

PostScript Language
Document Structuring
Conventions Specification

Version 3.0

25 September 1992

Adobe Developer Support

PN LPS5001

®

® ®

Adobe Systems Incorporated

Adobe Developer Technologies
345 Park Avenue
San Jose, CA 95110
http://partners.adobe.com/

Copyright



 1985, 1986, 1987, 1988, 1990 by Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of

this publication (whether in hardcopy or electronic form) may be reproduced or transmitted, in any

form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior written consent of Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name

PostScript in the text are references to the PostScript language as defined by Adobe Systems

Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for

Adobe Systems’ implementation of the PostScript language interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,”

or similar item refers to a printing device, display device or item (respectively) which contains

PostScript technology created or licensed by Adobe Systems Incorporated and not to devices or items

which purport to be merely compatible.

Adobe, Adobe Garamond, Lithos, PostScript and the PostScript logo,

Adobe Illustrator, TranScript,
Carta, and Sonata

are trademarks of Adobe Systems Incorporated.

QuickDraw and LocalTalk are
trademarks and Macintosh and LaserWriter are registered trademarks of Apple Computer, Inc.

,

registered in the United States and other countries.

FrameMaker is a registered trademark of Frame
Technology Corporation. ITC Stone is a registered trademark of International Typeface Corporation.
IBM is a registered trademark of International Business Machines Corporation. Helvetica, Times, and
Palatino are trademarks of Linotype AG and/or its subsidiaries. Microsoft and MS-DOS are registered
trademarks and Windows is a trademark of Microsoft Corporation. Times New Roman is a registered
trademark of The Monotype Corporation plc. NeXT is a trademark of NeXT, Inc. Sun-3 is a trademark
of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Information Systems. X Window
System is a trademark of the Massachusetts Institute of Technology.

All other trademarks are the

property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no
warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly
disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights.

3

Contents

List of Figures

 5

PostScript Language Document Structuring Conventions Specification

7

1 Using the Document Structuring Conventions 10

2 Document Manager Services 11
Spool Management 11
Resource Management 12
Error Management 13
Print Management 13
Page Management 15

3 DSC Conformance 17
Conforming Documents 17
Non-Conforming Documents 21

4 Document Structure Rules 22
Prolog 22
Script 23
Constraints 24
Parsing Rules 28
Convention Categories 29
Comment Syntax Reference 32

5 General Conventions 38
General Header Comments 38
General Body Comments 44
General Page Comments 52
General Trailer Comments 54

6 Requirement Conventions 55
Requirement Header Comments 55
Requirement Body Comments 67
Requirement Page Comments 78

7 Color Separation Conventions 81
Color Header Comments 81
Color Body Comments 82
Color Page Comments 83

8 Query Conventions 84

4 Contents (25 Sep 92)

Responsibilities 84
Query Comments 85

9 Open Structuring Conventions 92
The Extension Mechanism 92

10 Special Structuring Conventions 94

Appendix A: Changes Since Earlier Versions

 95

Appendix B: DSC Version 3.0 Summary

 103

Index

 107

5

List of Figures

Figure 1 Structure of a conforming PostScript language document 19
Figure 2 Determining the document bounding box 39
Figure 3 Various fold options 64

6 List of Figures (25 Sep 92)

7

PostScript Language
Document Structuring
Conventions Specification

As discussed in Chapter 3 of the

PostScript Language Reference Manual,
Second Edition

, the PostScript

™

 language standard does not specify the over-
all structure of a PostScript language program. Any sequence of tokens con-
forming to the syntax and semantics of the PostScript language is a valid
program that may be presented to a PostScript interpreter for execution.

For a PostScript language program that is a page description (in other words,
a description of a printable document), it is often advantageous to impose an
overall program structure.

A page description can be organized as a prolog and a script, as discussed in
section 2.4.2, “Program Structure” of the

PostScript Language Reference
Manual, Second Edition

. The prolog contains application-dependent defini-
tions. The script describes the particular desired results in terms of those
definitions. The prolog is written by a programmer, stored in a place accessi-
ble to an application program, and incorporated as a standard preface to each
page description created by the application. The script is usually generated
automatically by an application program.

Beyond this simple convention, this appendix defines a standard set of
document structuring conventions (DSC). Use of the document structuring
conventions not only helps assure that a document is device independent,
it allows PostScript language programs to communicate their document
structure and printing requirements to

document managers

 in a way that
does not affect the PostScript language page description.

8 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

A document manager can be thought of as an application that manipulates
the PostScript language document based on the document structuring con-
ventions found in it. In essence, a document manager accepts one or more
PostScript language programs as input, transforms them in some way, and
produces a PostScript language program as output. Examples of document
managers include print spoolers, font and other resource servers, post-
processors, utility programs, and toolkits.

If a PostScript language document properly communicates its structure and
requirements to a document manager, it can receive certain

printing services

.
A document manager can offer different types of services to a document. If
the document in question does not conform to the DSC, some or all of these
services may be denied to it.

Specially formatted PostScript language comments communicate the docu-
ment structure to the document manager. Within any PostScript language
document, any occurrence of the character

%

not

 inside a PostScript language
string introduces a

comment

. The comment consists of all characters between
the

%

 and the next newline, including regular, special, space, and tab charac-
ters. The scanner ignores comments, treating each one as if it were a single
white-space character. DSC comments, which are legal PostScript language
comments, do not affect the destination interpreter in any manner.

DSC comments are specified by two percent characters (

%%

) as the first
characters on a line (no leading white space). These characters are immedi-
ately followed by a unique keyword describing that particular comment—
again, no white space. The keyword always starts with a capital letter and
is almost always mixed-case. For example:

%%BoundingBox: 0 0 612 792
%%Pages: 45
%%BeginSetup

Note that some keywords end with a colon (considered to be part of the
keyword), which signifies that the keyword is further qualified by options or
arguments. There should be one space character between the ending colon
of a keyword and its subsequent arguments.

 9

The PostScript language was designed to be inherently device independent.
However, there are specific physical features that an output device may have
that certain PostScript operators activate (in Level 1 implementations many
of these operators are found in

statusdict

). Examples of device-dependent
operators are

legal

,

letter

, and

setsoftwareiomode

. Use of these operators
can render a document

device dependent

; that is, the document images
properly on one type of device and not on others.

Use of DSC comments such as

%%BeginFeature:

,

 %%EndFeature

(note
that the colon is part of the first comment and that this comment pair is
often referred to as

 %%Begin(End)Feature

) and

%%IncludeFeature:

 can help
reduce device dependency if a document manager is available to recognize
these comments and act upon them.

The DSC are designed to work with

PostScript printer description

 (PPD)
files, which provide the PostScript language extensions for specific printer
features in a regular parsable format. PPD files include information about
printer-specific features, and include information about the fonts built into
the ROM of each printer. The DSC work in tandem with PPD files to provide
a way to specify and invoke these printer features in a

device-independent

manner. For more information about PPD files, see the

PostScript Printer
Description Files Specification

 available from the Adobe Systems Developers’
Association.

Note Even though the DSC comments are a layer of communication beyond the
PostScript language and do not affect the final output, their use is considered
to be good PostScript language programming style.

10 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

1 Using the Document Structuring Conventions

Ideally, a document composition system should be able to compose a document
regardless of available resources—for example, font availability and paper
sizes. It should be able to rely on the document management system at
printing time to determine the availability of the resources and give the user
reasonable alternatives if those resources are not available.

Realistically, an operating environment may or may not provide a document
management system. Consequently, the DSC contain some redundancy.
There are two philosophically distinct ways a resource or printer-specific
feature might be specified:

• The document composition system

trusts

 its environment to handle the
resource and feature requirements appropriately, and merely specifies
what its particular requirements are.

• The document composer may not know what the network environment
holds or even that one exists, and

includes

 the necessary resources and
printer-specific PostScript language instructions within the document. In
creating such a document, the document composer delimits these included
resources or instructions in such a way that a document manager can
recognize and manipulate them.

It is up to the software developer to determine which of these methods is
appropriate for a given environment. In some cases, both may be used.

These two methods are mirrored in the DSC comments:

• Many DSC comments provide

%%Begin

 and

%%End

 constructs for
identifying resources and printer-specific elements of a document. The
document then prints regardless of whether a document manager is
present or not.

• Many of the requirement conventions provide a mechanism to specify
a need for some resource or printer-specific feature through the use
of

%%Include

 comments, and leave the inclusion of the resource or
invocation of the feature to the document manager. This is an example
of complete network cooperation, where a document can forestall some
printing decisions and pass them to the next layer of document
management. In general, this latter approach is the preferred one.

2 Document Manager Services 11

2 Document Manager Services

A document manager can provide a wide variety of services. The types of
services are grouped into five management categories: spool, resource, error,
print, and page management. The DSC help facilitate these services. A docu-
ment that conforms to this specification can expect to receive any of these
services, if available; one that does not conform may not receive any service.
Listed below are some of the services that belong to each of these categories.

2.1 Spool Management

Spooling management services are the most basic services that a document
manager can perform. A category of DSC comments known as general
conventions—specifically the header comments—provide information
concerning the document’s creator, title, pages, and routing information.

Spooling

The basic function of spool management is to deliver the document to the
specified printer or display. The document manager should establish queues
for each device to handle print job traffic in an effective manner, giving many
users access to one device. In addition, the document manager should notify
the user of device status (busy/idle, jammed, out of paper, waiting) and queue
status (held, waiting, printing). More advanced document managers can offer
job priorities and delayed-time printing.

Banner and Trailer Pages

As a part of spool management, a document manager can add a banner or
trailer page to the beginning or end, respectively, of each print job to separate
the output in the printer bin. The document manager can parse information
from the DSC comments to produce a proper banner that includes the title,
creator, creation date, the number of pages, and routing information of the
document.

Print Logging

If a document manager tracks the number of pages, the type of media used,
and the job requirements for each document, the document manager can pro-
duce a comprehensive report on a regular basis detailing paper and printer
usage. This can help a systems administrator plan paper purchases and esti-
mate printing costs. Individual reports for users can serve as a way to bill
internally for printing.

12 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

2.2 Resource Management

Resource management services deal with the inclusion, caching, and manipu-
lation of resources, such as fonts, forms, files, patterns, and documents. A
category of DSC comments, known as requirement conventions, enables a
document manager to properly identify instances in the document when
resources are either needed or supplied.

Resource Inclusion

Frequently used resources, such as company logos, copyright notices, special
fonts, and standard forms, can take up vast amounts of storage space if they
are duplicated in a large number of documents. The DSC support special

%%Include

 comments so a document manager can include a resource at print
time, saving disk space.

Supplied resources can be cached in a resource library for later use. For
example, a document manager that identifies a frequently used logo while
processing a page description subsequently stores the logo in a resource
library. The document manager then prints the document normally. When
future

%%IncludeResource:

 comments are found in succeeding documents,
the document manager retrieves the PostScript language program for the
logo from the resource library. The program is inserted into the document at
the position indicated by the DSC comment before the document is sent to
the printer.

Resource Downloading

Another valuable service that a document manager can provide is automati-
cally downloading frequently used resources to specific printers so those
resources are available instantly. Transmission and print time of documents
can be greatly reduced by using this service.

For example, the document manager judges that the

Stone-Serif

 font program
is a frequently used resource. It downloads the font program from the
resource library to the printer. Later, the document manager receives a
document that requests the

Stone-Serif

 font program. The document manager
knows this resource is already available in the printer and sends the document
to the printer without modification. Note that the resource can be downloaded
persistently into VM or onto a hard disk if the printer has one. For Level 2
interpreters, resources are found automatically by the

findresource

 operator.

2 Document Manager Services 13

Resource Optimization

An intelligent document manager can alter the position of included resources
within a document to optimize memory and/or resource usage. For example,
if an encapsulated PostScript (EPS) file is included several times in a
document, the document manager can move duplicate

procedure set defini-
tions

 (procsets) to the top of the document to reduce transmission time. If
a document manager performs dynamic resource positioning, it must main-
tain the relative order of the resources to preserve any interdependencies
among them.

2.3 Error Management

A document manager can provide advanced error reporting and recovery
services. By downloading a special error handler to the printer, the document
manager can detect failed print jobs and isolate error-producing lines of
PostScript language instructions. It can send this information, a descriptive
error message, and suggestions for solution back to the user.

There may be other instances where a document manager can recover from
certain types of errors. Resource substitution services can be offered to the
user. For example, if your document requests the

Stone-Serif

font program
and this font program is not available on the printer or in the resource library,
a document manager could select a similar font for substitution.

2.4 Print Management

Good print management ensures that the requested printer can fulfill the
requirements of a particular document. This is a superset of the spool
management spooling function, which is concerned with delivering the print
job to the printer regardless of the consequences. By understanding the
capabilities of a device and the requirements of a document, a document
manager can provide a wide variety of print management services.

Printer Rerouting

A document manager can reroute documents based on printer availability.
Heavily loaded printers can have their print jobs off-loaded to different
printers in the network. The document manager can also inform a user if a
printer is busy and suggest an idle printer for use as a backup.

14 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

If a specified printer cannot meet the requirements of a document (if for
example, the document requests duplex printing and the printer does not
support this feature), the document manager can suggest alternate printers.

For example, a user realizes that a document to be printed on a monochrome
printer contains a color page. The user informs the document manager
that the document should be rerouted to the color printer. Any printer-
specific portions are detected by the document manager via the

%%Begin(End)Feature:

 comments. The document manager consults the
appropriate PostScript printer description (PPD) file, the printer-specific
portion is replaced in the document, and the document is rerouted to the
appropriate queue.

Feature Inclusion

This service is similar in concept to resource inclusion. Instead of using
PostScript language instructions that activate certain features of a target
printer, an application can use the

%%IncludeFeature:

comment to specify
that a fragment of feature instructions should be included in the document
at a specific point. A document manager can recognize such a request,
consult the PPD file for the target printer, look for the specified feature, and
insert the code into the document before sending it to the printer.

Parallel Printing

Parallel printing, another possible feature of a document manager, is
especially useful for large documents or rush orders. Basically, the document
manager splits the document based on the

%%Page:

 comment, sending
different pieces of the document to different printers simultaneously. The
document is printed in parallel.

For example, a user requests that the first 100 pages of a document be
printed in parallel on five separate printers. The document manager splits
the document into five sections of 20 pages each, replicating the original
prolog and document setup for each section. Also, a banner page is specified
for each section to identify the pages being printed.

2 Document Manager Services 15

Page Breakout

Color and high-resolution printing are often expensive propositions. It does
not make sense to send an entire document to a color printer if the document
contains only one color illustration. When the appropriate comments are
used, document managers can detect color illustrations and detailed drawings
that need to be printed on high resolution printers, and split them from the
original document. The document manager sends these pages separately to a
high-resolution or color printer, while sending the rest of the document to
lower-cost monochrome printers.

2.5 Page Management

Page management deals with organizing and reorganizing individual pages in
the document. A category of comments known as

page comments

 facilitate
these services. See section 4.5, “Convention Categories,” for a thorough
description of page-level comments.

Page Reversal

Some printers place output in the tray face-up, some face-down. This small
distinction can be a nuisance to users who have to reshuffle output into the
correct order. Documents that come out of the printer into a face-up tray
should be printed last page first; conversely, documents that end up face-
down should be printed first page first. A document manager can reorder
pages within the document based on the

%%Page:

comment to produce
either of these effects.

n-Up Printing

n

-up, thumbnail, and signature printing all fall under this category. This
enables the user to produce a document that has multiple

virtual

 pages on
fewer

physical

 pages. This is especially useful when proofing documents,
and requires less paper.

For example, suppose a user wants a proof of the first four pages of a docu-
ment (two copies, because the user’s manager is also interested). Two-up
printing is specified, where two virtual pages are mapped onto one physical
sheet. The document manager adds PostScript language instructions (usually
to the document setup section) that will implement this service.

16 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Range Printing

Range printing is useful when documents need not be printed in their entirety.
A document manager can isolate the desired pages from the document (using
the

%%Page:

 comment and preserving the prolog and document setup)
before sending the new document to the printer. In the previous example,
the user may want only the first four pages of the document. The document
manager determines where the first four pages of the document reside and
discards the rest.

Collated Printing

When using the

#copies

 or

setpagedevice

 features to specify multiple cop-
ies, on some printers the pages of the document emerge uncollated
(1-1-1-2-2-2-3-3-3). Using the same mechanics as those for range printing,
a document manager can print a group of pages multiple times and obtain
collated output (1-2-3-1-2-3-1-2-3), saving the user the frustration of hand
collating the document.

Underlays

Underlays are text and graphic elements, such as draft and confidential
notices, headers, and images, that a document manager can add to a
document so they appear on every page. By adding PostScript language
instructions to the document setup, each page of the document renders
the underlay before drawing the page itself.

3 DSC Conformance 17

3 DSC Conformance

The PostScript interpreter does not distinguish between PostScript language
page descriptions that do or do not conform to the DSC. However, the struc-
tural information communicated through DSC comments is of considerable
importance to document managers that operate on PostScript page descrip-
tions as data. Because document managers cannot usually interpret the
PostScript language directly, they must rely on the DSC comments to
properly manipulate the document. It is necessary to distinguish between
those documents that conform to the DSC and those that do not.

Note In previous versions of the DSC, there were references to partially conforming
documents. This term has caused some confusion and its use has been
discontinued. A document either conforms to the conventions or it does not.

3.1 Conforming Documents

A

conforming

 document can expect to receive the maximum amount of
services from any document manager. A conforming document is recognized
by the header comment

%!PS-Adobe-3.0

 and is optionally followed by
keywords indicating the type of document. Please see the description of
this comment in section 5, “General Conventions,” for more details about
optional keywords.

A fully conforming document is one that adheres to the following rules
regarding syntax and semantics, document structure, and the compliance
constraints. It is also strongly suggested that documents support certain
printing services.

Syntax and Semantics

If a comment is to be used within a document, it must follow the syntactical
and semantic rules laid out in this specification for that comment.

Consider the following incorrect example:

%%BoundingBox 43.22 50.45 100.60 143.49

This comment is incorrect on two counts. First, there is a colon missing from
the %%BoundingBox: comment. Abbreviations for comments are not accept-
able. Second, floating point arguments are used instead of the integer argu-
ments this comment requires.

18 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Document Structure

The document structure rules described in section 4, “Document Structure
Rules,” must be followed. The following comments delineate the structure
of the document. If there is a section of a document that corresponds to a
particular comment, that comment must be used to identify that section of
the document.

%!PS-Adobe-3.0
%%Pages:
%%EndComments
%%BeginProlog
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page:
%%BeginPageSetup
%%EndPageSetup
%%PageTrailer
%%Trailer
%%EOF

For example, if there are distinct independent pages in a document, the
%%Page: comment must be used at the beginning of each page to identify
those pages.

Where sections of the structure are not applicable, those sections and
their associated comments need not appear in the document. For example,
if a document setup is not performed inside a particular document, the
%%BeginSetup and %%EndSetup comments are unnecessary. Figure 1
illustrates the structure of a conforming PostScript language document.

3 DSC Conformance 19

Figure 1 Structure of a conforming PostScript language document

Compliance Constraints

The compliance constraints described in section 4.3, “Constraints,” including
the proper use of restricted operators, must be adhered to.

 •

%!PS-Adobe-3.0

...DSC comments only...

%%EndComments

%%BeginProlog

%%BeginResource: procsetname1

...PostScript code and DSC comments...

%%EndResource

 •
 •

%%BeginResource: procsetnamen

...PostScript code and DSC comments...

