
i

Java Media Players

Version 1.0.5
May 11, 1998

Java Media Framework is being developed by
Sun Microsystems, Inc., Silicon Graphics Inc., and Intel Corporation.

Java Application Programming Interfaceii

iii

tes
AR

oreign

able,
tual
ed to
are

ation
(iv)
N.

, Sun
ration
NIX
gh X/
their

)

 1997-1998 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United Sta
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and F
52.227-19.

The release described in this document may be protected by one or more U.S. patents, f
patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransfer
perpetual, worldwide limited license (without the right to sublicense) under SUN's intellec
property rights that are essential to practice this specification. This license allows and is limit
the creation and distribution of clean-room implementations of this specification that (i)
complete implementations of this specification, (ii) pass all test suites relating to this specific
that are available from SUN, (iii) do not derive from SUN source code or binary materials, and
do not include any SUN binary materials without an appropriate and separate license from SU

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corpo
logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Inc. U®

is a registered trademark in the United States and other countries, exclusively licensed throu
Open Company, Ltd. All other product names mentioned herein are the trademarks of
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S
DESCRIBED IN THIS PUBLICATION AT ANY TIME

 vii

. 1

. 2

. . 2
. . 3
 . 4
. . 6
. 8

10
11
2
13
13

4

14
15

7

17
18

19

. 19
22
. 22
3

4

Contents

Preface .

Java Media Players .

1 Overview .

Data Sources .
Players .
Media Events .
Player States .
Calling JMF Methods .

2 Example: Creating an Applet to Play a Media File 9

Overview of PlayerApplet .
PlayerApplet Code Listing .
Initializing the Applet . 1
Controlling the Player .
Responding to Media Events. .

3 Creating and Displaying a Player . 1

Creating a Player .
Displaying a Player and Player Controls.

4 Controlling Media Players . 1

Starting a Player. .
Stopping a Player. .

5 Managing Player States .

Preparing a Player to Start .
Starting and Stopping a Player .
Releasing Player Resources.
Implementing the ControllerListener Interface 2

6 Managing Timing . 2

Java Media Players – Version 1.0.5vi

25
25
.26
27

7

30
30
31

2

32
34
35
35

37

3

3

Setting the Media Time .
Getting the Current Time .
Setting a Player’s Rate .
Getting a Player’s Duration .

7 Synchronizing Players .2

8 Using a Player to Manage and Synchronize other Controllers 29

Adding a Controller .
Managing the Operation of Added Controllers
Removing a Controller .

9 Extending JMF .3

Understanding the Player Architecture
Integrating a New Player Implementation
Implementing a New Data Source .
Integrating a New Data Source Implementation

Appendix A:
Java Media Applet.

Appendix B:
Sample Data Source Implementation . 4

Appendix C:
Sample Controller Implementation . 55

Appendix D:
ControllerAdapter . 7

PI)
ecifi-
JMF
nd
they

d the
ther
this
API

that
are

dia
nd
Preface

The Java Media Framework (JMF) is an application programming interface (A
for incorporating media data types into Java applications and applets. It is sp
cally designed to take advantage of Java platform features. The 1.0 version of
provides APIs for media players; future versions will support media capture a
conferencing. This document describes the Java Media Player APIs and how
can be used to present time-based media such as audio and video.

Java Media Players

The 1.0 specification for Java Media Players addresses media display an
concerns of the application builder in that domain, with an eye towards the o
application domains and other levels of developer. There are two parts to
release: a user guide entitled “Java Media Players” and the accompanying
documentation.

Future Releases

Javasoft and its partners are developing additional capabilities and features
will appear in a future release of the JMF specification. The features that we
considering for future releases include:

• Incomplete Players– A JMF Player is self-contained and does not provide
access to its media data. Additional interfaces that provide access to me
data and allow selection of rendering components are in development a
intended for a future release.

• Rendering Interfaces– Rendering interfaces for specific audio and video
formats and additional interfaces for audio and video renderers will be
vii

Java Media Players – Version 1.0.5viii

dia

ses

 to

the

l

developed for a future release.

• Capture Semantics– The JMF Player architecture does not support the me
capture capabilities required for authoring or conferencing applications.
Capture semantics will be addressed in a future release.

• Data Definitions– JMF 1.0 provides an overall structure for data
manipulation and format negotiation among generic formats. Future relea
will address specific interfaces for audio and video data.

• CODEC Architecture– A CODEC (coder-decoder) architecture will be
defined in a future release to provide a common API for using CODECs
compress and decompress media data and a mechanism for installing
additional CODECs into the system.

Contact Information

JavaSoft

To obtain information about the Java Media Framework, see the web site at:

HTTP://java.sun.com/products/java-media/jmf

Silicon Graphics

To obtain information about Java products for Silicon Graphics hardware, see
web site at:

HTTP://www.sgi.com/Products/DevMagic/products/java.html

Intel Corporation

To obtain information about Java Media Framework implementations for Inte
hardware, see the web site at:

HTTP://developer.intel.com/ial/jmedia

Preface ix

n
not

ence

0

rst

eb
Change History

Version 1.0.5

UpdatedTimeLineController example in Appendix C. The previous versio
was not compatible with the JMF 1.0 API. Please note that this example has
been fully tested or optimized for production use and is intended as a refer
for developers who are implementing their ownControllers .

Version 1.0.4

Fixed incorrect reference to constant valueClock.UNSET to Clock.RESET .

Version 1.0.3

Updated contact info for SGI.

Version 1.0.2

Added attribution forblockingRealize example code in Section 5. Versions 1.
and 1.0.1 of this document erroneously omitted this attribution. This example
code is used with the permission of Bill Day and JavaWorld magazine. It was fi
published April 1997 in Bill Day’s article “Java Media Framework Player API:
Multimedia Comes to Java” in JavaWorld magazine, an online publication of W
Publishing Inc.

Changed references toPlayerClosedEvent and Player.close to Controller-

ClosedEvent andController.close in Section 5.

Changed java.media to javax.media in Appendix B.

Changed example in Appendix C to useTime objects as parameters forsetStop-

Time andsetMediaTime .

Version 1.0.1

Fixed inconsistencies with JMF 1.0 API.

Java Media Players – Version 1.0.5x
Version 1.0

Updated document for final JMF 1.0 API release.

s

ng
used

ort
rly-

hile
t-

s or
ia

an be
Java Media Player

Sun Microsystems, Inc.
Silicon Graphics Inc.
Intel Corporation

Copyright © 1997-1998 by Sun Microsystems Inc.
All Rights Reserved

The Java Media Framework (JMF) 1.0 specification defines APIs for displayi
time-based media. This document describes these APIs and how they can be
to present media such as audio and video.

Media display encompasses local and network playback of multimedia data
within an application or applet. The focus of the JMF 1.0 Player APIs is to supp
the delivery of synchronized media data and to allow integration with the unde
ing platform’s native environment and Java’s core packages, such asjava.awt .
The Player APIs support both clientpull protocols, such as HTTP, and serverpush
protocols, such as RTP.

JMF makes it easy to incorporate media in client applications and applets, w
maintaining the flexibility needed for more sophisticated applications and pla
form customization:

• Client programmers can create and control Java Media Players for any
standard media type using a few simple method calls.

• Technology providers can extend JMF to support additional media format
perform custom operations by creating and integrating new types of med
controllers, media players, and media data sources. These extensions c
used side-by-side with existing JMF objects.
1

Java Media Players – Version 1.0.52

-
rs.

he
nt

ve
The
the

e to
r, by
now

F

are

 on

s,
t

“Extending JMF” on page 32 contains information about extending JMF; how
ever, this document is intended primarily for application and applet develope

1.0 Overview

JMF provides a platform-neutral framework for displaying time-based media. T
Java Media Player APIs are designed to support most standard media conte
types, including MPEG-1, MPEG-2, QuickTime, AVI, WAV, AU, and MIDI.
Using JMF, you can synchronize and present time-based media from diverse
sources.

Existing media players for desktop computers are heavily dependent on nati
code for computationally intensive tasks like decompression and rendering.
JMF API provides an abstraction that hides these implementation details from
developer. For example, a particular JMF Player implementation might choos
leverage an operating system’s capabilities by using native methods. Howeve
coding to the JMF API, the application or applet developer doesn’t need to k
whether or not that implementation uses native methods.

The JMF Player API:

• Scales across different protocols and delivery mechanisms

• Scales across different types of media data

• Provides an event model for asynchronous communication between JM
Players and applications or applets

1.1 Data Sources

A DataSource encapsulates the location of media and the protocol and softw
used to deliver the media. A Java MediaPlayer contains aDataSource . Once
obtained, the source cannot be reused to deliver other media. APlayer’s data
source is identified by either a JMFMediaLocator or a URL (universal resource
locator).

MediaLocator is a JMF class that describes the media that aPlayer displays. A
MediaLocator is similar to aURL and can be constructed from aURL. In Java, a
URL can only be constructed if the corresponding protocol handler is installed
the system.MediaLocator doesn’t have this restriction.

Java MediaPlayers can present media data obtained from a variety of source
such as local or network files and live broadcasts. JMF supports two differen
types of media sources:

Players 3

w
a

w
edia,

by

on the
posi-
k to
trol
con-
 a

ses,
ia
• Pull Data-Source—the client initiates the data transfer and controls the flo
of data from pull data-sources. Established protocols for this type of dat
include Hypertext Transfer Protocol (HTTP) and FILE.

• Push Data-Source—the server initiates the data transfer and controls the flo
of data from a push data-source. Push data-sources include broadcast m
multicast media, and video-on-demand (VOD). For broadcast data, one
protocol is the Real-time Transport Protocol (RTP), under development
the Internet Engineering Task Force (IETF). The MediaBase protocol
developed by SGI is one protocol used for VOD.

The degree of control that a client program can extend to the user depends
type of media source being presented. For example, an MPEG file can be re
tioned and a client program could allow the user to replay the video clip or see
a new position in the video. In contrast, broadcast media is under server con
and cannot be repositioned. Some VOD protocols might support limited user
trol—for example, a client program might be able to allow the user to seek to
new position, but not fast forward or rewind.

1.2 Players

A Java MediaPlayer is an object that processes a stream of data as time pas
reading data from aDataSource and rendering it at a precise time. A Java Med
Player implements thePlayer interface.

Duration

getDuration

prefetch
realize

Player

JavaMediaPlayer

Clock

syncStart

start

extends

extends

implements

Controller

addController
getVisualComponent
getControlPanelComponent

stop
getMediaTime
getTimeBase
setTimeBase
setRate

deallocate
close
addControllerListener

extends

TimeBasehas a

setSource

DataSourcehas a

Java Media Players – Version 1.0.54

ou to

h

l-

ting
s you

dia-
ions.
your

s

• Clock defines the basic timing and synchronization operations that aPlayer

uses to control the presentation of media data.

• Controller extendsClock to provide methods for managing system
resources and preloading data and a listening mechanism that allows y
receive notification of media events.

• Duration provides a way to determine the duration of the media being
played.

• Player supports standardized user control and relaxes some of the
operational restrictions imposed byClock .

Players share a common model for timekeeping and synchronization. A
Player’s media timerepresents the current position in the media stream. Eac
Player has aTimeBase that defines the flow of time for thatPlayer . When a
Player is started, itsmedia time is mapped to itstime-base time. To be synchro-
nized,Players must use the sameTimeBase .

A Player’s user interface can include both a visual component and a contro
panel component. You can implement a custom user-interface for aPlayer or use
thePlayer’s default control-panel component.

A Player must perform a number of operations before it is capable of presen
media. Because some of these operations can be time consuming, JMF allow
to control when they occur by defining the operational states of aPlayer and
providing a control mechanism for moving thePlayer between those states.

1.3 Media Events

The JMF event reporting mechanism allows your program to respond to me
driven error conditions, such as out-of-data or resource unavailable condit
The event system also provides an essential notification protocol; when
program calls an asynchronous method on aPlayer , it can only be sure that the
operation is complete by receiving the appropriate event.

Two types of JMF objects post events:GainControl objects andController

objects.Controller andGainControl follow the established Java Beans pattern
for events.

A GainControl object posts only one type of event,GainChangeEvent . To
respond to gain changes, you implement theGainChangeListener interface.

Media Events 5

ts,
A Controller can post a variety of events that are derived fromController-

Event. To receive events from aController such as aPlayer , you implement
theControllerListener interface. The following figure shows the events that
can be posted by aController .

ControllerEvents fall into three categories: change notifications, closed even
and transition events:

• Change notification events such asRateChangeEvent and
DurationUpdateEvent indicate that some attribute of thePlayer has
changed, often in response to a method call. For example, thePlayer posts a
RateChangeEvent when its rate is changed by a call tosetRate .

ControllerEvent

ControllerClosedEvent

ResourceUnavailableEvent

DurationUpdateEvent

MediaTimeSetEvent

RateChangeEvent

StopTimeChangeEvent

TransitionEvent

PrefetchCompleteEvent

RealizeCompleteEvent

StartEvent

StopEvent

DeallocateEvent

EndOfMediaEvent

RestartingEvent

StopAtTimeEvent

StopByRequestEvent

InternalErrorEvent

CachingControlEvent

ConnectionErrorEvent

DataStarvedEvent

ControllerErrorEvent

Java Media Players – Version 1.0.56

 to

ow

rces
• TransitionEvents allow your program to respond to changes in aPlayer’s

state. APlayer posts transition events whenever it moves from one state
another. (See Section 1.4 for more information aboutPlayer states.)

