : Printer Reset Failed.) = flush"
*End

*%%=== Resolution Information
*OpenUI *Resolution/Choose Resolution: PickOne
*OrderDependency: 10 AnySetup *Resolution
*Resolution 600dpi: "(<<) cvx exec /[HWResolution 600 (>>) cvx exec setpagedevice"
*Resolution 1200dpi: "(<<) cvx exec /[HWResolution 1200 (>>) cvx exec setpagedevice"
*Resolution 2400dpi: "(<<) cvx exec /[HWResolution 2400 (>>) cvx exec setpagedevice"
*DefaultResolution: 1200dpi
*?Resolution: " save

currentpagedevice /[HWResolution get

0 get () cvs print (dpi) = flush

restore”
*End
*CloseUl: *Resolution

*% === Halftone Information

*ScreenFreq: "60.0"

*ScreenAngle: "45.0"

*DefaultScreenProc: Dot

*ScreenProc Dot: "

{abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1
sub}{dup mul exch dup mul add 1 exch sub}ifelse}

*End

*ScreenProc Line: "{pop}"

*ScreenProc Ellipse: "{dup 5 mul 8 div mul exch dup mul exch add

sqrt 1 exch sub}

*End
*AccurateScreensSupport: True
*DefaultTransfer: Null

*Transfer Null: "{}"
*Transfer Null.Inverse: "{1 exch sub}"

*% Paper Handling

*% Use these entries to set paper size most of the time, unless there is
*% specific reason to use PageRegion or PaperTray.
*OpenUl *PageSize/Page Size: PickOne
*OrderDependency: 30 AnySetup *PageSize
*DefaultPageSize: Letter
*PageSize Letter: "(<<) cvx exec
/PageSize [612 792]
/ImagingBBox null (>>) cvx exec setpagedevice"
*End

6 Sample PPD File Structure

161

*PageSize Legal: "(<<) cvx exec
/PageSize [612 1008]
/imagingBBox null (>>) cvx exec setpagedevice"
*End
*PageSize Tabloid: "(<<) cvx exec
/PageSize [792 1224]
/ImagingBBox null (>>) cvx exec setpagedevice"
*End
*?PageSize: "save currentpagedevice /PageSize get aload pop
2 copy gt {exch} if (Unknown)
(<<) cvx exec
[612 792] (Letter)
[612 1008] (Legal)
[792 1224] (Tabloid)
(>>) cvx exec
{ exch aload pop 4 index sub abs 5 le exch 5 index sub abs 5 le and
{ exch pop exit} { pop } ifelse
} bind forall = flush pop pop
restore”
*End
*CloseUl: *PageSize

*% These entries set up the frame buffer. Same as *PageSize for an
*% imagesetter, which has no input trays or manual feed slot.
*OpenUl *PageRegion: PickOne
*OrderDependency: 40 AnySetup *PageRegion
*DefaultPageRegion: Letter
*PageRegion Letter: "(<<) cvx exec
/PageSize [612 792]
/ImagingBBox null (>>) cvx exec setpagedevice"
*End
*PageRegion Legal: "(<<) cvx exec
/PageSize [612 1008]
/ImagingBBox null (>>) cvx exec setpagedevice"
*End
*PageRegion Tabloid: "(<<) cvx exec
/PageSize [792 1224]
/ImagingBBox null (>>) cvx exec setpagedevice"
*End
*CloseUl: *PageRegion

*% These entries provide the imageable area for specific paper keywords.

*DefaultimageableArea: Letter
*ImageableArea Letter: "0.0 0.0 612.0 792.0"
*ImageableArea Legal: "0.0 0.0 612.0 1008.0"
*ImageableArea Tabloid: "0.0 0.0 792.0 1224.0"
*?ImageableArea: "
save
fevp { () cvs print () print } bind def
/upperright {10000 mul floor 10000 div} bind def
/lowerleft {10000 mul ceiling 10000 div} bind def
newpath clippath pathbbox
4 -2 roll exch 2 {lowerleft cvp} repeat
exch 2 {upperright cvp} repeat () = flush
restore

*End

162 PostScript Printer Description File Format Specification

(9 Feb 1996)

*% These provide the physical dimensions of the page (by option keyword)
*DefaultPaperDimension: Letter

*PaperDimension Letter: "612 792"

*PaperDimension Legal: "612 1008"

*PaperDimension Tabloid: "792 1224"

*% Only one input slot, but the entry is included to dictate the slot name
*% that appears in the user interface.

*OpenUI *InputSlot: PickOne

*OrderDependency: 30 AnySetup *InputSlot

*InputSlot Cassette: ““

*DefaultinputSlot: Cassette

*CloseUl: *InputSlot

*%% === Imagesetter Information
*% Imagesetter features are grouped here.
*OpenGroup: Imagesetter

*OpenUl *MirrorPrint/Mirror Print: Boolean
*OrderDependency: 40 AnySetup *MirrorPrint
*MirrorPrint True: "(<<) cvx exec /MirrorPrint true (>>) cvx exec setpagedevice"
*MirrorPrint False: "(<<) cvx exec /MirrorPrint false (>>) cvx exec setpagedevice"
*DefaultMirrorPrint: False
*?MirrorPrint: " save currentpagedevice /MirrorPrint get
{(True)} {(False)} ifelse = flush restore"
*End
*CloseUl: *MirrorPrint

*OpenUl *NegativePrint/Negative Print: Boolean
*OrderDependency: 40 AnySetup *NegativePrint
*NegativePrint True: "(<<) cvx exec /NegativePrint true (>>) cvx exec setpagedevice"
*NegativePrint False: "(<<) cvx exec /NegativePrint false (>>) cvx exec setpagedevice"
*DefaultNegativePrint: False
*?NegativePrint: "save currentpagedevice /NegativePrint get
{(True)H{(False)}ifelse = flush restore"
*End
*CloseUl: *NegativePrint

*CloseGroup: Imagesetter

*% Font Information
*% For example purposes, this device ships with several fonts built into
*% the ROM of the device, and Avant-Garde on a separate hard disk
*DefaultFont: Courier

*Font AvantGarde-Book: Standard "(001.002)" Standard Disk

*Font AvantGarde-BookOblique: Standard "(001.002)" Standard Disk
*Font AvantGarde-Demi: Standard "(001.003)" Standard Disk

*Font AvantGarde-DemiOblique: Standard "(001.003)" Standard Disk
*Font Courier: Standard "(002.002)" Standard ROM

*Font Courier-Bold: Standard "(002.002)" Standard ROM

*Font Courier-BoldOblique: Standard "(002.002)" Standard ROM

*Font Symbol: Special "(001.003)" Special ROM

*Font Times-Bold: Standard "(001.002)" Standard ROM

*Font Times-Boldltalic: Standard "(001.004)" Standard ROM

*Font Times-Italic: Standard "(001.002)" Standard ROM

*Font Times-Roman: Standard "(001.002)" Standard ROM

6 Sample PPD File Structure

163

*?FontQuery: "

save

{count 1 gt
{ exch dup 127 string cvs (/) print print (:) print
/Font resourcestatus {pop pop (Yes)} {(No)} ifelse =
} { exit } ifelse

} bind loop

(*) = flush

restore

*End

*?FontList: "
save (*) {cvn ==} 128 string /Font resourceforall
(*) = flush restore

*End

*% Printer Messages (verbatim from printer):
*Message: "%%[exitserver: permanent state may be changed]%%"
*Message: "\FontName\ not found, using Courier"

*0p Status (format: %%[status: <one of these>]%%)
*Status: "idle"

*Status: "busy”

*Status: "waiting"

*Status: "printing"

*Status: "initializing"

*Status: "PrinterError: Cassette not loaded"

*Status: "PrinterError: Film Unit Error"

*% Input Sources (format:%%[status:<stat>;source:<one of these>]%%)
*Source: "Localtalk"

*Source: "Parallel"

*Source: "Serial"

*Source: "SerialB"

*% Printer Error (format: %%][PrinterError: <one of these>]%%)
*PrinterError: "Cassette not loaded"
*PrinterError: "Film Unit Error"

*% Color Separation Information
*DefaultColorSep: ProcessBlack.90Ipi.1200dpi/90 Ipi / 1200 dpi

*InkName: ProcessBlack/Process Black
*InkName: CustomColor/Custom Color
*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta
*InkName: ProcessYellow/Process Yellow

*% For 90 Ipi / 1200 dpi

*ColorSepScreenAngle ProcessCyan.90Ipi.1200dpi/90 Ipi / 1200 dpi: "71.565"
*ColorSepScreenAngle ProcessMagenta.90Ipi.1200dpi/90 Ipi/1200 dpi: "18.43"
*ColorSepScreenAngle ProcessYellow.90Ipi.1200dpi/90 Ipi / 1200 dpi: "0"
*ColorSepScreenAngle ProcessBlack.90Ipi.1200dpi/90 Ipi / 1200 dpi: "45"
*ColorSepScreenAngle CustomColor.90Ipi.1200dpi/90 Ipi / 1200 dpi: "45"

164 PostScript Printer Description File Format Specification

(9 Feb 1996)

*ColorSepScreenFreq ProcessCyan.90Ipi.1200dpi/90 Ipi / 1200 dpi: "94.8683"
*ColorSepScreenFreq ProcessMagenta.90Ipi.1200dpi/90 Ipi/1200 dpi: "94.86"
*ColorSepScreenFreq ProcessYellow.90Ipi.1200dpi/90 Ipi / 1200 dpi: "30"
*ColorSepScreenFreq ProcessBlack.90Ipi.1200dpi/90 Ipi / 1200 dpi: "84.852"
*ColorSepScreenFreq CustomColor.90Ipi.1200dpi/90 Ipi / 1200 dpi: "84.8528"

*ColorSepScreenProc ProcessYellow.90Ipi.1200dpi/90 Ipi / 1200 dpi: "
{2 {1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch } repeat

abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1
sub H{dup mul exch dup mul add 1 exch sub }ifelse }"

*End

*% For 110 Ipi / 1200 dpi
*ColorSepScreenAngle ProcessCyan.110Ipi.1200dpi/110 Ipi /1200 dpi: "70.01"
*ColorSepScreenAngle ProcessMagenta.110Ipi.1200dpi/110 Ipi/1200 dpi: "19"
*ColorSepScreenAngle ProcessYellow.110Ipi.1200dpi/110 Ipi / 1200 dpi: "0"
*ColorSepScreenAngle ProcessBlack.110Ipi.1200dpi/110 Ipi / 1200 dpi: "45"
*ColorSepScreenAngle CustomColor.110Ipi.1200dpi/110 Ipi / 1200 dpi: "45"

*ColorSepScreenFreq ProcessCyan.110Ipi.1200dpi/110 Ipi /1200 dpi: "102.52"
*ColorSepScreenFreq ProcessMagenta.110Ipi.1200dpi/110 Ipi/1200 dpi: "102"
*ColorSepScreenFreq ProcessYellow.110Ipi.1200dpi/110 Ipi/1200 dpi: "109.1"
*ColorSepScreenFreq ProcessBlack.110Ipi.1200dpi/110 Ipi/1200 dpi: "121.22"
*ColorSepScreenFreq CustomColor.110Ipi.1200dpi/110 Ipi/1200 dpi: "121.218"

*% For 90 Ipi / 2400 dpi
*ColorSepScreenAngle ProcessCyan.90Ipi.2400dpi/90 Ipi /2400 dpi: "71.5651"
*ColorSepScreenAngle ProcessMagenta.90Ipi.2400dpi/90 Ipi/2400 dpi: "18.44"
*ColorSepScreenAngle ProcessYellow.90Ipi.2400dpi/90 Ipi / 2400 dpi: "0"
*ColorSepScreenAngle ProcessBlack.901pi.2400dpi/90 Ipi / 2400 dpi: "45"
*ColorSepScreenAngle CustomColor.90Ipi.2400dpi/90 Ipi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.90Ipi.2400dpi/90 Ipi / 2400 dpi: "94.8683"
*ColorSepScreenFreq ProcessMagenta.90Ipi.2400dpi/90 Ipi /2400 dpi: "94.87"
*ColorSepScreenFreq ProcessYellow.90Ipi.2400dpi/90 Ipi / 2400 dpi: "30"

*ColorSepScreenFreq ProcessBlack.90Ipi.2400dpi/90 Ipi /2400 dpi: "84.8528"
*ColorSepScreenFreq CustomColor.90Ipi.2400dpi/90 Ipi / 2400 dpi: "84.8528"

*ColorSepScreenProc ProcessYellow.90Ipi.2400dpi/90 Ipi / 2400 dpi: "
{2 {1 add 2 div 3 mul dup floor sub 2 mul 1 sub exch } repeat
abs exch abs 2 copy add 1 gt {1 sub dup mul exch 1 sub dup mul add 1
sub H{dup mul exch dup mul add 1 exch sub }ifelse }"

*End

*% For 115 Ipi / 2400 dpi
*ColorSepScreenAngle ProcessCyan.115Ipi.2400dpi/115 Ipi /2400 dpi: "71.56"
*ColorSepScreenAngle ProcessMagenta.115Ipi.2400dpi/115 Ipi/ 2400 dpi: "18"
*ColorSepScreenAngle ProcessYellow.115Ipi.2400dpi/115 Ipi / 2400 dpi: "0"
*ColorSepScreenAngle ProcessBlack.115Ipi.2400dpi/115 Ipi / 2400 dpi: "45"
*ColorSepScreenAngle CustomColor.115Ipi.2400dpi/115 Ipi / 2400 dpi: "45"

*ColorSepScreenFreq ProcessCyan.115Ipi.2400dpi/115 Ipi/2400 dpi: "126.491"
*ColorSepScreenFreq ProcessMagenta.115Ipi.2400dpi/115 Ipi/ 2400 dpi: "126"
*ColorSepScreenFreq ProcessYellow.115Ipi.2400dpi/115 Ipi / 2400 dpi: "120"
*ColorSepScreenFreq ProcessBlack.115Ipi.2400dpi/115 Ipi/2400 dpi: "113.13"
*ColorSepScreenFreq CustomColor.115Ipi.2400dpi/115 Ipi/2400 dpi: "113.137"

*% end of PPD file for Acme Imagesetter

6 Sample PPD File Structure

165

6.3 Examples of Custom Page Size Code

This section contains examples of custom page size entries for Level 1 and
Level 2 drum and capstan recorders (roll-fed devices) and for Level 2 devices
that accept both roll-fed and cut-sheet media. These examples are intended to
help builders of PPD files with the construction of custom page size entries.
They should be interpreted as guidelines, not requirements of this specifica-
tion.

Because of the complexity of writing a custom page size entry, it is critical
that you thoroughly test youCustomPageSize code with requests for different
page sizes, different offsets (if supported), and different orientations, prefera-
bly using several different print managers or applications. Such testing often
highlights problems with the custom page size code in the PPD file, with a
print manager’s handling of custom page sizes, or even with the device’s
implementation of custom page sizes.

Minimums and maximums

When constructing your own custom page size entry, you would insert the
device’s values fomaxMediawidth, *MaxMediaHeight, *HWMargins (if present), and

the minimum and maximum range values of*f#aeamCustomPageSize entries.

On some devices, requesting a width or height of zero will cause an error.
Because of this, the values of the minimwitith andHeight boundaries in the
*ParamCustomPageSize entries should be set to small positive numbers, such as
100 points.

*LeadingEdge

*LeadingEdge is needed by print managers to give the user a way to request
Transverse pages (on roll-fed media) or to tell the print manager how a cut-
sheet device is configured so that the imageable area of the custom page size
can be calculated correctly. It is important to include this keyword in the PPD
file if *CustomPageSize is present.

For *LeadingEdge, list only the options that are available on the device. Most
devices that accept only cut-sheet media witlport eitheiShort or Long, but

not both. However, some cut-sheet devices witlport bothshort andLong,

either in separate input trays or in an adjustable input tray. Most roll-fed
devices support bothort andLong, because the page image can be rotated on
the film or paper.

166 PostScript Printer Description File Format Specification (9 Feb 1996)

You'll need to writerNonUIConstraints that document which trays support
which leading edge, such as these for a device whppsetray supports only
long-edge feed and whosever tray supports only short-edge feed:

*LeadingEdge Short: *“

*LeadingEdge Long: ™

*DefaultLeadingEdge: Long

*NonUIConstraints: *InputSlot Upper *LeadingEdge Short
*NonUIConstraints: *LeadingEdge Short *InputSlot Upper
*NonUIConstraints: *InputSlot Lower *LeadingEdge Long
*NonUIConstraints: *LeadingEdge Long *InputSlot Lower

Typically, PreferLong will be available only on devices that accept roll-fed
media. It should only appear in the PPD file as an optiorn.éadingEdge if

the device can be configured to calculate whether the page will fit on the roll
in the long-edge feed direction and rotate the page to long-edge feed if it fits
that way.PreferLong is typically not available on devices that acaaply cut-

sheet media, as the device has no way to rotate the physical page. If
*HwMargins and*UseHWMargins are both present, thémeferLong will typically

only be available whetseHWMargins is False (when the device is operating in
traditional roll-fed mode). IPreferLong is not available whetruseHWMargins is

True, there should be *alonUIConstraints entry to reflect this:

*NonUIConstraints: *UseHWMargins True *LeadingEdge PreferLong
*NonUIConstraints: *LeadingEdge PreferLong *UseHWMargins True

The*LeadingEdge optionForced is very rareForced will usually be available

only on devices that accept cut-sheet media. If the device always rotates the
page image in device space so that the long axis of the page image is parallel
to the long axis of the physical page, tlfemned is not available on the

device. To find out whethéwrced is available, try to print a short-edge feed
image (vidth < Height, Portrait orientation) on a long-edge feed page, or vice
versa. You must first set up the device correctly, in “do what | say” mode,

with the leading edge set up to be the opposite of what jibreguest from

the print manager. If you do this with a full-page image,rrwdd is avail-

able, the image should appear to be rotated 90 degrees and clipped. If you are
unsure, do not includerced as an option fotLeadingEdge in the PPD file.

Unknown is available for all devices, but it provides a print manager with no
useful information and should be dtad if the device manufacturer (and

PPD file builder) wants to force the user to choose the correct \Ghuge (

Long, PreferLong, or Forced) for *LeadingEdge. If a user chooseasknown, the print
manager cannot correlate the top of the physical page wiketigdy axes of

the page image, so it cannot calculate the imageable area of the custom page
size correctly. This can cause the print manager to falsely warn the user that
the page image will be clipped, or it can cause actual clipping if the page
image and the physical page are rotated relative to each other. For these rea-
sons, includingnknown in the*LeadingEdge options list is discouraged. If

Unknown must be listed as an option, usisgnown as the value of

6 Sample PPD File Structure 167

168

*DefaultLeadingEdge is strongly discouraged. The value*DéfaultLeadingEdge
should be the default leading edge of the default input slot; typishdly,
Long, Or PreferLong.

Level 1 roll-fed devices

Since theParamCustomPageSize parameters for roll-fed devices are defined in
terms of media feed direction, not fast scan/slow scan direction, writing the
*CustomPageSize code and setting up thearamCustomPageSize entries can be
confusing, and must be done with great care.

On Level 1 roll-fed devices that use Hegageparams operator in the
*CustomPageSize code HeightOffset is not used and will be discarded, as shown
by exch pop in the first line of theCustomPageSize code.