%%EndResource

%%EndProlog

%%BeginSetup

...PostScript code and DSC comments...

%%EndSetup

%%Page: label1 ordinal1
...DSC comments only...

%%BeginPageSetup

...PostScript code and DSC comments...

%%EndPageSetup

...PostScript code and DSC comments...

%%PageTrailer

...PostScript code and DSC comments...
 •
 •
 •

%%Page: labeln ordinaln
...DSC comments only...

%%BeginPageSetup

...PostScript code and DSC comments...

%%EndPageSetup

...PostScript code and DSC comments...

%%PageTrailer

...PostScript code and DSC comments...

%%Trailer

...PostScript code and DSC comments...

Prolog

Document
Trailer

Script

Procedure
Definitions

Header

Document
Setup

Pages

20 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Printing Services

There are document manager printing services (such as those described in
section 2, “Document Manager Services”) that can be easily supported and
add value to an application. Although it is not a requirement of a conforming
document, it is strongly suggested that applications support these services by
using the comments listed below. Note that 20 comments will ensure support
of all services.

Spool Management
(Spooling, Banner and Trailer Pages, and Print Logging)
%%Creator: %%PageMedia:
%%CreationDate: %%PageRequirements:
%%DocumentMedia: %%Requirements:
%%DocumentPrinterRequired: %%Routing:
%%For: %%Title:

Resource Management
(Resource Inclusion, Downloading, and Optimization)
%%DocumentNeededResources: %%IncludeResource:
%%DocumentSuppliedResources: %%Begin(End)Resource:
%%PageResources:

Error Management
(Error Reporting and Recovery)
%%Extensions: %%ProofMode:
%%LanguageLevel:

Printer Management
(Printer Rerouting, Feature Inclusion, Parallel Printing, Color Breakout)
%%Begin(End)Feature: %%IncludeFeature:
%%Begin(End)Resource: %%IncludeResource:
%%DocumentMedia: %%LanguageLevel:
%%DocumentNeededResources: %%PageMedia:
%%DocumentPrinterRequired: %%PageRequirements:
%%DocumentSuppliedResources: %%PageResources:
%%Extensions: %%Requirements:

Page Management
(Page Reversal, N-up Printing, Range Printing, Collation, Underlays)
%%Pages: %%Page:
%%EndComments %%Begin(End)PageSetup
%%Begin(End)Setup %%PageTrailer
%%Begin(End)Prolog %%Trailer

3 DSC Conformance 21

3.2 Non-Conforming Documents

A non-conforming document most likely will not receive any services from a
document manager, may not be able to be included into another document,
and may not be portable. In some cases, this may be appropriate; a PostScript
language program may require an organization that is incompatible with
the DSC. This is especially true of very sophisticated page descriptions
composed directly by a programmer.

However, for page descriptions that applications generate automatically,
adherence to the structuring conventions is strongly recommended, simple to
achieve, and essential in achieving a transparent corporate printing network.

A non-conforming document is recognized by the %! header comment.
Under no circumstances should a non-conforming document use the
%!PS-Adobe-3.0 header comment.

22 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

4 Document Structure Rules

One of the most important levels of document structuring in the PostScript
language is the distinction between the document prolog and the document
script. The prolog is typically a set of procedure definitions appropriate for
the set of operations a document composition system needs, and the script is
the software-generated program that represents a particular document.

A conforming PostScript language document description must have a clearly
defined prolog and script separated by the %%EndProlog comment.

4.1 Prolog

The prolog consists of a header section, an optional defaults subsection, and
the prolog proper, sometimes known as the procedures section.

The header section consists of DSC comments only and describes the
environment that is necessary for the document to be output properly.
The end of the header section is denoted by the %%EndComments comment
(see the note on header comments in section 4.5, “Convention Categories”).

The defaults section is an optional section that is used to save space in the
document and as an aid to the document manager. The beginning of this
section is denoted by the %%BeginDefaults comment. Only DSC page
comments should appear in the defaults section. Information on the page-
level comments that are applicable and examples of their use can be found
in section 5.2, “General Body Comments” under the definition of
%%Begin(End)Defaults. The end of the defaults section is indicated by the
%%EndDefaults comment.

The beginning of the procedures section is indicated by the %%BeginProlog
comment. This section is a series of procedure set (procset) definitions;
each procset is enclosed between a %%BeginResource: procset and
%%EndResource pair. Procsets are groups of definitions and routines
appropriate for different imaging requirements.

4 Document Structure Rules 23

The prolog has the following restrictions:

• Executing the prolog should define procsets only. For example, these
procsets can consist of abbreviations, generic routines for drawing
graphics objects, and routines for managing text and images.

• A document-producing application should almost always use the same
prolog for all of its documents, or at least the prolog should be drawn from
a pool of common procedure sets. The prolog should always be
constructed in a way that it can be removed from the document and
downloaded only once into the printer. All subsequent documents that are
downloaded with this prolog stripped out should still execute correctly.

• No output can be produced while executing the prolog, no changes can be
made to the graphics state, and no marks should be made on the page.

4.2 Script

The document script consists of three sections: a document setup section,
page sections, and a document trailer.

• The document setup section is denoted by the %%Begin(End)Setup
comments. The document setup should consist of procedure calls for
invoking media selections (for example, setting page size), running
initialization routines for procsets, downloading a font or other resource,
or setting some aspect of the graphics state. This section should appear
after the %%EndProlog comment, but before the first %%Page: comment.

• The pages section of the script consists of 1 to n pages, each of which
should be functionally independent of the other pages. This means that
each page should be able to execute in any order and may be physically
rearranged, resulting in an identical document as long as the information
within it is the same, but with the physical pages ordered differently. A
typical example of this page reordering occurs during a page-reversal
operation performed by a document manager.

The start of each page is denoted by the %%Page: comment and can also
contain a %%Begin(End)PageSetup section (analogous to the document
setup section on a page level), and an optional %%PageTrailer section
(similar to the document trailer). In any event, each page will contain
between the setup and the trailer sections the PostScript language program
necessary to mark that page.

24 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

• The document trailer section is indicated by the %%Trailer comment.
PostScript language instructions in the trailer consists of calls to
termination routines of procedures and post-processing or cleanup
instructions. In addition, any header comments that were deferred using
the (atend) notation will be found here. See section 4.6, “Comment Syntax
Reference,” for a detailed description of (atend).

There are generally few restrictions on the script. It can have definitions like
the prolog and it can also modify the graphics environment, draw marks on
the page, issue showpage, and so on. There are some PostScript language
operators that should be avoided or at least used with extreme caution. A
thorough discussion of these operators can be found in Appendix I of the
PostScript Language Reference Manual, Second Edition.

The end of a document should be signified by the %%EOF comment.

4.3 Constraints

There are several constraints on the use of PostScript language operators in a
conforming document. These constraints are detailed below and are not only
applicable to documents that conform to the DSC. Even a non-conforming
document is much more portable across different PostScript interpreters if it
observes these constraints.

Page Independence

Pages should not have any inter-dependencies. Each page may rely on
certain PostScript language operations defined in the document prolog or in
the document setup section, but it is not acceptable to have any graphics state
set in one page of a document on which another page in the same document
relies on. It is also risky to reimpose or rely on a state defined in the docu-
ment setup section; the graphics state should only be added to or modified,
not reimposed. See Appendix I of the PostScript Language Reference Man-
ual, Second Edition for more details on proper preservation of the
graphics state with operators like settransfer.

Page independence enables a document manager to rearrange the document’s
pages physically without affecting the execution of the document description.
Other benefits of page independence include the ability to print different
pages in parallel on more than one printer and to print ranges of pages.
Also, PostScript language previewers need page independence to enable
viewing the pages of a document in arbitrary order.

4 Document Structure Rules 25

For the most part, page independence can be achieved by placing a
save-restore pair around each page, as shown below:

%!PS-Adobe-3.0
...Header comments, prolog definitions, document
setup...
%%Page: cover 1
%%BeginPageSetup
/pgsave save def
...PostScript language instructions to perform page
setup...
%%EndPageSetup
...PostScript language instructions to mark page 1...
pgsave restore
showpage
...Rest of the document...
%%EOF

The save-restore pair will also reclaim any non-global VM used during the
page marking (for example, text strings).

Note If pages must have interdependencies, the %%PageOrder: Special comment
should be used. This ensures that a document manager will not attempt to
reorder the pages.

Line Length

To provide compatibility with a large body of existing application and
document manager software, a conforming PostScript language document
description does not have lines exceeding 255 characters, excluding line-
termination characters. The intent is to be able to read lines into a
255-character buffer without overflow (Pascal strings are a common
example of this sort of buffer).

The PostScript interpreter imposes no constraints as to where line breaks
occur, even in string bodies and hexadecimal bitmap representations. This
level of conformance should not pose a problem for software development.
Any document structuring comment that needs to be continued on another
line to avoid violating this guideline should use the %%+ notation to indicate
that a comment line is being continued (see %%+ in section 5.2, “General
Body Comments”).

Line Endings

Lines must be terminated with one of the following combinations of
characters: CR, LF, or CR LF. CR is the carriage-return character and LF
is the line-feed character (decimal ASCII 13 and 10, respectively).

26 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Use of showpage

To reduce the amount of VM used at any point, it is common practice to
delimit PostScript language instructions used for a particular page with a
save-restore pair. See the page-independence constraint for an example
of save-restore use.

If the showpage operator is used in combination with save and restore,
the showpage should occur after the page-level restore operation. The moti-
vation for this is to redefine the showpage operator so it has side
effects in the printer VM, such as maintaining page counts for printing n-up
copies on one sheet of paper. If showpage is executed within the confines of
a page-level save-restore, attempts to redefine showpage to perform extra
operations will not work as intended. This also applies to the BeginPage and
EndPage parameters of the setpagedevice dictionary. The above discussion
also applies to gsave-grestore pairs.

Document Copies

In a conforming document, the number of copies must be modified in the
document setup section of the document (see %%BeginSetup and %%End-
Setup). Changing the number of copies within a single page automatically
breaks the page independence constraint. Also, using the copypage operator
is not
recommended because doing so inhibits page independence. If multiple
copies of a document are desired, use the #copies key or the setpagedevice
operator.

In Level 1 implementations, the #copies key can be modified to produce
multiple copies of a document as follows:

%!PS-Adobe-3.0
%%Pages: 23
%%Requirements: numcopies(3) collate
%%EndComments
...Prolog with procset definitions...
%%EndProlog
%%BeginSetup
/#copies 3 def
%%EndSetup
...Rest of the Document (23 virtual pages)...
%%EOF

4 Document Structure Rules 27

In Level 2 implementations, the number of copies of a document can be set
using the setpagedevice operator as follows:

<< /NumCopies 3 >> setpagedevice

The %%Pages: comment should not be modified if the number of copies is
set, as it represents the number of unique virtual pages in the document.
However, the %%Requirements: comment should have its numcopies option
modified, and the collate option set, if applicable.

Restricted Operators

There are several PostScript language operators intended for system-level
jobs that are not appropriate in the context of a page description program.
Also, there are operators that impose conditions on the graphics state directly
instead of modifying or concatenating to the existing graphics state. How-
ever, improper use of these operators may cause a document manager to
process a document incorrectly. The risks of using these operators involve
either rendering a document device dependent or unnecessarily inhibiting
constructive post-processing of document files for different printing needs—
for example, embedding one PostScript language document within another.

In addition to all operators in statusdict and the operators in userdict for
establishing an imageable area, the following operators should be used
carefully, or not at all, in a PostScript language page description:

banddevice framedevice quit setpagedevice
clear grestoreall renderbands setscreen
cleardictstack initclip setglobal setshared
copypage initgraphics setgstate settransfer
erasepage initmatrix sethalftone startjob
exitserver nulldevice setmatrix undefinefont

For more specific information on the proper use of these operators in various
situations, see Appendix I of the PostScript Language Reference Manual,
Second Edition.

There are certain operators specific to the Display PostScript system that are
not part of the Level 1 and Level 2 implementations. These operators are for
display systems only and must not be used in a document. This is a much
more stringent restriction than the above list of restricted operators, which
may be used with extreme care. For a complete list see section A.1.2,
“Display PostScript Operators, of the PostScript Language Reference Man-
ual, Second Edition.”

28 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

4.4 Parsing Rules

Here are a few explicit rules that can help a document manager parse the
DSC comments:

• In the interest of forward compatibility, any comments that are not
recognized by the parser should be ignored. Backward compatibility is
sometimes difficult, and it may be helpful to develop an “upgrading
parser” that will read in documents conforming to older versions of the
DSC and write out DSC version 3.0 conforming documents.

• Many comments have a colon separating the comment keyword from
its arguments. This colon is not present in all comment keywords (for
example, %%EndProlog) and should be considered part of the keyword
for parsing purposes. It is not an optional character.

• Comments with arguments (like %%Page:) should have a space separating
the colon from the first argument. Due to existing software,
this space must be considered optional.

• “White space” characters within comments may be either spaces or tabs
(decimal ASCII 32 and 9, respectively).

• Comment keywords are case-sensitive, as are all of the arguments
following a comment keyword.

• The character set for comment keywords is limited to printable ASCII
characters. The keywords only contain alphabetic characters and the :, !,
and ? characters. The arguments may include any character valid in the
PostScript language character set, especially where procedure names,
font names, and strings are represented. See the definition of the <text>
elementary type for the use of the \ escape mechanism.

• When looking for the %%Trailer comment (or any (atend) comments),
allow for nested documents. Observe %%BeginDocument: and
%%EndDocument comments as well as %%BeginData: and %%EndData.

• In the case of multiple header comments, the first comment encountered is
considered to be the truth. In the case of multiple trailer comments (those
comments that were deferred using the (atend) convention), the last
comment encountered is considered to be the truth. For example, if there
are two %%Requirements: comments in the header of a document, use the
first one encountered.

• Header comments can be terminated explicitly by an instance of
%%EndComments, or implicitly by any line that does not begin with %X,
where X is any printable character except space, tab, or newline.

4 Document Structure Rules 29

• The order of some comments in the document is significant, but in a
section of the document they may appear in any order. For example, in the
header section, %%DocumentResources:, %%Title:, and %%Creator: may
appear in any order.

• Lines must never exceed 255 characters, and line endings should follow
the line ending restrictions set forth in section 4.3, “Constraints.”

• If a document manager supports resource or feature inclusion, at print time
it should replace %%Include comments with the resource or feature
requested. This resource or feature code should be encapsulated in
%%Begin and %%End comments upon inclusion. If a document manager
performs resource library extraction, any resources that are removed,
including their associated %%Begin and %%End comments, should be
replaced by equivalent %%Include comments.

4.5 Convention Categories

The DSC comments are roughly divided into the followingsix categories of
conventions:

• General conventions

• Requirement conventions

• Color separation conventions

• Query conventions

• Open structuring conventions

• Special conventions

Typically, some subsets of the general, requirement, and color separation
conventions are used consistently in a particular printing environment. The
DSC have been designed with maximum flexibility in mind and with a mini-
mum amount of interdependency between conventions. For example, one
may use only general conventions in an environment where the presence of a
document manager may not be guaranteed, or may use the requirement con-
ventions on a highly spooled network.

General conventions delimit the various structural components of a PostScript
language page description, including its prolog, script, and trailer, and where
the page breaks fall, if there are any. The general convention comments
include document and page setup information, and they provide a markup
convention for noting the beginning and end of particular pieces of the page
description that might need to be identified for further use.

30 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Requirement conventions are comments that suggest document manager
action. These comments can be used to specify resources the document sup-
plies or needs. Document managers may make decisions based on resource
frequency (those that are frequently used) and load resources permanently
into the printer, download them before the job, or store them on a printer’s
hard disk, thus reducing transmission time.

Other requirement comments invoke or delimit printer-specific features and
requirements, such as paper colors and weights, collating order, and stapling.
The document manager can replace printer-specific PostScript language
fragments based on these comments when rerouting a print job to another
printer, by using information in the PostScript printer description (PPD) file
for that printer.

Color separation conventions are used to complement the color extensions to
the PostScript language. Comments typically identify PostScript language
color separation segments in a page, note custom color ratios (RGB or
CMYK), and list document and page level color use.

Query conventions delimit parts of a PostScript language program that query
the current state or characteristics of a printer, including the availability of
resources (for example, fonts, files, procsets), VM, and any printer-specific
features and enhancements. The type of program that uses this set of conven-
tions is usually interactive—that is, one that expects a response from the
printer. This implies that document managers should be able to send query
jobs to a printer, and route an answer back to the application that issued the
query. Query conventions should only be used in %!PS-Adobe-3.0 Query
jobs.

Open structuring conventions are user-defined conventions. Section 9, “Open
Structuring Conventions,” provides guidelines for creating these vendor-
specific comments.

Special conventions include those comments that do not fall into the above
categories.

The general, requirement, and color separation conventions can be further
broken down into three classes: header comments, body comments, and
page comments.

4 Document Structure Rules 31

Header Comments

Header comments appear first in a document file, before any of the executable
PostScript language instructions and before the procedure definitions.
They may be thought of as a table of contents. In order to simplify a docu-
ment manager’s job in parsing these header comments, there are two rules
that apply:

• If there is more than one instance of a header comment in a document
file, the first one encountered takes precedence. This simplifies nesting
documents within one another without having to remove the header
comments.

• Header comments must be contiguous. That is, if a document manager
comes across a line that does not begin with %, the document manager
may quit parsing for header comments. The comments may also be ended
explicitly with the %%EndComments convention.

All instances of lines beginning with %! after the first instance are ignored by
document managers, although to avoid confusion, this notation should not
appear twice within the block of header comments (see %%BeginDocument:
and %%EndDocument for examples of embedded documents).

Body Comments

Body comments may appear anywhere in a document, except the header sec-
tion. They are designed to provide structural information about the organiza-
tion of the document file and should match any related information provided
in the header comments section. They generally consist of %%Begin and
%%End constructs to delimit specific components of the document file, such
as procsets, fonts, or emulation code, and %%Include comments that request
the document manager to take action when encountering the comment, such
as including a document, resource, or printer-specific fragment of code.

32 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Page Comments

Page comments are page-level structure comments. They should not span
across page boundaries (see the exception below). That is, a page comment
applies only to the page in which it appears. The beginning of a page should
be noted by the %%Page: comment. The other page comments are similar to
their corresponding header comments (for example, %%BoundingBox: vs.
%%PageBoundingBox:), except for %%Begin or %%End comments that are
more similar to body comments in use (e.g., %%Begin(End)Setup vs.
%%Begin(End)PageSetup).

Note Some page comments that are similar to header comments can be used in
the defaults section of the file to denote default requirements or media for
all pages. See the %%Begin(End)Defaults comments for a more detailed
explanation.

4.6 Comment Syntax Reference

Before describing the DSC comments, it is prudent to specify the syntax
with which they are documented. This section introduces a syntax known as
Backus-Naur form (BNF) that helps eliminate syntactical ambiguities and
helps comprehend the comment definitions. A brief explanation of the BNF
operators is given in Table 1. The following section discusses elementary
types, which are used to specify the keywords and options of the DSC
comments.

Table 1 Explanation of BNF operators

BNF Operator Explanation

<token> This indicates a token item. This item may comprise
other tokens or it may be an elementary type (see
below).

::= Literally means “is defined as.”

[expression] This indicates that the expression inside the brackets is
optional.

{ expression } The braces are used to group expressions or tokens into
single expressions. It is often used to denote parsing
order (it turns the expression inside the braces into a
single token).

<token> ... The ellipsis indicates that one or more instances of
<token> can be specified.

| The | character literally means “or” and delimits alter-
native expressions.

