pyspark.sql.functions.to_unix_timestamp#
- pyspark.sql.functions.to_unix_timestamp(timestamp, format=None)[source]#
Returns the UNIX timestamp of the given time.
New in version 3.5.0.
- Parameters
See also
Examples
>>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles")
Example 1: Using default format to parse the timestamp string.
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([('2015-04-08 12:12:12',)], ['ts']) >>> df.select('*', sf.to_unix_timestamp('ts')).show() +-------------------+------------------------------------------+ | ts|to_unix_timestamp(ts, yyyy-MM-dd HH:mm:ss)| +-------------------+------------------------------------------+ |2015-04-08 12:12:12| 1428520332| +-------------------+------------------------------------------+
Example 2: Using user-specified format ‘yyyy-MM-dd’ to parse the date string.
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select('*', sf.to_unix_timestamp(df.dt, sf.lit('yyyy-MM-dd'))).show() +----------+---------------------------------+ | dt|to_unix_timestamp(dt, yyyy-MM-dd)| +----------+---------------------------------+ |2015-04-08| 1428476400| +----------+---------------------------------+
Example 3: Using a format column to represent different formats.
>>> import pyspark.sql.functions as sf >>> df = spark.createDataFrame( ... [('2015-04-08', 'yyyy-MM-dd'), ('2025+01+09', 'yyyy+MM+dd')], ['dt', 'fmt']) >>> df.select('*', sf.to_unix_timestamp('dt', 'fmt')).show() +----------+----------+--------------------------+ | dt| fmt|to_unix_timestamp(dt, fmt)| +----------+----------+--------------------------+ |2015-04-08|yyyy-MM-dd| 1428476400| |2025+01+09|yyyy+MM+dd| 1736409600| +----------+----------+--------------------------+
>>> spark.conf.unset("spark.sql.session.timeZone")