Example 1. Entry for a Level 1 capstan recorder, or a Level 1 drum recorder
wheresetpageparams has been redefined to emulate the output of a capstan
recorder:

*CenterRegistered: False
*LeadingEdge Short:
*LeadingEdge Long: ““
*DefaultLeadingEdge: Long
*NonUIOrderDependency: 20 AnySetup *CustomPageSize
*ParamCustomPageSize Width: 1 points 1 1008
*ParamCustomPageSize Height: 2 points 1 3000
*ParamCustomPageSize WidthOffset/Margins: 3 points 0 1007
*ParamCustomPageSize HeightOffset: 4 points 0 0
*ParamCustomPageSize Orientation: 5int 0 1
*CustomPageSize True: "exch pop

statusdict /setpageparams get exec"
*End
*MaxMediaWidth: "1008"
*?CurrentMediaWidth: "statusdict /mediawidth get exec = flush"
*MaxMediaHeight: "3000"
*?CurrentMediaHeight: "statusdict /medialength get exec = flush"

PostScript Printer Description File Format Specification (9 Feb 1996)

Example 2. Entry for a Level 1 drum recorder, whes@pageparams has not
been redefined to emulate the output of a capstan recorder. Note the
differences in the ordering of the parameters on the stack, andfférenices
in both the invocation and query code, compared to Example 1:

*CenterRegistered: False
*LeadingEdge Short: *
*LeadingEdge Long: ““
*LeadingEdge PreferLong: ““
*DefaultLeadingEdge: PreferLong
*NonUIOrderDependency: 20 AnySetup *CustomPageSize
*ParamCustomPageSize Width: 2 points 1 1152
*ParamCustomPageSize Height: 1 points 1 1584
*ParamCustomPageSize WidthOffset/Margins: 4 points 0 0
*ParamCustomPageSize HeightOffset: 3 points 0 1151
*ParamCustomPageSize Orientation: 5int 0 1
*CustomPageSize True: "1 exch sub exch pop

statusdict /setpageparams get exec"
*End
*MaxMediaWidth: "1152"
*?CurrentMediaWidth: "statusdict /medialength get exec = flush"
*MaxMediaHeight: "1584"
*?CurrentMediaHeight: "statusdict /mediawidth get exec = flush"

6 Sample PPD File Structure 169

170

Level 2 devices

These examples of Level-QustomPageSize invocation code first check the
Orientation parameter to see if it is even or odd. An eddgmtation parameter (0
or 2) means that theaxis will be parallel to the media feed direction, which
means thatieight must be mapped to thxeaxis. To perform this mapping, if
Orientation is evenwidth andHeight are first checked for equality; if they are not
equal, they are switched so thiaight maps tax andwidth maps toy in the
PageSize array.

The code then examines the dimensiwig andHeight to determine how to
map the custom page si@dentation parameter to theetpagedevice key
Orientation , using a choice of arrays of orientations. It then executes
setpagedevice with the appropriate dictionary.

These examples are only appropriate for devices that support the

setpagedevice key PageOffset ; otherwise, this code must be written to discard

the offset values provided by the user. The code used to obtain the maximum
width and height is only appropriate for devices that supposttfegedevice

key OutputDevice and a particular form of theageSize value in the

OutputDevice resource, as documented in the appropriate PostScript language
supplement for the product.

This sample Level 2 code is more verbose than the equivalent Level 1 code
because the mapping between *#aeamCustomPageSize parameters and the
setpagedevice keys can be complicated. When writing your own code, consult
the diagram of orientations in Figure 3, section 5.16 of this document. If the
value ofOrientation produces different positions of the pages on the media than
described in these examples, you can still use the examples as a starting point
and change the numbers in the arrays to correctly map the custom page size
paramete0rientation to thesetpagedevice key Orientation in the invocation code.

PostScript Printer Description File Format Specification (9 Feb 1996)

Example 3: Entry for a Level 2 capstan recorder that accepts only roll-fed
media. This example assumes that a portrait page@uittiation equal to0 in

the currentpagedevice dictionary results in the same positioning of the page on
the media as when thBaramCustomPageSize parameterOrientation is 0 and

Width is greater than theleight. Note the order of the parameters on the stack
dictated by*ParamCustomPageSize.

*CenterRegistered: False

*DefaultLeadingEdge: PreferLong

*LeadingEdge Long: ““

*LeadingEdge PreferLong: ““

*LeadingEdge Short:

*ParamCustomPageSize Width: 3 points 100 1008
*ParamCustomPageSize Height: 4 points 100 3000
*ParamCustomPageSize WidthOffset/Width Margin: 1 points 0 908
*ParamCustomPageSize HeightOffset/Height Margin: 2 points 0 2900
*ParamCustomPageSize Orientation: 5int 0 3
*NonUIOrderDependency: 30 AnySetup *CustomPageSize
*CustomPageSize True: "

3 copy 2 mod 0 eq {

2 copy eq {
1 add

X
5-2roll exch 5 2 roll
} ifelse
}if
[0022][3113]
4 2 roll It {exch} if pop
exch get
(<<) cvx exec
/Orientation 3 -1 roll
/PageSize [7 -2 roll]
/PageOffset [9 -2 roll]
/ImagingBBox null
(>>) cvx exec setpagedevice"
*End
*MaxMediaWidth: "1008"
*?CurrentMediaWidth: "
currentpagedevice /OutputDevice get
/OutputDevice findresource
/PageSize get 0 get 2 get = flush
*End
*MaxMediaHeight: "3000"
*?CurrentMediaHeight: "
currentpagedevice /OutputDevice get
/OutputDevice findresource
/PageSize get 0 get 3 get = flush

*End

6 Sample PPD File Structure 171

Example 4: The code for a roll-fed drum recorder may be slightly different from
the code for a capstan recorder. This example assumes thatdgedevice

key Orientation on the drum recorder produces the same results as the capstan
device in Example 3. This code is similar to Example 3, except that it first
calculates a new value for the width offset by subtracting the custom page
size parameter®idth and theWidthOffset from the maximum width. This is
necessary because the fast scan direction (relative to media feed direction) of
a drum recorder is different from that of a capstan recorder. Note that the
order of the parameters on the stack is different from that of Example 3.

*CenterRegistered: False
*DefaultLeadingEdge: PreferLong
*LeadingEdge Long: ““
*LeadingEdge PreferLong: ““
*LeadingEdge Short: *“
*ParamCustomPageSize Width: 1 points 100 1152
*ParamCustomPageSize Height: 2 points 100 1584
*ParamCustomPageSize WidthOffset/Width Margin: 5 points 0 1052
*ParamCustomPageSize HeightOffset/Height Margin: 4 points 0 1484
*ParamCustomPageSize Orientation: 3 int 0 3
*NonUIOrderDependency: 30 AnySetup *CustomPageSize
*CustomPageSize True: "
currentpagedevice /OutputDevice get /OutputDevice findresource
/PageSize get 0 get 3 get
5 index sub exch sub 5 2 roll
3 copy 2 mod 0 eq {
2 copy eq {
1 add
H
5-2roll exch 5 2 roll
} ifelse
}if %
[0022][3113]
4 2 roll It {exch} if pop exch get
(<<) cvx exec
/Orientation 3 -1 roll
/PageSize [7 -2 roll]
/PageOffset [9 -2 roll]
/ImagingBBox null
(>>) cvx exec setpagedevice
*End
*MaxMediaWidth: "1152"
*?CurrentMediaWidth: "
currentpagedevice /OutputDevice get
/OutputDevice findresource
/PageSize get 0 get 3 get = flush
*End
*MaxMediaHeight: "1584"
*?CurrentMediaHeight: "
currentpagedevice /OutputDevice get
/OutputDevice findresource
/PageSize get 0 get 2 get = flush

*End

172 PostScript Printer Description File Format Specification (9 Feb 1996)

Cut-sheet media

If the roll-fed capstan recorder depicted in Example 3 also accepted cut-sheet
media, additional entries would be required in the PPD file, as shown in
Example 5. Example 6 illustrates a device that, unlike all the other examples
in this section, acceptmly cut-sheet media, perhaps in an input tray whose
sides can be adjusted to accommodate different page sizes.

Example 5. In this example, cut-sheet media is accepted only through the
manual feed slot, fed short-edge first, and the hardware imposes margins of 1
inch at the top and bottom and 1/2 inch on the sides. These entries would
appear in addition to the entries shown in Example 3.

*HWMargins: 72 36 72 36

*UseHWMargins True: ““

*UseHWMargins False: ““

*DefaultUseHWMargins: False

*NonUIConstraints: *InputSlot Cassette *UseHWMargins True
*NonUIConstraints: *UseHWMargins True *InputSlot Cassette
*NonUIConstraints: *ManualFeed True *UseHWMargins False
*NonUIConstraints: *UseHWMargins False *ManualFeed True
*NonUIConstraints: *InputSlot Cassette *ManualFeed True
*NonUIConstraints: *ManualFeed True *InputSlot Cassette
*NonUIConstraints: *ManualFeed True *LeadingEdge PreferLong
*NonUIConstraints: *ManualFeed True *LeadingEdge Long
*NonUIConstraints: *LeadingEdge Long *ManualFeed True
*NonUIConstraints: *LeadingEdge PreferLong *ManualFeed True

6 Sample PPD File Structure 173

WidthOffset and HeightOffset on cut-sheet devices

Most devices that accept only cut-sheet media do not support the concept of
offsetting the image in a particular direction. On such dewvigespffset and
HeightOffset should be discarded by th&ustomPageSize code. Level 2 devices

that do support offsetting will do so with one of the followseigagedevice

keys:

e Margins, which should not be used for this purpostrgins , which is
measured in device units, is intended to be used to compensate for
mechanical misadjustments in the device, not to position output on the
page. Do not use it CustomPageSize code.

* PageOffset, whichis intended for this purpos®idthOffset, HeightOffset, and
PageOffset are all defined in “points” (1/72 of an inch), so no conversion is
necessary. However, the direction of offsetHageOffset is in device
space, which may cause problems for a rotated page. Test the custom page
size code carefully with different combinationsOaéntation, WidthOffset,
andHeightOffset. In each cas@yidthOffset should remain relative Width, and
HeightOffset should remain relative teeight. If this does not happen, you
will have to amend th&ustomPageSize code so that it manipulates the
offset values to compensate fwientation before passing them to
PageOffset .

* ImageShift is defined in default user space, so*thstomPageSize code
can pass the values widthOffset andHeightOffset directly intolmageShift .
However, if the device also performs duplex printing on custom page
sizes, this combination should be carefully tested widthOffset and
HeightOffset to make sure the image is offset in the proper direction on both
sides of the page, &sageShift was designed to shift the image differ-
ently on the front and back sides of a page. In this fageOffset may
work better.

If the device does not support either of thgagedevice keysPageOffset or
ImageShift , or if the manufacturer does not want image offsetting to be sup-
ported in custom page sizes on the device, changeitl@dmax range

values forwidthOffset andHeightOffset to O:

*ParamCustomPageSize WidthOffset: 3 points 0 0
*ParamCustomPageSize HeightOffset: 4 points 0 0

and rewrite theCustomPageSize code to discard the valueswifithOffset and
HeightOffset. Be careful to keep the dictionary mark on the stack.

174 PostScript Printer Description File Format Specification (9 Feb 1996)

Example 6: This is a sample custom page size entry for a PostScript Level 2
device that accepts only cut-sheet media, supports custom page sizes fed
short-edge first only through the manual feed slot, and does not support
offsetting or thesetpagedevice keyOrientation . The *CustomPageSize code first
discards the values éfightOffset and WidthOffset by popping them off the stack.
(Note the order of the parameters.) Néxigntation is checked (and discarded,
since it is not supported by the device); if it is even, the valuggtbaind

Height are exchanged so that they will be in the correct order for the requested
landscape or portrait page. This code assumesWtuit, Height, andOrientation
have been calculated as described in Table 2 in section 5.16 and that all
values were put on the stack in the correct order.

*HWMargins: 72 36 72 36
*LeadingEdge Short:
*DefaultLeadingEdge: Short
*NonUIConstraints: *InputSlot Upper *ManualFeed True
*NonUIConstraints: *ManualFeed True *InputSlot Upper
*NonUIConstraints: *ManualFeed False *CustomPageSize True
*NonUIConstraints: *CustomPageSize True *ManualFeed False
*MaxMediaWidth: 792
*MaxMediaHeight: 1008
*CustomPageSize True: "

pop pop

2 mod 0 eq {exch} if

(<<) cvx exec

/PageSize [5 -2 roll]

/ImagingBBox null

(>>) cvx exec setpagedevice
*End
*ParamCustomPageSize Width: 1 points 100 1008
*ParamCustomPageSize Height: 2 points 100 1008
*ParamCustomPageSize WidthOffset: 4 points 0 0
*ParamCustomPageSize HeightOffset: 5 points 0 0
*ParamCustomPageSize Orientation: 3 int 0 3

*?CurrentMediaHeight, *?CurrentMediaWidth, and*CenterRegistered are not usually
supported by devices that accept only cut-sheet media, so they are omitted
from this exampletUseHWMargins is omitted because this device can only
print within the hardware-imposed margins (this is true for most cut-sheet-
only devices), so there is no choice to be made about wsimgrgins (it

must be used).

6 Sample PPD File Structure 175

7 PPD File Summary

This section is intended for builders of PPD files. It provides a brief summary
of things to check for when you’re done building your PPD file. Checking off
all the items on this list does not guarantee that you've built a perfect PPD
file, but at least you i have avoided some common errors and omissions.

* Using thePPD File Format Specificatioand the product addendum as a
guide, first make sure that the PPD file contaith®f the keywords from
the specificatiorthat are relevant to the device.

* Using the product addendum, make sure that the PPD file does not contain
any entries or statements for features thahatesupported by the device.

« Make sure the required keywords are present and that they are correct
according to their descriptions in section 5.

* Make sure thatPCFileName, *ModelName, *NickName, and*ShortNickName are
unique across all PPD files, and tkgtiortNickName is < 32 characters and
occurs beforeNickName.

 Ifthereis an ICC color profile for the device: CheakdelName, *NickName,
and*ShortNickName against the value dfHeader.model in the ICC color pro-
file, and check the first four characters of these strings agaiesier.man-
ufacturer.

» Make sure theManufacturer string is the same as in all other PPD files from
this manufacturer. Check its value againstidHeader.manufacturer tag in
any ICC color profiles for that manufacturer.

* Make sure that th&CFileName follows Adobe naming standards.

* Any main keywords created by the manufacturer must start with the manu-
facturer’s assigned prefix (sé@pendix D.

» Check theUiConstraints entries andNonUIConstraints entries to make sure
that all necessary constraints exist, that there are no unnecessary con-
straints, that constraints that need to be reversed have been reversed, and
that no constraints are reversed unnecessarily.

* Make sure that the four required media handling keywopdge6ize,
*PageRegion, *ImageableArea, *PaperDimension) are present for each page size.
Make sure any translation strings on option keywords are consistent across
all media handling keywords.

176 PostScript Printer Description File Format Specification (9 Feb 1996)

* The page size option keyword qualifiensverse is often misused. Check
for the following:

- 1.Transverse Sizes should not appear in the PPD file of a cut-sheet device
that supports either short-edge-feed or long-edge-feed but not both. If a
device supports only one feed direction, there is no reason to have
Transverse sizes listed in the PPDransverse is used to designate a page
size that ided differently from other page sizes on the device.

- 2. If a cut-sheet device does support 2 media feed directions and they
are selectable via PostScript code,*HageSize code for equivalent
Transverse and nonfansverse sizes (for examplegtter and
Letter. Transverse) should request the same page size (with the dimensions
in the same order, to preserve the correct image orientation on the
page), but should do whatever it takes to ensure that the page is fed
from the correct tray. This might mean that the code requests a different
page orientation (if theetpagedevice key/Orientation is supported by the
device) or a different input slot, as shown here:

*PageSize Letter: “.../PageSize [612 792]
/MediaPosition 1...”

*End

*PageSize Letter.Transverse: “.../PageSize [612 792]
/MediaPosition 0...”

*End

The whole point ofransverse is for the user to say “this device usually
feedsLetter from the short-edge-feed input tray, but this time | want a
Letter page from the long-edge-feed tray”. The physical size is the same,
but the feed direction is different, and code needs to be sent to invoke
that difference. However, theageRegion code fragments for the equiva-
lent Transverse and nonfransverse sizes will usually be identical to each
other, becaus®ageRegion should not select an input tray; it should only
request the page dimensions,which are the same faatberse and
non-Transverse Size.

- 3. 0On aroll-fed device, th®ageSize code forTransverse pages will
request a differeriOrientation than thePageSize code for the equivalent
non-Transverse size. For example:

*PageSize Letter: “.../PageSize [612 792]
/Orientation 1...”

*End

*PageSize Letter.Transverse: “.../PageSize [612 792]
/Orientation 0...”

*End

7 PPD File Summary 177

Again, the page size dimensions should be in the same order, at least for
most roll-fed devices. TheageSize and*PageRegion code fragments will
usually be identical, since on a roll-fed device*HgeSize code does

not usually invoke an input slot, so it performs the same function as the
*PageRegion code.

- 4. The page size dimensions should be in the same order in all relevant
keywords {PageSize, *PageRegion, *ImageableArea, *PaperDimension) for
equivalentrransverse and nonfansverse Sizes.

- 5. If the intent is to produce a landscape page, you shouRbtase or
R as the suffix (for exampl@gRotated or LetterR) instead offransverse.
Most print managers perform landscape rotation internally, so there's
really no need for special landscape page sizes in a PPD file, unless it
will be used in an environment where the print manager does not pro-
vide this servicelf landscape page sizes are included in the PPD file,
their dimensions in all relevant keywords should be in reversed from the
dimensions of the equivalent ndmnsverse size. For example:

*PaperDimension LetterRotated: “792 612"
*PaperDimension Letter: “612 792"

« Make sure that the imageable area for each page size is within its bound-
ing box as defined bypaperDimension for that page size.

* Make sure the?imageableArea query ends with the following code, as in the
examples in section 6:

repeat () = flush
rather than the old form of code, which was
repeat flush

The first example ensures that the string returned from the query termi-
nates with a newline, which is a new requirement of the 4.3 specification.

» Make sure that all user-selectable features are surroundegehbyi/
*CloseUl pairs as needed, and that each entry is complete (contastaila
keyword,*OrderDependency statement, main keyword with options and code
to invoke the feature, and query code if a query keyword exists for that fea-
ture and if query code can be written).

« Make sure that the strings returned by query codeotiincludeany
translation strings; they should return only option names, and they must be
terminated by a newline (usually accomplished by ending the code with
the sequenceflush).

« Make sure the device’s error and status messages have been included.

178 PostScript Printer Description File Format Specification (9 Feb 1996)

7.1

« Make sure that color separation information is present for each resolution.

* Most critical: Make sure that every piece of PostScript code in the PPD
file has been thoroughly tested against the device, with all variables, such
as invoking different input slots and page sizes.

« Test the PPD file with different print managers and applications. Make

sure that all features that are surroundetbbshul/*CloseUl in the PPD file

are selectable from the print manager. Test the functionality of the print
manager and PPD file by printing a sample document, using the different
PPD file options. For example, sel@aplex andLower Tray and make sure

that document is printed from the lower tray and is printed on both sides of
the page. Test the functionality alf the features in the PPD file. Test the
PPD file and print manager by printing from more than one application.

PPD Files for Kanji Products

If you are building a PPD file for a Kanji (Japanese font) product, you should
be aware of the following guidelines, which have evolved over time and are
now an accepted part of the PPD file building process. These are not require-
ments of this specification, and failure to follow these guidelines should not
be considered an error in the PPD file. They are recommendations, intended
to provide some uniformity in PPD files.

* *ModelName should include the word “Kanji”. For example:
*ModelName: “ACME Maxi-Print Kanji”

* *NickName should include the word “Kanji” as well as the PostScript inter-
preter version number. For example:

*NickName: “ACME Maxi-Print Kanji v2013.114

* *ShortNickName should include the word “Kaniji”. If you have to shorten the
name to squeeze it into 31 characters, shorten another part of the name.
Leave the word “Kanji” to differentiate this product from any equivalent
Roman product.

» *PCFileName: The 8.3 format name should include a “J” in the file name,
usually near the end of the name. For examypdexxJ_1.PPD or
xxxxxxJ1.PPD. The first two characters must be the assigned manufacturer
prefix.

* *PageSize, *PageRegion, *ImageableArea, *PaperDimension: Make sure that any

additional page sizes available on the Kaniji product are included, and that
any page sizes that are not available on the Kanji product are deleted.

7 PPD File Summary 179

180

* *Font: Make sure that all Kaniji fonts built into theogluct are included in

the list with the correct Character Set, Font Encoding, and Status fields
filled in. This includes fonts on a separate hard disfe hard disk always
ships with the product. If the hard disk is not part of the minimal configu-
ration for the product, you should create one PPD file for the device in its
minimal configuration, and a second PPD file that represents the product
with the optional hard disk attached.