4 Document Structure Rules 33

Elementary Types

An elementary or base type is a terminating expression. That is, it does not
reference any other tokens and is considered to be a base on which other
expressions are built. For the sake of clarity, these base types are defined
here in simple English, without the exhaustive dissection that BNF normally
requires.

(atend)
Some of the header and page comments can be deferred until the end of the
file (that is, to the %%Trailer section) or to the end of a page (that is, the
%%PageTrailer section). This is for the benefit of application programs that
generate page descriptions on-the-fly. Such applications might not have the
necessary information about fonts, page count, and so on at the beginning of
generating a page description, but have them at the end. If a particular com-
ment is to be deferred, it must be listed in the header section with an (atend)
for its argument list. A comment with the same keyword and its appropriate
arguments must appear in the %%Trailer or %%PageTrailer sections of the
document.

The following comments support the (atend) convention:

%%BoundingBox: %%DocumentSuppliedProcSets:
%%DocumentCustomColors: %%DocumentSuppliedResources:
%%DocumentFiles: %%Orientation:
%%DocumentFonts: %%Pages:
%%DocumentNeededFiles: %%PageBoundingBox:
%%DocumentNeededFonts: %%PageCustomColors:
%%DocumentNeededProcSets: %%PageFiles:
%%DocumentNeededResources: %%PageFonts:
%%DocumentProcSets: %%PageOrder:
%%DocumentProcessColors: %%PageOrientation:
%%DocumentSuppliedFiles: %%PageProcessColors:
%%DocumentSuppliedFonts: %%PageResources:

Note Page-level comments specified in the defaults section of the document cannot
use the (atend) syntax to defer definition of their arguments. (atend) can only
be used in the header section and within individual pages.

34 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

In Example 1, the bounding box information is deferred until the end of the
document:

Example 1

%!PS-Adobe-3.0
...Document header comments...
%%BoundingBox: (atend)
%%EndComments
...Rest of the document...
%%Trailer
%%BoundingBox: 0 0 157 233
...Document clean up...
%%EOF

<filename>
A filename is similar to the <text> elementary type in that it can comprise
any printable character. It is usually very operating system specific. The
following example comment lists four different files:

%%DocumentNeededResources: file /usr/smith/myfile.epsf
%%+ file (Corporate Logo \042large size\042) (This is (yet) another file)
%%+ file C:\LIB\LOGO.EPS

Note that the backslash escape mechanism is only supported inside parenthe-
ses. It can also be very convenient to list files on separate lines using the
continuation comment %%+.

<fontname>
A fontname is a variation of the simple text string (see <text>). Because font
names cannot include blanks, font names are considered to be delimited by
blanks. In addition, the \ escape mechanism is not supported. The following
example comment uses five font names:

%%DocumentNeededResources: font Times-Roman Palatino-Bold
%%+ font Helvetica Helvetica-Bold NewCenturySchoolbook-Italic

The font name does not start with a slash character (/) as it does in the
PostScript language when you are specifying the font name as a literal.

<formname>
A formname is the PostScript language object name of the form as used by
the defineresource operator. It is a simple text string as defined by the <text>
elementary type.

<int>
An integer is a non-fractional number that may be signed or unsigned. There
are practical limitations for an integer’s maximum and minimum values (see
Appendix B of the PostScript Language Reference Manual, Second Edition).

4 Document Structure Rules 35

<procname> ::= <name> <version> <revision>
<name> ::= <text>
<version> ::= <real>
<revision> ::= <uint>

A procname token describes a procedure set (procset), which is a block of
PostScript language definitions. A procset is labeled by a text string describ-
ing its contents and a version number. A procset version may undergo several
revisions, which is indicated by the revision number. Procset names should be
descriptive and meaningful. It is also suggested that the corporate name and
application name be used as part of the procset name to reduce conflicts, as in
this example:

(MyCorp MyApp - Graphic Objects) 1.1 0
Adobe-Illustrator-Prolog 2.0 1

The name, version, and revision fields should uniquely identify the procset. If
a version numbering scheme is not used, these fields should still be filled with
a dummy value of 0.

The revision field should be taken to be upwardly compatible with procsets of
the same version number. That is, if myprocs 1.0 0 is requested, then myprocs
1.0 2 should be compatible, although the converse (backward compatibility)
is not necessarily true. If the revision field is not present, a procset may be
substituted as long as the version numbers are equal. Different versions of a
procset may not be upwardly compatible and should not be substituted.

<patternname>
A patternname is the PostScript language object name of the pattern as used
by the defineresource operator. It is a simple text string as defined by the
<text> elementary type.

<real>
A real number is a fractional number that may be signed or unsigned. There
are practical limitations on the maximum size of a real (see Appendix B of
the PostScript Language Reference Manual, Second Edition). Real numbers
may or may not include a decimal point, and exponentiation using either an
‘E’ or an ‘e’ is allowed. For example,

-.002 34.5 -3.62 123.6e10 1E-5 -1. 0.0

are all valid real numbers.

36 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

<resource> ::= font <fontname> | file <filename> |
procset <procname> | pattern <patternname> |
form <formname> | encoding <vectorname>

<resources> ::= font <fontname> ... | file <filename> ... |
procset <procname> ... | pattern <patternname> ... |
form <formname> ... | encoding <vectorname> ...

A resource is a PostScript object, referenced by name, that may or may not
be available to the system at any given time. Times-Roman is the name of a
commonly available resource. The name of the resource should be the same
as the name of the PostScript object—in other words, the same name used
when using the defineresource operator.

Note Although files are not resources in the PostScript language sense, they can be
thought of as a resource when document managers are dealing with them.

<text>
A text string comprises any printable characters and is usually considered to
be delimited by blanks. If blanks or special characters are desired inside the
text string, the entire string should be enclosed in parentheses. Document
managers parsing text strings should be prepared to handle multiple parenthe-
ses. Special characters can be denoted using the PostScript language string \
escape mechanism.

The following are examples of valid DSC text strings:

Thisisatextstring
(This is a text string with spaces)
(This is a text string (with parentheses))
(This is a special character \262 using the \\ mechanism)

It is a good idea to enclose numbers that should be treated as text strings in
parentheses to avoid confusion. For example, use (1040) instead of 1040.

The sequence () denotes an empty string.

Note that a text string must obey the 255 character line limit as set forth in
section 3, “DSC Conformance.”

<textline>
This is a modified version of the <text> elementary type. If the first character
encountered is a left parenthesis, it is equivalent to a <text> string. If not, the
token is considered to be the rest of the characters on the line until end of line
is reached (some combination of the CR and LF characters).

4 Document Structure Rules 37

<uint>
An unsigned integer is a non-fractional number that has no sign. There are
practical limitations for an unsigned integer’s maximum value, but as a
default it should be able to range between 0 and twice the largest integer
value given in Appendix B of the PostScript Language Reference Manual,
Second Edition.

<vectorname>
A vectorname denotes the name of a particular encoding vector and is also a
simple text string. It should have the same name as the encoding vector the
PostScript language program uses. Examples of encoding vector names are
StandardEncoding and ISOLatin1Encoding.

38 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

5 General Conventions

The general conventions are the most basic of all the comments. They impart
general information, such as the bounding box, language level, extension
usage, orientation, title of the document, and other basics. There are com-
ments that are used to impart structural information (end of header, setup,
page breaks, page setup, page trailer, trailer) that are the keys to abiding by
the document structure rules of 3, “DSC Conformance.” Other general com-
ments are used to identify special sections of the document, including binary
and emulation data, bitmap previews, and page level objects.

5.1 General Header Comments

%!PS-Adobe-3.0 <keyword>
<keyword> ::= EPSF-3.0 | Query | ExitServer | Resource-<restype>
<restype> ::= Font | File | ProcSet | Pattern | Form | Encoding

This comment differs from the previous %!PS-Adobe-2.1 comment only in
version number. It indicates that the PostScript language page description
fully conforms to the DSC version 3.0. This comment must occur as the first
line of the PostScript language file.

There are four keywords that may follow the %!PS-Adobe-3.0 comment on
the same line. They flag the entire print job as a particular type of job so
document managers may immediately switch to some appropriate processing
mode. The following job types are recognized:

• EPSF—The file is an Encapsulated PostScript file, which is primarily a
PostScript language file that produces an illustration. The EPS format is
designed to facilitate including these illustrations in other documents. The
exact format of an EPS file is described in the PostScript Document
Structuring Conventions Specifications available from the Adobe Systems
Devlopers’ Association.

• Query—The entire job consists of PostScript language queries to a printer
from which replies are expected. A systems administrator or document
manager is likely to create a query job. See section 8, “Query
Conventions.”

• ExitServer—This flags a job that executes the exitserver or startjob
operator to allow the contents of the job to persist within the printer until it
is powered off. Some document managers require this command to handle
these special jobs effectively. See the discussion of exitserver under
%%Begin(End)ExitServer.

5 General Conventions 39

• Resource—As a generalization of the idea of Level 2 resources, files that
are strictly resource definitions (fonts, procsets, files, patterns, forms)
should start with this comment and keyword. For example, a procset
resource should start with the %!PS-Adobe-3.0 Resource-ProcSet
comment.

Fonts are resources, as well, but most fonts use one of two different
header comments: %!PS-AdobeFont-1.0 and %!FontType1-1.0. In the
future, fonts conforming to this specification should use the
%!PS-Adobe-3.0 Resource-Font comment.

Note Document composition programs should not use these keywords when pro-
ducing a document intended for printing or display. Instead, they should use
only the %!PS-Adobe-3.0 comment. Illustration applications may use the
EPSF-3.0 keyword.

%%BoundingBox: { <llx> <lly> <urx> <ury> } | (atend)
<llx> ::= <int> (Lower left x coordinate)
<lly> ::= <int> (Lower left y coordinate)
<urx> ::= <int> (Upper right x coordinate)
<ury> ::= <int> (Upper right y coordinate)

This comment specifies the bounding box that encloses all marks painted
on all pages of a document. That is, it must be a “high water mark” in all
directions for marks made on any page. The four arguments correspond to
the lower left (llx, lly) and upper right corners (urx, ury) of the bounding box
in the default user coordinate system (PostScript units). See also the
%%PageBoundingBox: comment.

Figure 2 Determining the document bounding box

Page 1 bounding box Page 2 bounding box Page 3 bounding box Document bounding box

%%Copyright: <textline>

This comment details any copyright information associated with the docu-
ment or resource.

Cooperative
adj.

obedient, submissive, subservient,
tractable, willing

other

amenable, compaisant, compliant,

collective, helpful, jointly, participatory

Printing
noun

issue, manuscript, monograph, opus
paperback, publication, text, tome

book, correspondance, edition, folio

volume, work writing

together, unified, united

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.
Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

123

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.
Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

123

Cooperative
adj.

obedient, submissive, subservient,
tractable, willing

other

amenable, compaisant, compliant,

collective, helpful, jointly, participatory

Printing
noun

issue, manuscript, monograph, opus
paperback, publication, text, tome

book, correspondance, edition, folio

volume, work writing

together, unified, unitedA
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T A

D
O

B
E

 P
O

S
T

S
C

R
I P

T

Cooperative

Printing

Cooperative

Printing

A
D

O
B

E

P
O

S
T

S
C

R
I

P
T

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T A

D
O

B
E

 P
O

S
T

S
C

R
I P

T

Cooperative

Printing

Cooperative

Printing

40 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%Creator: <textline>

This comment indicates the document creator, usually the name of the docu-
ment composition software.

%%CreationDate: <textline>

This comment indicates the date and time the document was created. Neither
the date nor time need be in any standard format. This comment is meant to
be used purely for informational purposes, such as printing on banner pages.

%%DocumentData: Clean7Bit | Clean8Bit | Binary

This header comment specifies the type of data, usually located between
%%Begin(End)Data: comments, that appear in the document. It applies
only to data that are part of the document itself, not bytes that are added by
communications software—for example, an EOF character marking the end
of a job, or XON/XOFF characters for flow control. This comment warns a
print manager, such as a spooler, to avoid communications channels that
reserve the byte codes used in the document. A prime example of this is a
serial channel, which reserves byte codes like 0x04 for end of job and 0x14
for status request.

There are three ranges of byte codes defined:

• Clean7Bit—The page description consists of only byte codes 0x1B to
0x7E (ESC to ‘~’), 0x0A (LF), 0x0D (CR), and 0x09 (TAB). Whenever
0x0A and/or 0x0D appear, they are used as end-of-line characters.
Whenever 0x09 appears, it is used as a tab character (i.e. whitespace).

• Clean8Bit—The same as Clean7Bit, but the document may also contain
byte codes 0x80–0xFF.

• Binary—Any byte codes from 0x00–0xFF may appear in the document.

The header section of the document (up to %%EndComments) must always
consist of Clean7bit byte codes so it is universally readable. If the application
declares the document to be Clean7Bit or Clean8Bit, it is responsible for
transforming any byte codes that fall outside the acceptable range back into
the acceptable range. Byte codes within character strings may be escaped—
for example, a 0x05 may be written (\005).

Documents with Clean7Bit data may be transmitted to a PostScript interpreter
over a serial line with 7 data bits. Documents with Clean8Bit data may be
transmitted to a PostScript interpreter over a serial line with 8 data bits.
Documents with Binary data cannot be transmitted over a serial line because
they may use byte codes reserved by the communications protocol. However,
they may be transmitted via a transparent protocol, such as LocalTalk.

5 General Conventions 41

%%Emulation: <mode> ...
<mode> ::= diablo630 | fx100 | lj2000 | hpgl | impress | hplj | ti855

This comment indicates that the document contains an invocation of the
stated emulator. This allows a document manager to route the document
to a printer that supports the correct type of emulation. See
%%Begin(End)Emulation: for more details.

%%EndComments (no keywords)

This comment indicates an explicit end to the header comments of the
document. Because header comments are contiguous, any line that does
not begin with %X where X is any printable character except space, tab, or
newline implicitly denotes the end of the header section.

%!PS-Adobe-3.0
%%Title: (Example of Header Comment Termination)
...More header comments...
%%DocumentResources: font Sonata
%GBDNodeName: smith@atlas.com
% This line implicitly denotes the end of the header

 section.

%%Extensions: <extension> ...
<extension> ::= DPS | CMYK | Composite | FileSystem

This comment indicates that in order to print properly, the document requires
a PostScript Level 1 interpreter that supports the listed PostScript language
extensions. The document manager can use this information to determine
whether a printer can print the document or to select possible printers for
rerouting the document. A list of operator sets specific to each extension is in
Appendix A of the PostScript Language Reference Manual, Second Edition.

• DPS—The document contains operators defined in the PostScript
language extensions for the Display PostScript system. Most of these
operators are available in Level 2 implementations. See Appendix A of the
PostScript Language Reference Manual, Second Edition for a list of
operators that are present only in Display PostScript implementations.

• CMYK—The document uses operators defined in the PostScript language
color extensions. Note that this is different from the %%Requirements:
color comment, in that it specifies that the PostScript interpreter must be
able to understand the CMYK color operators. It does not specify that the
printer must be capable of producing color output.

• Composite—The document uses operators defined in the PostScript
language composite font extensions.

42 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

• FileSystem—This keyword should be used if the document performs file
system commands. Note that certain file operators are already available
under the basic implementation of the PostScript language. See Appendix
A of the PostScript Language Reference Manual, Second Edition for a list
of those operators that are specifically part of the file system extensions to
Level 1 implementations.

The %%Extensions: comment must be used if there are operators in the
document specific to a particular extension of the PostScript language.
However, documents that provide conditional Level 1 emulation do not need
to use this comment. Also, if the document uses Level 2 operators, use the
%%LanguageLevel: comment instead.

%%For: <textline>

This comment indicates the person and possibly the company name for
whom the document is being printed. It is frequently the “user name” of the
individual who composed the document, as determined by the document
composition software. This can be used for banner pages or for routing the
document after printing.

%%LanguageLevel: <uint>

This comment indicates that the document contains PostScript language
operators particular to a certain level of implementation of the PostScript
language. Currently, only Level 1 and Level 2 are defined.

This comment must be used if there are operators in the document specific
to an implementation of the PostScript language above Level 1. However,
documents that provide conditional Level 1 emulation (for example, Level 1
emulation of the Level 2 operators used) need not use this comment. See
Appendix D of the PostScript Language Reference Manual, Second Edition
for emulation and compatibility strategies.

Level 2 operators are essentially a superset of the DPS, CMYK, Composite,
and FileSystem language extensions. If a language level of 2 is specified,
the individual extensions need not be specified. That is, use of both the
%%LanguageLevel: and %%Extensions: comments is not necessary; one
or the other is sufficient. See the %%Extensions: comment.

Note To enable a document to be output to as many interpreters as possible, a doc-
ument composition application should determine the minimum set of exten-
sions needed for the document to print correctly. It is poor practice to use the
%%LanguageLevel: comment when an %%Extensions: comment would have
been able to encompass all of the operators used in the document.

5 General Conventions 43

%%Orientation: { <orientation> ... } | (atend)
<orientation> ::= Portrait | Landscape

This comment indicates the orientation of the pages in the document. It can
be used by previewing applications and post-processors to determine how to
orient the viewing window. A portrait orientation indicates that the longest
edge of the paper is parallel to the vertical (y) axis. A landscape orientation
indicates that the longest edge of the paper is parallel to the horizontal (x)
axis. If more than one orientation applies to the document, an individual page
should specify its orientation by using the %%PageOrientation: comment.

%%Pages: <numpages> | (atend)
<numpages> ::= <uint> (Total number of pages)

This comment defines the number of virtual pages that a document will
image. This may be different from the number of physical pages the printer
prints (the #copies key or setpagedevice operator and other document
manager features may reduce or increase the physical number of pages).
If the document produces no pages (for instance, if it represents an included
illustration that does not use showpage), the page count should be 0. See
also the %%Page: comment.

In previous specifications, it was valid to include an optional page order
number after the number of pages. Its use is now discouraged because of
problems with the (atend) syntax (one might know the page order before
one knows the number of pages). Please use the %%PageOrder: comment
to indicate page order.

%%PageOrder: <order> | (atend)
<order> ::= Ascend | Descend | Special

The %%PageOrder: comment is intended to help document managers
determine the order of pages in the document file, which in turn enables a
document manager optionally to reorder the pages. This comment can have
three page orders:

• Ascend—The pages are in ascending order—for example, 1-2-3-4-5.

• Descend—The pages of the document are in descending order—for
example, 5-4-3-2-1.

• Special—Indicates that the document is in a special order—for example,
signature order.

The distinction between a page order of Special and no page order at all is
that in the absence of the %%PageOrder comment, any assumption can be
made about the page order, and the document manager permits any reorder-
ing of the page. However, if the page order comment is Special, the pages
must be left intact in the order given.

44 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%Routing: <textline>

This comment provides information about how to route a document back to
its owner after printing. At the discretion of the system administrator, it may
contain information about mail addresses or office locations.

%%Title: <textline>

This comment provides a text title for the document that is useful for printing
banner pages and for routing or recognizing documents.

%%Version: <version> <revision>
<version> ::= <real>
<revision> ::= <uint>

This comment can be used to note the version and revision number of a
document or resource. A document manager may wish to provide version
control services, or allow substitution of compatible versions/revisions of
a resource or document. Please see the <procname> elementary type for a
more thorough discussion of version and revisions.

