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ABSTRACT 

The MERT operating system supports multiple operating system environ­ 
ments. Messages provide the major means of inter-process communication. 
Shared memory is used where tighter coupling between processes was desired. 
The file system was designed with real-time response being a major concern. 
The system has been implemented on the DEC PDP-11/45 and PDP-11/70 
computers and supports the UNIX time-sharing system as well as some real­ 
time processes. 

The system is structured in four layers. The lowest layer, the kernel, pro­ 
vides basic services such as inter-process communication, process dispatching, 
and trap and interrupt handling. The second layer comprises privileged 
processes, such as 1/0 device handlers, the file manager, memory manager, and 
system scheduler. At the third layer are the supervisor processes which provide 
the programming environments for application programs of the fourth layer. 

To provide an environment favorable to applications with real time 
response requirements, the MER T system permits processes to control schedul­ 
ing parameters. These include scheduling priority and memory residency. A 
rich set of inter-process communication mechanisms including messages, events 
(software interrupts), shared memory, inter-process traps, process ports, and 
files, allow applications to be implemented as several independent, cooperating 
processes. 

Some uses of the MER T operating system are discussed. A retrospective 
view of the MER T system is also offered. This includes a critical evaluation of 
some of the design decisions and a discussion of design improvements which 
could have been made to improve overall efficiency. 

UNIX is a Trademark of Bell Laboratories. 
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1. Introduction 
As operating systems become more sophisticated and complex, providing more and more 

services for the user, they become increasingly difficult to modify and maintain. Fixing a "bug" 
in some part of the system may very likely introduce another "bug" in a seemingly unrelated 
section of code. Changing a data structure is likely to have major impact on the total system. 
It has thus become increasingly apparent over the past years that adhering to the principles of 
structured modularity (1), (2) is the correct approach to building an operating system. The 
objective of the MERT system has been to extend the concept of a process into the operating 
system, factoring the traditional operating system functions into a small kernel surrounded by a 
set of independent cooperating processes. Communication between these processes is accom­ 
plished primarily through messages. Messages define the interface between processes and 
reduce the number of ways a bug can be propagated through the system. 

The MERT kernel establishes an extended instruction set via system primitives vis-a-vis 
the virtual machine approach of CP 67. Operating systems are implemented on top of the 
MERT kernel and define the services available to user programs. Communication and syn­ 
chronization primitives and shared memory permit varying degrees of co-operation between 
independent operating systems. An operating system functionally equivalent to the UNIX time 
sharing system has been implemented to exercise the MERT executive and provide tools for 
developing and maintaining other operating system environments. An immediate benefit of 
this approach is that operating system environments tailored to the needs of specific classes of 
real-time projects can be implemented without interfering with other systems having different 
objectives. 

One of the basic design goals of the system was to build modular and independent 
processes having data structures and tables which are known only to the particular process. Fix­ 
ing a "bug" or making major internal changes in one process does not affect the other processes 
with which it communicates. The work described here builds on previous operating system 
designs described by Dijkstra (1) and Brinch Hansen (2). The primary differences between this 
system and previous work lies in the rich set of inter-process communication techniques and 
the extension of the concept of independent modular processes, protected from other processes 
in the system, to the basic 1/0 and real-time processes. It can be shown that messages are not 
an adequate communication path for some real-time problems (3). Controlled access to shared 
memory, and software-generated interrupts are often required to maintain the integrity of a 
real-time system. The communication primitives were selected in an attempt to balance the 
need for protection with the need for real-time response. The primitives include event flags, 
message buffers, inter-process system traps, process ports and shared segments. 

One of the major influences on the design of the MERT system came from the require­ 
ments of various application systems at Bell Laboratories. They made use of imbedded mini­ 
computers to provide support for development of application programs and for controlling their 



specific application. Many of these projects had requirements for real-time response to various 
external events. Rear-time can be classified into two categories. One flavor of real-time 
requires the collection of large amounts of data. This necessitates the implementation of large 
and contiguous files and asynchronous 1/0. The second flavor of real-time demands quick 
response to hardware-generated interrupts. This necessitates the implementation of processes 
locked in memory. Yet another requirement for some applications was the need to define a 
more-corurolled environment with better control over a program's virtual address space lay-out 
than that provided ;., a general-purpose time-sharing environment. 

This paper gives a detailed description of the system design including the kernel, and a 
definition and description of processes and of segments. A detailed discussion of the communi­ 
cation primitives follows. The structure of the file system is then discussed along with how the 
file manager and time-sharing processes make use of the communication primitives. 