• ControllerClosedEvents are posted by aPlayer when thePlayer shuts
down. When aPlayer posts aControllerClosedEvent , it is no longer
usable. AControllerErrorEvent is a special case of
ControllerClosedEvent . You can listen forControllerErrorEvents so
that your program can respond toPlayer malfunctions, minimizing the
impact on the user.

1.4 Player States

A Java MediaPlayer can be in one of six states. TheClock interface defines the
two primary states:StoppedandStarted. To facilitate resource management,Con-

troller breaks theStoppedstate down into five standby states:Unrealized, Real-
izing, Realized, Prefetching, andPrefetched.

In normal operation, aPlayer steps through each state until it reaches theStarted
state:

• A Player in theUnrealizedstate has been instantiated, but does not yet kn
anything about its media. When a mediaPlayer is first created, it is
Unrealized.

• Whenrealize is called, aPlayer moves from theUnrealizedstate into the
Realizing state. ARealizingPlayer is in the process of determining its
resource requirements. During realization, aPlayer acquires the resources
that it only needs to acquire once. These might include rendering resou

Unrealized RealizedRealizing PrefetchedPrefetching Started

realize RCE prefetch PFCE

StopEventdeallocate

deallocate, setMediaTime

RCE = RealizeCompleteEvent; PFCE = PrefetchCompleteEvent

StartedStopped

Player States 7

d
 one

e

to
that

e

he
ia
other than exclusive-use resources. (Exclusive-use resources are limite
resources such as particular hardware devices that can only be used by
Player at a time; such resources are acquired duringPrefetching.) A
RealizingPlayer often downloads assets over the net.

• When aPlayer finishesRealizing, it moves into theRealized state. A
RealizedPlayer knows what resources it needs and information about th
type of media it is to present. Because aRealizedPlayer knows how to render
its data, it can provide visual components and controls. Its connections
other objects in the system are in place, but it does not own any resources
would prevent anotherPlayer from starting.

• Whenprefetch is called, aPlayer moves from theRealized state into the
Prefetching state. APrefetchingPlayer is preparing to present its media.
During this phase, thePlayer preloads its media data, obtains exclusive-us
resources, and anything else it needs to do to prepare itself to play.
Prefetching might have to recur if aPlayer’s media presentation is
repositioned, or if a change in thePlayer’s rate requires that additional
buffers be acquired or alternate processing take place.

• When aPlayer finishesPrefetching, it moves into thePrefetched state. A
PrefetchedPlayer is ready to be started; it is as ready to play as it can be
without actually beingStarted.

• Callingstart puts aPlayer into theStartedstate. AStartedPlayer’s time-
base time and media time are mapped and its clock is running, though t
Player might be waiting for a particular time to begin presenting its med
data.

A Player postsTransitionEvents as it moves from one state to another. The
ControllerListener interface provides a way for your program to determine
what state aPlayer is in and to respond appropriately.

Using this event reporting mechanism, you can managePlayer latency by con-
trolling when aPlayer beginsRealizing andPrefetching. It also enables you to
ensure that thePlayer is in an appropriate state before calling methods on the
Player .

1.4.1 Methods Available in Each Player State

To prevent race conditions, not all methods can be called on aPlayer in every
state. Table 1, “Restrictions on Player Methods” identifies the restrictions
imposed by JMF. If you call a method that is illegal in aPlayer’s current state,
thePlayer throws an error or exception.

Java Media Players – Version 1.0.58

l in
e

ten

nnot
are
ate.

uld

r

Table 1: Restrictions on Player Methods

1.5 Calling JMF Methods

JMF uses the following convention for errors and exceptions:

• Java Media Errors are thrown when a program calls a method that is illega
the object’s current state. Errors are thrown in situations where you hav
control over the state and the requested operation could result in a race
condition. For example, it is an error to call certain methods on aStarted
Player . It is your responsibility to ensure that aPlayer is stopped before
using these methods. Applications should not catch JMF errors; well-writ
applications will never encounter these errors.

• Java Media Exceptions are thrown when a program calls a method that ca
be completed or is not applicable in the object’s current state. Exceptions
thrown in situations where you do not necessarily have control over the st
For example, an exception is thrown if you attempt to synchronize two
Players with incompatible time bases. This is not an error because you co

Method Unrealized
Player

Realized
Player

Prefetched
Player

Started
Player

getStartLatency NotRealizedError legal legal legal

getTimeBase NotRealizedError legal legal legal

setMediaTime NotRealizedError legal legal legal

setRate NotRealizedError legal legal legal

getVisualComponent NotRealizedError legal legal legal

getControlPanelComponent NotRealizedError legal legal legal

getGainControl NotRealizedError legal legal legal

setStopTime NotRealizedError legal legal StopTimeSetError
if previously set

syncStart NotPrefetchedError NotPrefetchedError legal ClockStartedErro

setTimeBase NotRealizedError legal legal ClockStartedError

deallocate legal legal legal ClockStartedError

addController NotRealizedError legal legal ClockStartedError

removeController NotRealizedError legal legal ClockStartedError

mapToTimeBase ClockStoppedException ClockStoppedException ClockStoppedException legal

Calling JMF Methods 9

rly,

uch

l. In
alled
ap-

ally
urn

e, a
e.

am.

ia
eral
s.

For a
Java
not determine ahead of time that the time bases were incompatible. Simila
if you call a method that is only applicable for aStartedPlayer and the
Player is Stopped, an exception is thrown. Even if you just started the
Player , it might have already stopped in response to other conditions, s
as end of media.

Some JMF methods return values that indicate the results of the method cal
some instances, these results might not be what you anticipated when you c
the method; by checking the return value, you can determine what actually h
pened. For example, the return value might indicate:

• The value that was actually set. For example, not allPlayers can present
media data at five times the normal rate. If you callsetRate(5.0) , the
Player will set its rate as close as it can to 5.0 and return the rate it actu
set. That rate might be 5.0, or it might be 1.0; you need to check the ret
value to find out.

• That the information you requested is not currently available. For exampl
Player might not know its duration until it has played its media stream onc
If you call getDuration on such aPlayer before it has played,getDuration

returnsDURATION_UNKNOWN. If you callgetDuration again after thePlayer

has played, it might be able to return the actual duration of the media stre

2.0 Example: Creating an Applet to Play a Media File

The sample programPlayerApplet demonstrates how to create a Java Med
Player and present an MPEG movie from within a Java applet. This is a gen
example that could easily be adapted to present other types of media stream

ThePlayer’s visual presentation and its controls are displayed within the
applet’s presentation space in the browser window. If you create aPlayer in a
Java application, you are responsible for creating the window to display the
Player’s components.

Note: While PlayerApplet illustrates the basic usage of a Java MediaPlayer , it
does not perform the error handling necessary in a real applet or application.
more complete sample suitable for use as a template, see “Appendix A:
Media Applet” on page 37.

Java Media Players – Version 1.0.510

’s

as
2.1 Overview of PlayerApplet

TheAPPLETtag is used to invokePlayerApplet in anHTML file. TheWIDTH and
HEIGHT fields of the HTMLAPPLET tag determine the dimensions of the applet
presentation space in the browser window. ThePARAM tag identifies the media file
to be played. For example,PlayerApplet could be invoked with:

<APPLET CODE=ExampleMedia.PlayerApplet

WIDTH=320 HEIGHT=300>

<PARAM NAME=FILE VALUE="Astrnmy.mpg">

</APPLET>

When a user opens a web page containingPlayerApplet , the applet loads auto-
matically and runs in the specified presentation space, which contains the
Player’s visual component and default controls. ThePlayer starts and plays the
MPEG movie once. The user can use the defaultPlayer controls to stop, restart,
or replay the movie. If the page containing the applet is closed while thePlayer is
playing the movie, thePlayer automatically stops and frees the resources it w
using.

To accomplish this,PlayerApplet extendsApplet and implements theControl-

lerListener interface.PlayerApplet defines five methods:

• init —creates aPlayer for the file that was passed in through thePARAM tag
and registersPlayerApplet as a controller listener so that it can observe
media events posted by thePlayer . (This causesPlayerApplet’s

controllerUpdate method to be called whenever thePlayer posts an
event.)

• start —starts thePlayer whenPlayerApplet is started.

• stop —stops and deallocates thePlayer whenPlayerApplet is stopped.

• destroy —closes thePlayer whenPlayerApplet is removed.

• controllerUpdate —responds toPlayer events to display thePlayer’s

components.

PlayerApplet Code Listing 11
2.2 PlayerApplet Code Listing

PlayerApplet.java:

package ExampleMedia;

import java.applet.*;

import java.awt.*;

import java.net.*;

import javax.media.*;

public class PlayerApplet extends Applet implements ControllerListener {

 Player player = null;

 public void init() {

 setLayout(new BorderLayout());

 String mediaFile = getParameter(“FILE”);

 try {

 URL mediaURL = new URL(getDocumentBase(), mediaFile);

 player = Manager.createPlayer(mediaURL);

 player.addControllerListener(this);

 }

 catch (Exception e) {

 System.err.println("Got exception "+e);

 }

 }

 public void start() {

 player.start();

 }

 public void stop() {

 player.stop();

 player.deallocate();

 }

 public void destroy() {

 player.close();

 }

 public synchronized void controllerUpdate(ControllerEvent event) {

 if (event instanceof RealizeCompleteEvent) {

 Component comp;

 if ((comp = player.getVisualComponent()) != null)

 add ("Center", comp);

 if ((comp = player.getControlPanelComponent()) != null)

 add ("South", comp);

 validate();

 }

 }

}

Java Media Players – Version 1.0.512

te

s

2.3 Initializing the Applet

When a Java applet starts, itsinit method is invoked automatically. You override
init to prepare your applet to be started.PlayerApplet performs four tasks in
init :

1. Retrieves the applet’s FILE parameter.

2. Uses the FILE parameter to locate the media file and build aURLobject that
describes that media file.

3. Creates aPlayer for the media file by callingManager .createPlayer .

4. Registers the applet as a controller listener with the newPlayer by calling
addControllerListener . Registering as a listener causesPlayerApplet’s

controllerUpdate method to be called automatically whenever thePlayer

posts a media event. ThePlayer posts media events whenever its sta
changes. This mechanism allows you to control thePlayer’s transitions
between states and ensure that thePlayer is in a state in which it can proces
your requests. (For more information, see “Player States” on page 6.)

public void init() {

 setLayout(new BorderLayout());

 // 1. Get the FILE parameter.

 String mediaFile = getParameter(“FILE”);

 try {

 // 2. Create a URL from the FILE parameter. The URL

 // class is defined in java.net.

 URL mediaURL = new URL(getDocumentBase(), mediaFile);

 // 3. Create a player with the URL object.

 player = Manager.createPlayer(mediaURL);

 // 4. Add PlayerApplet as a listener on the new player.

 player.addControllerListener(this);

 }

 catch (Exception e) {

 System.err.println("Got exception "+e);

 }

}

Controlling the Player 13

se

he
2.4 Controlling the Player

TheApplet class definesstart andstop methods that are called automatically
when the page containing the applet is opened and closed. You override the
methods to define what happens each time your applet starts and stops.

PlayerApplet implementsstart to start thePlayer whenever the applet is
started:

public void start() {

 player.start();

}

Similarly, PlayerApplet overridesstop to stop and deallocate thePlayer :

public void stop() {

 player.stop();

 player.deallocate();

}

Deallocating thePlayer releases any resources that would prevent another
Player from being started. For example, if thePlayer uses a hardware device to
present its media,deallocate frees that device so that otherPlayers can use it.

When an applet exits,destroy is called to dispose of any resources created by t
applet.PlayerApplet overridesdestroy to close thePlayer . Closing aPlayer

releases all of the resources that it’s using and shuts it down permanently.

 public void destroy() {
 player.close();

 }

2.5 Responding to Media Events

PlayerApplet registers itself as aControllerListener in its init method so
that it receives media events from thePlayer . To respond to these events,Play-

erApplet implements thecontrollerUpdate method, which is called automati-
cally when thePlayer posts an event.

Java Media Players – Version 1.0.514

o

Call-
ew

t’s
PlayerApplet responds to one type of event,RealizeCompleteEvent . When the
Player posts aRealizeCompleteEvent , PlayerApplet displays thePlayer’s

components:

public synchronized void controllerUpdate(ControllerEvent event)

{

 if (event instanceof RealizeCompleteEvent) {

 Component comp;

 if ((comp = player.getVisualComponent()) != null)

 add ("Center", comp);

 if ((comp = player.getControlPanelComponent()) != null)

 add ("South", comp);

 validate();

 }

A Player’s user-interface components cannot be displayed until thePlayer is
Realized; anUnrealizedPlayer doesn’t know enough about its media stream t
provide access to its user-interface components.PlayerApplet waits for the
Player to post aRealizeCompleteEvent and then displays thePlayer’s visual
component and default control panel by adding them to the applet container.
ing validate triggers the layout manager to update the display to include the n
components.

3.0 Creating and Displaying a Player

You create aPlayer indirectly through the mediaManager . To display the
Player , you get the Player’s components and add them to the apple
presentation space or application window.