5.2 General Body Comments

%%+ (no keywords)

Any document structuring comment that must be continued on another line to
avoid violating the 255-character line length constraint must use the %%+
notation to indicate that a comment line is being continued. This notation
may be used after any of the document comment conventions, but may only
be necessary in those comments that provide a large list of names, such as
%%DocumentResources:. Here is an example of its use:

%%DocumentResources: font Palatino-Roman Palatino-Bold
%%+ font Palatino-Italic Palatino-BoldItalic Courier
%%+ font Optima LubalinGraph-DemiOblique

See section 3, “DSC Conformance,” for more information about line length
and restrictions.

%%BeginBinary: <bytecount>
<bytecount> ::= <uint>

%%EndBinary (no keywords)

These comments are used in a manner similar to the %%Begin(End)Data:
comments. The %%Begin(End)Binary: comments are designed to allow a
document manager to effectively ignore any binary data these comments
encapsulate.

5 General Conventions 45

To read data directly from the input stream in the PostScript language
(using currentfile, for instance), it is necessary to invoke a procedure
followed immediately by the data to be read. If the data is embedded in the
%%Begin(End)Binary: construct, those comments are effectively part of the
data, which typically is not desired. To avoid this problem, the procedure
invocation should fall inside the comments, even though it is not binary,
and the bytecount should reflect this so it can be skipped correctly. In the
case of a byte count, allow for carriage returns, if any.

Note This comment has been included for backward compatibility only and may
be discontinued in future versions of the DSC; use the more specific
%%Begin(End)Data: comments instead.

%%BeginData: <numberof>[<type> [<bytesorlines>]]
<numberof> ::= <uint> (Lines or physical bytes)
<type> ::= Hex | Binary | ASCII (Type of data)
<bytesorlines> ::= Bytes | Lines (Read in bytes or lines)

%%EndData (no keywords)

These comments are designed to provide information about embedded bodies
of data. When a PostScript language document file is being parsed, encoun-
tering raw data can tremendously complicate the parsing process. Encapsu-
lating data within these comments can allow a document manager to ignore
the enclosed data, and speed the parsing process. If the type argument is
missing, binary data is assumed. If the bytesorlines argument is missing,
numberof should be considered to indicate bytes of data.

Note that <numberof> indicates the bytes of physical data, which vary from
the bytes of virtual data in some cases. With hex, each byte of virtual data is
represented by two ASCII characters (two bytes of physical data). Although
the PostScript interpreter ignores white space in hex data, these count toward
the byte count.

For example,

FD 10 2A 05

is 11 bytes of physical data (8 bytes hex, 3 spaces) and 4 binary bytes of
virtual data.

Remember that binary data is especially sensitive to different print environ-
ments because it is an 8-bit representation. This can be very important to the
document manager if a print network has a channel that is 7 bit serial, for
example. See also the %%DocumentData: comment.

46 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

To read data directly from the input stream (using currentfile, for instance),
it is necessary to invoke a procedure followed immediately by the data to be
read. If the data is embedded in the %%Begin(End)Data: construct, then those
comments are effectively part of the data, which is typically not desirable.
To avoid this problem, the procedure invocation should fall inside the com-
ments, even though it is not binary, and the byte or line counts should reflect
this so it can be skipped correctly. In the case of a byte count, allow for
end-of-line characters, if any.

Note Document managers should ensure that the entire %%BeginData: comment
line is read before acting on the byte count.

In the example below, there are 135174 bytes of hex data, but the
%%BeginData: and %%EndData comments encompass the call to the
image operator. The resulting byte count includes 6 additional bytes, for
the string “image” plus the newline character.

/picstr 256 string def
25 140 translate
132 132 scale
256 256 8 [256 0 0 -256 0 256] { currentfile picstr readhexstring pop }
%%BeginData: 135174 Hex Bytes
image
4c47494b3187c237d237b137438374ab
213769876c8976985a5c987675875756
...Additional 135102 bytes of hex...
%%EndData

Instead of keeping track of byte counts, it is probably easier to keep track of
lines of data. In the following example, the line count is increased by one to
account for the “image” string:

/picstr 256 string def
25 140 translate
132 132 scale
256 256 8 [256 0 0 -256 0 256] { currentfile picstr readhexstring pop }
%%BeginData: 4097 Hex Lines
image
4c47494b3187c237d237b137438374ab
213769876c8976985a5c987675875756
...Additional 4094 lines of hex...
%%EndData

With binary data, it is unlikely that the concept of lines would be used,
because binary data is usually considered one whole stream.

5 General Conventions 47

%%BeginDefaults (no keywords)

%%EndDefaults (no keywords)

These comments identify the start and end of the defaults section of the
document. These comments can only occur after the header section
(%%EndComments), after the EPSI preview (%%Begin(End)Preview), if
there is one, but before the prolog (%%BeginProlog) definitions.

Some page level comments that are similar to header comments can be used
in this defaults section of the file to denote default requirements, resources, or
media for all pages. This saves space in large documents (page-level values
do not need to be repeated for every page) and can give the document man-
ager some hints on how it might optimize resource usage in the file. The only
comments that can be used this way are the following:

%%PageBoundingBox:
%%PageCustomColors:
%%PageMedia:
%%PageOrientation:
%%PageProcessColors:
%%PageRequirements:
%%PageResources:

For example, if the %%PageOrientation: Portrait comment were used in the
defaults section, it would indicate that the default orientation for all pages
is portrait. When page-level comments are used this way they are known
as page defaults. Page comments used in a page override any page defaults
in effect. In reference to the previous example, if a particular page of the
document were to have a landscape orientation, it would place a
%%PageOrientation: Landscape comment after the %%Page: comment
to override the default portrait orientation.

48 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Example 2 illustrates the page default concept.

Example 2

%!PS-Adobe-3.0
%%Title: (Example of page defaults)
%%DocumentNeededResources: font Palatino-Roman Helvetica
%%DocumentMedia: BuffLetter 612 792 75 buff ()
%%+ BlueLetter 612 792 244 blue (CorpLogo)
%%EndComments
%%BeginDefaults
%%PageResources: font Palatino-Roman
%%PageMedia: BuffLetter
%%EndDefaults
%%BeginProlog
...Prolog definitions...
%%EndProlog
%%BeginSetup
...PostScript language instructions to set the default paper size, weights, and
color...
%%EndSetup
%%Page: Cover 1
%%PageMedia: BlueLetter
%%BeginPageSetup
...PostScript language instructions to set the blue corporate logo cover paper...
%%EndPageSetup
...Rest of page 1...
%Page: ii 2
%%PageResources: font Palatino-Roman Helvetica
...Rest of page 2...
%%Page: iii 3
...Rest of the document...
%%EOF

In this example, the font resource Palatino-Roman is specified in the defaults
section as a page resource. This indicates that Palatino-Roman is a page
default and will most likely be used on every page. Also, the media BuffLetter
is specified as the page default. Buff-colored, 20-lb, 8.5" x 11" paper will be
used for most pages.

Page 1 uses a special blue cover paper and overrides the page default (buff
paper) by putting a %%PageMedia: comment in the page definition. Page 2
uses buff paper and therefore doesn’t have to put the %%PageMedia:
comment in its page definition. However, it does use the Helvetica font in
addition to the Palatino-Roman font. The page default of Palatino-Roman is
overridden by the %%PageResources: comment in the page definition.

5 General Conventions 49

Note In some instances it may be superfluous to use these page defaults. If only one
type of orientation, media type, etc. is used in the entire document, the header
comment alone is sufficient to indicate the default for the document. Page
defaults should only be used if there is more than one bounding box, custom
color, medium, orientation, process color, requirement, or resource used.

%%BeginEmulation: <mode>
<mode> ::= diablo630 | fx100 | lj2000 | hpgl | hplj | impress | ti855

%%EndEmulation (no keyword)

The %%BeginEmulation: comment signifies that the input data following the
comment contains some printer language other than PostScript. The first line
after the %%BeginEmulation comment should be the PostScript language
instructions to invoke the emulator. This code is in the PPD file for the
printer. Note that the invocation of the emulator is restricted to one line.

This comment enables a document manager to route the document or piece
of the document to an appropriate printer. The %%EndEmulation comment
should be preceded by the code to switch back to PostScript mode on printers
that support this type of switching (again, limit this code to one line). Alter-
natively, the %%EndEmulation comment may be omitted, in which case the
end-of-file switches the printer back into PostScript mode. The following
example illustrates the first approach:

%!PS-Adobe-3.0
%%Title: (Example of emulator comments)
%%Emulation: hplj
%%EndComments
...Prolog definitions and document setup...
%%BeginEmulation: hplj
3 setsoftwareiomode % Invoke hplj emulation
...Emulator data...
1B 7F 30 % Switch back to PostScript
%%EndEmulation
...Remainder of document...

Note When including emulator data, this may break the page independence con-
straint for a conforming PostScript language file, because there is no way to
signify page boundaries. Care should be taken when invoking specialized fea-
tures of the document manager, such as n-up printing. The document may not
be printed as expected.

50 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginPreview: <width> <height> <depth> <lines>
<width> ::= <uint> (Width of the preview in pixels)
<height> ::= <uint> (Height of the preview in pixels)
<depth> ::= <uint> (Number of bits of data per pixel)
<lines> ::= <uint> (Number of lines in the preview)

%%EndPreview (no keywords)

These comments bracket the preview section of an EPS file in interchange
format (EPSI). The EPSI format is preferred over other platform-dependent
previews (for example, Apple Macintosh and IBM PC) when transferring
EPS files between heterogenous platforms. The width and height fields pro-
vide the number of image samples (pixels) for the preview. The depth field
indicates how many bits of data are used to establish one sample pixel of the
preview (typical values are 1, 2, 4, or 8). The lines field indicates how many
lines of hexadecimal data are contained in the preview, so that an application
disinterested in the preview can easily skip it.

The preview consists of a bitmap image of the file, as it would be rendered on
the page by the printer or PostScript language previewer. Applications that
use the EPSI file can use the preview image for on-screen display. Each line
of hexadecimal data should begin with a single percent sign. This makes the
entire preview section a PostScript language comment so the file can be sent
directly to a printer without modification. See section 6, “Device-Indepen-
dent Screen Preview,” of the Encapsulated PostScript Specifications available
from the Adobe Systems Developers’ Association.

The EPSI preview should be placed after the %%EndComments in the docu-
ment file, but before the defaults section (%%Begin(End)Defaults), if there is
one, and before the prolog (%%BeginProlog) definitions.

Note Preview comments can be used only in documents that comply with the EPS
file format. See the Encapsulated Postscript Specifications available from the
Adobe Systems Developers’ Association for more details, including platform-
specific versions of the preview (Apple Macintosh and IBM PC platforms).

%%BeginProlog (no keywords)

%%EndProlog (no keywords)

These comments delimit the beginning and ending of the prolog in the docu-
ment. The prolog must consist only of procset definitions. The %%EndProlog
comment is widely used and parsed for, and must be included in all docu-
ments that have a distinct prolog and script.

5 General Conventions 51

Breaking a document into a prolog and a script is conceptually important,
although not all document descriptions fall neatly into this model. If your
document represents free form PostScript language fragments that might
entirely be considered a script, you should still include the %%EndProlog
comment, even though there may be nothing in the prolog part of the file.
This effectively makes the entire document a script.

See section 3.1, “Conforming Documents,” and 4, “Document Structure
Rules,” for more information on the contents of the document prolog.

%%BeginSetup (no keywords)

%%EndSetup (no keywords)

These comments delimit the part of the document that does device setup for
a particular printer or document. There may be instructions for setting page
size, invoking manual feed, establishing a scale factor (or “landscape” mode),
downloading a font, or other document-level setup. Expect to see
liberal use of the setpagedevice operator and statusdict operators between
these two comments. There may also be some general initialization instruc-
tions, such as setting some aspects of the graphics state. This code should be
limited to setting those items of the graphics state, such as the current font,
transfer function, or halftone screen, that will not be affected by initgraphics
or erasepage (showpage performs these two operations implicitly). Special
care must be taken to ensure that the document setup code modifies the cur-
rent graphics state and does not replace it. See Appendix I of the PostScript
Language Reference Manual, Second Edition for more information about
how to properly modify the graphics state.

If present, these comments appear after the %%EndProlog comment, but
before the first %%Page: comment. In other words, these comments are not
part of the prolog. They should be in the first part of the script before any
pages are specified.

52 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

5.3 General Page Comments

Some of the following general page comments that specify the bounding box
or orientation may appear in the defaults section or in a particular page. If
these comments appear in the defaults section of the document file between
%%BeginDefaults and %%EndDefaults, they are in effect for the entire print
job. If they are found in the page-level comments for a page, they should be
in effect only for that page. See %%Begin(End)Defaults for more details on
page defaults.

%%BeginObject: <name> [<code>]
<name> ::= <text> (Name of object)
<code> ::= <text> (Processing code)

%%EndObject (no keywords)

These comments delimit individual graphic elements of a page. In a context
where it is desirable to be able to recognize individual page elements, this
comment provides a mechanism to label and recognize them at the PostScript
language level. Labelling is especially useful when a document printing
system can print selected objects in a document or on a page.

For instance, the code field of this comment can be used to represent proofing
levels for a document. For example, the printing manager may be requested
to “print only those objects with proofing levels less than 4.” This can save
printing time when proofing various elements of a document. It can also be
useful in systems that allow PostScript language program segments to be
parsed and re-edited into convenient groupings and categorizations of graphic
page elements. In a document production system or in an application that is
highly object-oriented, use of this comment is strongly recommended.

The user must specify to the application what things constitute an object and
what the proofing level of each object will be.

%%BeginPageSetup (no keywords)

%%EndPageSetup (no keywords)

These comments are analogous to the %%BeginSetup: and %%EndSetup
comments, except that %%BeginPageSetup: and %%EndPageSetup appear
in the body of a document right after a %%Page: comment. They delimit
areas that set manual feed, establish margins, set orientation, download fonts
or other resources for the page, invoke particular paper colors, and so on.
This is the proper place to set up the graphics state for the page. It should be
assumed that an initgraphics and an erasepage (i.e. showpage) have been
performed prior to this page. Take special care to ensure that the code in the
page setup modifies the current graphics state rather than replaces it. See
Appendix I of the PostScript Language Reference Manual, Second Edition
for more information about how to properly modify the graphics state.

5 General Conventions 53

%%Page: <label> <ordinal>
<label> ::= <text> (Page name)
<ordinal> ::= <uint> (Page position)

This comment marks the beginning of the PostScript language instructions
that describe a particular page. %%Page: requires two arguments: a page
label and a sequential page number. The label may be anything, but the
ordinal page number must reflect the position of that page in the body of
the PostScript language file and must start with 1, not 0. In the following
example, the name of the third page of the document is 1:

%!PS-Adobe-3.0
...Document prolog and setup...
%%Page: cover 1
...Rest of the cover page...
%%Page: ii 2
...Rest of the ii page...
%%Page: 1 3
...Rest of the first page...
%%Page: 2 4
...Rest of the second page...
%%EOF

A document manager should be able to rearrange the contents of the print
file into a different order based on the %%Page: comment (or the pages may
be printed in parallel, if desired). The %%PageOrder: Special comment can
be used to inform a document manager that page reordering should not take
place.

%%PageBoundingBox: { <llx> <lly> <urx> <ury> } | (atend)
<llx> ::= <int> (Lower-left x coordinate)
<lly> ::= <int> (Lower-left y coordinate)
<urx> ::= <int> (Upper-right x coordinate)
<ury> ::= <int> (Upper-right y coordinate)

This comment specifies the bounding box that encloses all the marks painted
on a particular page (this is not the bounding box of the whole document—
see the %%BoundingBox: comment). llx, lly and urx, ury are the coordinates
of the lower-left and upper-right corners of the bounding box in the default
user coordinate system (PostScript units). This comment can pertain to an
individual page or a document, depending on the location of the comment.
For example, the comment may be in the page itself or in the document
defaults section.

54 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%PageOrientation: Portrait | Landscape

This comment indicates the orientation of the page and can be used by
preview applications and post-processors to determine how to orient the
viewing window. This comment can pertain to an individual page or a docu-
ment, depending on the location of the comment. For example, the comment
may be in the page itself or in the document defaults section. See
%%Orientation: for a description of the various orientations. See
%%Begin(End)Defaults for use of this comment as a page default.

5.4 General Trailer Comments

Some trailer comments are special and work with other comments that
support the (atend) notation. In addition, trailer comments delimit sections of
PostScript language instructions that deal with cleanup and other housekeep-
ing. This cleanup can affect a particular page or the document as a whole.

%%PageTrailer (no keywords)

This comment marks the end of a page. Any page comments that may have
been deferred by the (atend) convention should follow the %%PageTrailer
comment.

%%Trailer (no keywords)

This comment must only occur once at the end of the document script. Any
post-processing or cleanup should be contained in the trailer of the docu-
ment, which is anything that follows the %%Trailer comment. Any of the doc-
ument-level structure comments that were deferred by using the (atend)
convention must be mentioned in the trailer of the document after the
%%Trailer comment.

When entire documents are embedded in another document file, there may
be more than one %%Trailer comment as a result. To avoid ambiguity, embed-
ded documents must be delimited by the %%BeginDocument: and %%End-
Document comments.

%%EOF (no keywords)

This comment signifies the end of the document. When the document
manager sees this comment, it issues an end-of-file signal to the PostScript
interpreter. This is done so system-dependent file endings, such as Control-D
and end-of-file packets, do not confuse the PostScript interpreter.

6 Requirement Conventions 55

6 Requirement Conventions

The requirement conventions are comments that suggest document manager
action. Some of these comments list the resources needed or supplied by the
document, delimit those resources if they are supplied, and specify the inser-
tion point for those resources if they are needed. Other comments deal with
printer-specific features (listing requirements, delimiting portions of and
indicating insertion points for printer specific code) and are used in tandem
with the setpagedevice operators or statusdict operators, as well as the
PostScript printer description (PPD) files.

Note Use of the %%Include or %%Operator comments in an environment that does
not have a document manager can result in the document being processed
incorrectly.

6.1 Requirement Header Comments

%%DocumentMedia: <medianame> <attributes>
<medianame> ::= <text> (Tag name of the media)
<attributes> ::= <width> <height> <weight> <color> <type>
<width> ::= <real> (Width in PostScript units)
<height> ::= <real> (Height in PostScript units)
<weight> ::= <real> (Weight in g/m2)
<color> ::= <text> (Paper color)
<type> ::= <text> (Type of pre-printed form)

This comment indicates all types of paper media (paper sizes, weight, color)
this document requires. If any of the attributes are not applicable to a particu-
lar printing situation, zeroes must be substituted for numeric parameters and
null strings must be substituted for text parameters. Each different medium
that is needed should be listed in its approximate order of descending quan-
tity used.

%%DocumentMedia: Plain 612 792 75 white ()
%%+ BlueCL 612 792 244 blue CorpLogo
%%+ Tax 612 792 75 () (1040)

The preceding example indicates that the following media are needed for this
job:

• 8.5" x 11", 20 lb. paper (Bond lbs × 3.76 = g/m2).

• Cover pages in blue 8.5" x 11", 65 lb. paper preprinted with the corporate
logo.

• Preprinted IRS 1040 tax forms.

56 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note that the type attribute refers to preprinted forms only, and does not
refer to the PostScript language concept of form objects as resources. The
following keywords for the type name are defined for general use:

19HoleCerlox ColorTransparency CustLetterHead Tabs
3Hole CorpLetterHead DeptLetterHead Transparency
2Hole CorpLogo Labels UserLetterHead

The related %%PageMedia: comment explicitly calls for the medium that
each page requires by referring to its medianame.

