
Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 1
of 12

Java Card 2.0 Programmers Guide

1. Introduction
This guides describes how to use the Java Card 2.0 API to write applets for smart cards.

2. Applets
According to the ISO 7816-4 standard, an ICC (Integrated Circuit Card with contacts),
also known as a “smart card,” contains one or more “applications.” Java Card uses the
term “applet” in place of the ISO term “application.”

Applets are the basic unit of selection, context, and functionality. When a smart card is
inserted in a CAD (Card Acceptance Device), the CAD will select an applet on the card
and send it commands to perform. Applets are identified and selected by an AID
(Application IDentifier) as defined in ISO 7816-5. The selection and other commands are
formatted and transmitted as APDUs (Application Protocol Data Units) as defined in ISO
7816-4. Applets reply to each APDU command with optional data and a SW (Status
Word) indicating the result of the operation.

2.1 Multiple Applets
A CAD may interact with a single applet. Or it may interact with several applets by
selecting each in turn and sending them individual APDU commands to perform. Each
applet is an independent entity with its own state and functionality. Under normal
circumstances, the existence and operation of one applet has no effect upon other applets
on the card. However, Java Card provides facilities to support more sophisticated
scenarios whereby multiple applets can discover each other, communicate, and share data
in a limited fashion, while still maintaining reasonable protection from each other.

2.2 Packages
Java Card supports packages as in standard Java. Packages, like applets, are named with
AIDs. A minimal applet is a package with a single class derived from the
javacard.framework.Applet class. On the other hand, an applet may consist of code in
multiple packages downloaded as a unit and linked to other packages already on the card.
Packages not containing an applet class can also be loaded onto the card.

2.3 Object Lifetime
In a Java Card system, applets are written in the Java language, and they make use of
Java “objects” to represent, store, and manipulate data. Each applet has its own object
space in which to create objects. Unless an object is explicitly shared, it is only accessible
to the applet which created it.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 2
of 12

Java Card objects persist across card uses (insertion of the card into a reader). In a PC or
Workstation, the Java virtual machine runs as an operating system process. When the OS
process dies all Java applets and their objects are destroyed. Because of the persistent
memory technology (like EEPROM) used throughout the smart card industry, however,
Java Card assumes that the virtual machine process lives for the life of the card. So Java
Card objects have the same lifetime as the virtual machine.

If all references to an object are forgotten, then the object itself is lost. However, garbage
collection is not performed, and the space occupied by that object is not reclaimed1.
Thus, the nature of Java Card applet design is somewhat different from that of application
design for other Java environments.

On a PC, for example, where there is lots of RAM, a fast processor, and a native file
system fronting a large disk, Java programs typically create large numbers of objects
during processing. Many objects are also routinely “forgotten,” and these are periodically
garbage-collected so that their space can be reused.

Java Card platforms are much more limited in RAM, processor speed, and storage space.
Java Card applets must be designed with this in mind. The Java Card object system is
much like an Object DataBase, compared to the transient nature of the object system of a
Java VM on a PC.

Java Card applets must be conservative and careful in their creation of objects in order to
avoid wasting precious memory resources.

2.4 Transient Objects
Most object data maintained by an applet needs to be persistent across “sessions” with the
CAD. Due to the nature of smart card hardware, there is a performance penalty when
updating objects in some memory technology.

But applets sometimes have objects that contain temporary or transient data which need
not be persistent across sessions. Thus, applet performance can be increased if transient
data is collected into one of more transient objects.

Java Card supports designating objects as “transient.” These objects are like the normal
Java Card objects in all ways, except for the following:

• The contents of transient objects are not preserved across CAD sessions.

• Transient objects are potentially much faster to update than persistent objects.

• Due to resource limitations, the number of transient objects an applet can have is
quite small.

• Transient objects do not have any limitations with respect to the number of times
they can be written (unlike persistent memory technology such as EEPROM).

Thus, transient objects are ideal for the small amounts of applet temporary data which is
modified frequently during the course of a session but need not be preserved across
sessions.