3.1 Creating a Player

When you need a newPlayer , you request it from theManager by calling
createPlayer . The Manager uses the mediaURL or MediaLocator that you
specify to create an appropriatePlayer .

A URLcan only be successfully constructed if the appropriate correspondingURL-

StreamHandler is installed.MediaLocator doesn’t have this restriction.

Displaying a Player and Player Controls 15

h
mi-

, but

-
-

re-

e vol-

ne
 stan-
This level of indirection allows newPlayers to be integrated seamlessly. From
the client perspective, a newPlayer is always created the same way, even thoug
thePlayer might actually be constructed from interchangeable parts or dyna
cally loaded at runtime.

3.2 Displaying a Player and Player Controls

JMF specifies the timing and rendering model for displaying a media stream
a Player’s interface components are actually displayed usingjava.awt , Java’s
core package for screen display. APlayer can have two types of AWT compo-
nents, its visual component and its control components.

3.2.1 Displaying a Player’s Visual Component

The component in which aPlayer displays its media data is called its visual com
ponent. Even an audioPlayer might have a visual component, such as a wave
form display or animated character.

To display aPlayer’s visual component, you:

1. Get the component by callinggetVisualComponent .

2. Add it to the applet’s presentation space or application window.

You can access thePlayer’s display properties, such as itsx andy coordinates,
through its visual component. The layout of thePlayer components is controlled
through the AWT layout manager.

3.2.2 Displaying a Player’s Controls

A Player often has a control panel that allows the user to control the media p
sentation. For example, aPlayer might be associated with a set of buttons to
start, stop, and pause the media stream, and with a slider control to adjust th
ume.

Every Java MediaPlayer provides a default control panel. To display aPlayer’s

default control panel, you get it by callinggetControlPanelComponent and add
it to the applet’s presentation space or application window. If you prefer to defi
a custom user-interface, you have access to the interfaces through which the
dard control panel is implemented.

A Player’s control-panel component often interacts with both thePlayer and
thePlayer’s controls. For example, to start and stop thePlayer or set its media

Java Media Players – Version 1.0.516

ugh

hese

t-

 the
reas-
 how

n

time, the control panel calls thePlayer directly. But manyPlayers have other
properties that can be managed by the user. For example, a videoPlayer might
allow the user to adjust brightness and contrast, which are not managed thro
thePlayer interface.To handle these types of controls, JMF defines theControl

interface.

A mediaPlayer can have any number ofControl objects that define control
behaviors and have corresponding user interface components. You can get t
controls by callinggetControls on thePlayer . For example, to determine if a
Player supports theCachingControl interface and get theCachingControl if it
does, you can callgetControls :

Control[] controls = player.getControls();

 for (int i = 0; i < controls.length; i++) {

 if (controls[i] instanceof CachingControl) {

 cachingControl = (CachingControl) controls[i];

 }

 }

What controls are supported by a particularPlayer depends on thePlayer imple-
mentation.

3.2.3 Displaying a Gain Control Component

GainControl extends theControl interface to provide a standard API for adjus
ing audio gain. To get this control, you must callgetGainControl ; getControls

does not return aPlayer’s GainControl . GainControl provides methods for
adjusting the audio volume, such assetLevel andsetMute . Like other controls,
theGainControl is associated with a GUI component that can be added to an
applet’s presentation space or an application window.

3.2.4 Displaying a Player’s Download Progress

Downloading media data can be a time consuming process. In cases where
user must wait while data is downloaded, a progress bar is often displayed to
sure the user that the download is proceeding and to give some indication of
long the process will take. TheCachingControl interface is a special type of
Control supported byPlayers that can report their download progress. You ca
use this interface to display a download progress bar to the user.

Starting a Player 17

wn
ad

to-
bar in

s

g a

ee
You can callgetControls to determine whether or not aPlayer supports the
CachingControl interface. If it does, thePlayer will post aCachingControlEv-

ent whenever the progress bar needs to be updated. If you implement your o
progress bar component, you can listen for this event and update the downlo
progress wheneverCachingControlEvent is posted.

A CachingControl also provides a default progress bar component that is au
matically updated as the download progresses. To use the default progress
an applet:

1. Implement theControllerListener interface and listen for
CachingControlEvents in controllerUpdate .

2. The first time you receive aCachingControlEvent:

a. CallgetCachingControl on the event to get the caching control.

b. CallgetProgressBar on theCachingControl to get the default progress
bar component.

c. Add the progress bar component to the applet’s presentation space.

3. Each time you receive aCachingControlEvent , check to see if the download
is complete. WhengetContentProgress returns the same value a
getContentLength , remove the progress bar.

4.0 Controlling Media Players

The Clock andPlayer interfaces define the methods for starting and stoppin
Player .

4.1 Starting a Player

You typically start aPlayer by callingstar t. Thestart method tells thePlayer

to begin presenting media data as soon as possible. If necessary,start prepares
thePlayer to start by performing the realize and prefetch operations. Ifstart is
called on aStartedPlayer , the only effect is that aStartEvent is posted in
acknowledgment of the method call.

Clock defines asyncStart method that can be used for synchronization. S
“Synchronizing Players” on page 27 for more information.

Java Media Players – Version 1.0.518

ling

k.

hen

al to

or

he
To start aPlayer at a specific point in a media stream:

1. Specify the point in the media stream at which you want to start by cal
setMediaTime .

2. Callstart on thePlayer .

4.2 Stopping a Player

There are four situations in which aPlayer will stop:

• When thestop method is called on thePlayer .

• When thePlayer has reached the specified stop time.

• When thePlayer has run out of media data.

• When thePlayer is receiving data too slowly to allow acceptable playbac

When a non-broadcastPlayer is stopped, itsmedia timeis frozen. If theStopped
Player is subsequently restarted, media time resumes from the stop time. W
you stop a broadcastPlayer , only the receipt of the media data is stopped; the
data continues to be broadcast. When you restart a broadcastPlayer , the play-
back will resume wherever the broadcast is at that point in time.

You use thestop method to stop aPlayer immediately. If you callstop on a
StoppedPlayer , the only effect is that aStopByRequestEvent is posted in
acknowledgment of the method call.

4.2.1 Stopping a Player at a Specified Time

You can callsetStopTime to indicate when aPlayer should stop. ThePlayer

stops when itsmedia timepasses the specified stop time. If thePlayer’s rate is
positive, thePlayer stops when the media time becomes greater than or equ
the stop time. If thePlayer’s rate is negative, thePlayer stops when the media
time becomes less than or equal to the stop time. ThePlayer stops immediately if
its current media time is already beyond the specified stop time.

For example, assume that aPlayer’s media time is 5.0 andsetStopTime is
called to set the stop time to 6.0. If thePlayer’s rate is positive, media time is
increasing and thePlayer will stop when the media time becomes greater than
equal to 6.0. However, if thePlayer’s rate is negative, it is playing in reverse and
thePlayer will stop immediately because the media time is already beyond t

Preparing a Player to Start 19

a
the

et a

ry to

ata.
stop time. (For more information aboutPlayer rates, see “Setting a Player’s
Rate” on page 26.)

You can always callsetStopTime on a stoppedPlayer . However, you can only
set the stop time on aStartedPlayer if the stop time is not currently set. If the
Player already has a stop time,setStopTime throws an error.

You can callgetStopTime to get the currently scheduled stop time. If the clock
has no scheduled stop time,getStopTime returnsClock.RESET . To remove the
stop time so that thePlayer continues until it reaches end-of-media, call
setStopTime(RESET) .

5.0 Managing Player States

The transitions between states are controlled with five methods:

• realize

• prefetch

• start

• deallocate

• stop

• close

By controlling when these methods are called, you can manage the state of
Player . For example, you might want to minimize start-latency by preparing
Player to start before you actually start it.

You can implement theControllerListener interface to manage these control
methods in response to changes in thePlayer’s state. Listening for aPlayer’s

state transitions is also important in other cases. For example, you cannot g
Player’s components until thePlayer has beenRealized. By listening for a
RealizeCompleteEvent you can get the components as soon as thePlayer is
Realized.

5.1 Preparing a Player to Start

Most mediaPlayers cannot be started instantly. Before thePlayer can start,
certain hardware and software conditions must be met. For example, if thePlayer

has never been started, it might be necessary to allocate buffers in memo
store the media data. Or, if the media data resides on a network device, thePlayer

might have to establish a network connection before it can download the d

Java Media Players – Version 1.0.520

t is

nting
s

-

not

e
ime,

r

Even if thePlayer has been started before, the buffers might contain data tha
not valid for the current media position.

5.1.1 Realizing and Prefetching the Player

JMF breaks the process of preparing aPlayer to start into two phases,Realizing
andPrefetching. RealizingandPrefetchingaPlayer before you start it minimizes
the time it takes thePlayer to begin presenting media whenstart is called and
helps create a highly-responsive interactive experience for the user. Impleme
theControllerListener interface allows you to control when these operation
occur.

You call realize to move thePlayer into theRealizing state and begin the real
ization process. You callprefetch to move thePlayer into thePrefetching state
and initiate the prefetching process. Therealize andprefetch methods are
asynchronous and return immediately. When thePlayer completes the requested
operation, it posts aRealizeCompleteEvent or PrefetchCompleteEvent .
“Player States” on page 6 describes the operations that aPlayer performs in each
of these states.

A Player in thePrefetchedstate is prepared to start and its start-up latency can
be further reduced. However, setting the media time throughsetMediaTime might
return thePlayer to theRealized state, increasing its start-up latency.

Keep in mind that aPrefetchedPlayer ties up system resources. Because som
resources, such as sound cards, might only be usable by one program at a t
this might prevent otherPlayers from starting.

5.1.2 Blocking until a Player is Realized

Many of the methods that can be called on aPlayer require that thePlayer be in
theRealized state. One way to guarantee that aPlayer is Realized when you call
these methods is to implement a method that callsrealize and blocks until the
Player posts aRealizeCompleteEvent .

Note: Be aware that blocking onrealize can produce unsatisfactory results. Fo
example, if an applet blocks while aPlayer is realizing,Applet.start and
Applet.stop will not be able to interrupt the process.

To block until aPlayer is Realized, you could implement a method calledblock-

ingRealize that callsrealize on yourPlayer and returns when thePlayer

posts aRealizeCompleteEvent and yourcontrollerUpdate method is called.
This requires that you implement theControllerListener interface and register
as a listener with thePlayer . If you register as a listener with multiplePlayers ,

Preparing a Player to Start 21

 of

The
ork
eb

jw-
your controllerUpdate method needs to determine whichPlayer posted the
RealizeCompleteEvent .1

boolean realized = false;

public synchronized void blockingRealize()

{

 myPlayer.realize();

 while (!realized) {

 try {

 wait();

 }

 catch (java.lang.InterruptedException e) {

 status.setText("Interrupted while waiting on

 realize...exiting.");

 System.exit(1);

 }

 }

}

public synchronized void controllerUpdate (ControllerEvent

event)

{

 if (event instanceof RealizeCompleteEvent) {

 realized = true;

 notify();

 }

 else if (event instanceof EndOfMediaEvent) {

 eomReached = true;

 }

}

5.1.3 Determining a Player’s Start-up Latency

To determine how much time is required to start aPlayer , you can callget-

StartLatency . ForPlayers that have a variable start latency, the return value
getStartLatency represents the maximum possible start latency. For some
media types,getStartLatency might returnLATENCY_UNKNOWN.

1. This example code is used with the permission of Bill Day and JavaWorld magazine.
blockingRealize example code was first published by Bill Day in “Java Media Framew
Player API: Multimedia Comes to Java” in JavaWorld magazine, an online publication of W
Publishing Inc., April 1997. Please see http://www.javaworld.com/javaworld/jw-04-1997/
04-jmf.html for the complete article, example code listing, and demonstration applets.

Java Media Players – Version 1.0.522

nize

i-

ple-
The start-up latency reported bygetStartLatency might differ depending on the
Player’s current state. For example, after aprefetch operation, the value
returned bygetStartLatency is typically smaller. AController that can be
added to aPlayer will return a useful value once it isPrefetched. (For more infor-
mation about added Controllers, see “Using a Player to Manage and Synchro
other Controllers” on page 29.)

5.2 Starting and Stopping a Player

Calling start moves aPlayer into theStarted state. As soon asstart is called,
methods that are only legal for stoppedPlayers cannot be called until thePlayer

has been stopped.

If start is called and thePlayer has not been prefetched,start performs the
realize and prefetch operations as needed to move thePlayer into thePrefetched
state. ThePlayer posts transition events as it moves through each state.

Whenstop is called on aPlayer , thePlayer is considered to be stopped immed
ately;stop is synchronous. However, aPlayer can also stop asynchronously
when:

• The end of the media stream is reached.

• The stop time previously set withsetStopTime is reached.

• ThePlayer is data starved.

When aPlayer stops, it posts aStopEvent . To determine why thePlayer

stopped, you must listen for the specific stop events:DeallocateEvent , EndOf-

MediaEvent , RestartingEvent , StopAtTimeEvent , StopByRequestEvent, and
DataStarvedEvent .

5.3 Releasing Player Resources

Thedeallocate method tells aPlayer to release any exclusive resources and
minimize its use of non-exclusive resources. Although buffering and memory
management requirements forPlayers are not specified, most Java MediaPlay-

ers allocate buffers that are large by the standards of Java objects. A well-im
mentedPlayer releases as much internal memory as possible whendeallocate

is called.