%%DocumentNeededResources: <resources> | (atend)

This comment provides a list of resources the document needs—that is,
resources not contained in the document file. This comment is intended to
help a document manager decide whether further parsing of the document file
is necessary to provide these needed resources. There must be at least one
corresponding instance of the %%IncludeResource: comment for each
resource this comment lists.

The application that produces the print file must not make any assumptions
about which resources are resident in the output device; it must list all
resources the document needs. Even if it is a resource, such as the Times-
Roman font program, that exists in nearly all implementations, it must appear
here. A resource must not be listed if it is not used anywhere in the document.

As a general rule, different types of resources should be listed on separate
lines using the %%+ comment, as illustrated in the following example:

%%DocumentNeededResources: font Times-Roman Helvetica StoneSerif
%%+ font Adobe-Garamond Palatino-Roman
%%+ file /usr/lib/PostScript/logo.ps
%%+ procset Adobe_Illustrator_abbrev 1.0 0
%%+ pattern hatch bubbles
%%+ form (corporate order form)
%%+ encoding JIS

%%DocumentSuppliedResources: <resources> | (atend)

The %%DocumentSuppliedResources: comment contains extra information
for document managers designed to store and reuse the resources, and
provides helpful directories of the resources contained in the print file.
This comment lists all resources that have been provided in the document
print file. There is a %%BeginResource: and %%EndResource pair for
each resource in this list. It is assumed that all resources on the
%%DocumentSuppliedResources: list are mutually exclusive of those
resources found on the %%DocumentNeededResources: list.

6 Requirement Conventions 57

%%DocumentPrinterRequired: <print> <prod> [<vers> [<rev>]]
<print> ::= <text> (Printer name and print zone)
<prod> ::= <text> (Product string or nickname)
<vers> ::= <real> (Version number)
<rev> ::= <uint> (Revision number)

This comment indicates that the PostScript language instructions in the
document are intended for a particular printer, which is identified by its
network printer name, nickname, or product string. The printer can optionally
be identified by its version and revision strings, as defined by the printer’s
PPD file or as returned by the product, version, and revision operators.

%%DocumentPrinterRequired: can be used to request a particular printer in a
highly networked environment where that printer may be more convenient or
to override document manager defaults and prevent re-routing of the docu-
ment. It can also be used if the PostScript language file itself contains printer-
specific elements. This last case should rarely be necessary, as most docu-
ments requiring particular features of a PostScript printer can provide
requirement conventions indicating a need for that feature, rather than
require a particular printer. Then, if other printers are available that have
the necessary features, the document may still be printed as desired. The
following example unconditionally routes the document to a printer called
SEVILLE in the network’s “Sys_Marketing” zone:

%%DocumentPrinterRequired: (SEVILLE@Sys_Marketing) ()

If the nickname of the printer is used (this is often necessary to differentiate
among different models of printers), the version/revision numbers that are
part of the nickname should be ignored.

For example, the product name for a series of printers may be (SpeedyLaser).
There are several models of SpeedyLaser printers, the SL300, SL600, and
SL1200. The nicknames of these printers are (SL300 Version 47.2), (SL600
Version 48.1), and (SL1200 Version 49.4). To specify the need for a SL600
printer, the nickname (excluding the version number) should be used. For
example:

%%DocumentPrinterRequired: () (SL600)

The version and revision numbers in this comment should be used infre-
quently.

%%DocumentNeededFiles: { <filename> ... } | (atend)

The comment %%DocumentNeededFiles: lists the files a document
description needs. Each file mentioned in this list appears later in the
document as the argument of an %%IncludeFile: comment. It is assumed
that files on the %%DocumentNeededFiles: list do not include those
appearing on the %%DocumentSuppliedFiles: file list.

58 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedFiles: { <filename> ... } | (atend)

The comment %%DocumentSuppliedFiles: lists the files in a document
description. Each file mentioned in this list appears later in the document in
the context of a %%BeginFile: and %%EndFile: comment construct. It is
assumed that files on the %%DocumentSuppliedFiles: list do not include
those appearing on the %%DocumentNeededFiles: file list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

%%DocumentFonts: { <fontname> ... } | (atend)

This comment indicates that the print job uses all fonts listed. In particular,
there is at least one invocation of the findfont or findresource operator for
each of the font names listed. The application producing the print file should
not make any assumptions about which fonts are resident in the printer
(for example, Times-Roman). Note that the list of font names for
%%DocumentFonts: should be the union of the %%DocumentNeededFonts:
and %%DocumentSuppliedFonts: font lists. If the list of font names exceeds
the 255 characters-per-line limit, the %%+ comment should be used to
extend the line.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comments
%%DocumentNeededResources: and %%DocumentSuppliedResources:
instead.

%%DocumentNeededFonts: { <fontname> ... } | (atend)

This comment provides a list of fonts the document requires and are not
contained in the document file. It is assumed that fonts on the
%%DocumentNeededFonts: list do not appear on the
%%Document-SuppliedFonts: font list. It is also assumed that there
is at least one corresponding instance of the %%IncludeFont: comment
for each font listed in this section.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

6 Requirement Conventions 59

%%DocumentSuppliedFonts: { <fontname> ... } | (atend)

This comment provides a list of font files that have been provided in
the document print file as downloaded fonts. It is assumed that fonts
on the %%DocumentSuppliedFonts: list do not appear on the
%%DocumentNeededFonts: font list. There is at least one
corresponding %%BeginFont: and %%EndFont pair in the document
description for each of the listed font names.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

%%DocumentProcSets: { <procname> ... } | (atend)

This comment provides a list of all procsets referenced in the document.
Its use is similar to the %%DocumentFonts: comment. The list of
procsets for %%DocumentProcSets: should be the union of the
%%DocumentNeededProcSets: and %%DocumentSuppliedProcSets:
procset lists. If the list of procset names exceeds the 255 characters-
per-line limit, the %%+ comment should be used to extend the line.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%DocumentNeededResources: and %%DocumentSuppliedResources:
comments instead.

%%DocumentNeededProcSets: { <procname> ... } | (atend)

This comment indicates that the document needs the listed procsets. It is
assumed that procsets on the %%DocumentNeededProcSets: list do not
appear on the %%DocumentSuppliedProcSets: procset list. This comment is
used whenever any %%IncludeProcSet: comments appear in the file.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedProcSets: { <procname> ... } | (atend)

This comment indicates that the document contains the listed procsets. It is
assumed that procsets in the %%DocumentSuppliedProcSets: list do not
include those appearing on the %%DocumentNeededProcSets: procset list.
This comment is used whenever any %%BeginProcSet and %%EndProcSet
comments appear within the document.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

60 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%OperatorIntervention: [<password>]
<password> ::= <textline>

This comment causes the document manager to block a print job in the print
queue until the printer operator releases the print job for printing. The com-
ment may contain an optional password that the print operator must supply to
release the job. This allows the printing of sensitive documents to be delayed
until the intended recipient is present at the printer to pick up the document.

%%OperatorMessage: <textline>

If the output device has an appropriate user interface, the
%%OperatorMessage: comment provides a message that the document
manager can display on the console before printing the job. This comment
must only appear in the header of the file.

%%ProofMode: <mode>
<mode> ::= TrustMe | Substitute | NotifyMe

This comment provides information about the level of accuracy that is
required for printing. It is intended to provide guidance to the document
manager for appropriate tactics to use when error conditions arise or when
resource and feature shortages are encountered.

The three modes may be thought of as instructions to the document manager.
If the document manager detects a resource or feature shortage, such as a
missing font or unavailable paper size, it should take action based on these
proof modes:

• TrustMe—Indicates the document manager should not take special action.
The intent is that the document formatting programs or the user knows
more than the document manager. For example, fonts may be available on
a network font server that the document manager does not know about.

Even with a comment like %%IncludeResource:, if the %%ProofMode is
TrustMe, the printing manager should proceed even if a resource cannot
be found. The assumption is that the document can compensate for the
resource not being included.

• Substitute—Indicates the printing manager should do the best it can to
supply missing resources with alternatives. This may mean substituting
fonts, scaling pages (or tiling) when paper sizes are not available, and so
on. This is the default proofing level and should be used if the mode is
missing from the comment or if the comment is missing from the
document.

6 Requirement Conventions 61

• NotifyMe—Indicates the document should not be printed if there are any
mismatches or resource shortages noted by the printing manager. For
example, when printing on an expensive color printer, if the correct font is
not available, the user probably does not want a default font. The
document manager, if it cancels the print job, should notify the user in
some system-specific manner.

These modes are intended for the printing manager to consider before it
prints the file, based on its own knowledge and queries of available fonts,
paper sizes, and other resources. If the file is printed, and an error occurs,
that is a separate issue.

%%Requirements: <requirement> [(<style> ...)] ...
<requirement> ::= collate | color | duplex | faceup | fax | fold | jog |

manualfeed | numcopies | punch | resolution | rollfed |
staple

<style> ::= <text>

This comment describes document requirements, such as duplex printing,
hole punching, collating, or other physical document processing needs. These
requirements may be activated by the document using statusdict operators
or setpagedevice, or they may be requested using the %%IncludeFeature:
comment.

The requirement parameter should correspond to a specific printer feature.
The optional style parameter can be used to further describe the specifics of
the processing. For example, the punch requirement has a style to indicate
that a printer capable of 19 Hole Cerlox punching is required: punch(19). If
more than one style of requirement is necessary, the styles can be listed in the
enclosing parentheses (separated by commas) for that requirement. For
example, if both positional stapling (staple in the lower right hand corner)
and staple orientation (staple at 45 degrees) is desired, the requirement is:
staple(position,orient). This informs the document manager that the printer
printing this document must be equipped with a stapler that can position and
orient the staple.

The %%Requirements: comment can be used to determine if the printer the
user selects can meet the document’s requirements. If it cannot, the document
should be rerouted to a printer that can, otherwise the document is not pro-
cessed as expected. It is the document manager’s responsibility to determine
if the printer can fulfill the requirements and if the operator and/or applica-
tion should be notified of any incapability. See also the %%ProofMode: com-
ment for actions to take when there are no printers available that satisfy the
requirements.

62 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note The %%Requirements: comment is informational only; it does not suggest
that the document manager actuate these requirements—that is, turn them
on. The PostScript language instructions in the document activate these
features.

The following keywords for the requirement parameter are defined:

• collate—Indicates that the document contains code that will instruct the
printer to produce collated copies (for example, 1-2-3-1-2-3-1-2-3), rather
than uncollated copies (for example, 1-1-1-2-2-2-3-3-3). If collate is not
specified, then non-collation of the document should be assumed, except if
the duplex, fold, jog, or staple requirements are specified (they imply
collation by definition). This requirement should be used in conjunction
with the numcopies requirement.

• color—Indicates that the printer must be able to print in color. If this
option is not specified, monochrome printing is assumed to be sufficient.

• color(separation)—Indicates that the printer must be able to perform
internal color separation. If this style modifier is not specified, composite
color output is assumed to be sufficient.

• duplex—Indicates that the document issues commands such that pages
are printed on both sides of the paper. Any printer intended to print such a
document properly must be capable of producing duplex output.

• duplex(tumble)—Indicates a style of duplex printing in which the logical
top of the back side is rotated 180 degrees from the logical top of the front
side. A wall calendar is an example of a document that is typically tumble
duplexed.

• faceup—Indicates that output pages are stacked face-up. If this
requirement is not specified, then the selected printer need not be
capable of stacking pages face-up.

• fax—Indicates that the document contains segments of PostScript code
pertaining to fax devices and should be sent to a fax-capable printer.

• fold—Indicates that the document requests that the printer fold the
resulting output. Typical style modifiers to this requirement would be
letter, z-fold, doublegate, leftgate, rightgate, and saddle. These are
illustrated in Figure 3.

• jog—Indicates that jobs or multiple replications of the same document are
offset-stacked from one another in the output tray. The document manager
must ensure that the selected printer has the ability to offset stack job
output.

6 Requirement Conventions 63

• manualfeed—Indicates that the document requests that paper be fed in
from the manual feed slot. If this requirement is not specified, the selected
printer need not have a manual feed slot.

• numcopies(<uint>)—Indicates that the document instructs the printer to
produce <uint> number of copies of the output. If this requirement is not
specified, a default of numcopies(1) should be assumed.

• punch—Indicates that the document specifies commands concerning hole
punching. If punch is not specified, the printer need not be capable of
punching.

• punch(<uint>)—Indicates that the document contains PostScript language
instructions that cause the output to be punched with <uint> number of
holes. Typical values are 3-, 5-, and 19-hole (Cerlox) punching. If there is
no style modifier to the punch requirement, 3-hole punching should be
assumed to be acceptable.

• resolution(x, y)—Indicates that the printer is set to a particular resolution in
the x and y directions. The printer manager must provide a printer that can
print in that resolution. If this requirement is not specified, any printer
resolution is acceptable.

• rollfed—Indicates that the document issues commands specific to roll-fed
devices, such as where and when to cut the paper, how far to advance the
paper, and so on. If this requirement is not specified, the printer need not
support roll-fed paper.

• staple—Indicates that PostScript language commands in the document
cause the output to be stapled. If staple is not specified as a requirement,
the printer need not support stapling.

• staple([position],[orient])—Indicates a staple position and a staple
orientation. A stapler may be able to position staples on a page in several
different locations. If the print job needs a printer stapler that performs
positioning, this should be indicated by the style keyword position. If
staple orientation is needed (for example, 0, 45, 90, or 135 degrees), the
orient style should be included with the staple requirement. If no style
modifiers are given, then simple stapling is assumed to be sufficient (top
left-hand corner).

64 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Figure 3 Various fold options

The order of the arguments to the %%Requirements: comment is significant
and implies the order in which the operations occur in the PostScript lan-
guage code.

Example 3 shows the proper use of the %%Requirements: comment and the
associated %%Begin(End)Feature: comments. Three copies of this document
will be printed duplex; the copies will be offset in the output tray from one
another.

Example 3

%!PS-Adobe-3.0
%%Title: (Example of requirements)
%%LanguageLevel: 2
%%Requirements: duplex numcopies(3) jog
%%EndComments
%%BeginProlog
...Various prolog definitions...
%%EndProlog
%%BeginSetup
% For Level 1 this could have been a series of statusdict operators
%%BeginFeature: *Duplex True
<< /Duplex true >> setpagedevice
%%EndFeature
/#copies 3 def
%%BeginFeature: *Jog 3
<< /Jog 3 >> setpagedevice
%%EndFeature
%%EndSetup
...Rest of the document...
%%EOF

Z-Fold

Double Gate

Right GateLeft Gate Saddle

Letter

6 Requirement Conventions 65

Note that in this instance, calls to setpagedevice are separated for each fea-
ture. This enables a document manager to re-route the document to a Level 1
printer. If output is going to a Level 2 printer only, the following could have
been used:

<< /Duplex true /NumCopies true /Jog 3 >>
setpagedevice

Because Level 2 feature activation is device independent, the
%%Begin(End)Feature: comments are unnecessary if the document is con-
fined to Level 2 interpreters. The %%Requirements: and the
%%LanguageLevel: comments are still necessary, however.

Note This comment lists all of the requirements for a particular job; individual
pages may use some of the requirements in different combinations. To specify
what the page requirements are for a particular page or for the whole docu-
ment (page defaults), see the %%PageRequirements: comment.

%%VMlocation: global | local

This comment is to inform resource users if a resource can be loaded into
global or local VM. For all resource categories other than a font, the operator
findresource unconditionally executes true setglobal before executing the
file that defines the resource. This means a resource is loaded into global VM
unless false setglobal appears in the resource definition.

The creator of a resource must determine if the resource works correctly in
global VM. If it does, the resource must not execute setglobal. The resource
may wish to include the %%VMlocation: global comment. The resource is
loaded into global VM by findresource, but will be loaded into current VM
under the control of a document manager if it is explicitly downloaded.

If the resource does not work in global VM or if the creator of the resource
does not know if the resource will work reliably in global VM, the resource
must use the %%VMlocation: local comment and the following PostScript
language fragment:

currentglobal
false setglobal
...Definition of the resource, including
defineresource...
setglobal

66 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%VMusage: <max> <min>
<max> ::= <uint> (Maximum VM used by resource)<min> ::=
<uint> (Minimum VM used by resource)

The document manager can use the information supplied by this comment to
determine if the PostScript language interpreter has enough VM storage to
handle this particular resource. This comment should be used only in static
resource files, such as fonts, procsets, files, forms, and patterns, which are
all resources that rarely change and should not generally be used in page
descriptions.

max indicates the amount of VM storage this resource consumes if it is the
first resource of its type to be downloaded. min indicates the minimum
amount of VM this resource needs. The numbers may not be equal because
some resources, such as fonts, can share VM storage in some versions of the
PostScript interpreter. In synthetic fonts, for example, the charstrings of the
font may be shared.

These numbers are not determined in the resource. Rather, they are deter-
mined by the resource creator when the resource (for example, a font) is ini-
tially programmed. The numbers are placed in the resource as static entities
in this comment. To achieve accurate results when determining the usage
values, make sure there are no dependencies on other resources or conditions.

The VM a resource uses can be found by issuing the vmstatus command
before and after downloading a resource, and then again after downloading
the same resource a second time. The difference between the first and second
numbers (before and after the first downloading) yields the max value; the
difference between the second and third (after the second download) yields
the min value. The following example illustrates how to obtain the max and
min values for a resource:

vmstatus pop /vmstart exch def pop
...The resource goes here...
vmstatus pop dup vmstart sub (Max:) print == flush
/vmstart exch def pop
...The resource goes here...
vmstatus pop vmstart sub (Min:) print == flush pop

Note To obtain accurate memory usage values, it is important to turn off the
garbage collection mechanism in Level 2.

6 Requirement Conventions 67

6.2 Requirement Body Comments

Some of the comments listed in this section, if used, must have a
corresponding comment in the header of the document. For example,
if the %%IncludeResource: comment is used, there must be a
%%DocumentNeededResources: comment in the header of the document.

Table 2 Body and header comment usage

Body Comment Used Corresponding Header Comment

%%Begin(End)Document: %%DocumentSuppliedResources: file

%%IncludeDocument: %%DocumentNeededResources: file

%%Begin(End)Resource: %%DocumentSuppliedResources:

%%IncludeResource: %%DocumentNeededResources:

%%Begin(End)File: %%DocumentSuppliedResources: file

%%IncludeFile: %%DocumentNeededResources: file

%%Begin(End)Font: %%DocumentSuppliedResources: font

%%IncludeFont: %%DocumentNeededResources: font

%%Begin(End)ProcSet: %%DocumentSuppliedResources: procset

%%IncludeProcSet: %%DocumentNeededResources: procset

%%Begin(End)Feature: %%Requirements: or %%DocumentMedia:

%%IncludeFeature: %%Requirements: or %%DocumentMedia

%%Begin and %%End comments indicate that the PostScript language
instructions enclosed by these comments is a resource, feature, or document.
An intelligent document manager may save resources for future use by
creating a resource library on the host system. The document manager may
replace printer-specific feature instructions when rerouting the document to
a different printer, or may ignore duplicate DSC comments in an included
document. The proper use of these comments facilitates this intelligent
document handling.

%%Include comments indicate that the named resource, feature, or document
(for example, font, procset, file, paper attribute, EPS file, and so on) should
be included in the document at the point where the comment is encountered.
The document manager fulfills these requirements so there is an inherent risk
in using these comments in a document. If there is no document manager in
your system environment, the document may not print correctly. As the DSC
become more prevalent and strictly adhered to, there will be more document
manager products available to take advantage of these %%Include comments.

