
Java Card 2.0
Language Subset and

Virtual Machine
Specification

October 13, 1997

Revision 1.0 Final
©1997 Sun Microsystems, Inc.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 2
of 14

©1997 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A.

This document is protected by copyright.

Sun Microsystems, Inc. ("SUN") hereby grants to you a fully-paid, nonexclusive, nontransferable, perpetual,
worldwide, limited license (without the right to sublicense), under Sun’s intellectual property rights that are essential
to use this specification ("Specification"), to use the Specification for the sole purpose of developing applications or
applets that may interoperate with implementations of the Specification developed pursuant to a separate license
agreement with SUN.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

This specification contains the proprietary information of Sun and may only be used in accordance with the license
terms set forth above. SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY
OF THE SPECIFICATION, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SPECIFICATION OR ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava Views, Java Card, Java
WorkShop, the Java Coffee Cup logo, and Visual Java are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

__

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY
TIME.

__

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 3
of 14

1. Introduction
The information in this document describes the subset of standard Java which is
supported in the Java Card 2.0 specification. This document is not intended to stand on its
own; rather it relies heavily on existing documentation of standard Java. In particular,
two books are required for the reader to understand the material presented herein.

[1] Gosling, James, Bill Joy, and Guy Steele. The Java™ Language Specification.
Addison-Wesley, 1996, ISBN 0-201-63451-1 – provides a baseline definition of the Java
language. The language subset defined here is based on the language specified in this
book.

[2] Lindholm, Tim, and Frank Yellin. The Java™ Virtual Machine Specification.
Addison-Wesley, 1996, ISBN 0-201-63452-X – defines the standard operation of the
Java Virtual Machine. The virtual machine material presented in this subset is based on
the definition specified in this book.

2. A Subset of Java
Java Card is a new system for programming smartcards. It is based on the Java language
and virtual machine. Java Card programs are written with standard Java development
tools, but may be installed and executed on smartcards. It would be ideal if Java Card
programs could be written using all of the Java language, but a full Java Virtual Machine
implementation is far too big to fit on even the most advanced smartcards available
today.

A typical smartcard has under 1K of RAM and 16K of ROM. The code for implementing
string manipulation, single and double-precision floating point arithmetic, and thread
management would be larger than the ROM space on a card. Even if it could be made to
fit, there would be no space left over for class libraries or application code. Then there is
the question of RAM use. The only workable option is to implement Java Card as a
subset of Java. In other words, we must leave some features out.

Fortunately, smartcard programs are by their nature extremely simple things. This allows
us to omit features from Java with little or no impact on the kinds of programs we would
write using Java Card.

3. Language
Java Card programs are written in Java. They are compiled using Java compilers. Java
Card is a subset of Java, and familiarity with Java is required to understand Java Card
programming. The items discussed in this section are not described to the level of a
language specification. For complete documentation on the Java language, refer to The
Java Language Specification [1].

3.1 Unsupported Items
The items listed in this section are elements of the Java language which are not supported
in Java Card systems.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 4
of 14

3.1.1 Features

3.1.1.1 Dynamic Class Loading

A Java Card system is not able to load classes dynamically. Classes are either masked
into the card during manufacturing or installed through a secure installation process after
the card has been issued. Programs executing on the card may only refer to classes which
already exist on the card, as there is no way to download classes during the normal
execution of application code. See Java Card 2.0 – Programming Concepts for more
information.

3.1.1.2 Security Manager

The security model of Java Card systems differs from standard Java in fairly significant
ways. Language security policies are implemented by the virtual machine. There is no
Security Manager class which makes policy decisions on whether to allow operations.

3.1.1.3 Threads

The Java Card Virtual Machine does not support multiple threads of control. Neither
class Thread or any of the thread-related keywords can be used in Java Card programs.

3.1.1.4 Cloning

Java Card does not support cloning of objects. Java Card’s version of class Object does
not implement a clone() method, and there is no Clonable interface provided.

3.1.1.5 Garbage Collection & Finalization

Java Card does not require a garbage collector. Nor does Java Card allow explicit
deallocation of objects, as this would break Java’s required pointer-safety. Therefore,
application programmers may not assume that objects which are allocated are ever
deallocated. Storage for unreachable objects will not necessarily be reclaimed.

Finalization is also not required. finalize() will not necessarily be called
automatically by the virtual machine, and programmers should not rely on this behavior.