If the Kaniji product comes with more memory than the Roman product,
you will need to make the appropriate changesréevM, *InstalledMemory,
and*VMOption.

If you are translating strings in the PPD file into Japanese, jibnesd to
changetlLanguageVersion and*LanguageEncoding to the appropriate value. If

the PPD file is to be a cross-platform (portable) file, you must use the
hexadecimal notation for 8-bit byte codes in translation strings. If the file
is platform-specific (for example, Macintosh-only or Windows-only), you
may use 8-bit byte codes directly in the translation strings. You may also
directly translate the values of the following keywords into 8-bit byte
codes, without using translation stringgodelName, *ShortNickName,

*NickName, *Manufacturer, *PCFileName, *Include.

PostScript Printer Description File Format Specification (9 Feb 1996)

Appendix A: Keyword Categories

Ul Keywords

This section provides a list of keywords that are typically bracketed by the
*OpenUl/*CloseUl keywords in PPD files. Only the main keywords are listed
here; naturally, their associated defaults and queries would also be included
in the*OpenUI/*CloseUl bracketing. Other keywords may also be bracketed by
*OpenUl/*CloseUl; this list provides only thgypical set.

*AdvanceMedia *PageRegion
*BindColor *Separations
*BindEdge *Signature
*BindType *Slipsheet
*BindWhen *Smoothing
*BitsPerPixel *Sorter
*BlackSubstitution *StapleLocation
*Booklet *StapleOrientation
*Collate *StapleWhen
*ColorModel *StapleX
*CutMedia *StapleY
*Duplex *TraySwitch
*ExitJamRecovery

*FoldType

*FoldWhen

*InputSlot

*InstalledMemory

*Jog

*ManualFeed

*MediaColor

*MediaType

*MediaWeight

*MirrorPrint
*NegativePrint
*OutputBin
*OutputMode
*OutputOrder
*PageSize

181

182

A.2 Repeated Keywords

In the general model, if a main keyword, or specific combination of main and
option keyword, is repeated within a PPD file or in an included PPD file, the
first occurrence has precedence and future occurrences are ignored. For his-
torical reasons, there are certain keywords in a PPD file that do not conform
to the general model; specific main keywords are repeated, but all occur-
rences are relevant and should be recorded by a parser because their values
are unique. For backward compatibility, the form of these keywords cannot
be changed.

To provide assistance to PPD file parsers, the following is a list of main key-
words that do not have option keywords to distinguish one instance from
another, yet all instances are relevant, so all occurrences of this main key-
word and its associated unique values should be recorded by the PPD file
parser.

*HalftoneName

*Include

*Message
*NonUIConstraints
*NonUIOrderDependency
*OrderDependency
*PageDeviceName
*PrinterError

*Product

*PSVersion
*QueryOrderDependency
*RenderingIntent
*Source

*Status

*UlConstraints

Appendix A: Keyword Categories (9 Feb 1996)

Note

Appendix B: Registered
mediaOption Keywords

The tables in this section contain the option keywords currently registered for
mediaOption, which designates a given page size on a deVaide B.1lis

sorted by thenediaOption name. Given the name of a page size, the table pro-
vides the dimensions and any additional information about that size.

Table B.Zis sorted by size. This is useful for a person building a PPD file, as
the dimensions of a page size available on a device can be looked up in the
table and it can be determined if there is alreadyd@aOption definedfor that

size.

Only the most common page sizes are specified here. A device manufacturer
is free to list a new size in a PPD file for a new device. However, care should
be taken to avoid duplicating the semantics of an already-registered option
keyword. Also, when creating a new option keyword, the capitalization con-
ventions shown in the tables should be followed as much as possible; that is,
the first letters of logical words should be capitalized.

Builders of PPD filesheuld always use existingediaOption names where
possible, because some applications and users have come to rely on these
standard names for page sizes. Also, keeping paper size hames consistent
reduces user confusion. Builders of PPD files should definenadaOptions

only when there is no existingediaOption that describes a certain page size.
See section 5.13 for more informationmaaliaOption, and section 5.1 for
information on defining new option keywords.

183

B.1 Components of mediaOption Keywords

Any mediaOption keyword can be qualified by another string that indicates a
slightly distinct treatment of the media size. A qualifier is appended with a
period, like this:

Letter. Transverse

Any mediaOption keyword can have a serialization qualifier, which is a number
used to distinguish between two otherwise equivalent instances of the same
option keyword. For example, if there are twier-size media trays, they can

be numbered to differentiate them (asditter.1, Letter.2). These qualifiers can

be combined with other qualifiers. For exampégter. Transverse.1

Certain qualifiers and substringsriadiaOption names have special meaning.
The most common components ofi@liaOption name are defined here, prima-
rily so that builders of PPD files can construct meaningful names for their
page sizes:

« As of the 4.3 specification, the prefixv denotes an envelope page size.
The following sizes had the prefixv added to reflect this change;C1,
C2, C3, C4, C5, C6, C7, DL, andMonarch. Additionally, Comm10 was changed to
Env10. However, these size names weod changed in existing PPD files.
While the old names are still valid, PPD files built to conform to the 4.3
specification should ugewCo, EnvCl, etc. rather thago, C1, etc. This
enables a print manager to recognize envelope sizes and group them
together. Translations strings can be used to contratdtfigOption name
that is displayed to the user.

« The sizeExecutive varies by as much as 1/2 inch across devices. Most
devices offer only one version Bfecutive. However, if a device offers
more than one size &kecutive, these sizes can be differentiated by a serial-
ization extension and a translation string that denotes the exact size. For
example, a PPD file for a Level 1 device might have:

*PageSize Executive.1/7.5 x 10 in: "7.5x10inchtray"
*PageSize Executive.2/7.25 x 10.5 in: "7.25x10.5inchtray”
*PageSize Executive.3/7.5 x 10.5 in: "7.5x10.5inchtray"

 Envelope describes envelopes that have no standard name. This keyword
can be qualified by anandy dimension (specified in PostScript default
units), in the ordex.y, wherex is perpendicular to the feed direction and
is parallel to the feed direction. In the 3.0 specification, all envelope sizes
were specified in the form&atvelope.x.y, usually with a translation string
for clarity. In later versions, envelopes are simply another size of media,
and most envelope sizes are listed by their common names, but the 3.0
format is still valid and is useful for envelopesheitit common names.

184 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Extrain a page size name or as a qualifier designates a page size slightly
larger than the corresponding standard size, susiEgs. The purpose is

to allow for bleeds and crop marks to be printed in the margins. However,
the increase in size is somewhat variable across devices. Typicaiyaan
size is 0.69 to 1 inch larger than its corresponding standard size.

MaxPage is a special mediaOption that denotes the largest page size avail-
able on a given device. The dimensions of this size will vary widely across
devicesMaxPage provides a convenient way for the user to select the larg-
est available page size.

Rotated in a page size hame designates a page size whose image is rotated
relative to the corresponding standard size. For most page sizes, this pro-
duces a “landscape” image on the page. For examplel etarRotated

page, the x dimension is longer than the y dimension. This functionality is
usually provided by the print manager on the host, so the e
pagesizes in a PPD file is usually redundant and should be discouraged.

Small in a page size name or as a qualifier usually denotes a page that is the
same physical size as the regular named page, but with an imageable area
that is typically 10 to 20 points smaller.

TheTransverse qualifier indicates that the paperféd in an orientation that

is rotated 90 degrees from the orientation of the base paper size. Since
most printers feed paper with the short edge of the paper perpendicular to
the feed direction (“short edge feedfpnsverse usually means “long edge
feed.” That is, aransverse size indicates that the long edge of the image

(on an imagesetter) or of the physical page (on a cut-sheet printer) is per-
pendicular to the feed direction.

This does not affect the relationship of user space to the physical page, but
it does mean that the page is oriented differently with respect to device
spaceTransverse is not the same alandscape orientatiariThe orientation

of the image on the page is exactly the same for transverse as for non-
transverse pages. A page fed transversely will appear identical to a page
fed non-transversely, except that on certain printers, certain patterns and
asymmetric halftone screens will image differently when the page is fed
transversely, due to device and driver limitations. On older devices, the
printing speed when using the image operator might be different for a page
that is fed transversely.

Because the orientation of the image on the page is the same, the dimen-
sions for dransverse and nonfransverse page are the same. For example:

*PaperDimension Letter: “612 792"
*PaperDimension Letter.Transverse: “612 792"

B.1 Components of mediaOption Keywords 185

Page sizes with the qualifigansverse should only appear in the PPD file

of a roll-fed device (such as an imagesetter) that supports requesting a spe-
cific orientation so that pages can be either short-edge feed or long-edge
feed, or in the PPD file of a cut-sheet device that has both short-edge-feed
and long-edge-feed input trays. If a cut-sheet device supports either short-
edge-feed or long-edge-feed, but not both, there is no need to differentiate
Transverse pagedrom nonTransverse pagesTransverse is only useful if there

is a need to choose between two input slots with different feed directions.

If a page size has bothiansverse and nonfansverse version in a PPD file,
their *PageSize code fragments should be different. For example, in a PPD
file for a Level 2 device, th#ageSize code forLetter.Transverse should

request a differeriOrientation from setpagedevice than the code fdrtter, or

it should set up a different input slot. Otherwise, including bothrthe

verse and nonFansverse Size is pointless, if they produce exactly the same
result. See section 7 for more advice and examples of pOittiagerse

sizes in a PPD file.

B.2 mediaOption Name Tables

The dimensions given in the tables are in PostScript default units. They refer
to the actual physical dimensions of the page, not the imageable region,
unless otherwise specified. All sizes are given withxtdanension first, fol-
lowed by they dimension. The units in which a page size was originally
defined appear in boldface type. The dimensions in other units are provided
strictly for comparison, and are approximate due to rounding.

The letters in th&lotes column have the following meanings:
* |—size is defined by ISO standards
« J—size is defined by JIS standards

* S—imageable area is smaller than the imageable area of the corresponding
standard size, typically by 10 to 20 points

* N—see section B.1 for information about this size

* V—size varies across devices, typically by up to 1/2 inch

e E—this is an envelope size

Microsoft has defined programming identifie#gefine's in C language pro-
grams) for many of the commardiaOption keywords, for use in Windows
applications. This enables a print manager to match a request for a specific

page size, in the form of#define, to amediaOption name. Thefdefine column
contains those identifiers where appropriate.

186 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Table B.L MediaOptions Sorted By Name

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
10x11 720 x 792 254 x 279.4 10x 11 DMPAPER_10X11
10x13 720 x 936 254 x 330.2 10x 13
10x14 720 x 1008 254 x 355.6 10x 14 DMPAPER_10X14
12x11 864 x 792 304.8x279.4 | 12x11 DMPAPER_12X11
15x11 1080 x 792 381x279.4 15x11 DMPAPER_15X11
7x9 504 x 648 177.8x228.6 | 7x9
8x10 576 x 720 203.2 x 254 8x10
9x11 648 x 792 228.6x279.4 | 9x11 DMPAPER_9X11
9x12 648 x 864 228.6x304.8 | 9x12
A0 2384 x 3370 | 841x1189 33.11x46.81 | I,J
Al 1684 x 2384 | 594 x 841 23.39x33.11 | I,J
A2 1191 x 1684 | 420 x 594 16.54x23.39 | I,J DMPAPER_A2
A3 842 x 1191 297 x 420 11.69x 1654 | I,J DMPAPER_A3
A3.Transverse 842 x 1191 297 x 420 11.69 x 16.54 DMPAPER_A3_TRANSVERSE
A3Extra 913 x 1262 322 x 445 12.67x1752 | N,V DMPAPER_A3_EXTRA
A3Extra. Transverse 913x 1262 | 322x 445 12.67x1752 | N,V DMPAPER_A3_EXTRA_TRANSVERSE
A3Rotated 1191 x 842 420 x 297 16.54x11.69 | N DMPAPER_A3_ROTATED
A4 595 x 842 210 x 297 8.27x11.69 l,J DMPAPER_A4
A4 Transverse 595 x 842 210 x 297 8.27x11.69 DMPAPER_A4_TRANSVERSE
A4Extra 667 x 914 235.5x322.3 | 9.27x12.69 N,V DMPAPER_A4_EXTRA
A4Plus 595 x 936 210 x 330 8.27x 13 DMPAPER_A4_PLUS
A4Rotated 842 x 595 297 x 210 11.69 x 8.27 N DMPAPER_A4_ROTATED
A4Small 595 x 842 210 x 297 8.27x11.69 S DMPAPER_A4SMALL
A5 420 x 595 148 x 210 5.83x8.27 l,J DMPAPER_A5
Ab5.Transverse 420 x 595 148 x 210 5.83x8.27 DMPAPER_A5 TRANSVERSE
A5Extra 492 x 668 174 x 235 6.85x9.25 N,V DMPAPER_A5_EXTRA
A5Rotated 595 x 420 210 x 148 8.27x5.83 N DMPAPER_A5_ROTATED
A6 297 x 420 105 x 148 4.13x5.83 l,J DMPAPER_A6
A6Rotated 420 x 297 148 x 105 5.83x4.13 N DMPAPER_A6_ROTATED

B.2 mediaOption Name Tables

187

Table B.L MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
A7 210 x 297 74 x 105 291x4.13 l,J
A8 148 x 210 52x 74 2.05x2.91 l,J
A9 105 x 148 37 x 52 1.46 x 2.05 l,J
A10 73 x 105 26 x 37 1.02 x 1.46 l,J
AnsiC 1224 x 1584 | 431.8x558.8 | 17x 22
AnsiD 1584 x 2448 | 558.8x863.6 | 22x 34
AnsiE 2448 x 3168 | 863.6 x 1118 34 x 44
ARCHA 648 x 864 228.6x304.8 | 9x12
ARCHB 864 x 1296 304.8x457.2 | 12x18
ARCHC 1296 x 1728 | 457.2x609.6 | 18x 24 DMPAPER_CSHEET
ARCHD 1728 x 2592 | 609.6 x 914.4 | 24 x 36 DMPAPER_DSHEET
ARCHE 2592 x 3456 | 914.4x 1219 36 x 48 DMPAPER_ESHEET
BO 2920 x 4127 | 1030 x 1456 40.55x57.32 | J
Bl 2064 x 2920 | 728 x 1030 28.66x40.55 | J
B2 1460 x 2064 | 515x 728 20.28 x 28.66 | J
B3 1032 x 1460 | 364 x 515 14.33x20.28 | J
B4 729 x 1032 257 x 364 10.12x14.33 | J DMPAPER_B4
B4Rotated 1032 x 729 364 x 257 1433x10.12 | N DMPAPER_B4_JIS_ROTATED
B5 516 x 729 182 x 257 7.17x10.12 J DMPAPER_B5
B5.Transverse 516 x 729 182 x 257 7.17x10.12 DMPAPER_B5 TRANSVERSE
B5Rotated 729 x 516 257 x 182 10.12x 7.17 N DMPAPER_B5_JIS_ROTATED
B6 363 x 516 128 x 182 5.04x7.17 J DMPAPER_B6_JIS
B6Rotated 516 X 363 182x 128 7.17 x 5.04 N DMPAPER_B6_JIS_ROTATED
B7 258 x 363 91x128 3.58 x5.04 J
B8 181 x 258 64 x 91 2.52x3.58 J
B9 127 x 181 45 x 64 1.77x2.52 J
B10 91x127 32x45 1.26 x 1.77 J
C4 (use EnvC4) 649 x 918 229 x 324 9.02x 12.75 I,E,N | DMPAPER_ENV_C4
C5 (use EnvC5) 459 x 649 162 x 229 6.38 x 9.02 I,E,N | DMPAPER_ENV_C5
C6 (use EnvC6b) 323 x 459 114 x 162 4.49x6.38 I, E,N | DMPAPER_ENV_C6

188 Appendix B: Registered mediaOption Keywords

(9 Feb 1996)

Table B.L MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
Comm10 (use Env10) 297 x 684 104.8x241.3 | 4125x9.5 E,N DMPAPER_ENV_10
DL (use EnvDL) 312 x 624 110 x 220 4.33%8.66 l,E,N | DMPAPER_ENV_DL
DoublePostcard 567 x 419.5 | 200 x 148 7.87x5.83 DMPAPER_DBL_JAPANESE_POSTCARD
DoublePostcardRotated 419.5x567 | 148x 200 5.83x7.87 N DMPAPER_DBL_JAPANESE_POSTCARD_ROTATED
Env9 279 x 639 98.4 x 225.4 3.875x8875 | E DMPAPER_ENV_9
Env10 297 x 684 104.8x241.3 | 4125x9.5 E DMPAPER_ENV_10
Envll 324 x 747 114.3x263.5 | 45x10.375 E DMPAPER_ENV_11
Env12 342 x 792 120.7x279.4 | 4.75x11 E DMPAPER_ENV_12
Env14 360 x 828 127 x292.1 5x11.5 E DMPAPER_ENV_14
EnvCO 2599 x 3676 | 917 x 1297 36.10x51.06 | I,E
EnvCl 1837 x 2599 | 648 x 917 2551x36.10 | I, E
EnvC2 1298 x 1837 | 458 x 648 18.03x2551 | ILE
EnvC3 918 x 1296 324 x 458 12.75x18.03 | ILE DMPAPER_ENV_C3
EnvC4 649 x 918 229 x 324 9.02x12.75 I, E DMPAPER_ENV_C4
EnvC5 459 x 649 162 x 229 6.38 x9.02 I,E DMPAPER_ENV_C5
EnvC6 323 x 459 114 x 162 4.49x6.38 I,E DMPAPER_ENV_C6
EnvC65 324 x 648 114 x 229 45x9 E DMPAPER_ENV_C65
EnvC7 230 x 323 81x114 3.19x4.49 I, E
EnvChou3 340 x 666 120 x 235 4.72x9.25 E DMPAPER_JENV_CHOU3
EnvChou3Rotated 666 x 340 235x 120 9.25x4.72 E,N DMPAPER_JENV_CHOU3_ROTATED
EnvChou4 255 x 581 90 x 205 3.54x8 E DMPAPER_JENV_CHOU4
EnvChou4Rotated 581 x 255 205 x 90 8x3.54 E,N DMPAPER_JENV_CHOU4_ROTATED
EnvDL 312 x 624 110 x 220 4.33 x 8.66 I,E DMPAPER_ENV_DL
Envinvite 624 x 624 220 x 220 8.66 X 8.66 E DMPAPER_ENV_INVITE
EnviISOB4 708 x 1001 250 x 353 9.84x13.9 E DMPAPER_ENV_B4
EnvISOB5 499 x 709 176 x 250 6.9x9.8 E DMPAPER_ENV_B5
EnvISOB6 499 x 354 176 x 125 6.9x4.9 E DMPAPER_ENV_B6
Envltalian 312 x 652 110x 230 4.33x9 E DMPAPER_ENV_ITALY
EnvKaku2 680 x 941 240 x 332 9.45x 13 E DMPAPER_JENV_KAKU2
EnvKaku2Rotated 941 x 680 332 x 240 13x9.45 E,N DMPAPER_JENV_KAKU2_ROTATED

B.