68 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginDocument: <name> [<version> [<type>]]
<name> ::= <text> (Document name)
<version> ::= <real> (Document version)
<type> ::= <text> (Document type)

%%EndDocument (no keywords)

These comments delimit an entire conforming document that is imported as
part of another PostScript language document or print job. The name of the
document is usually environment-specific; it can be an operating system file
name or a key to a document database. The version and type fields are
optional and, if used, should provide extra information for recognizing
specific documents (an example of usage is a version control system).

The %%BeginDocument: comment is necessary to allow multiple
occurrences of the %!PS-Adobe-3.0, %%EndProlog, %%Trailer, and %%EOF
comments in the body of a document. Any document file that is embedded
within another document file must be surrounded by these comments.

Note All feature and resource requirements of an included (child) document
should be inherited by the including (parent) document. For example, if a
child document needs the StoneSerif font resource, this must be reflected in
the %%DocumentNeededResources: comment of the parent. This is neces-
sary so document managers can examine the top level header of any docu-
ment and know all resources and features that are required.

%%IncludeDocument: <name> [<version> [<revision>]]
<name> ::= <text> (Document name)
<version> ::= <real> (Version of the document)
<revision> ::= <int> (Revision of version)

This comment is much like the %%IncludeResource: file comment except
that it specifies that the included file is a conforming document description
rather than a small portion of stand-alone PostScript language code.
This means that, in all probability, the document contains at least one
instance of showpage, and the included document should be wrapped with
a save and restore. In particular, illustrations and EPSF files that have
no effect other than to make marks on a page are perfectly suited for the
%%IncludeDocument: convention.

When a document file is printed, usually a certain amount of PostScript lan-
guage code is added to the file. Such code may deal with font downloading
issues, paper sizes, or other aspects of printing once a printer has been
selected for the document. At that stage, the printing manager must remove
the %%IncludeDocument: comment and embed the requested document
(along with all the structuring conventions that may fall within that file)
between %%BeginDocument: and %%EndDocument comments.

6 Requirement Conventions 69

%%BeginFeature: <featuretype> [<option>]
<featuretype> ::= <text> (PPD feature name)
<option> ::= <text> (Feature option)

%%EndFeature (no keywords)

The %%BeginFeature and %%EndFeature comments delimit any PostScript
language fragments that invoke a printer-specific feature on a printer. The
featuretype corresponds to one of the keywords in the PostScript printer
description (PPD) file, and the featuretype option sequence must be exactly as
it is found in the PPD file so it cooperates effectively with these conventions.

A document manager may choose to replace the enclosed PostScript
language code with the proper sequence of instructions if the document is
sent to a different printer than originally intended. In a sense, this is the
opposite of the %%IncludeFeature: comment, which indicates that the
document manager must invoke the specified printer feature at that position
in the print file. The next two examples set up an imageable region for a job.
Example 4 uses the Level 1 statusdict method of selecting page size.
Example 5 uses the new Level 2 setpagedevice operator.

Example 4

%%BeginFeature: *PageSize Legal
legal
%%EndFeature

Example 5

%%BeginFeature: *PageSize Legal
 << /PageSize [612 1004] >> setpagedevice
%%EndFeature

%%IncludeFeature: <featuretype> [<option>]
<featuretype> ::= <text> (Name of desired feature)
<option> ::= <text> (Feature option)

This comment specifies the need for a particular printer feature, as described
in the PostScript printer description (PPD) file. Its use specifies a requirement
a document manager must fulfill before printing (see also the discussion
under %%BeginFeature). The document file may make the assumption that
the %%IncludeFeature line in the file is replaced by the appropriate
PostScript language fragment from the appropriate PPD file, and that the
execution of the file may be contextually dependent upon this replacement.
This offers a very powerful way of making a document behave differently on
different printers in a device-independent manner. See the PostScript Printer
Description Files Specification for more information about PPD files.

70 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginFile: <filename>

%%EndFile (no keywords)

The enclosed segment is a fragment of PostScript language code or some
other type of resource that does not fall within any of the other resource
categories. The file-server component of a document manager may extract a
copy of this file for later use by the %%IncludeFile: or %%IncludeResource:
file comments. The file name will usually correspond to the original disk file
name on the host system.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

%%IncludeFile: <filename>

Indicates that the document manager must insert the specified file at the cur-
rent position in the document. The file name specified also must appear in the
%%DocumentNeededResources: file or the %%DocumentNeededFiles: list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginFont: <fontname> [<printername>]
<printername> ::= <text>

%%EndFont (no keywords)

These comments delimit a downloaded font. The font-server component of a
document manager may remove the font from the print file (for instance, if
the font is already resident on the chosen printer) or it may simply keep a
copy of it for later use by the %%IncludeFont: or %%IncludeResource: font
comments. The fontname field must be the valid PostScript language name of
the font as used by the definefont operator, and the optional printername
field may contain the network name of the printer, in an environment where
fonts may be tied to particular printers.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

6 Requirement Conventions 71

%%IncludeFont: <fontname>

Indicates that the document manager must include the specified font at the
current position in the document. The fontname specified should be the cor-
rect PostScript language name for the font (without the leading slash). Due to
the presence of multiple save/restore contexts, a document manager may
have to supply a specific font more than once in one document, and should do
so whenever this comment is encountered.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginProcSet: <procname>

%%EndProcSet (no keywords)

The PostScript language instructions enclosed by the %%BeginProcSet: and
%%EndProcSet comments typically represents some subset of the document
prolog. The prolog may be broken down into many subpackages, or proce-
dure sets (procsets), which may define groups of routines appropriate for
different imaging requirements. These individual procsets are identified by
name, version, and revision numbers for reference by a document manage-
ment system. A document manager may choose to extract these procsets from
the print file to manage them separately for a whole family of documents. An
entire document prolog may be an instance of a procset, in that it is a body
of procedure definitions used by a document description file. (See the
%%DocumentProcSets:, %%IncludeProcSet:, and %%IncludeResource:
procset comments). The name, version, and revision fields should uniquely
identify the procset. The name may consist of a disk file name or it may use a
PostScript language name under which the prolog is stored in the printer. See
the %%?Begin(End)ProcSetQuery: and the %%?Begin(End)ResourceQuery:
procset comment, which one may use to query the printer or document
manager for the prolog name and version fields.

A document manager may assume that the document prolog consists of
everything from the beginning of the print file through the %%EndProlog
comment, which may encompass several instances of the
%Begin(End)ProcSet: comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

72 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%IncludeProcSet: <procname>

This is a special case of the more general %%IncludeResource: file comment.
It requires that a PostScript language procset with the given name, version,
and revision be inserted into the document at the current position. If a
version-numbering scheme is not used, these fields should still be filled
with a “dummy” value, such as 0. See the %%Begin(End)Resource: and
%DocumentNeededResources: comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginResource: <resource> [<max> <min>]
<max> ::= <uint> (Maximum VM used by resource)
<min> ::= <uint> (Minimum VM used by resource)

%%EndResource (no keywords)

These comments delimit a resource that is defined by PostScript language
code directly in the document file—for example, downloadable fonts.
The resource-management component of the document manager may remove
the resource from the print file and replace it with an %%IncludeResource
comment (for instance, if the chosen printer already has the resource
resident) or it may simply keep a copy of it for later use by the
%%IncludeResource: comment. The resource name specified should
also appear in the %%DocumentSuppliedResources: list.

The optional usage parameters should be supplied if the %%VMusage:
comment is not provided in the resource. A document manager can use these
numbers to determine if a particular resource will fit inside the printer VM. If
it cannot, the document manager may move the resource within the print file,
juggling resources until the file can fit, or it may reroute the print file to a
printer with more VM. See the %%VMusage: comment for details on how
to obtain these numbers for a resource.

Font note—These comments delimit a font that is being downloaded. The
font server component of a document manager may remove the font from
the print file (for instance, if the chosen printer already has the font resident)
or it may simply keep a copy of it for later use by the %%IncludeResource:
comment.

File note—The enclosed segment is a fragment of PostScript language code
or some other item that does not fall within the other resource categories.
The file-server component of the document manager may extract a copy of
this file for later use by the %%IncludeResource: comment. The file name
will usually correspond to the original disk file name on the host system.

6 Requirement Conventions 73

Procset note—The PostScript language code enclosed by these comments
typically represents some subset of the document prolog. The prolog may be
broken down into many procedure sets, which may define groups of routines
appropriate for different imaging requirements. These individual procsets are
identified by a name, version, and optional revision numbers for reference by
a print management system. A document manager may choose to extract
these procsets from a print file to manage them separately for a whole family
of documents. An entire document prolog may be an instance of a procset, in
that it is a body of procedure definitions used by a document description file.

%%IncludeResource: <resource>

Indicates that the document manager must include the named resource at this
point in the document. The resource name specified also must appear in the
%%DocumentNeededResources: list. It is up to the application creating the
document to manage memory for resources that employ this comment (using
save/restore pairs). Although the font example below is specific to fonts,
memory management and resource optimization are also applicable to forms,
patterns, and other memory-intensive resources.

Font note—In the case of commonly available fonts, it is highly likely that
the font server or document manager would ignore the inclusion request,
because the fonts would already be available on the printer. However, the
%%IncludeResource: font comment must still be included so that if a stan-
dard font is not available it can be supplied (there are printers that do not have
the 13 standard fonts that are resident in most of Adobe’s PostScript imple-
mentations). %%IncludeResource: font comments of this nature should be
placed in the document setup section.

Due to the presence of multiple save/restore contexts, a font server may
have to supply a specific font more than once within a single document, and
should do so whenever this comment is encountered. Depending on the
memory available in the target printer, a document manager may optimize
font usage by moving the inclusion of fonts within the document. A frequently
used font could be downloaded during the document setup, thus making it
available for use by any page. A font that is used on one or two particular
pages, could be downloaded during the page setups for each of the individual
pages. A special font that is used for one or two paragraphs on one page only
would not be moved.

In Example 6, four different fonts (ITC Stone®, Palatino*, Carta®, and
Sonata®) are downloaded. The memory management scheme used by
the application that generated this code assumes that up to three fonts
may be downloaded at any one point in time. Note the use of multiple
%%IncludeResource: font comments for the same font when a save-restore
pair “undefines” previously included fonts.

74 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Example 6

%!PS-Adobe-3.0
%%Title: (Example of memory management)
%%DocumentNeededResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%EndComments
%%BeginDefaults
%%PageResources: font Helvetica Helvetica-Bold StoneSerif
%%EndDefaults
%%BeginProlog
...Document prolog...
%%EndProlog
%%BeginSetup
% Include the common fonts found in most implementations
%%IncludeResource: font Helvetica
%%IncludeResource: font Helvetica-Bold
...Rest of the set up...
%%EndSetup
%%Page: 1 1
%%PageResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%BeginPageSetup
/pagelevel save def
%%EndPageSetup
...Text that uses common fonts like Helvetica...
/fontlevel save def
%%IncludeResource: font StoneSerif
...Text that uses the StoneSerif font and/or common fonts...
%%IncludeResource: font Palatino-Roman
...Text that uses Palatino-Roman, StoneSerif and/or common fonts...
%%IncludeResource: font Carta
...Text that uses the Carta, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Ran out of room for new fonts
/fontlevel save def
%%IncludeResource: font StoneSerif
%%IncludeResource: font Palatino-Roman
%%IncludeResource: font Sonata
...Text that uses the Sonata, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Need to switch fonts
/fontlevel save def
%%IncludeResource: font StoneSerif
%%IncludeResource: font Carta
...Text that uses the Carta, StoneSerif, and/or common fonts...
pagelevel restore
showpage
%%Page: 2 2
%%PageResources: font StoneSerif Palatino-Roman
...Rest of the document...
%%EOF

6 Requirement Conventions 75

At print time, the document manager decides there is enough memory avail-
able in the VM of the target device to hold four fonts at any one point in time
and decides to optimize the document. The Helvetica and Helvetica-Bold
inclusions are ignored because these fonts are available on the printer. The
page level comment %%PageResources: font StoneSerif is recognized in the
defaults section, indicating that the font StoneSerif is likely to be used on
every page. The document manager moves the inclusion of this font to the
end of the document setup and ignores all subsequent inclusion requests for
StoneSerif.

The document manager also realizes that the Palatino-Roman font is only
used on pages 1 and 2. This font is downloaded at the end of the page setup
for each page. The Carta and Sonata fonts are used on page 1 only. However,
the Carta font is downloaded twice due to the three-font memory management
scheme used by the application. The document manager also moves the
downloading of the Carta font to the end of the page setup. The Sonata
font is used only once and is downloaded at the %%IncludeResource: font
comment. Example 7 shows the resulting file:

Example 7

%!PS-Adobe-3.0
%%Title: (Optimized file)
%%DocumentNeededResources: font Helvetica Helvetica-Bold
%%DocumentSuppliedResources: font StoneSerif Palatino-Roman Carta Sonata
%%EndComments
%%BeginDefaults
%%PageResources: font Helvetica Helvetica-Bold StoneSerif
%%EndDefaults
%%BeginProlog
...Document prolog...
%%EndProlog
%%BeginSetup
% Include the common fonts found in most implementations
%%IncludeResource: font Helvetica
%%IncludeResource: font Helvetica-Bold
%%BeginResource: font StoneSerif
...StoneSerif font is downloaded here...
%%EndResource
...Rest of the set up...
%%EndSetup
%%Page: 1 1
%%PageResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%BeginPageSetup
/pagelevel save def
%%BeginResource: font Palatino-Roman
...Palatino-Roman font is downloaded here...
%%EndResource
%%BeginResource: font Carta

76 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

...Carta font is downloaded here...
%%EndResource
%%EndPageSetup
...Text that uses common fonts like Helvetica...
/fontlevel save def
...Text that uses the StoneSerif font and/or common fonts...
...Text that uses Palatino-Roman, StoneSerif and/or common fonts...
...Text that uses the Carta, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore% Ran out of room for new fonts
/fontlevel save def
%%BeginResource: font Sonata
...Sonata font is downloaded here...
%%EndResource
...Text that uses the Sonata, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Need to switch fonts again
/fontlevel save def
...Text that uses the Carta, StoneSerif, and/or common fonts...
pagelevel restore
showpage
%%Page: 2 2
%%PageResources: font StoneSerif Palatino-Roman
%%BeginPageSetup
/pagelevel save def
%%BeginResource: font Palatino-Roman
...Palatino-Roman font is downloaded again here...
%%EndResource
...Rest of the document...
%%EOF

6 Requirement Conventions 77

Procset note—The %%IncludeResource: procset comment must appear in
the document prolog only. Procsets do not generally have to worry about
save/restore pairs as in the above example. In the case of procsets, the docu-
ment manager may replace the desired procset with an upwardly compatible
version of the desired procset (a newer version). See section 4.6, “Comment
Syntax Reference,” for more details on compatible procsets. In addition, the
document manager may optimize procset inclusion by replacing a procset
that occurs multiple times with a single copy at the top level of a document.
Example 8 shows the use of the %%IncludeResource: procset comment:

Example 8

%!PS-Adobe-3.0
%%Creator: Adobe Illustrator 88(TM) 1.9.3
%%For: (Joe Smith) (Adobe Systems Incorporated)
%%Title: (Example.art)
%%CreationDate: (2/08/90) (8:30 am)
%%DocumentNeededResources: procset Adobe_packedarray 0 0
%%+ procset Adobe_cmykcolor 0 0 Adobe_cshow 0 0 Adobe_customcolor 0 0
%%+ procset Adobe_Illustrator881 0 0
%%+ font StoneSerif
%%EndComments
%%BeginProlog
%%IncludeResource: procset Adobe_packedarray 0 0
%%IncludeResource: procset Adobe_cmykcolor 0 0
%%IncludeResource: procset Adobe_cshow 0 0
%%IncludeResource: procset Adobe_customcolor 0 0
%%IncludeResource: procset Adobe_Illustrator881 0 0
%%EndProlog
...Rest of the document...
%%EOF

78 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

6.3 Requirement Page Comments

Some of the following comments that request particular page media, require-
ments, or resources may appear in the defaults section or in a particular page.
If these comments fall within the defaults section of the document file
(%%BeginDefaults to %%EndDefaults), they may be construed to be in effect
for the entire print job. If they are found within the page-level comments for a
page, they should only be in effect for that page. See %%Begin(End)Defaults
for more details on page defaults.

%%PageFonts: { <fontname> ... } | (atend)

Indicates the names of all fonts used on the current page. The notation
(atend) is permissible. In that case, the list of fonts must be provided after
the %%PageTrailer comment. Also see the %%DocumentFonts: comment.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%PageResources: comment instead.

%%PageFiles: { <filename> ... } | (atend)

Indicates the names of all files used on the current page. This should be used
only if file inclusion is required of the document manager—that is, if there
are subsequent instances of the %%IncludeFile: comment on that particular
page. See also %%DocumentNeededFiles: and %%DocumentSuppliedFiles:
comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%PageResources: comment instead.

%%PageMedia: <medianame>
<medianame> ::= <text> (Name of desired paper media)

Indicates that the paper attributes denoted by medianame are invoked on this
page. The medianame is specified by the %%DocumentMedia: comment at
the beginning of the document. This comment can pertain to either a page or
a document depending on the position of the comment (for example, either in
the page itself or in the defaults section). See also the %%DocumentMedia:
and %%Begin(End)Defaults comments.

In Example 9, a one-hundred page report is printed on regular white and
heavy yellow paper. Ninety-nine of the pages use the white paper so the
%%PageMedia: comment is found in the defaults section, denoting that the
default media for this document is white paper. The white paper is set using
the setpagedevice operator in the document setup. The cover page is the
only page to use the yellow paper, and states so via the %%PageMedia:

6 Requirement Conventions 79

comment that appears after the first %%Page: comment. Note the use of the
currentpagedevice operator to facilitate the restoration of the white-paper
device after the cover page.

Example 9

%!PS-Adobe-3.0
%%Title: (Example of %%PageMedia: as a page default)
%%DocumentMedia: Regular 612 792 75 white ()
%%+ Cover 612 792 244 yellow DeptLetterHead
%%Pages: 100
%%LanguageLevel: 2
%%EndComments
%%BeginDefaults
%%PageMedia: Regular
%%EndDefaults
%%BeginProlog
...Prolog definitions...
%%EndProlog
%%BeginSetup
<< % Attribute tray numbers to

/InputAttributes << % the particular media
0 << /PageSize [612 792] /MediaWeight 75 /MediaColor (white) >>
1 << /PageSize [612 792] /MediaWeight 244

/MediaColor (yellow) /MediaType (DeptLetterHead) >>
>>

>> setpagedevice

<< /MediaColor (white) >> setpagedevice % Set the white paper to be the
%%EndSetup % default for the document
%%Page: Cover 1
%%PageMedia: Cover
%%BeginPageSetup
/olddevice currentpagedevice def
<< /MediaColor (yellow) >> setpagedevice % Set up the yellow paper
/pagelevel save def % for this page
%%EndPageSetup
...Mark the cover page...
pagelevel restore
showpage
%%PageTrailer
olddevice setpagedevice % Restore the white paper
%%Page: 1 2
...Rest of the document... % No %%PageMedia:
%%EOF % comment, white letter paper

% is the default

80 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%PageRequirements: <requirement> [(<style>)] ...
<requirement> ::= collate | color | duplex | faceup | fax | fold | jog |

manualfeed | numcopies | punch | resolution | rollfed |
staple

<style> ::= <text>

This is the page-level invocation of a combination of the options listed in
the %%Requirements: comment. It takes precedence over any document
requirements set during the document setup. This comment can pertain to a
page or a document depending on the position of the comment (either in the
page itself or in the defaults section). See the %%Requirements: and
%%Begin(End)Defaults comments.