1 Garbage collection may be implemented in future, but it is not practical on today’s limited smart card
platforms.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 3
of 12

A transient object’s space and object reference is still persistent because, once created,
they take up space as long as the virtual machine. But while the object itself is persistent,
the contents of the object’s fields are not.

Like persistent objects, Java Card applets must be conservative and careful in their
creation of transient objects in order to avoid wasting precious memory resources.

2.5 Atomicity
The Java Card platform guarantees that any update to a single object or class field will be
“atomic.” That is, if the smart card loses power during the update, the contents of the
field will be restored to its previous value. Some Java Card methods also guarantee
atomicity for “block updates” of multiple data elements. For example, the atomicity of
the copyArray method guarantees that either all bytes are correctly copied or else the
destination array is restored to its previous byte values.

In some cases, an applet will need to atomically update several different fields in several
different objects. That is, either all updates take place correctly or else all fields are
restored to their previous values.

Java Card supports a “transactional model” whereby an applet can designate the
beginning of an atomic set of updates with a call to the method beginTransaction.
Each object update after this point is “conditionally updated.” This means that the field
appears to be updated – reading the field back yields its latest conditional value. But the
update is not yet “committed.”

When the applet calls commitTransaction then all conditional updates are
committed to persistent storage.

If power is lost or if some other system failure occurs prior to the completion of
commitTransaction then all conditionally updated fields are restored to their
previous values. If the applet encounters an internal problem or decides to cancel the
transaction, it can programmatically undo conditional updates by calling
abortTransaction.

Note that only updates to persistent objects participate in the transaction. Updates to
transient objects are never undone, regardless of whether or not they were “inside a
transaction.”

Since platform resources are limited, the number of bytes of conditionally updated data
that can be accumulated during a transaction is limited. Java Card provides methods to
determine how much “commit capacity” is available on the current platform. An error is
throw if the commit capacity is exceeded.

2.6 Security and Object Sharing
In order to create a secure and trusted environment, applets are isolated from each other.
By default, any object (persistent or transient) created by one applet cannot be accessed
nor even seen by any other applet on the card.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 4
of 12

However, in order to support cooperating applets, Java Card allows an applet to explicitly
“share” any of its objects with one or more other applets. These additional applets can
now access (read and write) the fields and call methods of the shared object. The
granularity of sharing is on an object and applet basis. Individual objects are explicitly
shared with one or more individual applets. This gives the applet developer very fine-
grained control over object sharing.

For convenience in handling “global data,” it is possible for an object to be shared to
“all” applets on the card.

2.7 Exception Handling
Java Card supports exception handling as defined in the Java language. Exceptions are
thrown both by the VM when internal runtime problems are detected. In addition,
exceptions can be thrown programmatically by the code in applets and shared packages.
Exceptions are caught in the normal Java way.

 “Checked” exceptions (see The Java™ Language Specification, section 11.2) are
subclasses of CardException and must either be caught in the throwing method or
declared in a throws clause of the method header. These exceptions are typically an
important part of the interface to a method and must be eventually caught by the applet
code in order to ensure correct usage of the API.

“Unchecked” exceptions are subclasses of CardRuntimeException and need not be
caught nor declared in a throws clause. These exceptions are typically indicative of
unexpected runtime problems or programming errors and are caught by the outmost
levels of the Java Card system. (However, an applet may catch unchecked exceptions if it
chooses to do so.)

One major difference between exception handling in Java Card and in other Java
platforms results from the fact that all Java Card objects are persistent.

On a PC Java platform, exception objects are usually dynamically created (with a new)
when they occur. After they are caught and handled, the exception objects are then
forgotten and garbage-collected.

This works perfectly well on a platform with lots of RAM and garbage collection. But, as
we have seen, Java Card platforms do not have large amounts of RAM, garbage
collection is not done, and objects persist.

When a Java Card exception object is created, it persists and continues to occupy
precious memory space, even if its reference is later forgotten. Thus, the Java Card
paradigm is to “pre-create” all exception objects at some initialization time and save their
references permanently in some well-known location. When the exception event occurs,
rather than create a new exception object, the code should retrieve the reference for the
desired exception object from the well-known location, fill in parameter fields in the
object with any exception event information, and throw the object.