3.1.2 Keywords

The following keywords indicate types which are not supported for Java Card, or
unsupported options related to Threads or memory management.

char float synchronized volatile

double long transient

3.1.3 Types

Java Card does not support types char, double, float or long, or operations on those
types. It also does not support arrays with more than one dimension.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 5
of 14

3.1.4 Classes

In general, none of the standard Java classes are supported in Java Card. Some classes
from the java.lang package are supported (§3.2.4), but none of the rest are. Some
noteworthy classes which are not supported are String, Thread (and all thread-related
classes), wrapper classes such as Boolean and Integer, and class Class.

3.2 Supported Items
It is much more difficult to succinctly describe what is left in Java Card than to describe
what is missing. If a language feature is not explicitly described as unsupported, it is part
of the supported subset. Notable supported features are described in this section.

3.2.1 Features

3.2.1.1 Packages

Java Card programs follow the standard rules for Java packages. Java Card classes are
written as java source files, which include package designations. Package mechanisms
are used to identify and control access to classes, static fields and static methods. In all
respects, packages in Java Card are used exactly the way they are in standard Java.

3.2.1.2 Dynamic Object Creation

Java Card programs can dynamically create objects, both class instances and arrays. This
is done, as usual, by using the new operator. Objects are allocated out of the heap.

As noted in (§3.1.1.5), a Java Card Virtual Machine will not necessarily garbage collect
objects. Any objects allocated on the card may continue to exist and consume resources
even after they become unreachable. See Java Card 2.0 – Programming Concepts for
more information.

3.2.1.3 Virtual Methods

Java Card objects are standard Java objects. Invoking virtual methods on objects in Java
Card is exactly the same as in Java. Inheritance is supported, including the use of the
super keyword.

3.2.1.4 Interfaces

Java Card classes may define or implement Interfaces as in standard Java. Invoking
virtual methods on interface types works as expected. Type checking and the
instanceof operator also work correctly with interfaces.

3.2.1.5 Exceptions

Java Card programs may define, throw and catch exceptions, as in standard Java. Class
Throwable and its relevant subclasses are supported. (Some Exception and Error
subclasses are omitted as those exceptions cannot occur in Java Card. See §4.3 for
specification of errors and exceptions.)

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 6
of 14

3.2.2 Keywords

The following keywords are supported in Java Card. Their use is the same as in standard
Java.

abstract default if package switch

boolean do implements private this

break else import protected throw

byte extends instanceof public throws

case final int return try

catch finally interface short void

class for native static while

continue goto new super

3.2.3 Types

Java Card supports the use of the standard Java types boolean, byte, short, and int.
Objects (class instances and single-dimensional arrays) are also supported. Arrays can
contain the supported primitive data types, objects, and other arrays.

Some Java Card implementations do not support use of the int data type.

3.2.4 Classes

Most of the classes in the java.lang package are not supported in Java Card. The
following classes from java.lang are supported on the card in a limited form.

3.2.4.1 Object

Java Card classes descend from java.lang.Object, as in standard Java. Most of the
methods of Object are not available in the Java Card API, but the class itself exists to
provide a root for the class hierarchy.

3.2.4.2 Throwable

Since Java Card supports the use of exceptions, it supports class Throwable and its
subclasses, where applicable. Most of the methods of Throwable are not available in the
Java Card API, but the class itself exists to provide a common ancestor for all exceptions.

3.2.4.3 System

Class java.lang.System is not supported. Java Card supplies a class
javacard.framework.System which provides an interface to system behavior.

3.3 Conditional Support
Several features of the Java language are only supported in certain conditions. These
features are described below.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 7
of 14

3.3.1 int

The int keyword and 32-bit integer data types will not necessarily be supported on all
Java Card implementations. A Java Card Virtual Machine which does not support the
int data type will reject programs which use that type.

3.3.2 native

Native methods must be available when creating the classes for the card’s mask. Support
of native methods in code installed post-issuance is optional.

3.4 Limitations
The limitations of card hardware prevent Java Card programs from supporting the full
range of functionality of certain Java features. The features in question are supported, but
a particular virtual machine may limit the range of operation to less than that of standard
Java.

To ensure a level of portability for application code, this section establishes a minimum
required level for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s
perspective. Applets which do not violate these maximum values will be portable across
all Java Card implementations. From the Java Card VM implementer’s perspective, each
maximum listed indicates a minimum level of support which will allow portability of
applets.

In several cases, variations in data type encoding within the virtual machine make
portability of Java Card source code difficult to predict. These cases are so noted.