N

mediaOption Name Tables 189

Table B.L MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
EnvKaku3 612 x 785 216 x 277 8.5x10.9 E DMPAPER_JENV_KAKU3
EnvKaku3Rotated 785 x 612 277 x 216 10.9x8.5 E,N DMPAPER_JENV_KAKU3_ROTATED
EnvMonarch 279 x 540 98.43x190.5 | 3.875x7.5 E DMPAPER_ENV_MONARCH
EnvPersonal 261 x 468 92.08x165.1 | 3.625x6.5 E DMPAPER_ENV_PERSONAL
EnvPRC1 289 x 468 102 x 165 4%6.5 E DMPAPER_PENV_1
EnvPRC1Rotated 468 x 289 165 x 102 6.5x4 E,N | DMPAPER_PENV_1_ROTATED
EnvPRC2 289 x 499 102 x 176 4x6.9 E DMPAPER_PENV_2
EnvPRC2Rotated 499 x 289 176 x 102 6.9x4 E,N | DMPAPER_PENV 2 ROTATED
EnvPRC3 354 x 499 125x 176 49x6.9 E DMPAPER_PENV_3
EnvPRC3Rotated 499 x 354 176 x 125 6.9x4.9 E,N | DMPAPER_PENV 3 ROTATED
EnvPRC4 312 x 590 110 x 208 4.33x8.2 E DMPAPER_PENV_4
EnvPRC4Rotated 590 x 312 208 x 110 8.2x4.33 E,N DMPAPER_PENV_4_ROTATED
EnvPRC5 312 x 624 110 x 220 4.33 x 8.66 E DMPAPER_PENV_5
EnvPRC5Rotated 624 x 312 220 x 110 8.66 x 4.33 E,N DMPAPER_PENV_5_ROTATED
EnvPRC6 340 x 652 120 x 230 47x9 E DMPAPER_PENV_6
EnvPRC6Rotated 652 x 340 230 x 120 9x4.7 E,N DMPAPER_PENV_6_ROTATED
EnvPRC7 454 x 652 160 x 230 6.3x9 E DMPAPER_PENV_7
EnvPRC7Rotated 652 x 454 230 x 160 9x6.3 E,N | DMPAPER_PENV_7_ROTATED
EnvPRC8 340 x 876 120 x 309 4.7x12.2 E DMPAPER_PENV_8
EnvPRC8Rotated 876 x 340 309 x 120 12.2x4.7 E,N DMPAPER_PENV_8_ROTATED
EnvPRC9 649 x 918 229 x 324 9x12.75 E DMPAPER_PENV_9
EnvPRCYRotated 918 x 649 324 x 229 12.75x 9 E,N | DMPAPER_PENV_9 ROTATED
EnvPRC10 918 x 1298 324 x 458 12.75x 18 E DMPAPER_PENV_10
EnvPRC10Rotated 1298 x 918 458 x 324 18 x 12.75 E,N DMPAPER_PENV_10_ROTATED
EnvYou4 298 x 666 105 x 235 4.13x9.25 E DMPAPER_JENV_YOU4
EnvYou4Rotated 666 x 298 235 x 105 9.25x4.13 E,N DMPAPER_JENV_YOU4_ROTATED
Executive 522 x 756 184.2 x 266.7 | 7.25x10.5 N,V DMPAPER_EXECUTIVE
FanFoldUS 1071 x 792 377.8x279.4 | 14.875x11 DMPAPER_FANFOLD_US
FanFoldGerman 612 x 864 2159x304.8 | 85x12 DMPAPER_FANFOLD_STD_GERMAN
FanFoldGermanLegal 612 x 936 215.9x 330 8.5x13 DMPAPER_FANFOLD_LGL_GERMAN

190 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Table B.L MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
Folio 595 x 935 210 x 330 8.27x 13 DMPAPER_FOLIO
ISOBO 2835x 4008 | 1000 x 1414 39.37x55.67 | |
ISOB1 2004 x 2835 | 707 x 1000 27.83x39.37 | |
ISOB2 1417 x 2004 | 500 x 707 19.68 x27.83 | |
ISOB3 1001 x 1417 | 353 x 500 13.90x19.68 | |
ISOB4 709 x 1001 250 x 353 9.84 x 13.90 | DMPAPER_ISO_B4
ISOB5 499 x 709 176 x 250 6.9x9.8 |
ISOB5Extra 569.7x 782 | 201x 276 7.9x10.8 N,V DMPAPER_B5_EXTRA
ISOB6 354 x 499 125x 176 4.92 x6.93 |
ISOB7 249 x 354 88 x 125 3.46 x 4.92 |
ISOB8 176 x 249 62 x 88 2.44 X 3.46 |
ISOB9 125x 176 44 % 62 1.73x2.44 |
ISOB10 88 x 125 3lx44 1.22x1.73 |
Ledger 1224 x 792 431.8x2794 | 17x11 DMPAPER_LEDGER
Legal 612 x 1008 215.9x355.6 | 85x14 DMPAPER_LEGAL
LegalExtra 684 x 1080 241.3x 381 9.5x15 N,V DMPAPER_LEGAL_EXTRA
Letter 612 x 792 215.9x279.4 | 85x11 DMPAPER_LETTER
Letter. Transverse 612 x 792 2159x279.4 | 85x11 DMPAPER_LETTER_TRANSVERSE
LetterExtra 684 x 864 241.3x304.8 | 9.5x12 N,V DMPAPER_LETTER_EXTRA
LetterExtra.Transverse 684 x 864 241.3x304.8 | 9.5x12 DMPAPER_LETTER_EXTRA_TRANSVERSE
LetterPlus 612x913.7 | 2159x322.3 | 8.5x12.69 DMPAPER_LETTER_PLUS
LetterRotated 792 x 612 279.4x2159 | 11x85 N DMPAPER_LETTER_ROTATED
LetterSmall 612 x 792 215.9x279.4 | 85x11 S DMPAPER_LETTERSMALL
MaxPage largest page | available on this device N,V
Monarch (use EnvMonarch) | 279 x 540 98.43x190.5 | 3.875x7.5 E,N DMPAPER_ENV_MONARCH
Note 612 x 792 215.9x279.4 | 85x11 S DMPAPER_NOTE
Postcard 284 x 419 100 x 148 3.94x5.83 DMPAPER_JAPANESE_POSTCARD
PostcardRotated 419 x 284 148 x 100 5.83x3.94 N DMPAPER_JAPANESE_POSTCARD_ROTATED
PRC16K 414 x 610 146 x 215 5.75x8.5 DMPAPER_P16K
PRC16KRotated 610 x 414 215 x 146 8.5x5.75 N DMPAPER_P16K_ROTATED

B.2 mediaOption Name Tables 191

Table B.L MediaOptions Sorted By Name (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
PRC32K 275x 428 97 x 151 3.82x5.95 DMPAPER_P32K
PRC32KBig 275x 428 97 x 151 3.82x5.95 DMPAPER_P32KBIG
PRC32KBigRotated 428 x 275 151x 97 5.95x 3.82 N DMPAPER_P32KBIG_ROTATED
PRC32KRotated 428 x 275 151x 97 5.95x 3.82 N DMPAPER_P32K_ROTATED
Quarto 610 x 780 2159x275.1 | 85x10.83 DMPAPER_QUARTO
Statement 396 x 612 139.7x215.9 | 55x85 DMPAPER_STATEMENT
SuperA 643x 1009 | 227 x 356 8.94x 14 DMPAPER_A_PLUS
SuperB 864 x 1380 305 x 487 12 x19.17 DMPAPER_B_PLUS
Tabloid 792 x 1224 279.4x431.8 | 11x17 DMPAPER_TABLOID
TabloidExtra 864 x 1296 304.8x457.2 | 12x18 Vv DMPAPER_TABLOID_EXTRA

192 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Table B.2 MediaOptions Sorted By Size

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
A10 73 x 105 26 x 37 1.02x 1.46 l,J
ISOB10 88 x 125 3lx44 1.22x1.73 I
B10 91x127 32x45 1.26 x 1.77 J
A9 105 x 148 37 x 52 1.46 x 2.05 l,J
ISOB9 125x 176 44 % 62 1.73x2.44 I
B9 127 x 181 45 x 64 1.77x2.52 J
A8 148 x 210 52x 74 2.05x2.91 l,J
ISOB8 176 x 249 62 x 88 2.44 x 3.46 I
B8 181 x 258 64 x 91 2.52 x 3.58 J
A7 210 x 297 74 x 105 2.91x4.13 l,J
EnvC7 230 x 323 81x114 3.19x4.49 I, E
ISOB7 249 x 354 88 x 125 3.46 x4.92 I
EnvChou4 255 x 581 90 x 205 3.54x8 E DMPAPER_JENV_CHOU4
B7 258 x 363 91x128 3.58 x 5.04 J
EnvPersonal 261 x 468 92.08x165.1 | 3.625x6.5 E DMPAPER_ENV_PERSONAL
PRC32K 275x 428 97 x 151 3.82x5.95 DMPAPER_P32K
PRC32KBig 275x 428 97 x 151 3.82x5.95 DMPAPER_P32KBIG
Monarch (use EnvMonarch) | 279 x 540 98.43x190.5 | 3.875x7.5 E DMPAPER_ENV_MONARCH
Env9 279 x 639 98.4 x 225.4 3.875x8875 | E DMPAPER_ENV_9
Postcard 284 x 419 100 x 148 3.94x5.83 DMPAPER_JAPANESE_POSTCARD
EnvPRC1 289 x 468 102 x 165 4%6.5 E DMPAPER_PENV_1
EnvPRC2 289 x 499 102 x 176 4x%6.9 E DMPAPER_PENV_2
Comm10 (use Env10) 297 X 684 104.8x241.3 | 4125x9.5 E,N | DMPAPER_ENV_10
A6 297 x 420 105 x 148 4.13x5.83 l,J DMPAPER_A6
EnvYou4 298 x 666 105 x 235 4.13x9.25 E DMPAPER_JENV_YOU4
EnvPRC4 312 x 590 110 x 208 433x8.2 E DMPAPER_PENV_4
DL (use EnvDL) 312 x 624 110 x 220 4.33x8.66 I, E DMPAPER_ENV_DL
EnvPRC5 312 x 624 110 x 220 4.33x8.66 E DMPAPER_PENV_5
Envltalian 312 x 652 110x 230 4.33x9 E DMPAPER_ENV_ITALY

B.2 mediaOption Name Tables

193

Table B.2 MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
C6 (use EnvC6) 323 x 459 114 x 162 4.49x6.38 I,E DMPAPER_ENV_C6
EnvC65 324 x 648 114 x 229 45x9 E DMPAPER_ENV_C65
Envll 324 x 747 114.3x263.5 | 45x10.375 E DMPAPER_ENV_11
EnvPRC6 340 x 652 120 x 230 47x9 E DMPAPER_PENV_6
EnvChou3 340 x 666 120 x 235 4.72x9.25 E DMPAPER_JENV_CHOU3
EnvPRC8 340 x 876 120 x 309 4.7x12.2 E DMPAPER_PENV_8
Env12 342 x 792 120.7x279.4 | 475x11 E DMPAPER_ENV_12
ISOB6 354 x 499 125x 176 4.92x6.93 I
EnvPRC3 354 x 499 125x 176 49x6.9 E DMPAPER_PENV_3
Env14 360 x 828 127 x292.1 5x11.5 E DMPAPER_ENV_14
B6 363 x 516 128 x 182 5.04 x7.17 J DMPAPER_B6_JIS
Statement 396 x 612 139.7x215.9 | 55x85 DMPAPER_STATEMENT
PRC16K 414 x 610 146 x 215 5.75x8.5 DMPAPER_P16K
PostcardRotated 419 x 284 148 x 100 5.83x3.94 N DMPAPER_JAPANESE_POSTCARD_ROTATED
A6Rotated 420 x 297 148 x 105 5.83x4.13 DMPAPER_A6_ROTATED
DoublePostcardRotated 419.5x567 | 148x 200 5.83x7.87 N DMPAPER_DBL_JAPANESE_POSTCARD_ROTATED
A5 420 x 595 148 x 210 5.83x8.27 l,J DMPAPER_A5
AS5.Transverse 420 x 595 148 x 210 5.83x8.27 DMPAPER_A5_TRANSVERSE
PRC32KBigRotated 428 x 275 151x 97 5.95x3.82 N DMPAPER_P32KBIG_ROTATED
PRC32KRotated 428 x 275 151x 97 5.95x3.82 N DMPAPER_P32K_ROTATED
EnvPRC7 454 x 652 160 x 230 6.3x9 E DMPAPER_PENV_7
C5 (use EnvC5) 459 X 649 162 x 229 6.38 X 9.02 I, E DMPAPER_ENV_C5
EnvPRC1Rotated 468 x 289 165 x 102 6.5x4 E,N | DMPAPER_PENV_1_ROTATED
A5Extra 492 x 668 174 x 235 6.85x9.25 N,V DMPAPER_A5_EXTRA
EnvPRC2Rotated 499 x 289 176 x 102 6.9x4 E,N | DMPAPER_PENV_2 ROTATED
EnvISOB6 499 x 354 176 x 125 6.9x4.9 E DMPAPER_ENV_B6
EnvPRC3Rotated 499 x 354 176 x 125 6.9x4.9 E,N | DMPAPER_PENV_3 ROTATED
EnvISOB5 499 x 709 176 x 250 6.9x9.8 E DMPAPER_ENV_B5
ISOB5 499 x 709 176 x 250 6.9x9.8 |
7x9 504 x 648 177.8x228.6 | 7x9

194 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Table B.2 MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
B6Rotated 516 x 363 182 x 128 7.17 x5.04 N DMPAPER_B6_JIS_ROTATED
B5 516 x 729 182 x 257 7.17x10.12 J DMPAPER_B5
B5.Transverse 516 x 729 182 x 257 7.17x10.12 DMPAPER_B5_TRANSVERSE
Executive 522 x 756 184.2 x 266.7 | 7.25x10.5 N,V DMPAPER_EXECUTIVE
DoublePostcard 567 x419.5 | 200x 148 7.87x5.83 DMPAPER_DBL_JAPANESE_POSTCARD
ISOB5Extra 569.7x 782 | 201x 276 7.9x10.8 N,V DMPAPER_B5_EXTRA
8x10 576 x 720 203.2 x 254 8x10
EnvChou4Rotated 581 x 255 205x 90 8x3.54 E,N DMPAPER_JENV_CHOU4_ROTATED
EnvPRC4Rotated 590 x 312 208 x 110 8.2x4.33 E,N DMPAPER_PENV_4_ROTATED
A5Rotated 595 x 420 210 x 148 8.27x5.83 N DMPAPER_A5_ROTATED
A4 595 x 842 210 x 297 8.27x11.69 l,J DMPAPER_A4
A4 Transverse 595 x 842 210 x 297 8.27 x 11.69 DMPAPER_A4 TRANSVERSE
A4Small 595 x 842 210 x 297 8.27x11.69 S DMPAPER_A4SMALL
Folio 595 x 935 210 x 330 8.27x 13 DMPAPER_FOLIO
A4Plus 595 x 936 210 x 330 8.27x 13 DMPAPER_A4_PLUS
PRC16KRotated 610 x 414 215 x 146 8.5x5.75 N DMPAPER_P16K_ROTATED
Quarto 610 x 780 2159x275.1 | 8.5x10.83 DMPAPER_QUARTO
EnvKaku3 612 x 785 216 x 277 8.5x10.9 E DMPAPER_JENV_KAKU3
Letter 612 x 792 215.9x279.4 | 85x11 DMPAPER_LETTER
Letter. Transverse 612 x 792 215.9x279.4 | 85x11 DMPAPER_LETTER_TRANSVERSE
LetterSmall 612 x 792 215.9x279.4 | 85x11 S DMPAPER_LETTERSMALL
Note 612 x 792 215.9x279.4 | 85x11 S DMPAPER_NOTE
FanFoldGerman 612 x 864 215.9x304.8 | 85x12 DMPAPER_FANFOLD_STD_GERMAN
LetterPlus 612x913.7 | 2159x322.3 | 8.5x12.69 DMPAPER_LETTER_PLUS
FanFoldGermanLegal 612 x 936 215.9x 330 8.5x13 DMPAPER_FANFOLD_LGL_GERMAN
Legal 612 x 1008 215.9x355.6 | 85x14 DMPAPER_LEGAL
EnvPRC5Rotated 624 x 312 220 x 110 8.66 x 4.33 E,N DMPAPER_PENV_5_ROTATED
Envinvite 624 x 624 220 x 220 8.66 x 8.66 E DMPAPER_ENV_INVITE
SuperA 643 x 1009 227 x 356 8.94x 14 DMPAPER_A_PLUS
9x11 648 x 792 228.6x279.4 | 9x11 DMPAPER_9X11

B.2 mediaOption Name Tables 195

Table B.2 MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
9x12 648 x 864 228.6x304.8 | 9x12
ARCHA 648 x 864 228.6x304.8 | 9x12
C4 (use EnvC4) 649x918 | 229x 324 9.02x12.75 | ILE DMPAPER_ENV_C4
EnvPRC9 649 x 918 229 x 324 9x12.75 E DMPAPER_PENV_9
EnvPRC6Rotated 652 x 340 230 x 120 9x4.7 E,N DMPAPER_PENV_6_ROTATED
EnvPRC7Rotated 652 x 454 230 x 160 9x6.3 EN | DMPAPER_PENV_7_ROTATED
EnvYou4Rotated 666 x 298 235 x 105 9.25x4.13 E,N DMPAPER_JENV_YOU4_ROTATED
EnvChou3Rotated 666 x 340 235x 120 9.25x4.72 E,N DMPAPER_JENV_CHOU3_ROTATED
A4Extra 667 x 914 235.5x322.3 | 9.27x12.69 N,V DMPAPER_A4_EXTRA
EnvKaku2 680 x 941 240 x 332 9.45x 13 E DMPAPER_JENV_KAKU2
LetterExtra 684 x 864 241.3x304.8 | 9.5x12 N,V DMPAPER_LETTER_EXTRA
LetterExtra. Transverse 684 x 864 241.3x304.8 | 9.5x12 N,V DMPAPER_LETTER_EXTRA_TRANSVERSE
LegalExtra 684 x 1080 241.3x 381 9.5x15 N,V DMPAPER_LEGAL_EXTRA
EnviISOB4 708 x 1001 250 x 353 9.84x13.9 E DMPAPER_ENV_B4
ISOB4 709 x 1001 250 x 353 9.84 x 13.90 | DMPAPER_ISO_B4
10x11 720 x 792 254 x 279.4 10x 11 DMPAPER_10X11
10x13 720 x 936 254 x 330.2 10x 13
10x14 720 x 1008 254 x 355.6 10x 14 DMPAPER_10X14
B5Rotated 729 x 516 257 x 182 10.12x 7.17 N DMPAPER_B5_JIS_ROTATED
B4 729 x 1032 257 x 364 10.12x14.33 | J DMPAPER_B4
EnvKaku3Rotated 785x 612 277 x 216 10.9x8.5 E,N DMPAPER_JENV_KAKU3_ROTATED
LetterRotated 792 x 612 279.4x2159 | 11x85 N DMPAPER_LETTER_ROTATED
Tabloid 792 x 1224 279.4x431.8 | 11x17 DMPAPER_TABLOID
A4Rotated 842 x 595 297 x 210 11.69 x 8.27 N DMPAPER_A4_ROTATED
A3 842 x 1191 297 x 420 11.69x16.54 | I,J DMPAPER_A3
A3.Transverse 842 x 1191 | 297 x 420 11.69 x 16.54 DMPAPER_A3_TRANSVERSE
12x11 864 x 792 304.8x279.4 | 12x11 DMPAPER_12X11
ARCHB 864 x 1296 304.8x457.2 | 12x18
TabloidExtra 864 x 1296 304.8x457.2 | 12x18 Vv DMPAPER_TABLOID_EXTRA
SuperB 864 x 1380 | 305 x 487 12x19.17 DMPAPER_B_PLUS

196 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Table B.2 MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
EnvPRC8Rotated 876 x 340 309 x 120 12.2x4.7 E,N DMPAPER_PENV_8_ROTATED
A3Extra 913 x 1262 322 x 445 12.67x1752 | N,V DMPAPER_A3_EXTRA
A3Extra.Transverse 913x 1262 | 322x445 12.67x1752 | N,V DMPAPER_A3_EXTRA_TRANSVERSE
EnvPRC9Rotated 918 x 649 324 x 229 12.75x9 E,N DMPAPER_PENV_9_ROTATED
EnvC3 918 x 1296 324 x 458 12.75x18.03 | ILE DMPAPER_ENV_C3
EnvPRC10 918 x 1298 324 x 458 12.75x 18 E DMPAPER_PENV_10
EnvKaku2Rotated 941 x 680 332 x 240 13x9.45 E,N DMPAPER_JENV_KAKU2_ROTATED
ISOB3 1001 x 1417 | 353 x 500 13.90x19.68 | |
B4Rotated 1032 x 729 364 x 257 1433x10.12 | N DMPAPER_B4_JIS_ROTATED
B3 1032 x 1460 | 364 x 515 14.33x20.28 | J
FanFoldUS 1071 x 792 377.83x 14.875x 11 DMPAPER_FANFOLD_US

279.4

15x11 1080 x 792 381x279.4 15x11 DMPAPER_15X11
A3Rotated 1191 x 842 420 x 297 16.54x11.69 | N DMPAPER_A3_ROTATED
A2 1191 x 1684 | 420 x 594 16.54x23.39 | I,J DMPAPER_A2
Ledger 1224 x 792 431.8x2794 | 17x11 DMPAPER_LEDGER
AnsiC 1224 x 1584 | 431.8x558.8 | 17x 22
ARCHC 1296 x 1728 | 457.2x609.6 | 18 x 24 DMPAPER_CSHEET
EnvPRC10Rotated 1298 x 918 458 x 324 18 x 12.75 E,N DMPAPER_PENV_10_ROTATED
EnvC2 1298 x 1837 | 458 x 648 18.03x2551 | I, E
ISOB2 1417 x 2004 | 500 x 707 19.68x27.83 | |
B2 1460 x 2064 | 515x 728 20.28 x 28.66 | J
AnsiD 1584 x 2448 | 558.8x863.6 | 22 x 34
Al 1684 x 2384 | 594 x 841 23.39x33.11 | I,J
ARCHD 1728 x 2592 | 609.6 x 914.4 | 24 x 36 DMPAPER_DSHEET
EnvCl 1837 x 2599 | 648 x 917 25.51x36.10 | I,E
ISOB1 2004 x 2835 | 707 x 1000 27.83x39.37 | |
Bl 2064 x 2920 | 728 x 1030 28.66 x40.55 | J
A0 2384 x 3370 | 841x1189 33.11x46.81 | 1,3
AnsiE 2448 x 3168 | 863.6 x 1118 | 34 x 44

B.2 mediaOption Name Tables 197

Table B.2 MediaOptions Sorted By Size (Continued)

mediaOption Size (pts) Size (mm) Size (inches) Notes #define
ARCHE 2592 x 3456 | 914.4x 1219 | 36x48 DMPAPER_ESHEET
EnvCO 2599 x 3676 | 917 x 1297 36.10x51.06 | I,E
ISOBO 2835x 4008 | 1000 x 1414 39.37x55.67 | |
BO 2920 x 4127 | 1030 x 1456 40.55x57.32 | J
MaxPage largestpage | size available | on this device | N,V

198 Appendix B: Registered mediaOption Keywords (9 Feb 1996)

Appendix C: Character Encodings

The*LanguageEncoding keyword defines the encoding used by translation

strings and certain QuotedValues in a PPD file. This appendix describes three
encodings commonly used in PPD files, and how to convert between them.
The three encoding options compared in this appendi®@iratinl,

WindowsANSI (character set O or Western), amdStandard (Script Manager

script 0).1SOLatinl encoding is commonly used in the Unix environment.
WindowsANSI is defined by Microsoft for use in the Windows operating system.
MacStandard is the encoding used by Macintosh computers.