A .najor portion of this paper deals with a critical retrospective on the MERT system. 
This includes a discussion of features of the MERT system which have been used by various 
projects within the Bell System. Some trade-offs are given that have been made for efficiency 
reasons thereby sacrificing some protection. Some operational statistics are also included here. 
The pros and cons of certain features of the MER T operating system are discussed in detail. 
The portability of the operating system as well as user software is currently a topic of great 
interest. The prospects of the portability of the MER T system are described. Finally, we dis­ 
cuss some features of the MER T system which could have been implemented differently for 
the sake of efficiency. 

2. Hardware Requirements 
The MEr.T system currently runs on the DEC PDP-11/45 and PDP-11/70 computers (4). 

These computers provide an eight-level static priority interrupt structure with priority levels 
numbered from O (lowest) to 7 (highest). Associated with the interrupt structure is the pro­ 
grammed interrupt register which permits the processor to generate interrupts at priorities of 
one through seven. The programmed interrupt serves as the basic mechanism for driving the 
system. 

The PDP-11 computer is a 16-bit word machine with a direct address space of 32K words. 
The memory management unit on the PDP-11/45 and PDP-11/70 computers provides a 
separate set of address mapping and access control registers for each of the processor modes: 
kernel, supervisor and user. Furthermore, each virtual address space can provide separate maps 
for instruction references (called I-space) and data references (D-space). The MERT system 
makes use of all three processor modes (kernel, supervisor and user) and both the instruction 
and data address spaces provided by these machines. 

3. System Design 
Processes are arranged in four levels of protection (see Figure 1). The lowest level of the 

operating system structure, called the kernel, allocates the basic computer resources. These 
resources consist of memory, segments, the CPU, and interrupts. All process dispatching, 
including interrupt processing, is handled by the kernel dispatcher. The kernel is the most 
highly privileged system component and therefore must be the most reliable. 

The second level of software consists of kernel-mode processes which comprise the vari­ 
ous 1/0 device drivers. Each process at this level has access to a limited number of I-space 
base registers in the kernel mode, providing a firewall between it and sensitive system data 
accessible only using D-space mode. Within this level processes are linked onto one of five 
priority lists. These lists correspond to the processor priority required while the process is exe­ 
cuting. Three kernel processes must exist for the system to function: 

1. The file manager is required since all processes are derived from files. 
2. The swap process is required to move segments between secondary storage 

and main memory. 
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3. The root process is required to carry out data transfers between the file 
manager and the disk. 

Since the same device usually contains both the swap area and root file system, one process 
usually serves for both 2. and 3. 

At the third software level are the various operating system supervisors which run in 
supervisor mode. These processes provide the environments which the user sees and the inter­ 
face to the basic kernel services. All processes at this level execute at a processor priority of 
either one or zero. A software priority is maintained for the supervisor by the scheduler pro­ 
cess. Twp supervisor processes are always present: the process manager which creates all new 
processes and produces post mortem dumps of processes which terminate abnormally, and the 
time sharing supervisor. 

At the fourth level are the various user procedures which execute in user mode under 
control of the supervisory environments. The primitives available to the user are provided by 
the supervisory environments which process the user system calls. Actually the user procedure 
is merely an extension of the supervisor process. This is the highest level of protection pro­ 
vided by the computer hardware. 

4. Definitions 

4.1. Segments 
A logical segment is a piece of contiguous memory, 32 to 32K 16-bit words long, which 

can grow in increments of 32 words. Associated with each segment are an internal segment 
identifier (ID) and an optional global name. The segment identifier is allocated to the segment 
when it is created and is used for all references to the segment. The global name uniquely 
defines the initial contents of the segment. A segment is created on demand and disappears 
when all processes which are linked to it are removed. 1 he contents of a segment may be ini­ 
tialized by copying all or part of a file into the segment. Access to the segment can be con­ 
trolled by the creator (parent) as follows: 

1) The segment can be private - that is, available only to the creator. 
2) The segment can be shared by the creator and some or all of its descendents 

(children). This is accomplished by passing the segment ID to a child. 
3) The segment can be given a name which is available to all processes in the sys­ 

tem. The name is a unique 32-bit number which corresponds to the actual 
location on secondary storage of the initial segment data. Processes without a 
parent-child relationship can request the name from the file system and then 
attempt to create a segment with that name. If the segment exists, the seg­ 
ment ID is returned and the segment user count is incremented. Otherwise 
the segment is created and the process initializes it. 

4.2. Processes 
A process consists of a collection of related logical segments executed by the processor. 

Processes are divided into two classes, kernel processes and supervisor processes, according to 
the mode of the processor while executing the segments of the process. 

The time sharing supervisor can create a new process consisting of an exact copy of itself. 
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4.2. 1. Kernel Processes 
Kernel processes are driven by software and hardware interrupts, execute at processor 

hardware priority 2 to 7, are locked in memory, and are capable of executing all privileged 
instructions. Kernel processes are used to control peripheral devices and handle functions with 
stringent real-time response requirements. 