The deallocate method can only be called on aStoppedPlayer . To avoid
ClockStartedErrors , you should callstop before you calldeallocate . Calling
deallocate on aPlayer in the Prefetchingor Prefetchedstate returns it to the

Implementing the ControllerListener Interface 23

,

ll

ted
Realizedstate. Ifdeallocate is called while thePlayer is realizing, thePlayer

posts aDeallocateEvent and returns to theUnrealizedstate. (Once aPlayer has
been realized, it can never return to theUnrealized state.)

You generally calldeallocate when thePlayer is not being used. For example
an applet should calldeallocate as part of itsstop method. By callingdeallo-

cate , the program can maintain references to thePlayer , while freeing other
resources for use by the system as a whole. (JMF does not prevent aRealized
Player that has formerly beenPrefetched or Started from maintaining informa-
tion that would allow it to be started up more quickly in the future.)

When you are finished with aPlayer (or otherController) and are not going to
use it anymore, you should callclose . Theclose method indicates that theCon-

troller will no longer be used and can shut itself down. Callingclose releases
all of the resources that theController was using and causes the it to cease a
activity. When aController is closed, it posts aControllerClosedEvent . A
closedController cannot be reopened and invoking methods on a closedCon-

troller might generate errors.

5.4 Implementing the ControllerListener Interface

ControllerListener is an asynchronous interface for handling events genera
by Controller objects. Using theControllerListener interface enables you to
manage the timing of potentially time-consumingPlayer operations such as
prefetching.

To implement theControllerListener interface, you need to:

1. Implement theControllerListener interface in a class.

2. Register that class as a listener by callingaddControllerListener on the
Controller that you want to receive events from.

When aController posts an event, it callscontrollerUpdate on each regis-
tered listener. Typically,controllerUpdate is implemented as a series of if-else
statements of the form:

if(event instanceof EventType){

...

} else if(event instanceof OtherEventType){

...

}

Java Media Players – Version 1.0.524

as a

-
ar-

e

 the

.
t

end,
iple
r

time.
m

ke
This filters out the events that you are not interested in. If you have registered
listener with multipleControllers , you also need to determine whichControl-

ler posted the event.ControllerEvents come “stamped” with a reference to
their source that you can access by callinggetSource .

“Appendix D: ControllerAdapter” on page 73 provides the source for an imple
mentation ofControllerListener that can be easily extended to respond to p
ticular Events .

When you receive events from aController , you might need to do some addi-
tional processing to ensure that theController is in the proper state before call-
ing a control method. For example, before calling any of the methods that ar
restricted toStoppedPlayers , you should check thePlayer’s target state by
callinggetTargetState . If start has been called, thePlayer is considered to be
in theStarted state, though it might be posting transition events as it prepares
Player to present media.

Some types ofControllerEvents are stamped with additional state information
For example, theStartEvent andStopEvent classes each define a method tha
allows you to retrieve the media time at which the event occurred.

6.0 Managing Timing

In many cases, instead of playing a single media stream from beginning to
you want to play a portion of the stream or synchronize the playback of mult
streams. The JMFTimeBase and Clock interfaces define the mechanism fo
managing the timing and synchronization of media playback.

A TimeBase represents the flow of time. Atime-base time cannot be transformed
or reset. A Java MediaPlayer uses itsTimeBase to keep time in the same way
that a quartz watch uses a crystal that vibrates at a known frequency to keep
The system maintains a masterTimeBase that measures time in nanoseconds fro
a specified base time, such as January 1, 1970. The systemTimeBase is driven by
the system clock and is accessible through theManager .getSystemTimeBase

method.

A Player’s media time represents a point in time within the stream that the
Player is presenting. Themedia timecan be started, stopped, and reset much li
a stopwatch.

A Clock defines the mapping between aTimeBase and themedia time.

Setting the Media Time 25

e it
cal
vice

. You

a

m
one
s

A Java MediaPlayer can answer several timing queries about the media sourc
is presenting. Of course, timing information is subject to the physi
characteristics and limitations of both the media source and of the network de
on which it is stored.

A Time object represents a quantity of some time unit, such as nanoseconds
useTime objects when you query or set aPlayer’s timing information.

6.1 Setting the Media Time

Setting aPlayer’s media timeis equivalent to setting a read position within
media stream. For a media data source such as a file, themedia timeis bounded;
the maximummedia time is defined by the end of the media stream.

To set themedia time you callsetMediaTime and pass in a Time object that rep-
resents the time you want to set.

6.2 Getting the Current Time

Calling getMediaTime returns aTime object that represents thePlayer’s current
media time. If the Player is not presenting media data, this is the point fro
which media presentation will commence. There is not a one-to-
correspondence between amedia timeand a particular frame. Each frame i
presented for a certain period of time, and themedia timecontinues to advance
during that period.

For example, imagine you have a slide showPlayer that displays each slide for 5
seconds—thePlayer essentially has a frame rate of 0.2 frames per second.

time-base time

media time

start stop start stop

end of media0

Java Media Players – Version 1.0.526

yed

e

or.
e

ave
hem

y

If you start thePlayer at time 0.0, while the firstframe is displayed, the media
time advances from 0.0 to 5.0. If you start at time 2.0, the first frame is displa
for 3 seconds, until time 5.0 is reached.

You can get aPlayer’s currenttime-base timeby getting thePlayer’s TimeBase

and callinggetRefTime :

myCurrentTBTime = player1.getTimeBase().getRefTime();

When aPlayer is running, you can get thetime-base time that corresponds to a
particularmedia timeby callingmapToTimeBase .

6.3 Setting a Player’s Rate

ThePlayer’s rate determines howmedia timechanges with respect to time-bas
time; it defines how many units aPlayer’s media timeadvances for every unit of
time-base time. The Player’s rate can be thought of as a temporal scale fact
For example, a rate of 2.0 indicates thatmedia timepasses twice as fast as th
time-base time when thePlayer is started.

In theory, aPlayer’s rate could be set to any real number, with negative rates
interpreted as playing the media in reverse. However, some media formats h
dependencies between frames that make it impossible or impractical to play t
in reverse or at non-standard rates.

WhensetRate is called on aPlayer , the method returns the rate that is actuall
set, even if it has not changed.Players are only guaranteed to support a rate of
1.0.

5 10 15} }}

frame 1 frame 2 frame 3

getMediaTime

Duration

5

10

15

Getting a Player’s Duration 27

will

e

a live

 the

-

with

e
ntly.

r

6.4 Getting a Player’s Duration

Since your program might need to determine how long a given media stream
run, allControllers implement theDuration interface. This interface comprises
a single method,getDuration . Duration represents the length of time that a
media object would run, if played at the default rate of 1.0. A media stream’s
duration is accessible only through thePlayer .

If the duration can’t be determined whengetDuration is called,
DURATION_UNKNOWNis returned. This can happen if thePlayer has not yet reached
a state where the duration of the media source is available. At a later time, th
duration might be available and a call togetDuration would return the duration
value. If the media source does not have a defined duration, as in the case of
broadcast,getDuration returnsDURATION_UNBOUNDED.

7.0 Synchronizing Players

To synchronize the playback of multiple media streams, you can synchronize
Players by associating them with the sameTimeBase . To do this, you use the
getTimeBase andsetTimeBase methods defined by theClock interface. For
example, you could synchronizeplayer1 with player2 by settingplayer1 to use
player2’s time base:

player1.setTimeBase(player2.getTimeBase());

When you synchronizePlayers by associating them with the sameTimeBase , you
must still manage the control of eachPlayer individually. Because managing
synchronizedPlayers in this way can be complicated, JMF provides a mecha
nism that allows aPlayer to assume control over anyController . ThePlayer

manages the states of the controllers automatically, allowing you to interact
the entire group through a single point of control. For more information, see
“Using a Player to Manage and Synchronize other Controllers” on page 29.

In a few situations, you might want to manage the synchronization of multipl
Players yourself so that you can control the rates or media times independe
If you do this, you must:

• Register as a listener for each synchronizedPlayer .

• Determine whichPlayer’s time base is going to be used to drive the othe
Players and set the time base for the synchronizedPlayers . Not allPlayers

can assume a new time base. For example, if one of thePlayers you want to
synchronize has a push data-source, thatPlayer’s time base must be used to

Java Media Players – Version 1.0.528

ying

d by

ed.
drive the otherPlayer s.

• Set the rate for all of thePlayers . If a Player cannot support the rate you
specify, it returns the rate that was used. (There is no mechanism for quer
the rates that aPlayer supports.)

• Synchronize thePlayers’ states. (For example, stop all of thePlayers .)

• Synchronize the operation of thePlayers :

• Set the media time for eachPlayer .

• Prefetch all of thePlayers .

• Determine the maximum start latency among the synchronizedPlayers .

• Start thePlayers by callingsyncStart with a time that takes into account
the maximum latency.

You must listen for transition events for all of thePlayers and keep track of
which ones have posted events. For example, when you prefetch thePlayers , you
need to keep track of which ones have postedPrefetchComplete events so that
you can be sure all of thePlayers arePrefetchedbefore callingsyncStart . Sim-
ilarly, when you request that the synchronizedPlayers stop at a particular time,
you need to listen for the stop event posted by eachPlayer to determine when all
of thePlayers have actually stopped.

In some situations, you need to be careful about responding to events poste
the synchronizedPlayers . To be sure of thePlayers’ states, you might need to
wait at certain stages for all of the synchronizedPlayers to reach the same state
before continuing.

For example, assume that you are using onePlayer to drive a group of synchro-
nizedPlayers . A user interacting with thatPlayer sets the media time to 10,
starts thePlayer , and then changes the media time to 20. You then:

• Pass along the firstsetMediaTime call to all of the synchronizedPlayers.

• Call prefetch on thePlayers to prepare them to start.

• Call stop on thePlayers when the second set media time request is receiv

• Call setMediaTime on thePlayers with the new time.

• Restart the prefetching operation.

• When all of thePlayers have been prefetched, start them by calling
syncStart , taking into account their start latencies.

Getting a Player’s Duration 29

s
is

pri-
In this case, simply listening forPrefetchComplete events from all of thePlay-

ers before callingsyncStart isn’t sufficient. You can’t tell whether those event
were posted in response to the first or second prefetch operation. To avoid th
problem, you can block when you callstop and wait for all of thePlayers to
post stop events before continuing. This guarantees that the nextPrefetchCom-

plete events you receive are the ones that you are really interested in.

8.0 Using a Player to Manage and Synchronize other
Controllers

SynchronizingPlayers manually usingsyncStart requires that you carefully
manage the states of all of the synchronizedPlayers . You must control each one
individually, listening for events and calling control methods on them as appro
ate. Even with only a fewPlayers , this quickly becomes a difficult task. Through
thePlayer interface, JMF provides a simpler solution: aPlayer can be used to
manage the operation of anyController .

When you interact with a managingPlayer , your instructions are automatically
passed along to the managedControllers as appropriate. The managingPlayer

takes care of the state management and synchronization for all of the otherCon-

trollers .

This mechanism is implemented through theaddController andremoveCon-

troller methods. When you calladdController on aPlayer , theController

you specify is added to the list ofControllers managed by thePlayer . Con-
versely, when you callremoveController , the specifiedController is removed
from the list of managedControllers .

Typically, when you need to synchronizePlayers or otherControllers , you
should use thisaddController mechanism. It is simpler, faster, and less error-
prone than attempting to manage synchronizedPlayers individually.

When aPlayer assumes control of aController :

• TheController assumes thePlayer’s time-base.

• ThePlayer’s duration becomes the longer of theController’s duration
and its own. If multipleControllers are placed under aPlayer’s control,
thePlayer’s duration is the longest of all of their durations.

• ThePlayer’s start latency becomes the longer of theController’s start
latency and its own. If multipleControllers are placed under aPlayer’s

control, thePlayer’s start latency is the longest of all of their latencies.

Java Media Players – Version 1.0.530

fter

s to
A managingPlayer only posts completion events for asynchronous methods a
every addedController has posted the event. The managingPlayer reposts
other events generated by the managedControllers as appropriate.

8.1 Adding a Controller

You use theaddController method to add aController to the list ofControl-

lers managed by a particularPlayer . To be added, aController must be in the
Realized state; otherwise, aNotRealizedError is thrown. TwoPlayers cannot
be placed under control of each other. For example, ifplayer1 is placed under the
control ofplayer2 , player2 cannot be placed under the control ofplayer1

without first removing player1 from player2’s control.

Once aController has been added to aPlayer , do not call methods directly on
the addedController . To control an addedController , you interact with the
managingPlayer .

To haveplayer2 assume control ofplayer1 , call:

player2.addController(player1);

8.2 Managing the Operation of Added Controllers

To control the operation of a group ofControllers managed by a particular
Player , you interact directly with the managingPlayer . Do not call control meth-
ods on the managedControllers directly.

For example, to prepare all of the managedControllers to start, callprefetch

on the managingPlayer . Similarly, when you want to start them, callstart on
the managingPlayer . The managingPlayer makes sure that all of theControl-

lers arePrefetched, determines the maximum start latency among theControl-

lers , and callssyncStart to start them, specifying a time that takes the
maximum start latency into account.