3.4.1 Objects

3.4.1.1 Methods

Classes can implement a maximum of 127 instance methods (including inherited
methods).

3.4.1.2 Class Instances

Java Card class instances can contain a maximum of 255 bytes of data in their fields.
Internal data encoding, and therefore the maximum number of fields in objects, may vary
from one virtual machine to another.

3.4.1.3 Arrays

Java Card arrays can hold a maximum of 32767 fields.

3.4.2 Methods

The maximum size of Java Card stack frame is 127 bytes. This includes the parameters,
locals, and operand stack. Internal data encoding, and therefore the number of items
which may be allocated on the stack, may vary from one virtual machine to another.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 8
of 14

3.4.3 Switch Statements

Java Card systems which do not support the int data type are limited to a maximum of
65536 cases in switch statement. Systems with int support have the same maximum as
standard Java.

3.4.4 Class Initialization

There is limited support for initialization of static field values in <clinit> methods.
Static fields may only be initialized to primitive constant values, or arrays of primitive
constants. Primitive constant data types include boolean, byte, short, and int.

4. VM

4.1 class File Subset
The Java Card Virtual Machine operates on standard Java class files. As the Java Card
Virtual Machine supports only a subset of the behavior of the standard Java Virtual
Machine, it also supports only a subset of the standard class file format.

4.1.1 Not Supported

4.1.1.1 Field Descriptors

Field descriptors may not contain BaseType characters C, D, F or L. ArrayType
descriptors for arrays of more than one dimension may not be used.

4.1.1.2 Constant Pool

Constant pool table entry tags which indicate unsupported types are not supported.

Constant Type Value

CONSTANT_String 8

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

Table 4.1 Unsupported constant pool tags

Constant pool structures for types CONSTANT_String_info, CONSTANT_Float_info,
CONSTANT_Long_info and CONSTANT_Double_info are not supported.

4.1.1.3 Fields

In field_info structures, the access flags ACC_VOLATILE and ACC_TRANSIENT are
not supported.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 9
of 14

4.1.1.4 Methods

In method_info structures, the access flag ACC_SYNCHRONIZED is not supported. The
access flag ACC_NATIVE is not necessarily supported in applet class files.

4.1.2 Supported

4.1.2.1 ClassFile

All items in the ClassFile structure are supported.

4.1.2.2 Field Descriptors

Field descriptors may contain BaseType characters B, I, S and Z, as well as any
ObjectType. ArrayType descriptors for arrays of a single dimension may also be used.

4.1.2.3 Method Descriptors

All forms of method descriptors are supported.

4.1.2.4 Constant Pool

Constant pool table entry tags for supported data types are supported.

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_Integer 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

Table 4.2 Supported constant pool tags

Constant pool structures for types CONSTANT_Class_info,
CONSTANT_Fieldref_info, CONSTANT_Methodref_info,
CONSTANT_InterfaceMethodref_info, CONSTANT_Integer_info,
CONSTANT_NameAndType_info and CONSTANT_Utf8_info are supported.

4.1.2.5 Fields

In field_info structures, the supported access flags are ACC_PUBLIC, ACC_PRIVATE,
ACC_PROTECTED, ACC_STATIC and ACC_FINAL.

The remaining components of field_info structures are fully supported.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 10
of 14

4.1.2.6 Methods

In method_info structures, the supported access flags are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL and ACC_ABSTRACT. The
access flag ACC_NATIVE is supported for non-applet class files.

The remaining components of method_info structures are fully supported.

4.1.2.7 Attributes

The attribute_info structure is supported. The Code, ConstantValue,
Exceptions and LocalVariableTable attributes are supported.