Document managers will need to convert certain strings from the encoding
used in the PPD file to the encoding used on their operating system. For doc-
ument managers operating in the Macintosh, Windows, and Unix environ-
ments, this often means a conversion between two of the three encodings
listed here. These tables are intended to help in that conversion.

Table C.1 shows the three encoding vectors in their entirety. It is indexed by
character code and contains the union of all of the characters in all three
encoding vectors.

Tables C.2, C.3, and C.4 contain only the differences between the three
encoding vectors, and could be the basis for conversion tables in a document
manager. Table C.2 is indexed by the character code and name of each char-
acter in thewindowsANSI encoding vector. Table C.3 is indexed by the charac-
ter code and name of each character irMte8tandard encoding vector. Table

C.4 is indexed by the character code and name of each character in the
ISOLatin1 encoding vector.

199

C.1 All Encodings Indexed By Byte Code

Table C.1 shows the three encoding vectors in their entirety. The first column
gives the byte code. The second, third, and fourth columns give the PostScript
language name of the character encoded at thaigmois the specified encod-

ing vector. The worduhused” in a column means there is no printable character
at that byte code position in the specified encoding vector.

Table C.1 All Encodings Indexed By Byte Code Table C.1 All Encodings Indexed By Byte Code (Continued)
Code WindowsANSI ISOLatin1 MacStandard Code WindowsANSI ISOLatin1 MacStandard
0-31 unused unused unused 95 underscore underscore underscore
32 space space space 96 grave quoteleft grave
33 exclam exclam exclam 97-122 az a-z a-z
34 quotedbl quotedbl quotedbl 123 braceleft braceleft braceleft
35 numbersign numbersign numbersign 124 bar bar bar
36 dollar dollar dollar 125 braceright braceright braceright
37 percent percent percent 126 asciitilde asciitilde asciitilde
38 ampersand ampersand ampersand 127 unused unused unused
39 quotesingle quoteright quotesingle 128 unused unused Adieresis
40 parenleft parenleft parenleft 129 unused unused Aring
41 parenright parenright parenright 130 quotesinglbase unused Ccedilla
42 asterisk asterisk asterisk 131 florin unused Eacute
43 plus plus plus 132 quotedblbase unused Ntilde
44 comma comma comma 133 ellipsis unused Odieresis
45 hyphen minus hyphen 134 dagger unused Udieresis
46 period period period 135 daggerdbl unused aacute
47 slash slash slash 136 circumflex unused agrave
48 zero zero zero 137 perthousand unused acircumflex
49 one one one 138 Scaron unused adieresis
50 two two two 139 guilsinglleft unused atilde
51 three three three 140 OE unused aring
52 four four four 141 unused unused ccedilla
53 five five five 142 unused unused eacute
54 Six Six Six 143 unused unused egrave
55 seven seven seven 144 unused dotlessi ecircumflex
56 eight eight eight 145 quoteleft grave edieresis
57 nine nine nine 146 quoteright acute iacute
58 colon colon colon 147 quotedblleft circumflex igrave
59 semicolon semicolon semicolon 148 quotedblright tilde icircumflex
60 less less less 149 bullet macron idieresis
61 equal equal equal 150 endash breve ntilde
62 greater greater greater 151 emdash dotaccent oacute
63 question question question 152 tilde dieresis ograve
64 at at at 153 trademark unused ocircumflex
65-90 A-Z A-Z A-Z 154 scaron ring odieresis
91 bracketleft bracketleft bracketleft 155 guilsinglright cedilla otilde
92 backslash backslash backslash 156 oe unused uacute
93 bracketright bracketright bracketright 157 unused hungarumlaut ugrave
94 asciicircum asciicircum asciicircum 158 unused ogonek ucircumflex

200 Appendix C: Character Encodings (9 Feb 1996)

Table C.1 All Encodings Indexed By Byte Code (Continued)

Table C.1 All Encodings Indexed By Byte Code (Continued)

Code WindowsANSI ISOLatin1 MacStandard Code WindowsANSI ISOLatin1 MacStandard
159 Ydieresis caron udieresis 211 Oacute Oacute quotedblright
160 space? space dagger 212 Ocircumflex Ocircumflex quoteleft

161 exclamdown exclamdown degree 213 Otilde Otilde quoteright
162 cent cent cent 214 Odieresis Odieresis divide

163 sterling sterling sterling 215 multiply multiply lozenge

164 currency currency section 216 Oslash Oslash ydieresis

165 yen yen bullet 217 Ugrave Ugrave Ydieresis
166 brokenbar brokenbar paragraph 218 Uacute Uacute fraction

167 section section germandbls 219 Ucircumflex Ucircumflex currency

168 dieresis dieresis registered 220 Udieresis Udieresis guilsinglleft
169 copyright copyright copyright 221 Yacute Yacute guilsinglright
170 ordfeminine ordfeminine trademark 222 Thorn Thorn fi

171 guillemotleft guillemotleft acute 223 germandbls germandbls fl

172 logicalnot logicalnot dieresis 224 agrave agrave daggerdbl
173 hyphenb hyphen notequal 225 aacute aacute periodcentered
174 registered registered AE 226 acircumflex acircumflex quotesinglbase
175 macron macron Oslash 227 atilde atilde quotedblbase
176 degree degree infinity 228 adieresis adieresis perthousand
177 plusminus plusminus plusminus 229 aring aring Acircumflex
178 twosuperior twosuperior lessequal 230 ae ae Ecircumflex
179 threesuperior threesuperior greaterequal 231 ccedilla ccedilla Aacute

180 acute acute yen 232 egrave egrave Edieresis
181 mu mu mu 233 eacute eacute Egrave

182 paragraph paragraph partialdiff 234 ecircumflex ecircumflex lacute

183 periodcentered periodcentered summation 235 edieresis edieresis Icircumflex
184 cedilla cedilla product 236 igrave igrave Idieresis

185 onesuperior onesuperior pi 237 jacute iacute Igrave

186 ordmasculine ordmasculine integral 238 icircumflex icircumflex Oacute

187 guillemotright guillemotright ~ ordfeminine 239 idieresis idieresis Ocircumflex
188 onequarter onequarter ordmasculine 240 eth eth apple

189 onehalf onehalf Omega 241 ntilde ntilde Ograve

190 threequarters threequarters ae 242 ograve ograve Uacute

191 questiondown questiondown oslash 243 oacute oacute Ucircumflex
192 Agrave Agrave questiondown 244 ocircumflex ocircumflex Ugrave

193 Aacute Aacute exclamdown 245 otilde otilde dotlessi

194 Acircumflex Acircumflex logicalnot 246 odieresis odieresis circumflex
195 Atilde Atilde radical 247 divide divide tilde

196 Adieresis Adieresis florin 248 oslash oslash macron

197 Aring Aring approxequal 249 ugrave ugrave breve

198 AE AE Delta 250 uacute uacute dotaccent
199 Ccedilla Ccedilla guillemotleft 251 ucircumflex ucircumflex ring

200 Egrave Egrave guillemotright 252 udieresis udieresis cedilla

201 Eacute Eacute ellipsis 253 yacute yacute hungarumlaut
202 Ecircumflex Ecircumflex space 254 thorn thorn ogonek

203 Edieresis Edieresis Agrave 255 ydieresis ydieresis caron

204 Igrave Igrave Alilde a. Some PostScript fonts may include code 160 as
205 lacute lacute Otilde a non-breaking space namespace.

206 Icircumflex Icircumflex OE

207 Idieresis Idieresis oe b. Some PostScript fonts may include code 173 as
208 Eth Eth endash a soft hyphen namestthyphen.

209 Ntilde Ntilde emdash

210 Ograve Ograve quotedblleft

C.1 All Encodings Indexed By Byte Code 201

C.2 Conversions from WindowsANSI Encoding

In Table C.2, the first two columns give the byte code and name of a character in
the source encoding vect@findowsANS| (abbreviated for space in the table as
ANSI). The third and fourth columns give the corresponding byte code in the des-
tination encoding vectordacStandard (abbreviated adac) andiSOLatinl, respec-

tively. The word $ame” in a column means that the destination byte code is the
same as the source byte code. The strifaj th a column means that the char-
acter has no equivalent in the destination encoding vector.

Table C.2 Conversions from WindowsANSI Table C.2 Conversions from WindowsANSI
Encoding Encoding (Continued)
Character Name ANSI Mac ISOLatin1 Character Name ANS/ Mac ISOLatin1
quotesingle 39 same n/a hyphen 173 45 same
hyphen 45 same 173 registered 174 168 same
grave 96 same 145 macron 175 248 same
quotesinglbase 130 226 n/a degree 176 161 same
florin 131 196 n/a twosuperior 178 n/a same
quotedblbase 132 227 n/a threesuperior 179 n/a same
ellipsis 133 201 n/a acute 180 171 same
dagger 134 160 n/a paragraph 182 166 same
daggerdbl 135 224 n/a periodcentered 183 225 same
circumflex 136 246 147 cedilla 184 252 same
perthousand 137 228 n/a onesuperior 185 n/a same
Scaron 138 n/a n/a ordmasculine 186 188 same
guilsinglleft 139 220 n/a guillemotright 187 200 same
OE 140 206 n/a onequarter 188 n/a same
quoteleft 145 212 96 onehalf 189 n/a same
quoteright 146 213 39 threequarters 190 n/a same
quotedblleft 147 210 n/a questiondown 191 192 same
quotedblright 148 211 n/a Agrave 192 203 same
bullet 149 165 n/a Aacute 193 231 same
endash 150 208 n/a Acircumflex 194 229 same
emdash 151 209 n/a Atilde 195 204 same
tilde 152 247 148 Adieresis 196 128 same
trademark 153 170 n/a Aring 197 129 same
scaron 154 n/a n/a AE 198 174 same
guilsinglright 155 221 n/a Ccedilla 199 130 same
oe 156 207 n/a Egrave 200 233 same
Ydieresis 159 217 n/a Eacute 201 131 same
space 160 32 same Ecircumflex 202 230 same
exclamdown 161 193 same Edieresis 203 232 same
currency 164 219 same Igrave 204 237 same
yen 165 180 same lacute 205 234 same
brokenbar 166 n/a same Icircumflex 206 235 same
section 167 164 same Idieresis 207 236 same
dieresis 168 172 same Eth 208 n/a same
ordfeminine 170 187 same Ntilde 209 132 same
guillemotleft 171 199 same Ograve 210 241 same
logicalnot 172 194 same Oacute 211 238 same

202 Appendix C: Character Encodings (9 Feb 1996)

Table C.2 Conversions from WindowsANSI
Encoding (Continued)

Character Name ANS/ Mac ISOLatinl
Ocircumflex 212 239 same
Otilde 213 205 same
Odieresis 214 133 same
multiply 215 n/a same
Oslash 216 175 same
Ugrave 217 244 same
Uacute 218 242 same
Ucircumflex 219 243 same
Udieresis 220 134 same
Yacute 221 n/a same
Thorn 222 n/a same
germandbls 223 167 same
agrave 224 136 same
aacute 225 135 same
acircumflex 226 137 same
atilde 227 139 same
adieresis 228 138 same
aring 229 140 same
ae 230 190 same
ccedilla 231 141 same
egrave 232 143 same
eacute 233 142 same
ecircumflex 234 144 same
edieresis 235 145 same
igrave 236 147 same
jacute 237 146 same
icircumflex 238 148 same
idieresis 239 149 same
eth 240 n/a same
ntilde 241 150 same
ograve 242 152 same
oacute 243 151 same
ocircumflex 244 153 same
otilde 245 155 same
odieresis 246 154 same
divide 247 214 same
oslash 248 191 same
ugrave 249 157 same
uacute 250 156 same
ucircumflex 251 158 same
udieresis 252 159 same
yacute 253 n/a same
thorn 254 n/a same
ydieresis 255 216 same

C.2 Conversions from WindowsANSI Encoding

203

C.3 Conversions from MacStandard Encoding

In Table C.3, the first two columns give the byte code and name of a character in
the source encoding vectdgcStandard (abbreviated for space in the table as

Mac). The third and fourth columns give the corresponding byte code in the des-
tination encoding vector#indowsANSI (abbreviated as\SI) andiSOLatinl, respec-
tively. The word $ame” in a column means that the destination byte code is the
same as the source byte code. The strifaj th a column means that the char-
acter has no equivalent in the destination encoding vector.

Table C.3 Conversions from MacStandard Encoding Table C.3 Conversions from MacStandard Encoding

Character Name Mac ANSI ISOLatin1 Character Name Mac ANSI ISOLatin1
hyphen 45 same 173 bullet 165 149 n/a
grave 96 same 145 paragraph 166 182 182
Adieresis 128 196 196 germandbls 167 223 223
Aring 129 197 197 registered 168 174 174
Ccedilla 130 199 199 trademark 170 153 n/a
Eacute 131 201 201 acute 171 180 146
Ntilde 132 209 209 dieresis 172 168 152
Odieresis 133 214 214 notequal 173 n/a n/a
Udieresis 134 220 220 AE 174 198 198
aacute 135 225 225 Oslash 175 216 216
agrave 136 224 224 infinity 176 n/a n/a
acircumflex 137 226 226 lessequal 178 n/a n/a
adieresis 138 228 228 greaterequal 179 n/a n/a
atilde 139 227 227 yen 180 165 165
aring 140 229 229 partialdiff 182 n/a n/a
ccedilla 141 231 231 summation 183 n/a n/a
eacute 142 233 233 product 184 n/a n/a
egrave 143 232 232 pi 185 n/a n/a
ecircumflex 144 234 234 integral 186 n/a n/a
edieresis 145 235 235 ordfeminine 187 170 170
iacute 146 237 237 ordmasculine 188 186 186
igrave 147 236 236 Omega 189 n/a n/a
icircumflex 148 238 238 ae 190 230 230
idieresis 149 239 239 oslash 191 248 248
ntilde 150 241 241 questiondown 192 191 191
oacute 151 243 243 exclamdown 193 161 161
ograve 152 242 242 logicalnot 194 172 172
ocircumflex 153 244 244 radical 195 n/a n/a
odieresis 154 246 246 florin 196 131 n/a
otilde 155 245 245 approxequal 197 n/a n/a
uacute 156 250 250 Delta 198 n/a n/a
ugrave 157 249 249 guillemotleft 199 171 171
ucircumflex 158 251 251 guillemotright 200 187 187
udieresis 159 252 252 ellipsis 201 133 n/a
dagger 160 134 n/a space 202 32 32
degree 161 176 176 Agrave 203 192 192
section 164 167 167 Atilde 204 195 195

204 Appendix C: Character Encodings (9 Feb 1996)

Table C.3 Conversions from MacStandard Encoding

Table C.3 Conversions from MacStandard Encoding

Character Name Mac ANSI ISOLatin1
Otilde 205 213 213
OE 206 140 n/a
oe 207 156 n/a
endash 208 150 n/a
emdash 209 151 n/a
quotedblleft 210 147 n/a
quotedblright 211 148 n/a
quoteleft 212 145 96
quoteright 213 146 39
divide 214 247 247
lozenge 215 n/a n/a
ydieresis 216 255 255
Ydieresis 217 159 n/a
fraction 218 n/a n/a
currency 219 164 164
guilsinglleft 220 139 n/a
guilsinglright 221 155 n/a
fi 222 n/a n/a
fl 223 n/a n/a
daggerdbl 224 135 n/a
periodcentered 225 183 183
quotesinglbase 226 130 n/a
quotedblbase 227 132 n/a
perthousand 228 137 n/a
Acircumflex 229 194 194
Ecircumflex 230 202 202
Aacute 231 193 193
Edieresis 232 203 203
Egrave 233 200 200
lacute 234 205 205
Icircumflex 235 206 206
Idieresis 236 207 207
Igrave 237 204 204
Oacute 238 211 211
Ocircumflex 239 212 212
apple 240 n/a n/a
Ograve 241 210 210
Uacute 242 218 218
Ucircumflex 243 219 219
Ugrave 244 217 217
dotlessi 245 n/a 144
circumflex 246 n/a 147
tilde 247 152 148
macron 248 175 149
breve 249 n/a 150
dotaccent 250 n/a 151

Character Name Mac ANS/ ISOLatinl
ring 251 n/a 154
cedilla 252 184 155
hungarumlaut 253 n/a 157
ogonek 254 n/a 158
caron 255 n/a 159

C.3 Conversions from MacStandard Encoding

205

C.4 Conversions from ISOLatin1 Encoding

In Table C.4, the first two columns give the byte code and name of a character in
the source encoding vect@pLatinl. The third and fourth columns give the cor-
responding byte code in the destination encoding vetiotswsANSI (@bbrevi-

ated for space in the table/s|) andMacStandard (abbreviated adac),

respectively. The wordséme” in a column means that the destination byte code

is the same as the source byte code. The strigigii a column means that the
character has no equivalent in the destination encoding vector.