When you call aController method on the managingPlayer , thePlayer propa-
gates the method call to the managedControllers as appropriate. Before calling
a Controller method on a managedController , thePlayer ensures that the
Controller is in the proper state. The following table describes what happen
the managedControllers when you call control methods on the managing
Player .

Removing a Controller 31
8.3 Removing a Controller

You use theremoveController method to remove aController from the list of
controllers managed by a particularPlayer .

Function Stopped Player Started Player

setMediaTime InvokessetMediaTime on all man-
agedControllers .

Stops all managedControllers , in-
vokessetMediaTime , and restartsCon-

trollers .

setRate InvokessetRate on all managedCon-

trollers . Returns the actual rate that
was supported by allControllers

and set.

Stops all managedControllers , in-
vokessetRate , and restartsControl-

lers . Returns the actual rate that was
supported by allControllers and set.

start Ensures all managedControllers

arePrefetched and invokessync-

Start on each of them, taking into ac-
count their start latencies.

Depends on thePlayer implementation.
Player might immediately post a
StartEvent .

realize The managingPlayer immediately
posts aRealizeCompleteEvent . To
be added, aController must already
be realized.

The managingPlayer immediately
posts aRealizeCompleteEvent . To be
added, aController must already be
realized.

prefetch Invokesprefetch on all managed
Controllers .

The managingPlayer immediately
posts aPrefetchCompleteEvent , indi-
cating that all managedControllers

arePrefetched.

stop No effect. Invokesstop on all managedControl-

lers .

deallocate Invokesdeallocate on all managed
Controllers .

It is illegal to calldeallocate on a
StartedPlayer .

setStopTime InvokessetStopTime on all managed
Controllers . (Player must beReal-
ized.)

InvokessetStopTime on all managed
Controllers . (Can only be set once on
aStarted Player .)

syncStart InvokessyncStart on all managed
Controllers .

It is illegal to callsyncStart on aStart-
edPlayer .

close Invokesclose on all managedCon-

trollers .
It is illegal to callclose on aStarted
Player .

Java Media Players – Version 1.0.532

new
new

alls

e

To haveplayer2 release control ofplayer1 , call:

player2.removeController(player1);

9.0 Extending JMF

The JMF architecture allows advanced developers to create and integrate
types of controllers and data sources. For example, you might implement a
Player that supports a special media format.

This section introduces the JMF Player architecture and describes how newPlay-

ers andDataSources can be integrated into JMF.

9.1 Understanding the Player Architecture

As described in “Creating a Player” on page 14, a client programmer c
Manager.createPlayer to get a newPlayer for a particular media source. When
createPlayer is called, an appropriatePlayer is created and returned to th
caller.

Manager constructsPlayers for particular media sources. ADataSource is first
constructed from aURL or MediaLocator and then used to create aPlayer. (A
DataSource is a protocol-specific source of media data.Players usually use
DataSources to manage the transfer of media-content.)

When creating aPlayer , Manager:

• Obtains the connectedDataSource for the specified protocol

• Obtains thePlayer for the content-type specified by theDataSource

• Attaches theDataSource to thePlayer

Manager

createPlayer
createDataSource DataSource

Player

PackageManager

getContentName

getContentPrefixList
getProtocolPrefixListuses

creates

creates MediaHandler

MediaProxy

extendsextends

creates

Understanding the Player Architecture 33

an

a-

s

il

ing
ted
9.1.1 Locating a DataSource

The createDataSource method locates and instantiates an appropriateData-

Source for a specifiedMediaLocator . To do this, it first creates a search list of
DataSource class names and then steps through each class in the list until a
usable data source is found. To construct the search list ofDataSource class
names,createDataSource :

1. Obtains a vector of protocol package-prefixes fromPackageManager .

2. Adds a class name of the form:

 <package-prefix>.media.protocol.<protocol>.DataSource

 for each<package-prefix> in the protocol package-prefix-vector.

Manager steps through each class in the list until it finds aDataSource that it can
instantiate and to which it can attach theMediaLocator .

9.1.2 Locating a Player

The createPlayer method uses a similar mechanism to locate and instantiate
appropriatePlayer for a particular DataSource . A Player is a type ofMediaH-

andler , an object that reads data from aDataSource . MediaHandlers are identi-
fied by the content type that they support.Manager uses the content type name
obtained from aDataSource to findMediaHandler objects. JMF supports two
types ofMediaHandlers , Player andMediaProxy .

A MediaProxy processes content from oneDataSource to create another. Typi-
cally, aMediaProxy reads a text configuration file that contains all of the inform
tion needed to make a connection to a server and obtain media data.

WhencreatePlayer is called,Manager first creates a search list of class name
using the content name from theDataSource and the list of installed packages
returned by thePackageManager . It then steps through each class in the list unt
it finds aMediaHandler that can be constructed and to which it can attach the
DataSource .

If the MediaHandler is aPlayer , the process is finished andManager returns the
newPlayer . If the MediaHandler is aMediaProxy , Manager obtains a newData-

Source from theMediaProxy , creates a new list for the content type that the
DataSource supports and repeats the search process.

If an appropriatePlayer cannot be found, the procedure is repeated, substitut
“unknown” for the content type name. The “unknown” content type is suppor

Java Media Players – Version 1.0.534

,

he
by genericPlayers that are capable of handling a large variety of media types
often in a platform dependent way.

To construct the search list ofMediaHandler class names,createPlayer :

1. Obtains a vector of content package-prefixes fromPackageManager .

2. Adds a class name of the form:

 <package-prefix>.media.content.<content-type>.Handler

 for each <package-prefix> in the content package-prefix-vector.

9.2 Integrating a New Player Implementation

You can create custom implementations ofPlayer that can work seamlessly with
the rest of JMF. To integrate aPlayer with JMF, you need to:

• ImplementPlayer.setSource to check theDataSource and determine
whether or not thePlayer can handle that type of source. When the client
programmer calls createPlayer , setSource is called as theManager

searches for an appropriatePlayer .

• Install the package containing the newPlayer class.

• Add the package prefix to the content package-prefix list controlled by t
PackageManager . TheManager queries thePackageManager for the list of
content package-prefixes it uses to search for aPlayer .

For example, to integrate a newPlayer for the content type mpeg.sys, you would
create and install a package called:

<package-prefix>.media.content.mpeg.sys

that contains the newPlayer class. The package prefix is an identifier for your
code, such asCOM.yourbiz . Your installation program also needs to add your
package prefix to the content package-prefix list managed by thePackageMan-

ager .

Implementing a New Data Source 35

ent
g

the
t

xam-

he
Vector packagePrefix = PackageManager.getContentPrefixList();

string myPackagePrefix = new String(“COM.yourbiz”);

// Add new package prefix to end of the package prefix list.

packagePrefix.addElement(myPackagePrefix);

PackageManager.setContentPrefixList();

// Save the changes to the package prefix list.

PackageManager.commitContentPrefixList();

9.3 Implementing a New Data Source

A DataSource is an abstraction of a media protocol-handler. You can implem
new types of DataSources to support additional protocols by extendin
PullDataSource or PushDataSource . If your DataSource supports changing the
media position within the stream to a specified time, it should implement
Positionable interface. If theDataSource supports seeking to a particular poin
in the stream, the correspondingSourceStream should implement theSeekable

interface.

A DataSource manages a collection ofSourceStreams . A PullDataSource only
supports pull data-streams; it manages a collection ofPullSourceStreams . A
PushDataSource only supports push data-streams; it manages a collection of
PushSourceStreams . When you implement a newDataSource , you also need to
implement the corresponding source stream,PullSourceStream or Push-

SourceStream .

See “Appendix B: Sample Data Source Implementation” on page 43 for an e
ple illustrating how a newPullDataSource , FTPDataSource , could be imple-
mented.

9.4 Integrating a New Data Source Implementation

The mechanism for integrating a customDataSource implementation with JMF
is similar to the one used for integrating aPlayer . You need to:

• Install the package containing the newDataSource class.

• Add the package prefix to the protocol package-prefix list controlled by t
PackageManager . TheManager queries thePackageManager for the list of
protocol package prefixes it uses to search for aDataSource .

Java Media Players – Version 1.0.536

1

t

m.
er.

the
Appendix A:
Java Media Apple

This Java Applet demonstrates proper error checking in a Java Media progra
Like PlayerApplet , it creates a simple media player with a media event listen

When this applet is started, it immediately begins to play the media clip. When
end of media is reached, the clip replays from the beginning.

import java.applet.Applet;

import java.awt.*;

import java.lang.String;

import java.net.URL;

import java.net.MalformedURLException;

import java.io.IOException;

import javax.media.*;

/**

 * This is a Java Applet that demonstrates how to create a simple

 * media player with a media event listener. It will play the

 * media clip right away and continuously loop.

 *

 * <!-- Sample HTML

 * <applet code=TypicalPlayerApplet width=320 height=300>

 * <param name=file value="Astrnmy.avi">

 * </applet>

 * -->

 */

public class TypicalPlayerApplet extends Applet implements

ControllerListener

{

 // media player

 Player player = null;
37

Java Media Players – Version 1.0.538
 // component in which video is playing

 Component visualComponent = null;

 // controls gain, position, start, stop

 Component controlComponent = null;

 // displays progress during download

 Component progressBar = null;

 /**

 * Read the applet file parameter and create the media

 * player.

 */

 public void init()

 {

 setLayout(new BorderLayout());

 // input file name from html param

 String mediaFile = null;

 // URL for our media file

 URL url = null;

 // URL for doc containing applet

 URL codeBase = getDocumentBase();

 // Get the media filename info.

 // The applet tag should contain the path to the

 // source media file, relative to the html page.

 if ((mediaFile = getParameter("FILE")) == null)

 Fatal("Invalid media file parameter");

 try

 {

 // Create an url from the file name and the url to the

 // document containing this applet.

 if ((url = new URL(codeBase, mediaFile)) == null)

 Fatal("Can't build URL for " + mediaFile);

 // Create an instance of a player for this media

 if ((player = Manager.createPlayer(url)) == null)

 Fatal("Could not create player for "+url);

 // Add ourselves as a listener for player's events

 player.addControllerListener(this);

 }

 catch (MalformedURLException u)

 {

 Fatal("Invalid media file URL!");

 }

 catch(IOException i)

 {

Appendix A: Java Media Applet 39
 Fatal("IO exception creating player for "+url);

 }

 // This applet assumes that its start() calls

 // player.start().This causes the player to become

 // Realized. Once Realized, the Applet will get

 // the visual and control panel components and add

 // them to the Applet. These components are not added

 // during init() because they are long operations that

 // would make us appear unresposive to the user.

 }

 /**

 * Start media file playback. This function is called the

 * first time that the Applet runs and every

 * time the user re-enters the page.

 */

 public void start()

 {

 // Call start() to prefetch and start the player.

 if (player != null) player.start();

 }

 /**

 * Stop media file playback and release resources before

 * leaving the page.

 */

 public void stop()

 {

 if (player != null)

 {

 player.stop();

 player.deallocate();

 }

 }

 /**

 * This controllerUpdate function must be defined in order

 * to implement a ControllerListener interface. This

 * function will be called whenever there is a media event.

 */

 public synchronized void controllerUpdate(ControllerEvent event)

 {

 // If we're getting messages from a dead player,

 // just leave

Java Media Players – Version 1.0.540
 if (player == null) return;

 // When the player is Realized, get the visual

 // and control components and add them to the Applet

 if (event instanceof RealizeCompleteEvent)

 {

 if ((visualComponent = player.getVisualComponent()) != null)

 add("Center", visualComponent);

if ((controlComponent = player.getControlPanelComponent()) != null)

 add("South",controlComponent);

 // force the applet to draw the components

 validate();

 }

 else if (event instanceof CachingControlEvent)

 {

 // Put a progress bar up when downloading starts,

 // take it down when downloading ends.

 CachingControlEvent e = (CachingControlEvent) event;

 CachingControl cc = e.getCachingControl();

 long cc_progress = e.getContentProgress();

 long cc_length = cc.getContentLength();

 // Add the bar if not already there ...

 if (progressBar == null)

if ((progressBar = cc.getProgressBarComponent()) != null)

 {

 add("North", progressBar);

 validate();

 }

 // Remove bar when finished ownloading

 if (progressBar != null)

 if (cc_progress == cc_length)

 {

 remove (progressBar);

 progressBar = null;

 validate();

 }

 }

 else if (event instanceof EndOfMediaEvent)

 {

 // We've reached the end of the media; rewind and

 // start over

 player.setMediaTime(new Time(0));

 player.start();

Appendix A: Java Media Applet 41
 }

 else if (event instanceof ControllerErrorEvent)

 {

 // Tell TypicalPlayerApplet.start() to call it a day

 player = null;

 Fatal (((ControllerErrorEvent)event).getMessage());

 }

 }

 void Fatal (String s)

 {

 // Applications will make various choices about what

 // to do here. We print a message and then exit

 System.err.println("FATAL ERROR: " + s);

 throw new Error(s); // Invoke the uncaught exception

 // handler System.exit() is another

 // choice

 }

}

Java Media Players – Version 1.0.542

2

e

Appendix B:

Sample Data Sourc
Implementation

This sample demonstrates how to implement a newDataSource to support an
additional protocol, the FTP protocol. There are two classes:

• DataSource extendsPullDataSource and implements
intel.media.protocol.PullProtocolHandler.