%%PageResources: { <resource> ... } | (atend)

This comment indicates the names and values of all resources that are needed
or supplied on the present page (procsets are an exception; they need not be
listed). This comment can pertain to an individual page or a document,
depending on the location of the comment. For example, the comment may
be in the page itself or in the document defaults section. See the
%%DocumentSuppliedResources:, %%DocumentNeededResources:,
and %%Begin(End)Defaults comments.

7 Color Separation Conventions 81

7 Color Separation Conventions

Level 2 implementations and Level 1 implementations that contain the
CMYK color extensions to the PostScript language provide more complete
color functionality than the RGB color model in Level 1. There are corre-
sponding color separation comments that programs producing PostScript
language documents with color operators should use. Color separation
applications can use these comments as an aid in proper color determination
and to identify process color specific portions of PostScript language code.
These comments can also be used to enable applications to communicate
spot color usage.

Note These comments do not address the use of CIE based and special color
spaces. Expect future versions of the DSC to do so.

7.1 Color Header Comments

%%CMYKCustomColor: <cya> <mag> <yel> <blk> <colorname>
<cya> :: = <real> (Cyan percentage)
<mag> ::= <real> (Magenta percentage)
<yel> ::= <real> (Yellow percentage)
<blk> ::= <real> (Black percentage)
<colorname> ::= <text> (Custom color name)

This comment provides an approximation of the custom color specified by
colorname. The four components of cyan, magenta, yellow, and black must
be specified as numbers from 0 to 1 representing the percentage of that process
color. The numbers are similar to the arguments to the setcmykcolor operator.
The colorname follows the same custom color naming conventions as the
%%DocumentCustomColors: comment.

%%DocumentCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in a document. An applica-
tion arbitrarily names these colors, and their CMYK or RGB approximations
are provided through the %%CMYKCustomColor: or %%RGBCustomColor:
comments in the body of the document. Normally, the colorname specified
can be any arbitrary string except Cyan, Magenta, Yellow, or Black. If
imaging to a specific process layer is desired, these names may be used.

%%DocumentProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the document.
Process colors are defined to be Cyan, Magenta, Yellow, and Black.
This comment is used primarily when producing color separations.
See also %%PageProcessColors:.

82 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%RGBCustomColor: <red> <green> <blue> <colorname>
<red> ::= <real> (Red percentage)
<green> ::= <real> (Green percentage)
<blue> ::= <real> (Blue percentage)
<colorname> ::= <text> (Custom color name)

This comment provides an approximation of the custom color specified by
colorname. The three components of red, green, and blue must be specified
as numbers from 0 to 1 representing the percentage of that process color.
The numbers are similar to the arguments to the setrgbcolor operator.
The colorname follows the same custom color naming conventions as the
%%DocumentCustomColors: comment.

7.2 Color Body Comments

%%BeginCustomColor: <colorname>
<colorname> ::= <text> (Custom color name)

 %%EndCustomColor (no keywords)

These comments specify that the PostScript language code fragment
enclosed within should be interpreted only when rendering the separation
identified by colorname. The colorname here is any text string except Cyan,
Magenta, Yellow, and Black (see the exception in %%DocumentCustomCol-
ors:).
During color separation, the code between these comments must only be
downloaded during the appropriate pass for that custom color. Intelligent
printing managers can save considerable time by omitting code within these
bracketing comments during any other separations. The document composi-
tion software must be extremely careful to correctly control overprinting and
knockouts if these comments are employed, because the enclosed code may
or may not be executed.

Note In the absence of a document manager that understands these comments,
the document will print incorrectly. These comments should be used only if
the environment supports such a document manager.

7 Color Separation Conventions 83

%%BeginProcessColor: <color>
<color> ::= Cyan | Magenta | Yellow | Black

%%EndProcessColor (no keywords)

These comments specify that the PostScript language code fragment
enclosed within should be interpreted only when rendering the separation
identified by color. During color separation, the code between these com-
ments must be downloaded only during the appropriate pass for that process
color. Intelligent printing managers can save considerable time by omitting
code within these bracketing comments on the other three separations. The
document composition software must be extremely careful to correctly con-
trol overprinting and knockouts if these comments are employed, because the
code may or may not be executed.

Note In the absence of a document manager that understands these comments,
the document will print incorrectly. These comments should only be used if
the environment supports such a document manager.

7.3 Color Page Comments

%%PageCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in the page. An application
arbitrarily names these colors, and their CMYK or RGB approximations are
provided through the %%CMYKCustomColor: or %%RGBCustomColor:
comments in the body of the document. See the %%DocumentCustomColors:
comment.

%%PageProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the page.
Process colors are defined as Cyan, Magenta, Yellow, and Black.
See the %%DocumentProcessColors: comment.

84 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

8 Query Conventions

A query is any PostScript language program segment that generates and
returns information back to the host computer across the communications
channel before a document can be formatted for printing. This might result
from the execution of any of the =, ==, print or pstack operators, for instance.
In particular, this definition covers information that is expected back from the
PostScript printer for decision-making purposes. Such decision-making might
include the generation of font lists or inquiries about the availability of
resources, printer features, or the like.

All query conventions consist of a begin and end construct, with the keywords
reflecting the type of query. For all of them, the %%?EndQuery comment
should include a field for a default value, which document managers must
return if they cannot understand or do not support query comments. The
value of the default is entirely application dependent, and an application
can use it to determine specific information about the spooling environment,
if any, and to take appropriate default action.

8.1 Responsibilities

A document manager that expects to be able to interpret and correctly spool
documents conforming to DSC version 3.0 must, at a minimum, perform cer-
tain tasks in response to these query conventions. In general, it must recog-
nize the queries, remove them from the print stream, and send some reply
back to the host. If a document manager cannot interpret the query, it must
return the value provided as the argument to the %%?EndQuery comment.

A query can be recognized by the sequence %%?Begin followed by any
number of characters (up to the 255 maximum per line, by convention)
through the end-of-line indication (the % is decimal ASCII 37, and the ?
is decimal ASCII 63). The end of the query is delimited by the sequence
%%?End followed by some keywords, and optionally followed by a colon
(: is decimal ASCII 58) and the default response to the query (any text
through end-of-line). A document manager should try to recognize the
full query keyword, such as %%?BeginResourceQuery:, if it can, but it is
obligated at least to respond to any validly formed query.

If a more intelligent query handling interface is desired, the document
manager must recognize which printer the application is printing to
(the %%DocumentPrinterRequired: comment may be helpful in this case).
By using the PPD file for that particular printer, the known printer network
configuration, and the printer status, the document manager should be able
to answer the query.

8 Query Conventions 85

8.2 Query Comments

%!PS-Adobe-3.0 Query (no keywords)

A PostScript language query must be sent as a separate job to the printer to
be fully spoolable. This means that an end-of-file indication must be sent
immediately after the query job. A query job must always begin with the
%!PS-Adobe-3.0 Query convention, which further qualifies the file as being
a special case of a version 3.0 conforming PostScript language file. A query
job contains only query comments, and need not contain any of the other
standard structuring conventions. A document manager must be prepared to
extract query information from any print file that begins with this comment
convention. A document manager must fully parse a query job file until the
EOF indication is reached.

Note It is permissible to include more than one query in a print job, but it is not
permissible to include queries within the body of a regular print job. It cannot
be guaranteed that a document manager can properly handle a print job with
embedded queries.

%%?BeginFeatureQuery: <featuretype> [<option>]
<featuretype> ::= <text> (Requested feature)
<option> ::= <text> (Feature option)

%%?EndFeatureQuery: <default>
<default> ::= <text> (Default response)

This query provides information that describes the state of some specified,
printer-specific feature as defined by the PostScript printer description (PPD)
file. The featuretype field identifies the keyword as found in the PPD file. The
standard response varies with the feature and is defined by the printer’s PPD
file. In general, the value of the <featuretype> or the value of <option> associ-
ated with the feature should be returned. In the example that follows, the PPD
file keywords True or False are returned:

%%?BeginFeatureQuery: *InputSlot manualfeed
 statusdict /manualfeed known {
 statusdict /manualfeed get { (True) }{ (False) } ifelse
 }{
 (None)
} ifelse = flush
%%?EndFeatureQuery: Unknown

86 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%?BeginFileQuery: <filename>

%%?EndFileQuery: <default>
<default> ::= <text> (Default response)

The PostScript language code between these comments causes the printer
to respond with information describing the availability of the specified file.
This presumes the existence of a file system that is available to the PostScript
interpreter, which is not the case on all implementations. The standard
response consists of a line containing the file name, a colon, and either Yes
or No, indicating whether the file is present.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceQuery: comments instead.

%%?BeginFontListQuery (no keywords)

%%?EndFontListQuery: <default>
<default> ::= <text> (Default response)

Provides a PostScript language sequence to return a list of all available fonts.
It should consult the FontDirectory dictionary and any mass storage devices
available to the interpreter. The list need not be in any particular order, but
each name should be returned separated by a slash / character. This is nor-
mally the way the PostScript == operator returns a font name. All white space
characters should be ignored. The end of the font list must be indicated by a
trailing * (asterisk) sign on a line by itself (decimal ASCII 42).

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceListQuery: comments instead.

%%?BeginFontQuery: <fontname> ...

%%?EndFontQuery: <default>
<default> ::= <text> (Default response)

This comment provides a PostScript language query that should be combined
with a particular list of font names being sought. It looks for any number of
names on the stack and prints a list of values depending on whether the font
is known to the PostScript interpreter. The font names must be provided on
the operand stack by the document manager. This is done by simply sending
the names, with leading slash / characters, before sending the query itself.

To prevent the document manager from having to keep track of the precise
order in which the values are returned and to guard against errors from
dropped information, the syntax of the returned value /FontName:Yes
or /FontName:No, with no space between the colon and the following word.

8 Query Conventions 87

Each font in the list is returned this way. The slashes delimit the individually
returned font names, although newlines should be expected (and ignored)
between them. A final * (asterisk) character follows the returned values.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceQuery: comments instead.

%%?BeginPrinterQuery (no keywords)

%%?EndPrinterQuery: <default>
<default> ::= <text> (Default response)

This comment delimits PostScript language code that returns information
describing the printer’s product name, version, and revision numbers. The
standard response consists of the printer’s product name, version, and revi-
sion strings, each of which must be followed by a newline character, which
must match the information in the printer’s printer description file. This
comment may also be used to identify the presence of a spooler, if
necessary. In the following example the default response as represented
in the %%?EndPrinterQuery: line is the word spooler, which would be
returned by spooling software that did not have a specific printer type
attached to it.

%%?BeginPrinterQuery
statusdict begin

revision == version == productname == flush
end
%%?EndPrinterQuery: spooler

88 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%?BeginProcSetQuery: <procname>

%%?EndProcSetQuery: <default>
<default> ::= <text> (Default response)

These comments delimit a procset query. The combination of the name,
version, and revision fields must uniquely identify the procset. The standard
response to this query consists of a line containing any of the values 0, 1, 2
where a value of 0 means the procset is missing, a value of 1 means the
procset is present and OK, and a value of 2 indicates the procset is present but
is an incompatible version. Note that methods for procset queries are procset
specific.

%%?BeginProcSetQuery: adobe_distill 1.1 1
/adobe_distill_dict where {

begin mark VERSION (1.) anchorsearch {(1)}{(2)} ifelse cleartomark
end

}{
(0)

} ifelse print flush
%%?EndProcSetQuery: unknown

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceQuery: comments instead.

%%?BeginQuery: <identifier>
<identifier> ::= <text> (Query identifier)

%%?EndQuery: <default>
<default> ::= <text> (Default response)

These comments are for very general purposes and may serve any function
that the rest of the query conventions, which are very specific, do not
adequately cover. To understand and intelligently respond to a query, a
document manager must semantically understand the query. Therefore,
specific keywords, such as %%?BeginPrinterQuery, are used. When the
generic %%?BeginQuery comment is encountered, a spooler may be forced
to return the default value. The comment is included primarily for large
installations that must implement specific additional queries not covered
here, and which will likely implement the document composition software
and the document manager software.

%%?BeginResourceListQuery: font | file | procset | pattern | form | encoding

%%EndResourceListQuery: <text>

These comments delimit a segment of PostScript language code that returns a
list of all available resources. The arguments specify which type of resources
to return. The code that these comments delimit should consult local VM,

8 Query Conventions 89

global VM, and any mass storage devices available to compile a complete list
of resources. The resulting list need not be in any particular order, but the
syntax of the returned values is the resource type followed by the resource
name. The end of the resource list must be indicated by a trailing * (asterisk)
on a line by itself.

Note that font names must be returned with a slash / character in front of each
font name.

Note The use of this type of query is discouraged because it can be time consuming
for interpreters with many accessible resources (for example, a printer with a
hard disk attached). It is far better to query for individual resources by using
the %%?Begin(End)ResourceQuery: comment.

%%?BeginResourceQuery: <resource>...

%%?EndResourceQuery: <default>
<default> ::= <text> (Default response)

The PostScript language code between these comments causes the printer
to respond with information describing the availability of the specified
resources. This code looks for any number of resource names on the stack,
and prints a list of values depending on whether the resource is known to
the PostScript interpreter.

The document manager could also process this query by using information
known about the print network and current printer status. To reduce the
overhead involved in keeping track of the precise order in which values are
returned, and to guard against errors from dropped information, the syntax of
the returned value is the resource type and name followed by a colon, a space
and then a yes or a no. The end of the list should be denoted by a *.

Note It is recommended that a separate resource query be used for each type of
resource.

90 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

A file resource query presumes that a file system is available to the PostScript
interpreter. This is not the case in all implementations. Example 10 shows a
typical font resource query:

Example 10

%!PS-Adobe-3.0 Query
%%Title: (Resource query for specified fonts)
%%?BeginResourceQuery: font Times-Roman Adobe-Garamond StoneSerif
/Times-Roman
/Adobe-Garamond
/StoneSerif
%%BeginFeature: *?FontQuery
save 4 dict begin /sv exch def
/str (fonts/) def
/st2 128 string def
{

count 0 gt {
dup st2 cvs (Font /) print print
dup FontDirectory exch known
{ pop (: Yes) }
{ str exch st2 cvs

dup length /len exch def
6 exch putinterval str 0 len 6 add getinterval mark exch
{ } st2 filenameforall counttomark

 0 gt {? cleartomark (: Yes) }{ cleartomark (: No) }ifelse
} ifelse = flush

}{ exit } ifelse
} bind loop
(*) = flush
sv end restore
%%EndFeature
%%?EndResourceQuery: Unknown
%%EOF

The output from this sample program could be:

Font /StoneSerif: Yes
Font /Adobe-Garamond: No
Font /Times-Roman: No
*

8 Query Conventions 91

%%?BeginVMStatus (no keywords)

%%?EndVMStatus: <default>
<default> ::= <text> (Default response)

This comment delimits PostScript language instructions that return the state
of the PostScript interpreter’s VM. The standard response consists of a line
containing the results of the PostScript language vmstatus operator as shown
in Example 11:

Example 11

%!PS-Adobe-3.0 Query
%%Title: (VM status query)
%%?BeginVMStatus
vmstatus
(Maximum:) print =
(Used:) print =
(Save Level:) print = flush
%%?EndVMStatus: Unknown
%%EOF

92 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

9 Open Structuring Conventions

There is an open extension mechanism for the DSC comments. Its purpose
is to enable other vendors to extend the functionality of the DSC without
having to rely on Adobe to amend the official specification.

Vendors may need or want to embed extra information in a file beyond the
comments that Adobe has already specified. To facilitate this and to minimize
conflicts and difficulties for the vendor, Adobe maintains a registry of comment
prefixes that are allocated to vendors, and these comments may be used in
any way that is meaningful to those vendors. You may contact the registry
at the following address:

DSC Coordinator
Developer Support Dept.
Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110

9.1 The Extension Mechanism

All existing Adobe-specified comments in the DSC begin with the same pre-
fix, except one. Here is a quick summary of the syntax of existing
comments:

The first line of a PostScript language file must, by convention, begin with
the characters %! (percent and exclamation, often referred to as “percent-
bang”). If the file is a conforming file, meaning that it conforms to the DSC
version 3.0, then it is further qualified with PS-Adobe-3.0. This may be
optionally continued by some special keywords, such as EPSF or ExitServer,
to identify the entire file as a special instance. The first line of a PostScript
language file may look something like this:

%!PS-Adobe-3.0 EPSF 3.0

This is the only Adobe-defined comment that does not begin with two
percent signs.

All remaining structuring conventions, in their various forms, are represented
as comments beginning with two percent signs (%%) as the first characters on
the line.

The extension mechanism for the open structuring conventions is to use one
percent character followed immediately by a vendor-specific prefix of up to
five characters. Beyond those five characters the vendor who has registered
the prefix is responsible for the comments. The comment is terminated at the
end of the line.

9 Open Structuring Conventions 93

Open structuring conventions may be used much like the existing DSC and
have similar syntax and philosophy. Here are some examples of fictitious
comments from made-up company prefixes:

%GCRImageName: myimage.ps
%BCASpoolerName: local_spool 1.0
%BCACoverStock: 10129
%BCADocumentOrigin: (New York Office)

Restrictions

Adobe does not specify where in the document open structuring convention
comments can appear. However, the comments must not conflict in any way
with the regular parsing of document structuring conventions, and their
specification and use is otherwise truly open.

If these vendor-specific comments interact in some meaningful way with
the DSC, this interaction should be clearly specified by the creator of the
comments, and the description should specify the version number of the
DSC with which they interact.

The new comments, however implemented, should still follow the conforming
files restrictions discussed in section 3, “DSC Conformance.”

Parsing Rules

Although the exact syntax of the vendor-specific comments is up to the ven-
dor, we strongly recommend adhering to the existing conventions and parsing
rules to simplify the task of writing parsing software.

Note The syntax and parsing rules for vendor-specific comments are up to the ven-
dor, and you should contact the vendor for details. The rules and details sup-
plied in this document are guidelines and suggestions that are recommended,
but are not enforced by Adobe.

94 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

10 Special Structuring Conventions

There are two comments that do not readily fall into the other comment
categories. They are listed below, along with a description of when they
should be used.

%%BeginExitServer: <password>
<password> ::= <text>

%%EndExitServer (no keywords)

These comments delimit the PostScript language sequence that causes the
rest of the file to be executed as an unencapsulated job (see section 3.7.7,
“Job Execution Environment” of the PostScript Language Reference Manual,
Second Edition). This convention is used to flag any code that
sets up or executes the exitserver or startjob operators, so a document
manager can recognize and remove this sequence if necessary. The
%%Begin(End)ExitServer comments may be used with the %%EOF
requirement convention to pinpoint where the document manager should
send an end-of-file indication. See the %!PS-Adobe-3.0 comment. PostScript
language jobs that use exitserver or startjob should be specially flagged
with the %!PS-Adobe-3.0 ExitServer notation. An example of appropriate
use is shown in the following example:

%!PS-Adobe-3.0 ExitServer
%%Title: (Example of exitserver usage)
%%EndComments
%%BeginExitServer: 000000
serverdict begin 000000 exitserver
%%EndExitServer
...PostScript language instructions to perform
persistent changes...
%%EOF

95

Appendix A: Changes Since
Earlier Versions

This content of this document is the same as the specification in Appendix G
of the PostScript Language Reference Manual, Second Edition. This docu-
ment tracks the changes made in subsequent printings of the PostScript Lan-
guage Reference Manual, Second Edition and those that are listed in
Technical Note #5085, “Updates to the PostScript Language Reference Man-
ual, Second Edition.”