Table C.4 Conversions from ISOLatin1 Encoding Table C.4 Conversions from ISOLatin1 Encoding
Character Name ISOLatin1 ANSI Mac Character Name ISOLatin1 ANSI Mac
quoteright 39 146 213 onesuperior 185 same n/a
quoteleft 96 145 212 ordmasculine 186 same 188
dotlessi 144 n/a 245 guillemotright 187 same 200
grave 145 96 96 onequarter 188 same n/a
acute 146 180 171 onehalf 189 same n/a
circumflex 147 n/a 246 threequarters 190 same n/a
tilde 148 152 247 questiondown 191 same 192
macron 149 175 248 Agrave 192 same 203
breve 150 n/a 249 Aacute 193 same 231
dotaccent 151 n/a 250 Acircumflex 194 same 229
dieresis 152 168 172 Atilde 195 same 204
ring 154 n/a 251 Adieresis 196 same 128
cedilla 155 n/a 252 Aring 197 same 129
hungarumlaut 157 n/a 253 AE 198 same 174
ogonek 158 n/a 254 Ccedilla 199 same 130
caron 159 n/a 255 Egrave 200 same 233
space 160 same 32 Eacute 201 same 131
exclamdown 161 same 193 Ecircumflex 202 same 230
currency 164 same 219 Edieresis 203 same 232
yen 165 same 180 Igrave 204 same 237
brokenbar 166 same n/a lacute 205 same 234
section 167 same 164 Icircumflex 206 same 235
dieresis 168 same 172 Idieresis 207 same 236
ordfeminine 170 same 187 Eth 208 same n/a
guillemotleft 171 same 199 Ntilde 209 same 132
logicalnot 172 same 194 Ograve 210 same 241
hyphen 173 same 45 Oacute 211 same 238
registered 174 same 168 Ocircumflex 212 same 239
macron 175 same 248 Otilde 213 same 205
degree 176 same 161 Odieresis 214 same 133
twosuperior 178 same n/a multiply 215 same n/a
threesuperior 179 same n/a Oslash 216 same 175
acute 180 same 171 Ugrave 217 same 244
paragraph 182 same 166 Uacute 218 same 242
periodcentered 183 same 225 Ucircumflex 219 same 243
cedilla 184 same 252 Udieresis 220 same 134

206 Appendix C: Character Encodings (9 Feb 1996)

Table C.4 Conversions from ISOLatin1 Encoding

Character Name ISOLatin1 ANSI/ Mac
Yacute 221 same n/a
Thorn 222 same n/a
germandbls 223 same 167
agrave 224 same 136
aacute 225 same 135
acircumflex 226 same 137
atilde 227 same 139
adieresis 228 same 138
aring 229 same 140
ae 230 same 190
ccedilla 231 same 141
egrave 232 same 143
eacute 233 same 142
ecircumflex 234 same 144
edieresis 235 same 145
igrave 236 same 147
iacute 237 same 146
icircumflex 238 same 148
idieresis 239 same 149
eth 240 same n/a
ntilde 241 same 150
ograve 242 same 152
oacute 243 same 151
ocircumflex 244 same 153
otilde 245 same 155
odieresis 246 same 154
divide 247 same 214
oslash 248 same 191
ugrave 249 same 157
uacute 250 same 156
ucircumflex 251 same 158
udieresis 252 same 159
yacute 253 same n/a
thorn 254 same n/a
ydieresis 255 same 216

C.4 Conversions from ISOLatin1 Encoding

207

208 Appendix C: Character Encodings (9 Feb 1996)

Note

Note

Appendix D: Manufacturer’s Prefix
List and *Manufacturer Strings

The first column of Table D.1 contains the formal, legal name of device man-
ufacturers who support Adobe PostScript in their devices.

The second column of Table D.1 contains a list of two-letter prefixes that
have been assigned to device manufacturers. The manufacturer’s assigned
prefix composes the first two characters of an initial PPD file name, the first
two characters oPCFileName, and the first two characters after the asterisk of
any main keywords created by the manufacturer. Each manufacturer must
have a unique prefix and the prefix must be the same in all PPD files for
devices from that manufacturer. For example, all PPD files built for Agfa
devices will have filenames areCFileName values that start with the charac-
ter sequence “"AG”, and any main keywords created by Agfa will start with
the character sequen®s, as in*AGHalftone. SeePCFileName in section 5.3 for
advice on naming PPD files. See section 5.1 for information about creating
and properly prefixing keywords.

The third column of Table D.1 contains the valueMahufacturer (Seesection
5.3, if known. The fourth column of Table D.1 contains the value of the tag
icHeader.manufacturer in ICC color characterization profiles belonging to this
manufacturer in the Windows environment, if known.

Because thanufacturer keyword is new in the 4.3 version of this specifica-
tion, very fewManufacturer strings andcHeader.manufacturer profile tags are
known at this time. By the time the next version of this specification is
released, this table will be much more complete.

To builders of PPD files: If you do not have an assigMedifacturer string,
before choosing one, please consult Table D.1 to avoid nanfleetorAlso,

if you plan to install ICC color profiles in the Windows environment, certain
restrictions are placed on the first four characters of these names and they
must not conflict with the first four characters of othemnmfacturer’'s names.
Please read the notes ftManufacturer, *ModelName, and *ShortNickName in sec-

tion 5.3.

For updates to this list, please contact the appropriate address on the front
cover of this document.

209

Table D.1 Assigned prefixes anthanufacturer strings as of February 9, 1996

Company Name Prefix | *Manufacturer | icHeader.manufacturer
3M Corporation 3M
Adobe Systems Inc. AD Adobe ADOB
Agfa-Gevaert N.V. (includes Agfa-Matrix, AG
Agfa-Compugraphic, and Miles Inc.)
Apple Computer, Inc. AP Apple APPL
AST Research Inc. AS AST AST
Autologic Incorporated (a subsidiary of AU
\Volt Information Sciences)
Barco Graphics BC
Birmy Graphics Corporation BG
Bull HN Information Systems lItalia S.P.A. BU Bull BULL
Cactus cC
CalComp, Inc. CA
Canon, Inc. CN Canon CANO
Colorbus Software CB
Colossal Graphics Inc. CG
Compag Computer Corporation CP Compaq COMP
Crosfield Electronics Limited CF
Dainippon Screen Mfg. Co. Ltd. DS
Dataproducts Corporation DP Dataproducts DATA
Digital Equipment Corporation DC
DuPontseeE.l.DuPont — — —
Eastman Kodak Company and KD Kodak KODA
Diconix (a Division of Kodak)
Eicon Technology Corporation (includes Escher-Grad Ifc
E.l. DuPont deNemours and Company DU
EFI, Inc. (Electronics For Imaging, Inc.) EF
EpsonseeSeiko Epson — — —
Fargo Electronics, Inc. FE

210 Appendix D: Manufacturer’s Prefix List and *Manufacturer Strings (9 Feb 1996)

Table D.1 Assigned prefixes anthanufacturer strings as of February 9, 1996 (Continued)

Company Name Prefix | *Manufacturer | icHeader.manufacturer
Fujitsu, Inc. FU

Fuji Film FF

Fuji Xerox FX

GCC Technologies GC

Gestetner Lasers Pty. Limited GS

Hewlett Packard Company HP HP HP
Hitachi Koki Co., Ltd. HK

IDT ID

Indigo IN

Integrated Computer Solutions, Inc. IC

International Business Machines Corp. 1B IBM IBM
KodakseeEastman Kodak — — —
Lasergraphics LG

Lexmark International LX Lexmark LEXM
Lincoln, A.J. LI

Linotype-Hell AG LH

Management Graphics MG

Mannesmann Scangraphic GmbH SC Mannesmann MANN
Matsushita Electric Industrial Co., Ltd. MT

Mitsubishi Electric Corporation ME

Monotype Corporation PLC MO

NEC Corporation (includes NEC Information Systems, lh§C NEC NEC
and NEC Technologies, Inc.)

Network Computing Devices, Inc. ND

Newgen Corporation NW

NeXT Computer, Inc. NX

Nihon System Gijutsu Co. NP

Oce Graphics USA Inc. (formerly Schlumberger) ocC Oce OCE
Ohio Electronic Engravers OE

211

Table D.1 Assigned prefixes anthanufacturer strings as of February 9, 1996 (Continued)

Company Name Prefix | *Manufacturer | icHeader.manufacturer
Oki Electric Industry Co. (includes Okidata) OK Oki OKI
Optronics, a Division of Intergraph OP

Panasonic USA PA Panasonic PANA
PIX Computer Systems GmbH PX

PrePRESS Solutions, Inc. PP

QMS, Inc. QM | QMS QMS
Radius RA

Ricoh Company, Ltd. RI Ricoh RICO
ScangraphiseeMannesmann — — —
Scitex Corporation Ltd. SX

Seiko Epson Corporation EP Epson EPSO
Seiko Instruments USA, Inc. SK Seiko SEIK
Silicon Graphics SG

Sony Corporation SO

Sun Microsystems, Inc. SN

SuperMac Technology, Inc. SM

Tektronix TK Tektronix TEKT
Texas Instruments Inc. Tl Tl Tl
Total Integration, Inc. TO

Unisys UN

Ultimate Tetinographics uT

Varityper Inc. fow PrePRESS Solutions, Inc.) VT

VerTec Solutions, Inc. VS

Visual Edge Software Ltd. VE

Wang Laboratories Inc. WA Wang WANG
Xante Corporation XT

Xerox Corporation XR Xerox XERO

212 Appendix D: Manufacturer’s Prefix List and *Manufacturer Strings (9 Feb 1996)

El

Appendix E: Changes Since
Earlier Versions

Changes since Version 4.2, March 29, 1994

New Material

« Added the following newequiredkeywords:
*Manufacturer

« Added the following new non-required keywords:

*1284DevicelD *1284Modes *CloseSubGroup
*ContoneOnly *DefaultExitJamRecovery *DefaultHalftoneType
*DefaultLeadingEdge *DefaultUseHWMargins *ExitJamRecovery
*?ExitJamRecovery *FCacheSize *FDirSize
*HalftoneName *?InstalledMemory *LeadingEdge
*NonUIOrderDependency *NonUIConstraints *OpenSubGroup
*PageDeviceName *QueryOrderDependency *ReferencePunch
*Renderingintent *SuggestedManualFeedTimeout

*UseHWMargins

* Added newsection 4.5, “Summary of Rules for *Default Keywords’
get all the information aboubefault keywords into one place.

« Added newsection 5.1, “Creating Your Own Keywordgs document
how device manufacturers can create their own main and option keywords
when building PPD files for their devices.

* Added newsection 6.3, “Examples of Custom Page Size Gddeassist
builders of PPD files with writingCustomPageSize invocation code for both
roll-fed and cut-sheet devices.

* Added newsection 7, “PPD File Summary'for PPD file builders, con-

taining a summary of what goes into a PPD file, including changes to
make for a Kanji PPD file.

213

* Added newAppendix D: Manufacturer’s Prefix List and *Manufacturer
Strings to list PPD filename & keyword prefixes assigned to device manu-
facturers, known string values fotanufacturer, andicHeader.manufacturer
color profile tags, if known.

* Renamed old Appendix D (this appendix) to Appendix E. Removed
Changes since February 14, 1993 it only fixed minor typographical
errors and provided no useful information.

« Combined Appendix B with Appendix A, renamappendix A: Keyword
Categories Added newAppendix B: Registered mediaOption Keywords
Moved all lists ofmediaOption option keywords (page sizes) from section
5.9,Media Option Keywordsnto new Appendix B, and combined lists
into two tables, sorted by name and size.

* NewAppendix BIntroduced the prefignv to designate envelope page
sizes. The following sizes had the preffix added to reflect this
changeCo, C1, C2, C3, C4, C5, C6, C7, DL, andMonarch. Also, Comm10 was
changed t&nv10. These names wermt changed in existing PPD files.
The old names are still valid, but builders of new PPD files are encouraged
to use the new names for easy recognition of envelopes by print managers.

« Indexed all previously deleted keywords for reference to old PPD files.

Changes to Existing Material

« Made*ShortNickName arequiredkeyword. It was not required in previous
versions of this specification. Added it to various examples. Also clarified
that the*Default versions of required keywords are also required. For exam-
ple, *DefaultPageSize is required.

e Throughout document, changed all examples usitpagedevice to use
recommended method of construction dictionaries, by usigx exec
etc. Updated many examples from Level 1 to Level 2 code. Also added
audience designators to many NofBsbuilders of PPD filgsandTo
application developergConsolidated descriptions of main keywords with
their associatetbefault and query keywords, where it made sense to do so.
AddedUnknown to all *Default values. Specified valid return values, includ-
ing newline, for all query keywords in a standard format.

+ MovedASCIl Code CharandDefinition of Termgloser to front of docu-
ment. Many other sections were moved, reorganized, and renumbered to
be more internally consistent and consistent with the actual structure of
most PPD files.

« Error Handling: Removed comments on file portability; covered else-
where.

214 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

Order Dependencie&dited to clarify that the code ordering guidelines
are only needed if a parser does not useCtderDependency statements
provided in the PPD file. Removed redundant examples.

Local Customization Filelarified that local customization files must
include the minimal set of required keywords, and that any customization
of Ul keywords must include the entit@enUl/*CloseUl entry. Added warn-
ings about creation & use.

Definition of TermsMoved closer to front of document. Removed com-
ments about keyword registration, since this is now covered in section 5.1.
Added note to state that query keywords do not exist for every main key-
word. Added definitions forDefault keywords, andtand-aloneDefault
keywords Changed allowable byte-code ranges to allow 8-bit ASCII in
translation strings and QuotedValues. Changed definitiami@ngeand
out-of-rangebyte codes.

General Parsing Summangjdded material about 8-bit ASCII byte codes.

Main KeywordsChanged 3rd paragraph to make it clear theftult key-
words can appear alone in a PPD file, without a corresponding invocation
or query keyword. Movedequired keywords lidirom Parsing Summary

to beginning of section 5.

Option KeywordsSlightly reworded beginning of section to reflect
changes in how option keywords are created.

Syntax of ValuesinderParsing Summary for Value€hanged several

bullets to clarify use of stand-alorzefault keywords and use dhknown.

Added note to warn parsers about 8-bit ASCII appearing in certain Quot-
edValues in translated PPD files. Throughout document, changed the use
of “StringValues” to “StringValue with multiple coponents separated by
white space” where appropriate.

Translation String SyntaClarified thatDefault keywords may have a
translation string on their value only if they are stand-alone keywords.
Clarified that a given option keyword should have the same translation
string across closely related entries suctPagSize, *PageRegion,

*ImageableArea, and*PaperDimension. Added note to warn parsers about 8-bit
ASCII appearing in certain QuotedValues in translated PPD files. Added
description of when hex must be used and when 8-bit ASCII may be used.

PostScript Language Sequenc&dded recommendations on writing

Level 2 code that reduces the risk of errors if sent to a Level 1 device.
Added advice on efficient Level 2 dictionary construction. Removed
*?PageRegion query in example, as this query keyword does not exist. Clar-
ified example of howEnd is used.

E.1 Changes since Version 4.2, March 29, 1994 215

* PPD File Structure Added*Manufacturer and*ShortNickName to list of
required keywords usually found near front of file. Added info about PPD
file size limits and keyword content imposed by common print managers.

« Syntax of Specification, General SyntAgded that PostScript operators
and dictionary keys appear in boldface typeElementary Typesinder
query, added that valid return values are defined for each query, that trans-
lation strings are not allowed on return values, and that return values must
terminate with a newline. Added new tyjp for strings with spaces. In
Standard Option Values for Main KeywordsderUnknown, added that
stand-aloneDefault keywords can’t have value Gfiknown.

* General Information Keywordé&\dded more examples to most keywords;
added guidelines for PPD file builders to many keywords. Changed the
first part of aPCFileName from anupper limit of 8 characters to specify that
it must be 8 characters; added Adobe’s file naming conventions and exam-
ples. Added options d$0Latin2 andISOLatin5 to *LanguageEncoding andTurk-
ish to *LanguageVersion. Added explanation about ICC color profile matching
to *ModelName and*ShortNickName. Changed value type tShortNickName,

*ModelName, *NickName from string to textto accommodate spaces in value.

« Emulators and Protocoldzrom*Emulators, removed statemefiMultiple
*Emulators statements may appear.” There is no need for muttipigators
statements, sinc&€mulators can list multiple emulators in a single
StringValue. Explained odd syntax*sfopEmulator_ and*StartEmulator_ key-
words.

« Structure KeywordsyiConstraints: Added new rule thauiConstraints can no
longer be used with non-Ul keywords; instead, the new keyword
*NonUIConstraints should be used. Als#)IConstraints should be reciprocated
and should be considered reciprocated by print managers even if the recip-
rocal constraint is missing.

» Structure KeywordsprderDependency: *OrderDependency may only be used
with Ul keywords and the new keyworgbnUIOrderDependency must be
used with non-Ul keywordsnySetup should be used for thsection value if
a specific section is not required. Adobe strongly recommends using
*OrderDependency in every*OpenUl and*JCLOpenUI entry. Changed to say that
order numbers define the ordeithin a sectionrather than across all sec-
tions, to accommodate printing the 1st page from a different bin, when the
*InputSlot code is not emitted until tignd page. Added note about using the
sameorder number if possible & how print managers can use this to reduce
the number ofetpagedevice calls and improve performance. Removed this
statement regarding code fragments that don't lawderDependency State-
ments: “[Such fragments] are not assigned an ordering number or a sec-
tion. Such code fragments can be used anywhere during the imaging of a

216 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

page. Executing such code will affect the appearance of future imaging,
but will not affect imaging alreadyone.”. This left only the statement that
non-ordered fragments should beited after ordered fragments.

Structure KeywordsOpenGroup/*CloseGroup may not be nested; the new
keywords*OpenSubGroup/*CloseSubGroup should be used for nesting groups
within groups. Removed requirement that main keywords surround by
*OpenUl/*CloseUl be documented in the PPD spec, as OEMs can invent their
own main keywords. Added referenceoLOpenUl/*JCLCloseUl. In

*Resolution example at end abrderDependency description, changea$o4 to
2504dpi. Rewrote entire section to be less verbose.

Symbolic References to DaRRemoved unnecessdiiles on examples in
description ofSymbolValue.

Media Option KeywordsRemoved lists ofrediaOptions to Appendix B.

Added explanation of howansverse qualifier should and should not be

used. Added explanations for other common qualifiers and page size sub-
strings.

Custom Page SizeBlade substantial changes to how custom page sizes
are handled on cut-sheet devidadentation, WidthOffset, andHeightOffset are

now allowed. All parameters are now defined the same for roll-fed & cut-
sheet medigDrientation can now be used withiwMargins to figure out

which edge is leading into the device, so the imageable area can now be
more accurately determined by subtracting the correct valueg/érgins

from the correct edges of the page. Added section for print manager
authors on how to handle custom page sizes. All complete examples of
custom page size entries were moved to section 6.4. The keyword
*VariablePaperSize was removed from the specification, as it was superceded
by *CustomPageSize in version 4.0.

Media Handling FeaturesinputSiot.: Added Microsofttdefines for input
slots to list ofinputSiotOptions. Removed.argeFormat as aninputSlotOption
because it duplicated the functionAnfLargeFormat and was not used in
any existing PPD files. Added note*taputSlot about combining function-
ality such agMediaType and*ManualFeed with *InputSlot. Added example of
*InputSlot entry for single-slot or roll-fed devices.

Media Handling FeaturesRemovenlyOne as an option forOutputBin, as
this keyword should be dited if there is only one output bin. Rewrote
*RequiresPageRegion to clarify that‘PageRegion code may be required for rea-
sons other than input slots not sensing page size. Added riDigdtOut-
putBin; it should not be present witho@utputBin. To *DefaultOutputOrder,

added that if this keyword is stand-alone, its value may notknewn.

E.1 Changes since Version 4.2, March 29, 1994 217

218

Finishing FeaturesAdded optioreEndOfPage to *Slipsheet. Removed Ul
symbol from#insertSheet, as this keyword requires the print manager to
build a special Ul to accommodate it, so it cannot be blindly parsed and
displayed. Noted symbol removal. Added examples to folding, binding,
and stapling keywords of how to wriéiConstraints SO a print manager
would understand the interdependencies between them.

Resolution and Appearance Contr@lombined descriptions of
*ScreenAngle, *ScreenFreq, and*DefaultScreenProc. Added material to these
keywords related ttDefaultHalftoneType and*ContoneOnly. Added note to
description ofDefaultResolution to clarify that this keyword may appear
alone, withoutResolution or *SetResolution. ChangedResScreenFreq and
*ResScreenAngle to say that they should be dtad in the PPD file of a
Level 2 device if the defauttalftone dictionary type is not “1”. IrBitsPer-
Pixel, deleted requirement that one of the optionsdoe. Changed defini-
tion of None from “1 bit per pixel” to “lowest number of bits per pixel”.
Added optiongff, On, True, False.