• FTPSourceStream implementsPullSourceStream .

FTP Data Source

package COM.intel.media.protocol.ftp;

import javax.media.protocol.PullDataSource;

import javax.media.protocol.SourceStream;

import javax.media.protocol.PullSourceStream;

import javax.media.Time;

import javax.media.Duration;

import java.io.*;

import java.net.*;

import java.util.Vector;

public class DataSource extends PullDataSource

{

 public static final int FTP_PORT = 21;

 public static final int FTP_SUCCESS = 1;

 public static final int FTP_TRY_AGAIN = 2;
43

Java Media Players – Version 1.0.544
 public static final int FTP_ERROR = 3;

 // used to send commands to server

 protected Socket controlSocket;

 // used to receive file

 protected Socket dataSocket;

 // wraps controlSocket's output stream

 protected PrintStream controlOut;

 // wraps controlSocket's input stream

 protected InputStream controlIn;

 // hold (possibly multi-line) server response

 protected Vector response = new Vector(1);

 // reply code from previous command

 protected int previousReplyCode;

 // are we waiting for command reply?

 protected boolean replyPending;

 // user login name

 protected String user = "anonymous";

 // user login password

 protected String password = "anonymous";

 // FTP server name

 protected String hostString;

 // file to retrieve

 protected String fileString;

 public void connect() throws IOException

 {

 initCheck(); // make sure the locator is set

 if (controlSocket != null)

 {

 disconnect();

 }

// extract FTP server name and target filename from locator

 parseLocator();

 controlSocket = new Socket(hostString, FTP_PORT);

 controlOut = new PrintStream(new BufferedOutputStream(

Appendix B: Sample Data Source Implementation 45
 controlSocket.getOutputStream()), true);

 controlIn = new

 BufferedInputStream(controlSocket.getInputStream());

 if (readReply() == FTP_ERROR)

 {

 throw new IOException("connection failed");

 }

 if (issueCommand("USER " + user) == FTP_ERROR)

 {

 controlSocket.close();

 throw new IOException("USER command failed");

 }

 if (issueCommand("PASS " + password) == FTP_ERROR)

 {

 controlSocket.close();

 throw new IOException("PASS command failed");

 }

 }

 public void disconnect()

 {

 if (controlSocket == null)

 {

 return;

 }

 try

 {

 issueCommand("QUIT");

 controlSocket.close();

 }

 catch (IOException e)

 {

 // do nothing, we just want to shutdown

 }

 controlSocket = null;

 controlIn = null;

 controlOut = null;

 }

 public void start() throws IOException

Java Media Players – Version 1.0.546
 {

 ServerSocket serverSocket;

 InetAddress myAddress = InetAddress.getLocalHost();

 byte[] address = myAddress.getAddress();

 String portCommand = "PORT ";

 serverSocket = new ServerSocket(0, 1);

 // append each byte of our address (comma-separated)

 for (int i = 0; i < address.length; i++)

 {

portCommand = portCommand + (address[i] & 0xFF) + ",";

 }

// append our server socket's port as two comma-separated

 // hex bytes

 portCommand = portCommand +

 ((serverSocket.getLocalPort() >>> 8)

& 0xFF) + "," + (serverSocket.getLocalPort() & 0xFF);

 // issue PORT command

 if (issueCommand(portCommand) == FTP_ERROR)

 {

 serverSocket.close();

 throw new IOException("PORT");

 }

 // issue RETRieve command

 if (issueCommand("RETR " + fileString) == FTP_ERROR)

 {

 serverSocket.close();

 throw new IOException("RETR");

 }

 dataSocket = serverSocket.accept();

 serverSocket.close();

 }

 public void stop()

 {

 try

 {

 // issue ABORt command

 issueCommand("ABOR");

 dataSocket.close();

Appendix B: Sample Data Source Implementation 47
 }

 catch(IOException e) {}

 }

 public String getContentType()

 {

 // We don't get MIME info from FTP server. This

 // implementation makes an attempt guess the type using

// the File name and returns "unknown" in the default case.

 // A more robust mechanisms should

 // be supported for real-world applications.

 String locatorString = getLocator().toExternalForm();

 int dotPos = locatorString.lastIndexOf(".");

 String extension = locatorString.substring(dotPos + 1);

 String typeString = "unknown";

 if (extension.equals("avi"))

 typeString = "video.x-msvideo";

 else if (extension.equals("mpg") ||

 extension.equals("mpeg"))

 typeString = "video.mpeg";

 else if (extension.equals("mov"))

 typeString = "video.quicktime";

 else if (extension.equals("wav"))

 typeString = "audio.x-wav";

 else if (extension.equals("au"))

 typeString = "audio.basic";

 return typeString;

 }

 public PullSourceStream[] getStreams()

 {

 PullSourceStream[] streams = new PullSourceStream[1];

 try

 {

 streams[0] = new

FTPSourceStream(dataSocket.getInputStream());

 }

 catch(IOException e)

 {

 System.out.println("error getting streams");

 }

 return streams;

 }

Java Media Players – Version 1.0.548
 public Time getDuration()

 {

 return Duration.DURATION_UNKNOWN;

 }

 public void setUser(String user)

 {

 this.user = user;

 }

 public String getUser()

 {

 return user;

 }

 public void setPassword(String password)

 {

 this.password = password;

 }

 public String getPassword()

 {

 return password;

 }

 private int readReply() throws IOException

 {

 previousReplyCode = readResponse();

 System.out.println(previousReplyCode);

 switch (previousReplyCode / 100)

 {

 case 1:

 replyPending = true;

 // fall through

 case 2:

 case 3:

 return FTP_SUCCESS;

 case 5:

 if (previousReplyCode == 530)

 {

 if (user == null)

 {

Appendix B: Sample Data Source Implementation 49
 throw new IOException("Not logged in");

 }

 return FTP_ERROR;

 }

 if (previousReplyCode == 550)

 {

 throw new FileNotFoundException();

 }

 }

 return FTP_ERROR;

 }

 /**

* Pulls the response from the server and returns the code as a

 * number. Returns -1 on failure.

 */

 private int readResponse() throws IOException

 {

 StringBuffer buff = new StringBuffer(32);

 String responseStr;

 int c;

 int continuingCode = -1;

 int code = 0;

 response.setSize(0);

 while (true)

 {

 while ((c = controlIn.read()) != -1)

 {

 if (c == '\r')

 {

 if ((c = controlIn.read()) != '\n')

 {

 buff.append('\r');

 }

 }

 buff.append((char)c);

 if (c == '\n')

 {

 break;

 }

 }

 responseStr = buff.toString();

Java Media Players – Version 1.0.550
 buff.setLength(0);

 try

 {

code = Integer.parseInt(responseStr.substring(0, 3));

 }

 catch (NumberFormatException e)

 {

 code = -1;

 }

 catch (StringIndexOutOfBoundsException e)

 {

 /* this line doesn't contain a response code, so

 * we just completely ignore it

 */

 continue;

 }

 response.addElement(responseStr);

 if (continuingCode != -1)

 {

 /* we've seen a XXX- sequence */

 if (code != continuingCode ||

 (responseStr.length() >= 4 &&

 responseStr.charAt(3) == '-'))

 {

 continue;

 }

 else

 {

 /* seen the end of code sequence */

 continuingCode = -1;

 break;

 }

 }

 else if (responseStr.length() >= 4 &&

 responseStr.charAt(3) == '-')

 {

 continuingCode = code;

 continue;

 }

 else

 {

 break;

 }

 }

 previousReplyCode = code;

 return code;

Appendix B: Sample Data Source Implementation 51
 }

 private int issueCommand(String cmd) throws IOException

 {

 int reply;

 if (replyPending)

 {

 if (readReply() == FTP_ERROR)

 {

 System.out.print("Error reading pending reply\n");

 }

 }

 replyPending = false;

 do

 {

 System.out.println(cmd);

 controlOut.print(cmd + "\r\n");

 reply = readReply();

 } while (reply == FTP_TRY_AGAIN);

 return reply;

 }

 /**

 * Parses the mediaLocator field into host and file strings

 */

 protected void parseLocator()

 {

 initCheck();

 String rest = getLocator().getRemainder();

 System.out.println("Begin parsing of: " + rest);

 int p1, p2 = 0;

 p1 = rest.indexOf("//");

 p2 = rest.indexOf("/", p1+2);

 hostString = rest.substring(p1 + 2, p2);

 fileString = rest.substring(p2);

 System.out.println("host: " + hostString + " file: "

 + fileString);

 }

}

Source Stream

Java Media Players – Version 1.0.552
 package intel.media.protocol.ftp;

 import java.io.*;

import javax.media.protocol.ContentDescriptor;

import javax.media.protocol.PullSourceStream;

import javax.media.protocol.SourceStream;

public class FTPSourceStream implements PullSourceStream

{

 protected InputStream dataIn;

 protected boolean eofMarker;

 protected ContentDescriptor cd;

 public FTPSourceStream(InputStream in)

 {

 this.dataIn = in;

 eofMarker = false;

 cd = new ContentDescriptor("unknown");

 }

 // SourceSteam methods

 public ContentDescriptor getContentDescriptor()

 {

 return cd;

 }

 public void close() throws IOException

 {

 dataIn.close();

 }

 public boolean endOfStream()

 {

 return eofMarker;

 }

 // PullSourceStream methods

 public int available() throws IOException

 {

 return dataIn.available();

 }

Appendix B: Sample Data Source Implementation 53
public int read(byte[] buffer, int offset, int length) throws

IOException

 {

 int n = dataIn.read(buffer, offset, length);

 if (n == -1)

 {

 eofMarker = true;

 }

 return n;

 }

 public boolean willReadBlock() throws IOException

 {

 if(eofMarker)

 {

 return true;

 }

 else

 {

 return dataIn.available() == 0;

 }

 }

 public long getContentLength()

 {

 return SourceStream.LENGTH_UNKNOWN;

 }

}

Java Media Players – Version 1.0.554

3

ting
r

nts.
Appendix C:
Sample Controller

Implementation

This sample illustrates how a simple time-lineController can be implemented in
JMF. This sample is provided as a reference for developers who are implemen
their ownControllers . Please note that it has not been tested or optimized fo
production use.

This sample consists of four classes:

• TimeLineController.java

TheController . You give it an array of time values (representing a time
line) and it keeps track of which segment in the time line you are in.

• TimeLineEvent.java

An event posted by theTimeLineController when the segment in the time
line changes.

• EventPostingBase.java

A base class used byTimeLineController that handles theController

methodsaddControllerListener andremoveControllerListener . It also
provides apostEvent method that can be used by the subclass to post eve

• ListenerList.java

A class used to maintain a list ofControllerListener objects that the
TimeLineController needs to post events to.
55

Java Media Players – Version 1.0.556

s are
This implementation also uses two additional classes whose implementation
not shown here.

• EventPoster

A class that spins a thread to post events to aControllerListener .

• BasicClock

A simpleClock implementation that implements all of theClock methods.

Appendix C: Sample Controller Implementation 57
TimeLineController.java

import javax.media.*;

import com.sun.media.MediaClock;

// This Controller uses two custom classes:

// The base class is EventPostingBase. It has three methods:

// public void addControllerListener (ControllerListener

// observer);

// public void removeControllerListener (ControllerListener

// observer);

// protected void postEvent (ControllerEvent event);

//

// This Controller posts TimeLineEvents. TimeLineEvent has

// two methods:

// public TimeLineEvent (Controller who, int

// segmentEntered);

// public final int getSegment ();

public class TimeLineController extends EventPostingBase

 implements Controller, Runnable

{

 Clock ourClock;

 // This simple controller really only has two states:

 // Prefetched and Started.

 int ourState;

 long timeLine[];

 int currentSegment = -1;

 long duration;

 Thread myThread;

 // Create a TimeLineController giving it a sorted time line.

 // The TimeLineController will post events indicating when

 // it has passed to different parts of the time line.

 public TimeLineController (long timeLine[])

 {

 this.timeLine = timeLine;

 ourClock = new MediaClock ();

 duration = timeLine[timeLine.length-1];

 myThread = null;

 // We always start off ready to go!

 ourState = Controller.Prefetched;

 }

Java Media Players – Version 1.0.558
 // Binary search for which segment we are now in. Segment

 // 0 is considered to start at 0 and end at timeLine[0].