When the exception is eventually caught and handled, the reference can be forgotten by
the handling code. But, of course, the exception object is never truly forgotten because it
is still referenced in the well-known location. Thus, the next occurrence of that exception
will reuse this same object.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 5
of 12

To reiterate, in Java Card one instance of each class of exception should be pre-created
and saved. This instance should be reused whenever it needs to be thrown. This avoids
wasting memory when generating exceptions.

The Java Card system pre-creates an instance of each kind of specific exception defined
in the Java Card API. Most of these are unchecked exceptions. Whenever they are
needed, the references to these objects can be obtained by applet code with the
javacard.system.getxxxException methods.

Applets may define their own exceptions by subclassing UserException. These are
always checked exceptions. These exceptions can be thrown and caught as desired by the
applet. However, during initialization the applet should create a single instance of each
such exception, save the reference in some persistent object field, and reuse that instance
whenever it is necessary to throw that exception.

2.8 Temporary Objects
The Java Card paradigm for exceptions also applies to any other kind of “temporary”
object that an applet may wish to use. As noted, if applets were to dynamically create
temporary objects as needed and then forget them, the platform memory would quickly
become exhausted, since the space for these objects is not reclaimed.

Instead, applets should pre-create (at initialization time) all the instances of all temporary
objects that the applet may need during its lifetime. These references should be
persistently stored in a known location, and then (re)used as necessary.

2.9 Applet Lifetime and Runtime Environment
Since there is no garbage collection, and since applets are simply a collection of Java
Card objects, applets themselves persist for the life of the card. In other words, once
installed an applet lives on the card forever2.

Each applet is a subclass of the Applet class. As defined by this template, an applet
must implement for the methods install, select, and process

The process of developing, distributing, and installing applets is beyond the scope of this
document. For the purposes of this document, we begin an applet’s lifetime at a point
where it has been correctly loaded into platform memory, linked, and otherwise prepared
for execution. The last phase of this installation process is that the Java Card system calls
the install static method of the Applet class.

2.9.1 install()

When install is called, no applet objects exist. The main task of the install
method within the applet is to create and initialize the objects that the applet will need
during its lifetime and otherwise prepare itself to be selected and accessed by a CAD.

2 If desirable, the Java Card API could implement a method to allow the system to “forget” an applet. This would
have the effect of “deleting” the applet from the card. But the space for that applet would not be reclaimed.
Such a method is not currently included in the Java Card API. Furthermore, true applet deletion (including
garbage collection) is a possible enhancement for a future version of Java Card.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 6
of 12

Depending on the platform constraints and the applet design, there is quite a lot of
flexibility in what can be done during the install method. Typically, an applet will
create various objects (persistent and/or transient), initialize them with predefined values,
link them together in some fashion, set some internal state variables, and call the
register method to inform the Java Card system that the applet is available for
selection.

The actual install APDU command is supplied as an install parameter, so that the
applet may examine parameter data describing how to configure itself. Should the applet
encounter a problem with installation, it may return from install with an error SW
(anything other than 0x9000) and the system will abort the applet installation.

Simple applets may be fully ready to function in their normal role after a successful
return from install.

More complex applets may need further configuration, initialization, or personalization
information before they are ready to function normally. In this case, the applet should set
internal state variables indicating that the next few APDUs it receives must deliver the
additional data necessary to complete the installation (see the select and process
methods below).

2.9.2 Use of new()

The Java Card system allows a card issuer to specify its own policies concerning the
operation of various facets of the platform. One of these policies is whether or not applets
are allowed to perform a new after installation.

Some card issuers may choose to enforce a policy whereby applets may only create new
objects (“new”) during the installation process (between the first call to the applet’s
install method and the applet’s call to the system’s register method).

Other card issuers may adopt a more lenient policy whereby applets may create new
objects (“new”) at any time during their lifetime (subject, of course, to the availability of
platform memory). Applet developers should check with card issuers to determine the
policies for each issuer platform.

In any case, all news must always be enclosed within a transaction. This requirement is
enforced by the Java Card system and is necessary in order to protect the integrity of
internal Java Card system data structures, as well as help the applet ensure that new
objects are correctly linked into the applet’s environment and are not “forgotten.”