A.1 Changes Since Earlier Versions

The following section details changes made to the DSC specification since
version 1.0 (Appendix C in the first edition of the PostScript Language Man-
ual). These changes are important to document managers that may wish to
allow backward compatibility with previous versions of this specification.

A.1.1 Changes Since Version 1.0

In DSC version 1.0, there were several comment conventions that were
required to minimally conform to that version of the specification. These
comments were:

%%DocumentFonts:
%%EndProlog
%%Page:
%%Trailer

As of version 2.1, there no longer are any required comments. All comments
are optional in the sense that they may not be appropriate in a given situation.
The only rule is to make sure to use them correctly.

The following comments were added as of version 2.1:

%%Begin(End)Binary:
%%Begin(End)CustomColor:
%%Begin(End)Document:
%%Begin(End)ExitServer:
%%Begin(End)Feature:

96 Appendix A: Changes Since Earlier Versions (25 Sep 92)

%%Begin(End)File:
%%Begin(End)Font:
%%Begin(End)Object:
%%Begin(End)PageSetup:
%%Begin(End)PaperSize:
%%Begin(End)ProcessColor:
%%Begin(End)ProcSet
%%Begin(End)Setup
%%CMYKCustomColor:
%%DocumentCustomColors:
%%DocumentNeededFiles:
%%DocumentNeededFonts:
%%DocumentNeededProcSets:
%%DocumentPaperColors:
%%DocumentPaperSizes:
%%DocumentPaperForms:
%%DocumentPaperWeights:
%%DocumentPrinterRequired:
%%DocumentProcSets:
%%DocumentProcessColors:
%%DocumentSuppliedFiles:
%%DocumentSuppliedFonts:
%%DocumentSuppliedProcSets:
%%ExecuteFile:
%%IncludeFile:
%%IncludeFont:
%%IncludeProcSet:
%%EOF
%%Feature:
%%PageBoundingBox:
%%PageCustomColors:
%%PageFonts:
%%PageFiles:
%%PageProcessColors:
%%PageTrailer
%%PaperColor:
%%PaperForm:
%%PaperSize:
%%PaperWeight:
%%ProofMode:
%%Requirements:
%%RGBCustomColor:
%%Routing:
%%?Begin(End)FeatureQuery:
%%?Begin(End)FileQuery:
%%?Begin(End)FontQuery:
%%?Begin(End)FontListQuery:
%%?Begin(End)ProcSetQuery:
%%?Begin(End)PrinterQuery:
%%?Begin(End)Query:
%%?Begin(End)VMStatus:

A.1 Changes Since Earlier Versions 97

The following comment was discontinued in version 2.1 and should be
ignored by document managers:

%%ChangeFont:

A.1.2 Changes Since Version 2.1

The DSC version 3.0 specification has been reorganized as a whole to better
present the concepts. The first half of the specification is a how-to guide and
discusses why the comments should be used. The second half is a reference,
detailing the comments.

The introduction introduces the concepts of a document manager and how a
document manager might use the comments.

A new section talks about the various services a document can receive from a
document manager. These services can be obtained through proper use of the
DSC comments. Services include spooling, banner and trailer pages, print
logging, resource inclusion, resource downloading, resource optimization,
error reporting and recovery, printer rerouting, feature inclusion, parallel
printing, color breakout, page reversal, n-up printing, range printing, collated
printing, and overlays. See section 2, “Document Manager Services.”

The section detailing DSC conformance has been expanded and is more
precise. A document either conforms or does not conform to this specifica-
tion. See section 3, “DSC Conformance.”

A new section describing proper document structure was added. In particular,
the placement of various comments in the document is discussed as are
restrictions on the prolog and script. See section 4, “Document Structure
Rules.”

A section detailing the breakdown of conventions into different categories
was added, as well as detailed explanations of header, body and page
comment types. The comments are arranged in the reference section of
the document according to these categories. See section 4.5, “Convention
Categories.”

The syntax of the DSC comments was qualified in Backus-Naur form (BNF)
to avoid ambiguities. A new section of the document talks about BNF and
defines some elementary types. See section 4.6, “Comment Syntax Reference.”

The open structuring conventions are new as of this version. They define an
extensible mechanism for defining vendor-specific comments. See section 9,
“Open Structuring Conventions.”

98 Appendix A: Changes Since Earlier Versions (25 Sep 92)

New Comments For Version 3.0

The following comments were added as of version 3.0:

%%Begin(End)Data:
%%Begin(End)Defaults
%%Begin(End)Emulation:
%%Begin(End)Preview:
%%BeginProlog
%%Begin(End)Resource:
%%Copyright:
%%DocumentData:
%%DocumentMedia:
%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%Emulation:
%%Extensions:
%%IncludeDocument:
%%IncludeFeature:
%%IncludeResource:
%%LanguageLevel:
%%OperatorIntervention:
%%OperatorMessage:
%%Orientation:
%%PageMedia:
%%PageOrder:
%%PageOrientation:
%%PageRequirements:
%%PageResources:
%%Version
%%VMlocation:
%%VMusage:
%%?Begin(End)ResourceQuery:
%%?Begin(End)ResourceListQuery:

There are three justifications for the addition of the %%BeginProlog com-
ment. Previously, the beginning of the prolog section of the document was
implicitly declared after the %%EndComments comment. This was confusing
in the case of EPSI files that needed to insert the EPSI preview after the com-
ments and before the prolog, which was defined as the first %%BeginProcSet:
comment. In addition, there may be instances when a document does not
need formal procset definitions, but needs a prolog. Finally, in the interest of
language purity, a corresponding %%Begin comment is necessary for each
%%End comment. Expect to see this pairing of comments in future revisions
of the DSC.

A.1 Changes Since Earlier Versions 99

Changes to Existing Comments

%!PS-Adobe-3.0
In addition to changing the version number from 2.1 to 3.0, the new EPSF
version number was added, as well as a general format keyword for
resources.

%%Pages:
The optional pageorder number at the end of the comment is no longer
recommended (-1 indicated descending order, 0 indicated special order, and
1 indicated ascending order). There have been cases of conflicts between pre-
knowledge of page orders and page numbers; in other words, an application
may not know the number of pages, and wishes to defer this comment to the
end of the document, but it may already know the page order. Previewers and
other document managers gain an advantage if they know the page order as
soon as possible. If page order must be specified, it is recommended that it be
done using the %%PageOrder: comment.

%%Begin(End)Binary:
There has been some confusion with this comment. Both hex and 8-bit binary
data has been seen between these comments. There also have been some
cases in which the byte count argument to this comment has been used to
specify the number of lines of data. A new comment, %%Begin(End)Data:,
has been introduced to deal with these ambiguities. The new comment may
also be extended in future versions of the DSC to deal with compression and
other filters, so a document manager can handle special filtering on Level 1
implementations.

%%Requirements:
The idea of option styles is introduced. These styles modify the requirement
option in some manner. For example, punch(3) indicates that the printer
needs to support 3 hole punching. Similarly, duplex(tumble) indicates that
the printer must be able to perform tumble duplexing.

New options include manualfeed, numcopies, collate, jog, faceup, resolution,
rollfed, fax, and punch. They reflect the additional functionality added by the
Level 2 setpagedevice operator.

Deleted options include simplex, punch3, punch5. The simplex option is
redundant because if duplex is not specified as a requirement, simplex is
implied. The punch3 and punch5 options have been superceded by the idea of
style modifiers (see above).

100 Appendix A: Changes Since Earlier Versions (25 Sep 92)

%%Begin(End)Document:
There has been a note added to this comment indicating that feature and
resource requirements of an included document should be inherited by the
including document.

%%ExecuteFile:
This comment has been renamed %%IncludeDocument to better reflect its
meaning.

%%Feature:
This comment has been renamed %%IncludeFeature: to more clearly express
its dependence on the document manager.

Discontinued Comments For Version 3.0

%%BeginPaperSize:
%%EndPaperSize
The comments %%BeginFeature: and %%EndFeature should be substituted.

%%DocumentPaperColors:
%%DocumentPaperForms:
%%DocumentPaperSizes:
%%DocumentPaperWeights:
These comments have been replaced by the single %%DocumentMedia: com-
ment. This new comment addresses two shortcomings of DSC version 2.1.
First, the new comment provides the linkage among the various parameters
describing an output medium. Second, a generalized portable methodology
for describing paper is provided.

For document managers concerned with backward compatibility, the
following comments

%%DocumentPaperColors: white buff pink
%%DocumentPaperForms: Plain Plain CorpLetterHead
%%DocumentPaperSizes: letter letter legal
%%DocumentPaperWeights: 20 65 20

can be converted to

%%DocumentMedia: Wplain 612 792 75 white
%%+ Bplain 612 792 244 buff
%%+ CLHpink 612 1008 75 pink CorpLetterHead

Note that in version 2.1 there was no explicit link among the listed arguments
and the other comments. The document manager will have to use a best-guess
method of conversion or ignore these comments entirely.

A.1 Changes Since Earlier Versions 101

%%PaperColor:
%%PaperForm:
%%PaperSize:
%%PaperWeight:
The individual paper-request comments are now replaced with the single
%%PageMedia: comment.

Document managers trying to maintain backward compatibility should match
the %%DocumentMedia: comment with its old counterparts (see above).
%%PageMedia: will use the names of the different media specified in
%%DocumentMedia: to specify changes in media. The paper comments for
forms, colors, and weights should be replaced with the corresponding
%%PageMedia: comment.

102 Appendix A: Changes Since Earlier Versions (25 Sep 92)

103

Appendix B: DSC
Version 3.0 Summary

B.2 DSC Version 3.0 Summary

The following summary lists the comments that comprise version 3.0 of the
document structuring conventions.

Note Some comments in this document may be discontinued in future versions
of the DSC and are not found in this list. However, they are in the body of
the document for backward compatibility with existing applications and
document managers. Their use is discouraged; they will eventually be
omitted from the specification.

B.2.1 General Conventions

General Header Comments

%!PS-Adobe-3.0
%%BoundingBox:
%%Creator:
%%CreationDate:
%%DocumentData:
%%DocumentPrinterRequired:
%%Emulation:
%%EndComments
%%Extensions:
%%For:
%%Version:
%%Copyright:
%%LanguageLevel:
%%OperatorIntervention:
%%OperatorMessage:
%%Orientation:
%%Pages:
%%Routing:
%%Title:

104 Appendix B: DSC Version 3.0 Summary (25 Sep 92)

General Body Comments

%%+
%%Begin(End)Data:
%%Begin(End)Defaults
%%Begin(End)Emulation:
%%Begin(End)ExitServer:
%%Begin(End)Preview:
%%Begin(End)Prolog
%%Begin(End)Setup

General Page Comments

%%Begin(End)Object:
%%Begin(End)PageSetup:
%%Page:
%%PageBoundingBox:
%%PageOrientation:

General Trailer Comments

%%PageTrailer
%%Trailer
%%EOF

B.2.2 Requirement Conventions

Requirement Header Comments

%%DocumentMedia:
%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%Requirements:
%%ProofMode:
%%VMlocation:
%%VMusage:

Requirement Body Comments

%%Begin(End)Document:
%%Begin(End)Feature:
%%Begin(End)Resource:
%%EOF
%%IncludeDocument:
%%IncludeFeature:
%%IncludeResource:

B.2 DSC Version 3.0 Summary 105

Requirement Page Comments

%%PageMedia:
%%PageRequirements:
%%PageResources:

B.2.3 Color Separation Conventions

Color Header Comments

%%CMYKCustomColor:
%%DocumentCustomColors:
%%DocumentProcessColors:
%%RGBCustomColor:

Color Body Comments

%%Begin(End)CustomColor:
%%Begin(End)ProcessColor:

Color Page Comments

%%PageCustomColors
%%PageProcessColors

B.2.4 Query Conventions

%!PS-Adobe-3.0 Query
%%?Begin(End)FeatureQuery:
%%?Begin(End)PrinterQuery:
%%?Begin(End)Query:
%%?Begin(End)ResourceQuery:
%%?Begin(End)ResourceListQuery:
%%?Begin(End)VMStatus:

106 Appendix B: DSC Version 3.0 Summary (25 Sep 92)

107

Index

Symbols

#copies
collated printing and 16
document copies and 26

% comment syntax 8
%! comment syntax 21
%!PS-Adobe-3.0 38–39

conforming documents and 17
non-conforming documents and

21
%!PS-Adobe-3.0 Query 85
%% comment syntax 8
%%+ comment syntax 44

line length and 25

A

(atend) 33–34
script and 24

B

banner pages 11
%%BeginBinary: 44–45
%%BeginCustomColor: 82
%%BeginData: 45–46
%%BeginDefaults 47–49
%%BeginDocument: 68
%%BeginEmulation: 49
%%BeginExitServer: 94
%%BeginFeature: 69
%%?BeginFeatureQuery: 85
%%BeginFile: 70
%%?BeginFileQuery: 86
%%BeginFont: 70
%%?BeginFontListQuery 86
%%?BeginFontQuery: 86–87
%%BeginObject: 52

%%BeginPageSetup 52
%%BeginPreview: 50
%%?BeginPrinterQuery 87
%%BeginProcessColor: 83
%%BeginProcSet: 71
%%?BeginProcSetQuery: 88
%%BeginProlog 50–51
%%?BeginQuery: 88
%%BeginResource: 72–73
%%?BeginResourceListQuery: 88
%%?BeginResourceQuery: 89–90
%%BeginSetup 51
%%?BeginVMStatus 91
BNF (Backus-Naur form) 32
body comments (DSC) 31
%%BoundingBox: 39

C

changes
DSC 95–101

%%CMYKCustomColor: 81
collated printing 16
color body comments 82–83, 105
color header comments 81–82, 105
color page comments 83, 105
color separation conventions 30, 81–

83, 105
comment(s) 8
conforming documents 17–20
conventions

document structuring 7–105
#copies

collated printing and 16
document copies and 26

copypage
document copies and 26

%%Copyright: 39
%%CreationDate: 40

108 Index (25 Sep 92)

%%Creator: 40

D

defaults section (DSC) 22
device-dependent page description 9
document manager services 11–16
document structure 18–19, 22–37

constraints 24–27
page independence 24–25
prolog 22–23
restricted operators 27
script 23

document structuring conventions
(DSC) 7–105

categories of 29–32
changes to 95–101
color separation conventions 81–

83
conformance 17–21
general conventions 38–54
open structuring conventions 92–

93
query conventions 84–91
requirement conventions 55–80
special structuring conventions 94
summarized 103–105
syntax 32–37
using 10

document trailer 24
%%DocumentCustomColors: 81
%%DocumentData: 40
%%DocumentFonts: 58
%%DocumentMedia: 55–56
%%DocumentNeededFiles: 57
%%DocumentNeededFonts: 58
%%DocumentNeededProcSets: 59
%%DocumentNeededResources: 56
%%DocumentPrinterRequired: 57
%%DocumentProcessColors: 81
%%DocumentProcSets: 59
documents

conforming 17–20
non-conforming 21

%%DocumentSuppliedFiles: 58
%%DocumentSuppliedFonts: 59
%%DocumentSuppliedProcSets: 59
%%DocumentSuppliedResources:

56

E

%%Emulation: 41
%%EndBinary 44–45
%%EndComments 41

header comments and 31
prolog and 22

%%EndCustomColor 82
%%EndData 45–46
%%EndDefaults 47–49
%%EndDocument 68
%%EndEmulation 49
%%EndExitServer 94
%%EndFeature 69
%%?EndFeatureQuery: 85
%%EndFile 70
%%?EndFileQuery 86
%%EndFont 70
%%?EndFontListQuery 86
%%?EndFontQuery 86–87
%%EndObject 52
%%EndPageSetup 52
%%EndPreview 50
%%?EndPrinterQuery: 87
%%EndProcessColor 83
%%EndProcSet 71
%%?EndProcSetQuery 88
%%EndProlog 50–51
%%?EndQuery: 88
%%EndResource 72–73
%%EndResourceListQuery: 88
%%?EndResourceQuery: 89–90
%%EndSetup 51
%%?EndVMStatus: 91
%%EOF 54

document structure and 24
error management 13
%%Extensions: 41–42

F

feature inclusion 14
%%For: 42

G

general body comments 44–51, 104
general header comments 38–44, 103
general page comments 52–54, 104
general trailer comments 54, 104

H

header comments (DSC) 22, 31

I

%%IncludeDocument: 68
%%IncludeFeature: 69
%%IncludeFile: 70
%%IncludeFont: 71
%%IncludeProcSet: 72
%%IncludeResource: 73–77

L

%%LanguageLevel: 42

N

non-conforming documents 21
n-up printing 15

O

open structuring conventions 30, 92–
93

%%OperatorIntervention: 60
%%OperatorMessage: 60
%%Orientation: 43

P

%%Page: 53
document structure and 18

page breakout 15
page comments (DSC) 32
page independence 24–25
page management 15–16
page reversal 15
%%PageBoundingBox: 53
%%PageCustomColors: 83
%%PageFiles: 78
%%PageFonts: 78
%%PageMedia: 78–79
%%PageOrder: 43

page independence and 25
%%PageOrientation: 54
%%PageProcessColors: 83
%%PageRequirements: 80
%%PageResources: 80
%%Pages: 43
%%PageTrailer 54

Index 109

parallel printing 14
PPD (PostScript printer description)

files 9
print logging 11
print management 13–15
printer rerouting 13
printing services 20
procedures section (DSC) 22
prologs 22–23
%%ProofMode: 60–61
%!PS-Adobe-3.0 38–39

conforming documents and 17
non-conforming documents and

21
%!PS-Adobe-3.0 Query 85

Q

query comments 85–91

R

range printing 16
requirement body comments 67–77,

104
requirement header comments 55–

66, 104
requirement page comments 78–80,

105
%%Requirements: 61–65

parsing and 28
resource downloading 12
resource inclusion 12
resource management 12–13
resource optimization 13
restore

page independence and 25
%%RGBCustomColor: 82
%%Routing: 44

S

save
page independence and 25

script 23
setpagedevice

collated printing and 16
document copies and 26

special structuring conventions 94
spool management 11

T

%%Title: 44
%%Trailer 54

parsing and 28
trailer pages 11

U

underlays 16

V

%%Version: 44
%%VMlocation: 65
%%VMusage: 66

	List of Figures
	PostScript Language Document Structuring Conventions Specification
	1 Using the Document Structuring Conventions
	2 Document Manager Services
	2.1 Spool Management
	2.2 Resource Management
	2.3 Error Management
	2.4 Print Management
	2.5 Page Management

	3 DSC Conformance
	3.1 Conforming Documents
	3.2 Non-Conforming Documents

	4 Document Structure Rules
	4.1 Prolog
	4.2 Script
	4.3 Constraints
	4.4 Parsing Rules
	4.5 Convention Categories
	4.6 Comment Syntax Reference

	5 General Conventions
	5.1 General Header Comments
	5.2 General Body Comments
	5.3 General Page Comments
	5.4 General Trailer Comments

	6 Requirement Conventions
	6.1 Requirement Header Comments
	6.2 Requirement Body Comments
	6.3 Requirement Page Comments

	7 Color Separation Conventions
	7.1 Color Header Comments
	7.2 Color Body Comments
	7.3 Color Page Comments

	8 Query Conventions
	8.1 Responsibilities
	8.2 Query Comments

	9 Open Structuring Conventions
	9.1 The Extension Mechanism

	10 Special Structuring Conventions
	Appendix A: Changes Since Earlier Versions
	Appendix B: DSC Version�3.0 Summary
	Index