Color IssuesUnder*ColorRenderDict, changed how color rendering dictio-
naries are named, to correspond to the new Adobe CRD naming conven-
tion. Clarified how a CRD can be added to the deviceCsiarRenderDict.

Font Related Keyword<€larified that fonts in th&Font list do not have to

be Type 1 fonts. Added many nexarset andencoding options to cover
composite and CID-keyed fonts. Clarified how to deal with aftermarket
plug-in fonts and host-downloaded fonts. Removed recommendation to
put these in local customization file. Added note about future usenof
with *NonUIConstraints. Added note té?FontList and*?FontQuery about slowing
down query responses.

Printer MessagedJnder*Source, added that this keyword lists the names
of the communications channels. Changed the value tyjpantdtError,
*Status, and*Message from string to text, to accommodate spaces in the value.

Features Accessible Only Through Job Control LanguAgeled advice
against including both the PS and JCL methods of invoking a given fea-
ture, if both methods exist. Add&dknown to list of valid return values

from queries.

Sample PPD File Structuréddded examples of custom page size entries
and advice on how to write them. Removed Level 1 examples. Expanded
Level 2 color printer and imagesetter examples.

Appendix A.2 (formerly Appendix:Byemoved the following keywords
from the list of optionless repeated keywords (these are optionless, but not
repeated)*Emulators, *Extensions, *FaxSupport, and*Protocols.

Appendix E: Changes Since Earlier Versions (9 Feb 1996)

E.2

* Appendix C, Table C:2Added “character set 0 or Western” to definition of
WindowsANSI and “Script Manager script 0” to definition kafcStandard.
Removed byte codes 157 and 158 fromwimgowsANSI encoding table,
because these byte codes are unused, not bullets as was previously stated.
Added footnotes about codes 160 and 173 toviidewsANSI table (these
codes may have different names than shown in the table).

» Globally changed several values that were recorded as “invocation code”
to simply “invocation”. Fixed various formatting errors and typos and
made minor rewording changes. Improved indexing.

« Changed spec version number from 4.2 to 4.3.

Changes since Version 4.1, April 9, 1993
« Changed spec version number from 4.1 to 4.2 in all appropriate places.
* Added the following new keywords:

*PrintPSErrors *SuggestedJobTimeout *SuggestedWaitTimeout
*ResScreenAngle *ResScreenFreq *InstalledMemory
*DefaultinstalledMemory

* Added a new optiofiruelmage to *TTRasterizer.

* Moved description ofvMOption from section 5.4 to section 5.2%ystem
Managementafter the description ¢freevM. Removed examples of using
*UlConstraints on*VMOption to show how much VM is available (this method
has been replaced hystalledMemory). Rewrote description dfreevVM for
clarity & accuracy with regard t&MOption.

« Made the following changes to section 3n&tallable Optionslt is now
legal, when necessary, to have named keywordsriaedMemory, in the
InstallableOptions group (instead of the gener@ptionl type of keyword). It is
now legal to have PostScript code in the value of an entry instiiable-
Options group. If there is such code, the entry must also hav@rderDepen-
dency statement. Removed section on Keyword-Value pairs; they are no
longer recommended tlIConstraints.

* Added paragraph to description*0fConstraints to say that constraints
should only be used with Ul keywords.

« Section 2.1, last paragraph: Removed the following sentence from the end
of the description of defaults, as the PPD specification should not be dic-
tating print manager behavior, only recommending it: “Print managers
should ensure that if the user selects nothing else, the defaults shown in

E.2 Changes since Version 4.1, April 9, 1993 219

the user interface are invoked.” Replaced with description of how some
print managers behave regarding defaults. Removed similar statement dic-
tating print manager behavior from last paragraph of section 2.6.

« Section 5.9: Undemlio page size, changed incorrect reference to 8.5"x13”
page to correct metric size of 220mm x 330mm. Changed point size of
page from [595 936] to [595 935] for greater accuracy. Changed imagea-
ble area description to “approximate”. Removed references to “folio
sheet” and “quarto sheet” (under the digfom of Quarto page size).

e Section 5.14: Fixed typo “F*” at beginning of several keywords.

* Appendix ARemovedAccurateScreensSupport from the list, as it was never
an*OpenUl keyword. AddedInstalledMemory.

E.3 Changes since Version 4.0, October 14, 1992
« Changed spec version number from 4.0 to 4.1 in all appropriate places.
* Changed this section from Appendix C to Appendix D.

* Inserted new Appendix C, Character Encodings, for use with the new
*LanguageEncoding keyword.

* Added the following new keywords

*TTRasterizer *LanguageEncoding *ShortNickName
*ColorModel *?ColorModel *DefaultColorModel
*JCLOpenUl *JCLCloseUl *JCLToPSInterpreter
*JCLBegin *JCLENnd

*JCLFrameBufferSize *?JCLFrameBufferSize *DefaultJCLFrameBufferSize
*JCLResolution *?2JCLResolution *DefaultJCLResolution
*MaxMediaHeight *?CurrentMediaHeight

« Substantially rewrote section 5.X2yustom Page Size® define the mean-
ing of custom page sizes on cut-sheet devices (old version dealt only with
roll-fed devices). Added definitions for cut-sheet devices to the custom
page size parameters and to all relevant keywords. Divided roll-fed and
cut-sheet devices into two subsections, wrote new introduction to cover
both sections. Clarified portions ®fwMargins and added info about how to
use it. Added new illustrations and examples. Chargadediawidth
from int to real. Added explanation tt€urrentMediaWidth.

« Added new section 5.23, “Features Accessible Only Through Job Control
Language”, to document newCL keywords.

220 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

E4

* In section 3.6, “Syntax of Values”, under the subheadigstedValues
andParsing Summary For Valugadded exception faiCL keywords to
the first rule, regarding the presence of option keywaids.keywords
are treated like QuotedValues even if they have an option and look like
InvocationValues.

* In section 4.2Elementary Typesdded new elementary tygeL. Under
*Protocols, added note to subsection i regarding the interaction of the
PJL value and thelCL keywords. AddedCLSetup section toOrderDepen-
dency.

» Added reference ttshortNickName in *NickName description. Also under
*NickName, clarified use of translation strings and encodings witkName.

» Changed description éfiiConstraints and thenstallable Options section to
include keyword-value pairs as well as keyword-option pairs.

* *lmageableArea: Added description of PPD files for devices that have pages
with an imageable area that can vary depending on resolution and other
factors.

« Added subheadin§yntax and Us& section 5.7Installable Options
Added new section of infd{eyword-Value Pairs

« Various minor wording changes were made for clarification or brevity.
Minor typographical errors were fixed. Updated examples at end to
include some of the new keywords.

Changes since Version 3.0, dated March 8, 1989

Changes to Text

Significant rewriting and reorganizing occurred in this version of the spec, so
rather than documenting line-by-line changes, only the major semantic and
syntactical changes are described here.

« The specification version number was increased to 4.0. International head-
guarters’ addresses added to front cover; updated copyright. “PostScript
Printer Description files” was changed to “PPD files” in all but the first
few times it is mentioned; “Printer Description files” were likewise
changed to “PPD files” in all cases. Changed “printer” to “device” in most
cases. Changed “paper” to “media” in text, not in keywords.

* The option keyword section at the end of the document was removed; all
currently registered option keywords are now documented with their
respective main keywords. Added section with several sample PPD files.

E.4 Changes since Version 3.0, dated March 8, 1989 221

 Introductionbecame a section (section 1) and was rewritten to reflect new
focus on building a user interface from a PPD file and to get more basic
information on the first page.

e Using PPD Files Completely rewritten to show how document composi-
tion application and print manager interact to create PostScript language
code, and how code sample grows as it passes through various phases
(DSC comments added). Added sections on building a user interface,
inserting print-time features, error-handling, post-processing, and order
dependencies within a file.

* Local Customization anthclude: Entire section was rewritten to explain
what kind of information is in the initial PPD file, what kind of informa-
tion a user or system administrator might want to change or add, the draw-
backs of editing a PPD file directly, and alternative suggestions to
managing PPD files. Explained local customization files in more detalil
and emphasized consistent use of that title for them. Added subsection on
changingDefault- values in local customization file. Expanded meaning of
defaults—in original PPD file, defaults are the factory defaults, but they
can now be changed in a local customization file. New rulgnfhrde:
filenames must be enclosed in quotes.

« The Format Significantly rewritten. Added sentence about how queries
only work if the physical interface to the device allows feedback. Added
ASCII code chart for commonly referenced characters, definition of terms,
and descriptions of canonical forms of keyword entries. A bullet was
added to point out the maximum line length of 255 characters. The maxi-
mum length of 40 characters per keyword was clarified ukidém Key-
words Split apartParsing Detailsand reintegrated into subsections on
main keywords, option keywords, and values. Divided descriptions of
main keywords, option keywords, and values into subsections for PPD
writers and PPD parsers.

» Details Section was split apart and integrated into separate sections on
main keywords, option keywords, and values. UMdaim Keywordsit
was clarified that grepfor a complete keyword includes tasteriskin
the keyword name (SGPageSize” is not a substring of*DefaultPageSize”).

* Semantics of Main KeywordSection was removed and information
moved to eitheThe Formator Main Keywords

« The following keywords are norequiredin a a PPD file, whereas previ-
ously there was no requirement. Some are old keywords, some are new:
*PPD-Adobe, *Product, *PSVersion, *PCFileName, *ModelName, *NickName, *PageSize,
*PageRegion, *ImageableArea, *PaperDimension, *FileVersion, *FormatVersion, and
*Language\Version.

222 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

Option KeywordsSignificantly rewritten. Added advice for parsers and
emphasized extensibility of option keywords.

Translation String Syntax his section was moved and retitled from

Foreign Language Customization: Translation String Syrtaxause it
applies to more than foreign languages. Section was expanded to include
examples of translating cryptic keywords “from English to English”. In

the French example, the nonexistent keyw8aperSize was changed to
*PageSize and syntactically incorrect percent signs and brackets and the
word PrinterError were all removed. Added section about 7-bit ASCIl PPD
files and how to represent 8-bit characters (for foreign languages) as hex
strings. Provided reasons and noted that translation strings, if present,
should always be displayed to the user rather than the original option key-
word. AddedParsing Summarfor translation strings.

Human-Readable Commenfsdded paragraph about comments in Post-
Script language code.

PostScript Language Sequencébe prohibition against leaving anything

on the operand and dictionary stacks was removed, as it is already violated
by the color separation keywords, the halftone screen keywords, the trans-
fer function keywords, and probably others.

Parsing Detailssection was removed and integrated into previous
sections.

Syntax of SpecificatioiNew section to document syntax of spec itself.
Added syntax and elementary types. Changed the symbols used for “or” in
the meta-syntax from glashto avertical bar, to be consistent with the

DSC. Inclusive “or” is now defined to be ellipsis, like the DSC. Added
explanations and examples of each type of PPD entry (main keyword with
fixed option list, main keyword with variable option list, and keyword

with no options).

Paper Handling was merged with a later sectiéontroduction to Media
Handling TheColor Extensionsection was removed and its material was
moved to the beginning of ti@olor Keywordssection.

In the Keywordsintroduction, added paragraph about how if a feature is

not supported by a device, it should be omitted from the PPD. Moved
Standard Option Values For Main Keywoiidem back of document to
beginning of section, to document global options Tike, False, None, and
Unknown. Added examples for each of these and added note about not using
None or Unknown to indicate absence of a feature on a device.

E.4 Changes since Version 3.0, dated March 8, 1989 223

« Keywords Rearranged all keywords into more logical sections and order.
Removed all option keywords from end of document and integrated them
into their respective main keyword sections. Added Ul symbol (shown
here) throughout document to mark keywords that should be bracketed

with *OpenUl/*CloseUl.

New Keywords

*AdvanceMedia

*?AdvanceMedia

*DefaultAdvanceMedia

*BindColor *?BindColor *DefaultBindColor
*BindEdge *?BindEdge *DefaultBindEdge
*BindType *?BindType *DefaultBindType
*BindWhen *?BindWhen *DefaultBindWhen
*BitsPerPixel *?BitsPerPixel *DefaultBitsPerPixel
*BlackSubstitution *?BlackSubstitution *DefaultBlackSubstitution
*Booklet *?Booklet *DefaultBooklet
*Collate *?Collate *DefaultCollate
*CutMedia *?CutMedia *DefaultCutMedia
*Duplex *?Duplex *DefaultDuplex
*FoldType *?FoldType *DefaultFoldType
*FoldWhen *?FoldWhen *DefaultFoldWhen
*InsertSheet *?InsertSheet *DefaultinsertSheet
*Jog *2Jog *Defaultdog
*MediaColor *?MediaColor *DefaultMediaColor
*MediaType *?MediaType *DefaultMediaType
*MediaWeight *?MediaWeight *DefaultMediaWeight
*MirrorPrint *?MirrorPrint *DefaultMirrorPrint
*NegativePrint *?NegativePrint *DefaultNegativePrint
*OutputMode *?0utputMode *DefaultOutputMode
*Separations *?Separations *DefaultSeparations
*Signature *?Signature *DefaultSignature
*Slipsheet *?Slipsheet *DefaultSlipsheet
*Smoothing *?Smoothing *DefaultSmoothing
*Sorter *?Sorter *DefaultSorter
*StapleLocation *?StapleLocation *DefaultStapleLocation
*StapleOrientation *?StapleOrientation *DefaultStapleOrientation
*StapleWhen *?StapleWhen *DefaultStapleWhen
*StapleX *?StapleX *DefaultStapleX
*StapleY *?StapleY *DefaultStapleY
*TraySwitch *?TraySwitch *DefaultTraySwitch
*OpenUl *CloseUl *Extensions
*OpenGroup *CloseGroup *Protocols
*StartEmulator_ *StopEmulator_ *Emulators
*FaxSupport *JobPatchFile *?PatchFile
*CustomPageSize *ParamCustomPageSize *?CurrentMediaWidth
*MaxMediaWidth *CenterRegistered *PageStackOrder
*Resolution *HWMargins *LandscapeOrientation
Appendix E: Changes Since Earlier Versions (9 Feb 1996)

*ColorRenderDict *QOrderDependency *PCFileName
*DefaultColorSpace *LanguageLevel *ModelName
*RequiresPageRegion *UlConstraints *AccurateScreensSupport

Changes to Existing Keywords

The changes to the syntax and semantics of actual keywords from version 3.0
are as follows:

* “Include: The filename must now be enclosed in double quotes.

 *lmageableArea, *?ImageableArea: The numbers in the value (and the numbers
returned by the query) are now real numbers; previously, they were inte-
gers.

« *DefaultResolution, *?Resolution, *SetResolution: These can now take an option of
the form300x600dpi. Previously, the only format wa8g0dpi. This change is
necessary to accommodate printers with anamorphic resolution.

« *Font: Two more fields were added to the value to describelthecter set
of the font and whether the fontresmovableor not.

 *PaperTray, *?PaperTray, and*DefaultPaperTray were removed, as their code had
always been redundant witPageSize and no tools were found to depend
upon their presence.

* *Collator, *?Collator, *DefaultCollator: These were changed*ollate, *?Collate,
and*DefaultCollate, since they had not previously been used in PPD files and
this brought them more in line with other keyword usage.

Changes to Descriptions of Existing Keywords

* General Information Keywordd his section title was changed from
General Defaults and Information Keywordis *FileVersion, the structure
of the version number and how to update it was clarifietkotmatVersion,
the conformance number of the spec was chang@d.tdn
*LanguageVersion, added material about the encoding of foreign translation
strings and how to represent non-English characters in translation strings.
Added new language option keywoigigdish andDanish. Added Level 1
and Level 2 code fragments*®oduct. The definition and examples of
*Nickname were corrected to be a string within quotation marks but without
parentheses (for example, “Apple LaserWFfitkNTX v49.3"), since all
existing PPD files had been built that way (without parentheses).

» Basic Device CapabilitiegColorDevice: clarified that this keyword indi-
cates physical color output. Added referenc&tensions, for devices that
support color extensions but may or may not physically output color.
Moved*FileSystem keywords hereFileSystem was clarified as referring to

E.4 Changes since Version 3.0, dated March 8, 1989 225

the capacityfor a file system; example was added for a device that has the
capacitybut does not have a file systémstalled reemphasized that this
entry should be omitted if there is no capacity for having a file system.
Clarified meaning of return values*oFfileSystem. Moved*Throughput to this
section.

« Keywords Added new sectio8tructure KeyworddMoved*include and*End
to this section. Moved information on device resolution to new section
Resolution and Appearance Control

 Introduction to Media HandlingNew section created froPaper
Handling Significantly rewritten. Addesektpagedevice to the list of exam-
ple invocations.

* Media Option KeyworddNew section, created from several old sections.
Significantly rewritten. Added infokeut the extensility of media option
keywords.PaperKeywordbecamanediaOptiorthroughout the document.
Refined explanation of how to handle Envelopes. Explained parsing for
*OpenUl/*CloseUl rather than a specific list of options. Clarified meaning of
Transverse (long edge perpendicular to feed direction).

« Media Option KeywordsRewrote all dimensions in consistent format.
Built tables of ISO and JIS standard paper and envelope sizes and added
most sizes. Moved most U.S. standard definitions to a separate table,
except for the ones that needed extra text to explain them, and included
several new media sizes. Changed imageable area definitidaneil
from inches to points (all others were already in points). Changed imagea-
ble area ofetterSmall from 553x731.5 points to 552x730 points, because
that is what 8 out of 9 PPD files had for that imageable area.

« Paper Size InvocatiobecameMedia SelectiotUnder*DefaultPageSize,
Unknown is now an option. Clarified, with examples, htageSize is meant
to be used. Explained howrageRegion should be used. RemovedperTray
and associated default and query.

* Information About Media Sizegnder*DefaultimageableArea and*DefaultPa-
perDimension, the sentence “The value should alwaysduer.” was
removed. “This value may haknown or one of the media options listed
undertimageableArea/*PaperDimension.” was added. FotmageableArea, clari-
fied that imageable area was measured in PostScript default units.
Changed “integers” to “reals” for all imageable area and paper dimension
keywords. Added that x and y axes should correspotidageableArea and
*PaperDimension.

* Media Handling Featured~or the*InputSlot keywords, the list of options
was replaced brayOptionand explanation was added. Current options
were brought forward from the rear of the document. In theidefirof
*ManualFeed the valueNone was removed from the list of valid choices and

226 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

the explanation changed. TtaaitputBin keywords were changed to accept
an extensible list of bin names, the current options were integrated into
this section from the rear of the document, and return values were speci-
fied for the query. AddeBear option for output trays. The explanation of
*OutputOrder was modified to address how most devices handle page stack
order today.

Resolution and Appearance Contrdhis new section was created to con-
tain *SetResolution, *DefaultResolution, *?Resolution, and resolution information.
Expanded format of thesolution option keyword to include “300x300dpi”
(as well as the old format of “300dpi”), to accommodate devices with
anamorphic resolution.

Gray Levels & HalftoningThe description orscreenFreq was changed
from “the second argument” to “thiequency argument”. The description
on*ScreenAngle was changed from “the first argument” to “tgle argu-
ment”. Both*ScreenFreq and*ScreenAngle were changed to bereal instead
of aninteger since that is what is returned dyrentscreen . Throughout
this section, “thelnvert qualifier” was changed to “theverse qualifier”.

This was a typo in the spec; thweert qualifier never appeared in a PPD
file. Spot options were integrated into this section. Several option key-
words were added tdransfer to include the ability to define transfer func-
tions for each process color. Options addexliicandNormalized wereRed,
Green, andBlue. The optiorFactory was added to distinguish between trans-
fer functions that are built-in and transfer functions that aggested.
Entire section was rewritten for more detail and clarification.

Color Separation Keyword$/lerged earlier color separation section (used
to be 3.0) into the intro of this section. AddzsamondDot spot function.

Font RelatedError was added as a legal value fogfaultFont. Addedcharset
andstatus fields to*Font, with explanatory table fatatus.