2.9.3 select()

Applets remain in a “suspended” state until they are explicitly selected. Selection occurs
when the Java Card system receives a SELECT APDU where the name data matches the
AID of the applet. Selection causes this applet to become “active,” and the platform
context is adjusted so that only objects belonging to this applet (or appropriately shared to
this applet) can be accessed. Finally, the system informs the applet of selection by
invoking its select method. In this case, the selectedFlag parameter is true,
indicated that this applet has just become active.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 7
of 12

The actual install APDU command is supplied as a select parameter, so that the applet
may examine parameter data (if any). The applet may respond to the select APDU with
data (see the process method for details) and returns from select with a SW. The
SW and optional response data are sent to the CAD. Any SW returned from select
other 0x90nn indicates refusal of the applet to be selected, and this applet will no longer
be “active.”

After successful selection, all subsequent non-select APDUs are delivered to this applet
via the process method. If a select APDU contains the name of another applet (or even
this same applet!) this applet become “inactive.” The newly identified applet becomes
active and its select method is called.

If a select APDU contains a name which is not recognized by the Java Card system as the
AID of an applet, then the select method of the active applet is called. In this case, the
selectedFlag parameter is false, indicated that this applet is already active and has
received a select APDU which does not correspond to a known applet on the card.
Normally, this causes the applet to select a different DF within its file system hierarchy
(if the applet has a file system).

2.9.4 process()

Any non-select APDU received causes the process method of the active applet to be
invoked. The APDU is supplied as a parameter. The applet may respond to the APDU
with data and returns from process with a SW. The SW and optional response data are
sent to the CAD.

APDU processing is describe in more detail in a later section.

2.9.5 Applet Internal State

After installation, an applet is completely responsible for its own state and may decide
how to respond to each invocation of its select or process methods.

Some smart card application specifications call for applets to “block” themselves or
otherwise maintain state indicating what the applet can and cannot do at any point in
time. Applets must manage this state themselves.

Any select APDU with this applet’s AID will cause this applet’s select method to be
invoked. When this applet is active, any select APDU with non-recognized AID and any
other APDU will cause this applet’s select or process methods to be invoked.

2.9.6 Applet Processing

Once selected, an applet is active until platform power is lost or until another applet is
selected. During this time, the applet receives, processes, and responds to APDU
commands from the CAD. As part of this processing and applet may:

• Maintain its own state (including states like “blocked” or “expired”).

• Reference (read and write) its own objects.

• Reference objects which have been appropriately shared.

• Share its objects with other applets.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 8
of 12

• Enclose multiple updates in a transaction.

• Create new objects (if the issuer policy allows this).

• Invoke services provided by the Java Card API, such as PIN, crypto, and FileSystem.

3. APDU Handling

3.1 Overview
The Java Card APDU class provides a powerful and flexible mechanism to handle ISO
7816-4 APDUs. It is optimized so as to be efficiently implementable on small Java Card
platforms.

It is also carefully designed so that the intricacies of and differences between the T=0 and
T=1 protocols are hidden from the applet developer. In other words, using the APDU
class, applets can be written so that they will work correctly regardless of whether the
platform is using the T=0 or T=1 transport protocol.

The next section describes the methods in the APDU class in the order that they will
typically appear in applet code. A later section describes how a typical applet might
handle the various “cases” of APDUs.

3.2 Methods

3.2.1 process()

Even though the process method is the Applet class, it is the beginning of APDU
handling. All APDU commands (except for install and select) are delivered to
the active applet via its process method.

3.2.2 Returning from process()

At any point in time, the applet may return a SW from process. This terminates the
processing of that APDU. The SW is returned to the CAD.

The Java Card system ensures that the underlying transport protocols are properly
managed so that the CAD and card do not become unsynchronized. This may require the
reading and discarding of unread command data bytes and/or the padding of incomplete
responses with null bytes.

The desired result is that when the applet encounters a problem, it can simply return the
desired SW from process and the system will take care of all other details.