 // Segment timeLine.length is considered to start at

 // timeLine[timeLine.length-1] and end at infinity. At the

 // points of 0 and timeLine[timeLine.length-1] the

 // Controller will stop (and post an EndOfMedia event).

 int computeSegment (long time)

 {

 int max = timeLine.length;

 int min = 0;

 for (;;)

 {

 if (min == max) return min;

 int current = min + ((max - min) >> 1);

 if (time < timeLine[current])

 {

 max = current;

 }

 else

 {

 min = current + 1;

 }

 }

 }

 // These are all simple...

 public float setRate (float factor)

 {

 // We don't support a rate of 0.0. Not worth the extra math

 // to handle something the user should do with the stop()

 // method!

 if (factor == 0.0f)

 {

 factor = 1.0f;

 }

 float newRate = ourClock.setRate (factor);

 postEvent (new RateChangeEvent (this, newRate));

 return newRate;

 }

Appendix C: Sample Controller Implementation 59
 public void setTimeBase (TimeBase master)

 throws IncompatibleTimeBaseException

 {

 ourClock.setTimeBase (master);

 }

 public Time getStopTime ()

 {

 return ourClock.getStopTime ();

 }

 public Time getSyncTime ()

 {

 return ourClock.getSyncTime ();

 }

 public Time mapToTimeBase (Time t) throws ClockStoppedException

 {

 return ourClock.mapToTimeBase (t);

 }

 public Time getMediaTime ()

 {

 return ourClock.getMediaTime ();

 }

 public TimeBase getTimeBase ()

 {

 return ourClock.getTimeBase ();

 }

 public float getRate ()

 {

 return ourClock.getRate ();

 }

 // From Controller

 public int getState ()

 {

 return ourState;

 }

 public int getTargetState ()

 {

 return ourState;

 }

Java Media Players – Version 1.0.560
 public void realize ()

 {

 postEvent (new RealizeCompleteEvent (this, ourState,

 ourState, ourState));

 }

 public void prefetch ()

 {

 postEvent (new PrefetchCompleteEvent (this, ourState,

 ourState, ourState));

 }

 public void deallocate ()

 {

 postEvent (new DeallocateEvent (this, ourState,

 ourState, ourState, ourClock.getMediaTime ()));

 }

 public Time getStartLatency ()

 {

 // We can start immediately, of course!

 return new Time(0);

 }

 public Control[] getControls ()

 {

 return new Control[0];

 }

 public Time getDuration ()

 {

 return new Time(duration);

 }

 // This one takes a little work as we need to compute if we

 // changed segments.

 public void setMediaTime (Time now)

 {

 ourClock.setMediaTime (now);

 postEvent (new MediaTimeSetEvent (this, now));

 checkSegmentChange (now.getNanoseconds());

 }

Appendix C: Sample Controller Implementation 61
 // We now need to spin a thread to compute/observe the

 // passage of time.

 public synchronized void syncStart (Time tbTime)

 {

 long startTime = ourClock.getMediaTime().getNanoseconds();

 // We may actually have to stop immediately with an

// EndOfMediaEvent. We compute that now. If we are already

 // past end of media, then we

 // first post the StartEvent then we post a EndOfMediaEvent

 boolean endOfMedia;

 float rate = ourClock.getRate ();

 if ((startTime > duration && rate >= 0.0f) ||

 (startTime < 0 && rate <= 0.0f))

 {

 endOfMedia = true;

 }

 else

 {

 endOfMedia = false;

 }

// We face the same possible problem with being past the stop

 // time. If so, we stop immediately.

 boolean pastStopTime;

 long stopTime = ourClock.getStopTime().getNanoseconds();

 if ((stopTime != Long.MAX_VALUE) &&

 ((startTime >= stopTime && rate >= 0.0f) ||

 (startTime <= stopTime && rate <= 0.0f)))

 {

 pastStopTime = true;

 }

 else

 {

 pastStopTime = false;

 }

 if (!endOfMedia && !pastStopTime)

 {

 ourClock.syncStart (tbTime);

 ourState = Controller.Started;

 }

Java Media Players – Version 1.0.562
 postEvent (new StartEvent (this, Controller.Prefetched,

 Controller.Started, Controller.Started,

 new Time(startTime), tbTime));

 if (endOfMedia)

 {

 postEvent (new EndOfMediaEvent (this,

 Controller.Started,

 Controller.Prefetched, Controller.Prefetched,

 new Time(startTime)));

 }

 else if (pastStopTime)

 {

 postEvent (new StopAtTimeEvent (this, Controller.Started,

 Controller.Prefetched, Controller.Prefetched,

 new Time(startTime)));

 }

 else

 {

 myThread = new Thread (this, "TimeLineController");

 // Set thread to appopriate priority...

 myThread.start ();

 }

 }

 // Nothing really special here except that we need to notify

 // the thread that we may have.

 public synchronized void setStopTime (Time stopTime)

 {

 ourClock.setStopTime (stopTime);

 postEvent (new StopTimeChangeEvent (this, stopTime));

 notifyAll ();

 }

Appendix C: Sample Controller Implementation 63
 // This one is also pretty easy. We stop and tell the running

 // thread to exit.

 public synchronized void stop ()

 {

 int previousState = ourState;

 ourClock.stop ();

 ourState = Controller.Prefetched;

 postEvent (new StopByRequestEvent (this, previousState,

 Controller.Prefetched, Controller.Prefetched,

 ourClock.getMediaTime ()));

 notifyAll ();

 // Wait for thread to shut down.

 while (myThread != null)

 {

 try

 {

 wait ();

 }

 catch (InterruptedException e)

 {

 // NOT REACHED

 }

 }

 }

 protected void checkSegmentChange (long timeNow)

 {

 int segment = computeSegment (timeNow);

 if (segment != currentSegment)

 {

 currentSegment = segment;

 postEvent (new TimeLineEvent (this, currentSegment));

 }

 }

Java Media Players – Version 1.0.564
 // Most of the real work goes here. We have to decide when

 // to post events like EndOfMediaEvent and StopAtTimeEvent

 // and TimeLineEvent.

 public synchronized void run ()

 {

 long timeToNextSegment = 0;

 long mediaTimeToWait = 0;

 float ourRate = 1.0f;

 for (;;)

 {

// First, have we changed segments? If so, post an event!

long timeNow = ourClock.getMediaTime ().getNanoseconds ();

 checkSegmentChange (timeNow);

 // Second, have we already been stopped? If so, stop

 // the thread.

 if (ourState == Controller.Prefetched)

 {

 myThread = null;

// If someone is waiting for the thread to die, let them

 // know.

 notifyAll ();

 break;

 }

// Current rate. Our setRate() method prevents the value

 // 0 so we don't check for that here.

 ourRate = ourClock.getRate ();

 // How long in clock time do we need to wait before doing

 // something?

 long endOfMediaTime;

 // Next, are we past end of media?

 if (ourRate > 0.0f)

 {

 mediaTimeToWait = duration - timeNow;

 endOfMediaTime = duration;

 }

Appendix C: Sample Controller Implementation 65
 else

 {

 mediaTimeToWait = timeNow;

 endOfMediaTime = 0;

 }

// If we are at (or past) time to stop due to EndOfMedia,

 // we do that now!

 if (mediaTimeToWait <= 0)

 {

 ourClock.stop ();

 ourClock.setMediaTime (new Time(endOfMediaTime));

 ourState = Controller.Prefetched;

postEvent (new EndOfMediaEvent (this, Controller.Started,

 Controller.Prefetched, Controller.Prefetched,

 new Time(endOfMediaTime)));

 continue;

 }

 // How long until we hit our stop time?

 long stopTime = ourClock.getStopTime ().getNanoseconds();

 if (stopTime != Long.MAX_VALUE)

 {

 long timeToStop;

 if (ourRate > 0.0f)

 {

 timeToStop = stopTime - timeNow;

 }

 else

 {

 timeToStop = timeNow - stopTime;

 }

// If we are at (or past) time to stop due to the stop

 // time, we stop now!

 if (timeToStop <= 0)

 {

 ourClock.stop ();

 ourClock.setMediaTime (new Time(stopTime));

 ourState = Controller.Prefetched;

 postEvent (new StopAtTimeEvent (this,

 Controller.Started,

 Controller.Prefetched, Controller.Prefetched,

 new Time(stopTime)));

 continue;

 }

Java Media Players – Version 1.0.566
 else if (timeToStop < mediaTimeToWait)

 {

 mediaTimeToWait = timeToStop;

 }

 }

// How long until we pass into the next time line segment?

 if (ourRate > 0.0f)

 {

timeToNextSegment = timeLine[currentSegment] - timeNow;

 }

 else if (currentSegment == 0)

 {

 timeToNextSegment = timeNow;

 }

 else

 {

timeToNextSegment = timeNow - timeLine[currentSegment-1];

 }

 }

 if (timeToNextSegment < mediaTimeToWait)

 {

 mediaTimeToWait = timeToNextSegment;

 }

 // Do the ugly math to compute what value to pass to

 // wait():

 long waitTime;

 if (ourRate > 0)

 {

 waitTime = (long) ((float) mediaTimeToWait / ourRate) /

 1000000;

 }

 else

 {

 waitTime = (long) ((float) mediaTimeToWait / -ourRate) /

 1000000;

 }

Appendix C: Sample Controller Implementation 67
 // Add one because we just rounded down and we don't

 // really want to waste CPU being woken up early.

 waitTime++;

 if (waitTime > 0)

 {

 // Bug in some systems deals poorly with really large

 // numbers. We will cap our wait() to 1000 seconds

 // which point we will probably decide to wait again.

 if (waitTime > 1000000) waitTime = 1000000;

 try

 {

 wait (waitTime);

 }

 catch (InterruptedException e)

 {

 // NOT REACHED

 }

 }

 }

 public void close()

 {

 }

 public Control getControl(String type)

 {

 return null;

 }

 public long getMediaNanoseconds()

 {

 return 0;

 }

}

Java Media Players – Version 1.0.568
TimeLineEvent

import javax.media.*;

// TimeLineEvent is posted by TimeLineController when we have

// switched segments in the time line.

public class TimeLineEvent extends ControllerEvent

{

 protected int segment;

 public TimeLineEvent (Controller source, int currentSegment)

 {

 super (source);

 segment = currentSegment;

 }

 public final int getSegment ()

 {

 return segment;

 }

}

EventPostingBase.java

import javax.media.*;

// import COM.yourbiz.media.EventPoster;

// The implementation of the EventPoster class is not included as part

// of this example. EventPoster supports two methods:

// public EventPoster ();

// public void postEvent (ControllerListener who, ControllerEvent

// what);

public class EventPostingBase

{

 protected ListenerList olist;

 protected Object olistLock;

 protected EventPoster eventPoster;

Appendix C: Sample Controller Implementation 69
 // We sync around a new object so that we don't mess with

 // the super class synchronization.

 EventPostingBase ()

 {

 olistLock = new Object ();

 }

 public void addControllerListener (ControllerListener observer)

 {

 synchronized (olistLock)

 {

 if (eventPoster == null)

 {

 eventPoster = new EventPoster ();

 }

 ListenerList iter;

 for (iter = olist; iter != null; iter = iter.next)

 {

 if (iter.observer == observer) return;

 }

 iter = new ListenerList ();

 iter.next = olist;

 iter.observer = observer;

 olist = iter;

 }

 }

public void removeControllerListener (ControllerListener observer)

 {

 synchronized (olistLock)

 {

 if (olist == null)

 {

 return;

 }

 else if (olist.observer == observer)

 {

 olist = olist.next;

 }

Java Media Players – Version 1.0.570
 else

 {

 ListenerList iter;

for (iter = olist; iter.next != null; iter = iter.next)

 {

 if (iter.next.observer == observer)

 {

 iter.next = iter.next.next;

 return;

 }

 }

 }

 }

 }

 protected void postEvent (ControllerEvent event)

 {

 synchronized (olistLock)

 {

 ListenerList iter;

 for (iter = olist; iter != null; iter = iter.next)

 {

 eventPoster.postEvent (iter.observer, event);

 }

 }

 }

}

ListenerList.java

// A list of controller listeners that we are supposed to send

// events to.

class ListenerList

{

 ControllerListener observer;

 ListenerList next;

}

Appendix C: Sample Controller Implementation 71
EventPoster.java

class EventPoster

{

 void postEvent(Object object, ControllerEvent evt)

 {

 // Post event.

 }

}

Java Media Players – Version 1.0.572

4

xtend-
Appendix D:
ControllerAdapter

This appendix describes an implementation ofControllerListener , Control-

lerAdapter , that can be easily extended to respond to particular events.