Printer MessagedGeneral rewording throughout section. Untissage,
added “Messages that appear uridetus or *PrinterError should not be
repeated here.” Clarified that a message may appear undestaotrand
*PrinterError, added examples of entries and translation strintfsite@rError,
added Level 2 device names to the list of optionsSarce.

System ManagemeiRewordedPatchFile explanation for clarity and added
requirements for behavior of patch file code. The descriptidPagdvord
was changed to refer to tharrentpassword instead of tlefaultpass-
word. *DeviceAdjustMatrix should be commented out if it is not used. Added
reference td.ocalizationsection taDeviceAdjustMatrix).

Cleaned up all sample code to eliminate “begin...end” so no dictionaries
are left on the stack if the code fails.

E.4 Changes since Version 3.0, dated March 8, 1989 227

228 Appendix E: Changes Since Earlier Versions (9 Feb 1996)

Index

Symbols

binary communications protocol 78

*?BindColor 130
* (first character of main keywords, sgijndcolor 130
PPD files) 15 *?BindEdge 129
*% (comment characters in PPDfiles) «gjngeqge 129
28 *?BindType 130
*? (first characters of query keywords, *BindType 130
PPD files) 15 *?BindWhen 130
! (translation string marker in PPD sgingwhen 130
files) 26 bit smoothing 86

~ (caret, marks a symbol name) 14%ogjisperPixel 87

| (exclusive OR) 32

Numerics

*1284DevicelD 72

*1284Modes 71

7-bit ASCII byte codesSeebyte
codes

8-bit byte codesSeebyte codes

A

Accept68K (*TTRasterizer) 70
*AccurateScreensSupport 87
*?AdvanceMedia 134
*AdvanceMedia 134
anti-aliasing 86
AnySetup (*OrderDependency) 49
ASCII characters
definition of commonly used 2
in main keywords 16
range allowed in PPD file 4

B

basic device capabilities keywords
68-72
BCP (*Protocols) 78

*BitsPerPixel 87
*?BlackSubstitution 91
*BlackSubstitution 91
*?Booklet 131
*Booklet 131
Boolean (*OpenUl) 42
bounding box (imageable area) 102
byte codes
8-bit allowed in QuotedValue 21
in StringValues 23
in SymbolValues 22
in translation strings 27
range in InvocationValues 21
range in PPD files 4, 15
translating PPD files 27

C

Cassette (*InputSlot) 97
*CenterRegistered 111
use by print manager 117
when to omit 175
charset
value of*Font 138
CID-keyed composite fonts
*Font charsetvalue 139
*Font encoding value 138
version in *Font 138

229

clear channel
needed for BCP 78
needed for emulators 80
clipping path(*ImageableArea)
*CloseGroup 45
*CloseSubGroup 46
*CloseUl 42
CMap
used aencodingvalue of*Font
138
*?Collate 123
*Collate 123
colon, in PPD files 20
color issues in PPD files 91-95
black substitution 91
color depths, invoking 87
color matching 146
color rendering dictionaries 92

color separation keywords 146-149

custom color 148

option keywords defined 146

process color 146
*ColorDevice 68
*?ColorModel 92
*ColorModel 92
*ColorRenderDict 92
colorsepkeyption keyword 147
*ColorSepScreenAngle 148
*ColorSepScreenFreq 148
*ColorSepScreenProc 148
*ColorSepTransfer 148
Comm10

changed t&nvi0 184
comments in PPD files 28
configuration panel, created from

PPD file 66

*ContoneOnly 87

*?CurrentMediaHeight 111
when to omit 175
*?CurrentMediawidth 111

when to omit 175
custom page sizes 106-119
code examples 166-175

responsibilities of a print manager

117
*CustomCMYK 148
use with*InkName 149

230 Index

102

*CustomPageSize 109
and *NonUIOrderDependency
48
examples 166-175
parameters defined 108
relationship to
*ParamCustomPageSize
*?CutMedia 135
*CutMedia 135
cut-sheet media

example of custom page size entry *DefaultJog

173,175

keywords defined for custom page

sizes 113

D

*Default
example of format 16

in InstallableOptions entry 65, 68*DefauItOutputMode

in local customization files 67
prefix 15
summary of rules 40
translation string allowed 26
use of value False 38
use of value None 39
use of value True 38
use of value Unknown 39
valid values 24

default keywords in PPD files
*Default syntax 15
definition 3
summary of rules 40

using and changing defauItsettings*Defau|t8tap|e|_ocation

14
default state of the device 6
*DefaultAdvanceMedia 134
*DefaultBindColor 130
*DefaultBindEdge 129
*DefaultBindType 130
*DefaultBindWhen 130

*DefaultBitsPerPixel 87
*DefaultBlackSubstitution 91
*DefaultBooklet 131
*DefaultCollate 123
*DefaultColorModel 92
*DefaultColorSep 148
*DefaultColorSpace 68
*DefaultCutMedia 135
*DefaultDuplex 122
*DefaultExitlamRecovery 76

110

123
124

*DefaultFoldType
*DefaultFoldWhen
*DefaultFont 141
*DefaultHalftoneType 88

*DefaultimageableArea 102
*DefaultinputSlot 97
*DefaultinsertSheet 132

*DefaultinstalledMemory 74

*DefaultJCLFrameBufferSize ~ 82
*DefaultJCLResolution 83

133
*DefaultLeadingEdge
example 168
*DefaultManualFeed 99
*DefaultMediaType 101
*DefaultMediaWeight 101
*DefaultMirrorPrint 134
*DefaultNegativePrint 134
*DefaultOutputBin 119

122
120
100

112

*DefaultOutputOrder
*DefaultPageRegion
*DefaultPageSize 99
*DefaultPaperDimension 103
*DefaultPaperTray keywordremoved
225

*DefaultResolution 84
*DefaultScreenProc 88

*DefaultSeparations 149
*DefaultSignature 121
*DefaultSlipsheet 132

*DefaultSmoothing 86
*DefaultSorter 125
125
*DefaultStapleOrientation 128
*DefaultStapleWhen 128
*DefaultStapleX 126
*DefaultStapleY 127
*DefaultTransfer 90
*DefaultTraySwitch 121
*DefaultUseHWMargins
device, definition of 1
*DeviceAdjustMatrix 78
Disk

status value of*Font 140
document structuring conventions

relationship to PPD files 2

115

surrounding PPD file features 7,8

use in unencapsulated jobs 33
DocumentSetup
(*OrderDependency) 49

(7 Dec 1995)

DSC.Seedocument structuring
conventions

*?Duplex 122
*Duplex 122
E

elementary types of a PPD file 36
*Emulators 79
emulators and protocols keywords
78-80

encoding

*LanguageEncoding option 57
encoding

value of*Font
*End 29, 55
Env

prefix for envelope names 184
Envelope (*InputSlot) 97
Envelope page size name 184
envelopes

requesting unnamed sizes 184
error handling, in PPD files 9
EUC (font encoding option) 137
Executive page size variations 184

137

exiting the server loop, PPD keywordsforeign language translation 25-28,

marked 33
*?ExitJamRecovery 76
*ExitJamRecovery 76

*ExitServer 76
ExitServer (*OrderDependency)
Expert
font charset value 139
font encoding option 137
ExpertSubset
font charset value 139
font encoding option 137
*Extensions 68
Extra in page size name 185

49

F G

Factory transfer function 91
False, defined 38
*FaxSupport 69
*FCacheSize 136

*FDirSize 136

finishing features 123-133
folding a job after printing 123
*?FoldType 123
*FoldType 123
*?FoldWhen 124
*FoldWhen 124
*Font 136
charsetvalue 138
encoding value 136
status value 140
font related keywords in PPD files
136-139
font encoding options 140
fonts in ROM 140
fonts on disk 140
*?FontList 141
fonthame
*Font option 136
fontname elementary type defined

36
*?FontQuery 142
Forced
*LeadingEdge option defined
112

example 167

180
format of PPD files 15-31
*FormatVersion 56
*FreeVM 73
relationship to'vMOption 74
globaldict , assumptionsin PPD files
29
gray levels and halftoning 87-91
transfer functions 91

H

halftone screen

angle, frequency, spot function

components 88

list of spot options 89

order of invocation 11
*HalftoneName 94
hard disk, presence listed 69
HeadToToe duplex printing 122

Height (custom page size parameter)

filename elementary type defined 36 yofined 108

*?FileSystem 69
*FileSystem 69

example 166

filmsetter (imagesetter) features 133

HeightOffset
custom page size parameter
defined 108
discarded by Level 1 devices 168
discarded if not supported 174,
175
range if not supported 174
hexadecimal substrings
defined 5
in *JCL keywords 82, 83
in *NickName 60
in emulator code 80
in InvocationValues 21
in QuotedValues 21
in translation strings 27
parsing rules 25
whentouse 21
*HWMargins 113-115
example 166
use by print manager 118, 119

*?ImageableArea
*ImageableArea
use 96
imagesetter features 133-136
ImageShift in *CustomPageSize

code 174
*Include 25, 55
example 13
use with*Symbolvalue 152
informational main keywords,
definition 4
*InkName 149
*?InputSlot 97
*InputSlot 97
combined with*MediaType 98
use by print managers 100
in-range byte codes 4
*?InsertSheet 132
*InsertSheet 132
installable options (PPD file group)
65-68
InstallableOptions
and*InstalledMemory 75
option keyword definition 65
*?InstalledMemory 74
*InstalledMemory 73, 74, 75
in InstallableOptions group 66, 67
int, elementary type defined 36

103
102

Index 231

invocation elementary type defined 56
37
InvocationValue 20
in InstallableOptions entry 68
symbol name in place of 149
ISOLatinl
*LanguageEncoding value 57
encoding conversion tables 199—

207

*LanguageEncoding

207
*LanguageLevel 70
*LanguageVersion 57
LargeCapacity (*InputSlot)
*LeadingEdge 112

examples 166
use by print manager 117,118

97

font charset value 139 Level 1
font encoding option 137 presence noted in PPD file 7, 70
ISOLatin2 (*LanguageEncoding) Level 2

57 presence noted in PPD file 7, 70
ISOLatin5 (*LanguageEncoding) recommendations for code
57 sequences 30
line length in PPD file 4
J, K local customization (PPD) file
defined 12
JCL keywords parsing order 13
and*Procotols 79 warnings about using 13
defined 81 local customization of PPD files 1,
JCL, elementary type defined 37 11-14
*JCLBegin 81 Long (*LeadingEdge)
*JCLCloseUl 82 examp|e 166
*JCLEnd 81 option defined 112
*?JCLFrameBufferSize 82 Lower (*InputSlot) 97
*JCLFrameBufferSize 82 Lower (*OutputBin) 120
*JCLOpenUl 82
*?JCLResolution 83 M
*JCLResolution 83
JCLSetup (*OrderDependency) 49 MacStandard

*JCLToPSInterpreter 81
JIS
character set options 139
font encoding option 137
JIS83-RKSJ (*LanguageEncoding)
57

job control language keywords 81

*LanguageEncoding value 57

205
main keywords in PPD files 15-17
ASCII characters 17
case 17

*JobPatchFile 73 42

*?Jog 133 definition 3

*Jog 133 delimiters 17

Kanji PPD files 179 general format 16

keywords in PPD files 41-152 length limit 17
manufacturer prefix list 209

L parsing 16

sample entry 34

standard option values 38-39
terminators 17
unrecognized 17

landscape orientation, relationship to
Transverse 185

*LandscapeOrientation 104

language extensions, support in PPD

files 68 *?ManualFeed 99

232 Index

byte code conversion tables 199-

creating your own keywords 41—

managing a device via PPD files 11

*ManualFeed 99
*Manufacturer 58
list of names 209
Margins in *CustomPageSize code

174
*MaxMediaHeight 111
example 166
*MaxMediaWidth 111

example 166
MaxPage page size name 185
media handling features in PPD files
95, 119-122
automatic tray switching 121
duplex printing 122
output order options, list of 120
select a media tray 97
selecting letterhead 97
selecting special paper 97
tumbling a duplex print job 122

media option keywords 96, 183-198

media saving page orientation 112

media selection 96-101

media size information 102-106
bounding box query 103
margins 102
physical height 103
physical width 103

*?MediaColor 101

*MediaColor 101

*?MediaType 101

*MediaType 101

*?MediaWeight 101

encoding conversion tables 199_*MediaWeight 101

*Message 145
Middle (*InputSlot) 97
Minus90 (*LandscapeOrientation)
105

*?MirrorPrint 134
*MirrorPrint 134
*ModelName 59

same agNickName 60

(7 Dec 1995)

N
*?NegativePrint 134
*NegativePrint 134

*NickName 60
relation to*ShortNickName
use of 64
None
defined as option and value 39
in PickMany option list 43
in PickOne option list 43
*NonUIConstraints 54
examples 167
*NonUIOrderDependency 10, 48
Normal , output order defined 120
Normalized transfer function 91
NoValue 20, 23
Null transfer function 90

64

O

OldStandard

font charset value 139
one-sided printing 122
*OpenGroup 14,45
*OpenSubGroup 46
*OpenUl

defined 42

in local customization file 13

list of Ul keywords 181

Ul symbol in spec 33
*Option, in InstallableOptions entry

66

Orientation

*PatchFile 72

calculation by print manager 118*PCFileName 61

table for use by print manager 11¢

custom page size parameter
defined 108
discarded if not supported 175
range infParamCustomPageSize
110
used to figure imageable area of
custom page size 118
uses 108
out-of-range byte codes 4
output bin options, list 120
output file, definition of 1
*OutputBin 119
?0utputBin 119
*?0utputMode 122
*QutputMode 122
*?0utputOrder 120
*OutputOrder 120

P

*PageDeviceName 94
PageOffset in *CustomPageSize
code 170,174

*PageRegion 100
can be overridden byageSize
100

use with manual feed 95
pages per minute 70

option keywords in PPD files 17-20+pagesize 99

ASCII characters 19
capitalization conventions 183
case 19,42
creating your own 42
definition 3
forbidden characters 18
length limit 19
parsing 19
qualifier 18
serialization 18
option, elementary type defined 37
optional features, handling in PPD
files 65
order dependency in PPD files 10
*OrderDependency 10, 48

PageSetup (*OrderDependency) 49
*?PageSize 99
use 95
use of*PageRegion instead of
100
*PageStackOrder 121
*PaperDimension 103

relationship tolmageableArea
102

use 96
*?PaperTray keyword removed 225
*PaperTray keyword removed 225
*Param, prefix 15
*ParamCustomPageSize

example 166, 168
parsing rules for PPD files 15
parsing summary for values 23
*Password 76
*?PatchFile 73

110

list of OEM prefixes 209
PickMany (*OpenUl) 42
PickOne (*Openul) 42
PJL (*Protocols) 78
Plus90 (*LandscapeOrientation)
105
PostScript language sequences in PPD
files 28
Level 2vs Level 1 29
PostScript printer description files.
SeePPD files
PPD file format specification
changes from earlier versions 213
PPD files
local customization (PPD) file
naming 13
post-processing 8
*PPD-Adobe 42
PreferLong (*LeadingEdge)
example 167
print manager, defined in PPD spec 6
printable 7-bit ASCll.Seebyte codes
printer messages in PPD files 143-
146
*PrinterError
*PrintPSErrors
*Product 62
Prolog (*OrderDependency)
*Protocols 78, 80
*PSVersion 62

Q

qualifier

defined 18

for mediaOptiorkeywords 184
query keywords in PPD files

definition 3
query, elementary type defined 37
querying the device via a PPD file 5
*QueryOrderDependency 51
QuotedValue 20, 21

112

143
77

49

R

real, elementary type defined 37

Rear (*InputSlot) 97
Rear (*OutputBin) 120
*ReferencePunch 135

Index 233

*Renderingintent 93
repeated keywords 14, 182
required keywords

handling missing 9

in local customization file 16

list of 41

order of appearance 31
*RequiresPageRegion 103
*Reset 76
*?Resolution 86
*Resolution 85
resolution

enhancement 86

resolution and appearance control

84-87
*ResScreenAngle 89
*ResScreenFreq 89

Reverse, output order defined 120
RKSJ (font encoding option) 137

roll-fed media

example of custom page size entry

Level1 168, 169

size limits of PPD files 31
*?Slipsheet 132
*Slipsheet 132
Small in page size name 185
*?Smoothing 86
*Smoothing 86
*?Sorter 125
*Sorter 125
*Source 145
Special
font charsetvalue 139
font encodingoption 137
spooler, using PPD files 8
spot color 146
stand-alone default keywords
definition 3
rule summary 40
rules 24, 26, 39
Standard
font charsetvalue 138
font encodingoption 137
*?StapleLocation 125

example of custom page size entry*StapleLocation 125

Level 2 171,172
ROM
status value of*Font 140

Rotated in page size name 185

S

sample of spec format 34
sample PPD files 153-175

custom page size examples 166

Level 2 Color Printer 153
Level 2 Imagesetter 160
*ScreenAngle 88
*ScreenFreq 88
*ScreenProc 89
*?Separations 149
*Separations 149
serialization qualifier
for media size, defined 184
*SetResolution 85

Shift-JIS (font encoding option) 137

Short (*LeadingEdge) 112
example 166

*ShortNickName 64
relationship to'NickName 60

*?Signature 121

*Signature 121

simplex (one-sided) printing 122

234 Index

relationship to'StapleX 126

*?StapleOrientation 128
*StapleOrientation 128
*?StapleWhen 128
*StapleWhen 128
*?StapleX 126
*StapleX 126
*?Stapley 127
*StapleY 127

stapling a job after printing 125

*StartEmulator_emulatorOption
startjob , use iNFExitServer code
*Status 144
status

value of*Font 140
*StopEmulator_emulatorOption

string, elementary type defined 38

StringValue 20, 23

structure keywords (PPD files) 42—

55
structure of PPD files 31
*SuggestedJobTimeout 77
*SuggestedManualFeedTimeout
*SuggestedWaitTimeout 77

summary of PPD file contents 176

*SymbolEnd 152

use with*SymbolLength 150

80
76

80

77

symbolic references to data in PPD
files 149-152
*SymbolLength 150
symbolNameaise with*Symbol
keywords 152
*SymbolValue 151
use 150
use with*SymbolEnd 152
use with*SymbolLength 150
SymbolValue 20, 22
translation string not allowed 26
syntax of PPD specification 32-35
system administrator, defined 11
system management in PPD files 72—
78
system management of PPD files 12
systemdict , assumptions in PPD files

29

T

tagged binary communications
protocol 79

TBCP (*Protocols) 79
*Throughput 70
*Transfer 90
translation strings
defined 25
on *Default keywords 26
on query keywords, not allowed
37
on related keywords 26, 96
parsing rules 27
rules 26
syntax in PPD files 25-28
transverse
as used on roll-fed devices 112
common use by print managers
113
Transverse mediaOptiorgualifier
definition 185
usage advice 177
*?TraySwitch 121
*TraySwitch 121
True, defined 38
Truelmage (*TTRasterizer) 70
*?TTRasterizer 71
*TTRasterizer 70
tuples, defined in PPD files 16
two-sided printing 122
Type42 (*TTRasterizer) 70

(7 Dec 1995)

typesetter (imagesetter) features 13WindowsANSI
*LanguageEncoding value 57

U encoding conversion tables 199-
207
Ul graphic symbol, definition 44
Ul keywords
definition 4
list of 181

use with*OpenUl/*CloseUl 42
*UlConstraints 52
in InstallableOptions entry 66, 67
unencapsulated job 33
Unknown
*LeadingEdge option defined
113
generic option/value defined 39
use with*LeadingEdge 167
unsetting a feature in PPD files 8
Upper (*InputSlot) 97
Upper (*OutputBin) 120
*UseHWMargins 115
example ofNonUIConstraints
167
use by print manager 117, 118
when to omit 175
user interface
building from a PPD file 5,6
user-defined page sizes in PPD files
106
userdict , assumption in PPD files 29
using PPD files 5-14

Vv

*VariablePaperSize keyword
removed 217
version
value of*Font 138
*YMOption 74

W, X, Y, Z

Width
custom page size parameter 108
example 166

WidthOffset
custom page size parameter 108
discarded if not supported 174,

175

range if not supported 174
use with*CenterRegistered 111

Index

235

236 Index (7 Dec 1995)