3.2.3 getBuffer()

The command data bytes received and the response bytes to be sent are stored in the
APDU object’s buffer. getBuffer obtains the reference to the buffer so that the applet
can examine the command bytes and store the response bytes using normal Java syntax
for array access.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 9
of 12

The size of this buffer is platform dependent. The minimum buffer size is 32 bytes.
Platforms with larger RAMs will usually have a larger APDU buffer. Because the buffer
is declared as a byte array, its size can be obtained using normal Java syntax (the
array.length keyword).

The APDU buffer object belongs to the Java Card system, but it is “shared” with all
applets. Applets should not store data in this buffer between invocations of process
because the system is not guaranteed to preserve such data. Furthermore, the contents of
the buffer are cleared for each select APDU so that any private data from one applet
cannot be seen by another applet.

Furthermore, the APDU buffer is a transient object because its contents need not be
preserved across CAD sessions and because fast update is important.

3.2.4 getIFSC()

ISO 7681-3 defines the T=1 IFSC value as “the maximum length of information field of
blocks which can be received by the card.” For the T=1 protocol, this value is platform
dependent and is specified in the ATR.

In the APDU class, the IFSC is used in a protocol-independent way to indicate “the
maximum number of bytes which can be received into the APDU buffer in a single I/O
operation.” The I/O operations are the receiveBytes,
setIncomingAndReceive, sendBytes, and sendBytesLong methods.

The IFSC can be as large as the APDU buffer, but will typically be somewhat smaller.
This allows an applet to preserve a few bytes of data in the APDU buffer and still receive
subsequent command data bytes without the risk of overflow. For example, a platform
might have an APDU buffer size of 64 bytes and an IFSC of 60 bytes.

3.2.5 Reading the APDU Header

When an applet’s process method is invoked, the first 5 bytes of the APDU buffer
contain the APDU header bytes. The remaining bytes in the buffer are undefined and
should not be read or written by the applet. At this time, the applet should only examine
the following values:

• Buffer[0] = CLA, the APDU class byte.

• Buffer[1] = INS, the APDU instruction byte.

• Buffer[2] = P1, the APDU parameter 1 byte.

• Buffer[3] = P2, the APDU parameter 2 byte.

• Buffer[4] = P3, the APDU fifth byte, which is:

� For case 1, P3 = 0.

� For case 2, P3 = Le, the length of expected response data.

� For cases 3 and 4, P3 = Lc, the length of command data.

The applet should examine these values in order to determine what to do next.

As previously mentioned:

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 10
of 12

• The applet may return from process with a SW at any time, regardless of the
“case” of the APDU.

• The applet need not know which protocol (T=0 or T=1) is actually being used.
The Java Card system and API will handle all protocol details.

3.2.6 setIncoming()

If the applet determines (usually via INS) that the APDU has command data (case 3 or 4),
it should call setIncoming. This informs the underlying protocol handler that the fifth
byte of the header is Lc and to expect incoming command data bytes.

3.2.7 receiveBytes()

The applet receives a group of command bytes by calling receiveBytes, specifying
the offset into the APDU buffer where the group of bytes is to be placed. In cases where
IFSC is smaller than the buffer size, this allows the applet some flexibility. For example,
the applet may have processed a group of data except for a few bytes. The applet can
move these bytes to the beginning of the buffer, and then receive the next group such that
it is appended to the bytes still in the buffer. This feature is important in case the
command data is split across a group of bytes that needs to be processed as a whole.

The actual number of received bytes is returned by receiveBytes. Due to the
operation of the T=1 protocol, the applet has no control over how many bytes are
received. Typically, the number of bytes will be the minimum of IFSC and the total
number of command bytes remaining to be received. However, this cannot be guaranteed.
Depending on the implementation of the CAD’s protocol handling, a call to
receiveBytes could receive less than that amount.

After processing each group of command data bytes, the applet can call
receiveBytes to get additional groups of command bytes (if any).

3.2.8 setIncomingAndReceive()

For efficiency, the setIncomingAndReceive method is a combination of
setIncoming and receiveBytes(5). In other words, setIncoming is done and
then the first group of command data bytes is received at offset 5 in the buffer (so that the
command header is preserved). As with receiveBytes, the number of command data
bytes received is returned.