4.2 Bytecode Subset

4.2.1 Unsupported Bytecodes
lconst_<l> fconst_<f> dconst_<d> ldc2_w2

lload fload dload lload_<n>

fload_<n> dload_<n> laload faload

daload caload lstore fstore

dstore lstore_<n> fstore_<n> dstore_<n>

lastore fastore dastore castore

ladd fadd dadd lsub

fsub dsub lmul fmul

dmul ldiv fdiv ddiv

lrem frem drem lneg

fneg dneg lshl lshr

lushr land lor lxor

i2l i2f i2d l2i

l2f l2d f2i f2d

d2i d2l d2f i2c

lcmp fcmpl fcmpg dcmpl

dcmpg lreturn freturn dreturn

monitorenter monitorexit multianewarray goto_w

jsr_w

4.2.2 Supported Bytecodes
nop aconst_null iconst_<i> bipush

sipush ldc ldc_w iload

aload iload_<n> aload_<n> iaload

aaload baload saload istore

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 11
of 14

astore istore_<n> astore_<n> iastore

aastore bastore sastore pop

pop2 dup dup_x1 dup_x2

dup2 dup2_x1 dup2_x2 swap

iadd isub imul idiv

irem ineg ior ishl

ishr iushr iand ixor

iinc i2b i2s if<cond>

ificmp_<cond> ifacmp_<cond> goto jsr

ret tableswitch lookupswitch ireturn

areturn return getstatic putstatic

getfield putfield invokevirtual invokespecial

invokestatic invokeinterface new newarray

anewarray arraylength athrow checkcast

instanceof wide ifnull ifnonnull

4.2.3 Static Restrictions on Bytecodes

A class file must conform to the following restrictions on the static form of bytecodes
for it to be acceptable to a Java Card Virtual Machine.

4.2.3.1 ldc, ldc_w

The ldc and ldc_w bytecodes can only be used to load integer constants. The constant
pool entry at index must be a CONSTANT_Integer entry.

4.2.3.2 lookupswitch

The value of the npairs operand must be less than 65536. The bytecode can contain at
most 65535 cases.

4.2.3.3 tableswitch

The values of the high and low operands must both be less than 65536 (so they can fit in
16 bits). The bytecode can contain at most 65535 cases.

4.2.3.4 wide

The wide bytecode cannot be used to generate local indices greater than 127, and it
cannot be used with any instructions other than iinc. It can only be used with an iinc
bytecode to extend the range of the increment constant.

4.3 Exceptions
Java Card provides full support for the Java exception mechanism. Users can define,
throw and catch exceptions just as in standard Java. Java Card also makes use of the
standard exceptions and errors defined in The Java Language Specification [1]. An
updated list of Java’s standard exceptions is provided in the JDK documentation.

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 12
of 14

Not all of Java’s standard exceptions are supported in Java Card. Exceptions related to
unsupported features are naturally not supported. Class loader exceptions (the bulk of the
checked exceptions) are not supported. And no exceptions or errors defined in packages
other than java.lang are supported.

Note that some exceptions may be supported to the extent that their error conditions are
detected correctly, but classes for those exceptions will not necessarily be present in the
API.

The supported subset is described in Tables 4.3, 4.4 and 4.5.

4.3.1 Uncaught and Uncatchable Exceptions

In standard Java, uncaught exceptions and errors will cause the virtual machine to report
the error condition and exit. In Java Card, uncaught exceptions or errors should cause the
card to be muted. A virtual machine has the option of taking more drastic actions, such as
blocking the card from further use.

Throwing a runtime exception or error which cannot be caught should also cause the card
to be muted. Cards may also optionally take stricter actions in response to throwing such
an exception.

4.3.2 Checked Exceptions

Exception Supported Not Supported

ClassNotFoundException •
CloneNotSupportedException •
IllegalAccessException •
InstantiationException •
InterruptedException •
NoSuchFieldException •
NoSuchMethodException •

Table 4.3 support of checked exceptions

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 13
of 14

4.3.3 Runtime Exceptions

Runtime Exception Supported Not Supported

ArithmeticException •
ArrayStoreException •
ClassCastException •
IllegalArgumentException •

IllegalThreadStateException •
NumberFormatException •

IllegalMonitorStateException •
IllegalStateException •
IndexOutOfBoundsException •

ArrayIndexOutOfBoundsException •
StringIndexOutOfBoundsException •

NegativeArraySizeException •
NullPointerException •
SecurityException •

Table 4.4 Support of runtime exceptions

Java Card 2.0 Language Subset and Virtual Machine Specification

© 1997 Sun Microsystems, Inc. October 13, 1997
Revision 1.0 Final

Page 14
of 14

4.3.4 Errors

Error Supported Not Supported

LinkageError •
ClassCircularityError •
ClassFormatError •
ExceptionInInitializerError •
IncompatibleClassChangeError •

AbstractMethodError •
IllegalAccessError •
InstantiationError •
NoSuchFieldError •
NoSuchMethodError •

NoClassDefFoundError •
UnsatisfiedLinkError •
VerifyError •

ThreadDeath •
VirtualMachineError •

InternalError •
OutOfMemoryError •
StackOverflowError •
UnknownError •

Table 4.5 Support of errors