Implementing ControllerAdapter

ControllerAdapter is an event adapter that recievesControllerEvents and dis-
patches them to an appropriate stub-method. Classes use this adapter by e
ing it and replacing only the message handlers that they are interested in.

import javax.media.*;

public void cachingControl(CachingControlEvent e) {}

 public void controllerClosed(ControllerClosedEvent e) {}

 public void controllerError(ControllerErrorEvent e) {}

 public void connectionError(ConnectionErrorEvent e) {}

 public void internalError(InternalErrorEvent e) {}

 public void resourceUnavailable(ResourceUnavailableEvent

 e) {}

 public void durationUpdate(DurationUpdateEvent e) {}

 public void mediaTimeSet(MediaTimeSetEvent e) {}

 public void rateChange(RateChangeEvent e) {}

 public void stopTimeChange(StopTimeChangeEvent e) {}

 public void transition(TransitionEvent e) {}

 public void prefetchComplete(PrefetchCompleteEvent e) {}

 public void realizeComplete(RealizeCompleteEvent e) {}

 public void start(StartEvent e) {}

 public void stop(StopEvent e) {}

 public void dataStarved(DataStarvedEvent e) {}

 public void deallocate(DeallocateEvent e) {}

 public void endOfMedia(EndOfMediaEvent e) {}
73

Java Media Players – Version 1.0.574
 public void restarting(RestartingEvent e) {}

 public void stopAtTime(StopAtTimeEvent e) {}

 public void stopByRequest(StopByRequestEvent e) {}

 /**

* Main dispatching function. Subclasses should not need to

 * override this method, but instead subclass only

* the individual event methods listed above that they need

 */

 public void controllerUpdate(ControllerEvent e) {

 if (e instanceof CachingControlEvent) {

 cachingControl((CachingControlEvent)e);

 } else if (e instanceof ControllerClosedEvent) {

 controllerClosed((ControllerClosedEvent)e);

 if (e instanceof ControllerErrorEvent) {

 controllerError((ControllerErrorEvent)e);

 if (e instanceof DataLostErrorEvent) {

 connectionError((ConnectionErrorEvent)e);

 } else if (e instanceof InternalErrorEvent) {

 internalError((InternalErrorEvent)e);

 } else if (e instanceof ResourceUnavailableEvent) {

 resourceUnavailable((ResourceUnavailableEvent)e);

 }

 }

 } else if (e instanceof DurationUpdateEvent) {

 durationUpdate((DurationUpdateEvent)e);

 } else if (e instanceof MediaTimeSetEvent) {

 mediaTimeSet((MediaTimeSetEvent)e);

 } else if (e instanceof RateChangeEvent) {

 rateChange((RateChangeEvent)e);

 } else if (e instanceof StopTimeChangeEvent) {

 stopTimeChange((StopTimeChangeEvent)e);

 } else if (e instanceof TransitionEvent) {

 transition((TransitionEvent)e);

Appendix D: ControllerAdapter 75

ts

r

 if (e instanceof PrefetchCompleteEvent) {

 prefetchComplete((PrefetchCompleteEvent)e);

 } else if (e instanceof RealizeCompleteEvent) {

 realizeComplete((RealizeCompleteEvent)e);

 } else if (e instanceof StartEvent) {

 start((StartEvent)e);

 } else if (e instanceof StopEvent) {

 stop((StopEvent)e);

 if(e instanceof DataStarvedEvent) {

 dataStarved((DataStarvedEvent)e);

 } else if (e instanceof DeallocateEvent) {

 deallocate((DeallocateEvent)e);

 } else if (e instanceof EndOfMediaEvent) {

 endOfMedia((EndOfMediaEvent)e);

 } else if (e instanceof RestartingEvent) {

 restarting((RestartingEvent)e);

 } else if (e instanceof StopAtTimeEvent) {

 stopAtTime((StopAtTimeEvent)e);

 } else if (e instanceof StopByRequestEvent) {

 stopByRequest((StopByRequestEvent)e);

 }

 }

 }

 }

}

Using ControllerAdapter

To implement theControllerListener interface using a ControllerAdapter ,
you need to:

1. SubclassControllerAdapter and override the event methods for the even
that you’re interested in.

2. Register yourControllerAdapter class as a listener for a particula

Java Media Players – Version 1.0.576

.

Controller by callingaddControllerListener .

When aController posts an event, it callscontrollerUpdate on each regis-
tered listener.ControllerAdapter automatically dispatches the event to the
appropriate event method, filtering out the events that you’re not interested in

For example, the following code extends aControllerAdapter with a JDK 1.1
anonymous inner-class to create a self-containedPlayer that is automatically
reset to the beginning of the media and deallocated when thePlayer reaches the
end of the media:

player.addControllerListener(new ControllerAdapter() {

 public void endOfMedia(EndOfMediaEvent e) {

 Controller controller = e.getSource();

 controller.stop();

 controller.setMediaTime(0);

 controller.deallocate();

 }

}

If you register a singleControllerAdapter as a listener for multiplePlayers , in
your event method implementations you need to determine whichPlayer gener-
ated the event.Controller events come “stamped” with a reference to their
source that you can access by callinggetSource .

77

Index
A
addController method, 29
added Controllers, managing, 30
adding a Controller, 30
adjusting audio gain, 16
applet, 37
APPLET tag, 10
AU, 2
AVI , 2
AWT, 15

B
blocking realize, 20
broadcast media, 3
broadcast Player, 18

C
CachingControl, 16
CachingControlEvent, 5, 17
change notifications, 5
clearing the stop time, 19
client programmers, 1
Clock, 4

getTimeBase, 27
setTimeBase, 27

close method, 23
closed events, 5
closing a Player, 23
ConnectionErrorEvent, 5
content package-prefix, 34
content-type name, 33
Control, 16

control panel, 15
Controller, 4

adding, 30
implementing, 55
removing, 31
state

prefetched, 7
prefetching, 7
realized, 7
realizing, 6
started, 6, 7
stopped, 6
unrealized, 6

ControllerAdapter, 75
ControllerClosedEvent, 5
ControllerErrorEvent, 5
ControllerEvent, 5

getSource method, 24
state information, 24

ControllerListener, 5, 7, 17
implementing, 17, 19, 23, 37, 73
registering, 13, 23

Controllers
synchronizing multiple, 29

controllerUpdate method, 76
implementing, 13, 23

controlling the media presentation, 15
createDataSource method, 33
createPlayer method, 12, 14, 32, 34
creating a Player, 12, 14, 37

D
data source, 2

Java Media Players, Version 1.0.578
DataSource, 2, 32
implementing, 35, 43
integrating, 35
locating, 33
pull, 3
push, 3

DataStarvedEvent, 5, 22
deallocate method, 13, 22
DeallocateEvent, 5, 22, 23
default control panel, 15
defining a custom user-interface, 15
destroy method, 13
determining a Player’s start latency, 21
display properties, 15
displaying a Player, 15
displaying download progress, 16
Duration, 4, 27

getting, 27
DURATION_UNBOUNDED, 27
DURATION_UNKNOWN, 27
DurationUpdateEvent, 5

E
EndOfMediaEvent, 5, 22
error, 8
error handling, 9
event, 4

change notifications, 5
closed, 5
Controller, 5
transition, 5

example
adding a Controller, 30
blocking realize, 21
DataSource, 43
displaying a download progress bar, 17
integrating a Player, 34
managing Player synchronization, 27
PlayerApplet, 9, 37
removing a Controller, 32
starting a Player, 18
synchronizing Players, 27

exception, 8
exclusive-use resources, 7
extending JMF, 1, 32

F
frame, 25
frame rate, 25
FTP, 43

G
GainChangeEvent, 4
GainChangeListener, 4
GainControl, 4, 16

setLevel method, 16
setMute method, 16

getControlPanelComponent method, 15
getControls method, 16, 17
getMediaTime method, 25
getRefTime method, 26
getSource method, 24
getStartLatency method, 21
getSystemTimeBase method, 24
getTimeBase method, 27
getting a Player’s duration, 27
getting a Player’s time-base time, 26
getting the current time, 25
getVisualComponent method, 15

H
HTML tag

APPLET, 10
PARAM, 10

I
implementing

Controller, 55
ControllerListener, 17, 23, 37, 73
controllerUpdate, 23
DataSource, 35, 43
PullSourceStream, 43

initializing a player applet, 12
integrating

DataSource, 35
Player, 34

InternalErrorEvent, 5

J
Java Beans, 4
JMF 1.0 Player API, 1
JMF architecture, 32

Index 79
JMF Player API, 2
JMF, extending, 32

L
layout manager, 15
locating

DataSource, 33
Player, 33

M
malfunctions, 6
Manager

createDataSource method, 33
createPlayer, 12, 32, 34
getSystemTimeBase, 24

managing
added Controllers, 30
Player, 29, 30
Player state, 19
timing, 24

managing and synchronizing Controllers, 29
mapping time, 24
mapToTimeBase method, 26
master TimeBase, 24
media event, 4
media frame, 25
media presentation, controlling, 15
media streams, synchronizing, 27
media time, 4, 24

setting, 25
media types, 2
MediaBase, 3
MediaLocator, 2, 14, 32
MediaTimeSetEvent, 5
MIDI , 2
MPEG, 2, 3
multicast media, 3

N
native methods, 2
notification, 4
NotRealizedError, 30

P
package prefix, 34
PackageManager, 34

PARAM tag, 10
Player, 2, 3, 4

addController method, 29, 30
broadcast, 18
close method, 23
control panel, 15
creating, 12, 37
deallocate method, 22
display properties, 15
displaying, 15
getControls method, 16, 17
getMediaTime method, 25
getRefTime method, 26
getStartLatency method, 21
integrating, 15, 34
locating, 33
managing, 29
mapToTimeBase method, 26
media time, 24
method restrictions, 8
prefetch method, 20
preparing to start, 19
realize method, 20
removeController method, 29, 31
setRate method, 26
setStopTime method, 18
setting media time, 25
start method, 17, 22
state, managing, 19
states, 6
stop method, 18, 22
synchronizing, 27

Player API, 2
Player architecture, 32
PlayerApplet, 9, 11, 37

destroy method, 13
init method, 12
start method, 13
stop method, 13

playing a media clip, 37
playing media in reverse, 26
Positionable, 35
prefetch method, 7, 20
PrefetchComplete, 29
PrefetchCompleteEvent, 5, 20
prefetched state, 7, 20

Java Media Players, Version 1.0.580
prefetching a Player, 20
prefetching state, 7
preparing a player to start, 19
progress bar, 16

component, 17
displaying, 17

protocol, 2
protocol handler, 35
protocol package-prefix, 33
pull data source, 3
PullDataSource, 35
PullSourceStream, 35

implementing, 43
push data source, 3
PushDataSource, 35
PushSourceStream, 35

Q
QuickTime, 2

R
rate, 18

setting, 26
rate method, 26
RateChangeEvent, 5
realize

blocking on, 20
realize method, 6, 20
RealizeCompleteEvent, 5, 14, 20
realized state, 7, 20
realizing, 6
realizing a Player, 20
realizing state, 6
Real-time Transport Protocol (RTP), 3
registering as a ControllerListener, 13, 23
releasing resources, 13, 22
removeController method, 29
removing a Controller, 31
resources, releasing, 22
ResourceUnavailableEvent, 5
responding to events, 73
RestartingEvent, 5, 22
return values, 9
reverse, playing in, 26
RTP, 3

S
sample program, PlayerApplet, 9
Seekable, 35
setLevel method, 16
setMute method, 16
setRate method, 26
setSource method, 34
setStopTime method, 19
setTimeBase method, 27
setting

audio gain, 16
media time, 25
stop time, 18

setting a Player’s rate, 26
shutting down a Player, 23
SourceStream, 35
start latency, 19

determining, 21
start method, 7, 13, 17, 22
started state, 6, 7, 22
StartEvent, 5, 17
starting a Player, 17, 22
state

managing, 19
Player, 6
prefetched, 7
prefetching, 7
realized, 7
started, 6, 7
stopped, 6
unrealized, 6

stop method, 13, 18, 22
stop time, 18

clearing, 19
StopAtTimeEvent, 5, 22
StopByRequestEvent, 5, 22
StopEvent, 5, 22
stopped state, 6
stopping

broadcast Player, 18
Player, 18, 22

StopTimeChangeEvent, 5
synchronization, 17
synchronizing Controllers, 29
synchronizing media streams, 27
syncStart, 17, 28, 29

Index 81
system TimeBase, 24

T
technology providers, 1
temporal scale factor, 26
Time, 25
time

getting, 25
mapping, 24

TimeBase, 4, 24
time-base time, 4, 24

getting, 26
transition events, 5
TransitionEvent, 5

U
unrealized state, 6
URL, 2, 14, 32

instantiating, 14
user-interface, 4, 14

custom, 15

V
validate method, 14
video-on-demand (VOD), 3
visual component, displaying, 15
VOD (video-on-demand), 3

W
WAV, 2

	Preface
	Java Media Players
	Future Releases
	Contact Information
	JavaSoft
	Silicon Graphics
	Intel Corporation

	Change History
	Version 1.0.5
	Version 1.0.4
	Version 1.0.3
	Version 1.0.2
	Version 1.0.1
	Version 1.0

	Java Media Players
	1.0 Overview
	1.1 Data Sources
	1.2 Players
	1.3 Media Events
	1.4 Player States
	1.5 Calling JMF Methods

	2.0 Example: Creating an Applet to Play a Media File
	2.1 Overview of PlayerApplet
	2.2 PlayerApplet Code Listing
	2.3 Initializing the Applet
	2.4 Controlling the Player
	2.5 Responding to Media Events

	3.0 Creating and Displaying a Player
	3.1 Creating a Player
	3.2 Displaying a Player and Player Controls

	4.0 Controlling Media Players
	4.1 Starting a Player
	4.2 Stopping a Player

	5.0 Managing Player States
	5.1 Preparing a Player to Start
	5.2 Starting and Stopping a Player
	5.3 Releasing Player Resources
	5.4 Implementing the ControllerListener Interface

	6.0 Managing Timing
	6.1 Setting the Media Time
	6.2 Getting the Current Time
	6.3 Setting a Player’s Rate
	6.4 Getting a Player’s Duration

	7.0 Synchronizing Players
	8.0 Using a Player to Manage and Synchronize other Controllers
	8.1 Adding a Controller
	8.2 Managing the Operation of Added Controllers
	8.3 Removing a Controller

	9.0 Extending JMF
	9.1 Understanding the Player Architecture
	9.2 Integrating a New Player Implementation
	9.3 Implementing a New Data Source
	9.4 Integrating a New Data Source Implementation

	Appendix A: Java Media Applet
	Appendix B: Sample Data Source Implementation
	Appendix C: Sample Controller Implementation
	Appendix D: ControllerAdapter