3.2.9 setOutgoing()

After processing incoming bytes (if any) the applet can send response bytes. If the APDU
command is case 2 or 4, the applet calls setOutgoing to indicate that it wishes to send
response data. setOutgoing switches the internal APDU state to “send.” It also
returns the Le as follows:

• For case 2, Le = P3, the fifth byte of the APDU header.

• For T=1 case 4, Le = the actual Le from the end of the command bytes.

• For T=0 case 4, Le = 256 because the actual Le cannot be determined. So the
maximum Le allowed for T=0 is assumed.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 11
of 12

Note: Even though the above text refers to the transport protocols for clarity of
explanation, it is not necessary for the applet to know which protocol is being used.

3.2.10 setOutgoingLength()

After examining Le, the applet must indicate by calling setOutgoingLength how
many total response data bytes (not including SW) it will actually send. The default
value is 0, so this method need not be called if the applet will not be sending response
bytes.

The total number of response bytes could be more than will fit in the APDU buffer. In
this case, the applet will have to break the response up into groups of bytes and send one
group at a time.

3.2.11 sendBytes()

The sendBytes method sends a group of response bytes from the APDU buffer. If the
applet needs to send multiple groups, it must call this method repeatedly until all bytes
are sent.

3.2.12 sendBytesLong()

The sendBytesLong method is similar to sendBytes. However, it allows the applet
to send a group of bytes from any byte array (except from the APDU buffer byte array).
This is useful in cases where the data to be sent is in a file or in some other data
structure’s byte array.

sendBytesLong simply copies smaller groups of bytes into the APDU buffer and
sends them one at a time. For this reason, the applet should not expect the contents of the
APDU buffer to be preserved after a call to sendBytesLong.

3.2.13 wait()

Both the T=0 and T=1 protocol have a mechanism by which the card can request
additional time from the CAD, so that the protocol does not time out while the card is
performing a long computation. The wait method invokes this mechanism. It can be
called at any time during APDU processing when the applet must do something else for
an extended period of time.

wait is intended to be implemented as follows (see ISO 7816-3 for additional details):

• For T=0, wait causes a NULL procedure byte (0x60) to be sent to the CAD.
This resets the “work waiting time.”

• For T=1, wait causes a “S(WTX response)” to be sent to the CAD. This
requests additional block waiting time (BWT). [Note: to do - determine how
much extra time the WTX should ask for.]

3.3 Cases
This section gives example of how each of the APDU cases can be handle by the Java
Card APDU API.

Java Card 2.0 Programmers Guide

© 1997 Sun Microsystems Inc. Tuesday, September 02, 1997
DRAFT v0.1

Page 12
of 12

3.3.1 Case 1 – no command data, no response data

1. The applet’s process method is called. The applet examines the first 4 bytes of
APDU buffer and determines that this is a case 1 command (P3 = 0).

2. The applet performs the request.

3. The applet returns from the process method with the appropriate SW.

3.3.2 Case 2 - no command data, send response data

1. The applet’s process method is called. The applet examines the first 5 bytes of
APDU buffer and determines that this is a case 2 command. Le is in P3 of the header.

2. The applet calls setOutgoing.

3. The applet calls sendBytes or sendBytes (repeatedly if necessary) to send
groups of response bytes.

4. The applet returns from the process method with the appropriate SW.

3.3.3 Case 3 – receive command data, no response data

1. The applet’s process method is called. The applet examines the first 5 bytes of
APDU buffer and determines that this is a case 3 command. Lc is in P3 of the header.

2. The applet calls setIncoming or setIncomingAndReceive, followed by
repeated calls (if necessary) to receiveBytes. Each group of command data bytes
is processed as it is received.

3. The applet returns from the process method with the appropriate SW.

3.3.4 Case 4 – receive command data, send response data

Case 4 is simply a combination of cases 3 and 2. The applet calls setIncoming and
handles the command bytes as described for case 3. Then the applet calls
setOutgoing and handles the response bytes as described for case 2.

4. File System
TBD.

5. Secure Install Process
TBD.