The virtual address space of each kernel process begins with a short header which defines 
the virtual address space and various entry points (see Figure 2). Up to 12K words (base regis­ 
ters 3 - 5) of instruction space and 12K words of data space are available. All kernel processes 
share a common stack and can read and write the 1/0 device registers. 

To reduce duplication of common subprograms used by independent kernel processes and 
to provide common data areas between independent cooperating kernel and supervisor 
processes, three mechanisms for sharing segments are available. 

The first type of shared segment, called the system library, is available to all kernel 
processes. The routines included in this library are determined by the system administrator at 
system generation time. The system library begins at virtual address 140000(8) (base register 
6) and is present whether or not it is used by any kernel processes. 

fhe second type of shared segment, called a public library, is assigned to base registers 
four or five of the process instruction space. References to routines in the library are satisfied 
when the process is formed, but the body of the segment is loaded into memory only when the 
first process which accesses it is loaded. 

A third sharing mechanism allows a parent to pass the ID of a segment that is included in 
the address space of a kernel process when it is created. This form of sharing is useful when a 
hierarchy of cc operating processes is invoked to accomplish a task. 

4.2.2. Supervisor Processes 
All processes which execute in supervisor mode and user mode are called supervisor 

processes. These processes run at processor priority zero or one and are scheduled by the ker­ 
nel scheduler process. The segments of a supervisor may be kept in memory, providing 
response on the order of several milliseconds, or supervisor segments may be swappable, pro­ 
viding a r ..::sponse time of hundreds of milliseconds. 

The virtual address space of a supervisor process consists of 32K words of instruction 
space and 32K words of data space in both supervisor and user modes (see Figure 3). Of these 
128K, at least part of each of three base registers (a total of 12K) must be used for access to: 

1) the process control block (PCB), a segment typically 160 words long, which 
describes the entire virtual address space of the process to the kernel and pro­ 
vides space to save the state of the process during a context switch. The PCB 
also includes a list of capabilities which define the range of abilities of the 
process. 

2) the process supervisor stack and data segment. 
3) the read-only code segment of the supervisor. 

The rest of the virtual address space is controlled by the supervisor. The primitives available to 
supervisor processes include the ability to control the virtual address space (both supervisor and 
user) which can be accessed by the process. 

4.3. Capabilities 
Associated with each supervisor process is a list of keys, each of which allows access to 

one object. The capability key must be passed as an argument in all service requests on objects. 
Each key is a concatenation of the process ID of the creator of the object and a bit pattern, 
defined by the creator, which describes allowed operations on the. object. The capability list 
(C-list) for each supervisor process resides in the PCB and is maintained by the kernel through 

--------------------------- ---~--- 
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add and delete capability messages to the memory manager. A special variation of the send 
message primitive copies the capability from the PCB into the body of a message, preventing 
corruption of the capability mechanism. 

Capabilities are used by the file manager to control access to files. The capability for a file 
is granted upon opening the file. A read or write request is validated by decoding the capability 
into a fourteen bit object descriptor (file descriptor) and a two bit permission field. The capabil­ 
ity is removed from the process C-list when the file is closed. 

S. The Kernel 
The concept of an operating system nucleus or kernel has been used in several systems. 

Each system has included a different set of logical functions (5), (6). The MERT kernel is to 
be distinguished from a security kernel. A security kernel provides the basis of a secure operat­ 
ing system environment. 

The basic kernel provides a set of services available to all processes, kernel and supervi­ 
sor, and maintains the system process tables and segment tables. Included as part of the kernel 
are two special system processes, the memory manager and the scheduler. These are dis­ 
tinguished from other kernel processes in that they are bound into the basic kernel address 
space and do not require the set up of a base register when dispatched to. 

5.1. Kernel Modules 
The kernel consists of a process dispatcher, a trap handler, and routines (procedures) 

which implement the system primitives. Approximately 4K words of code are dedicated to 
these modules. 

The process dispatcher is responsible for saving the current state and setting up and 
dispatching to all kernel processes. It can be invoked by an interrupt from the programmed 
interrupt register, an interrupt from an external device, or an inter-process system trap from a 
supervisor process (an EMT trap). 

The trap handler fields all traps and faults and, in most cases, transfers control to a trap 
handling routine in the process which caused the trap or fault. 

The kernel primitives can be grouped into eight logical categories. These categories can be 
subdivided into those which are available to all processes and others which are available only to 
supervisor processes. The primitives which are available to all processes are: 

1) Interprocess communication and synchronization primitives. These include send­ 
ing and receiving of messages and events, waking up processes which are 
sleeping on a bit pattern, and setting the sleep pattern. 

2) Attaching to and detaching from interrupts. 
3) Setting a timer to cause a time-out event. 
4) Manipulation of segments for the purposes of input/output. This includes locking 

and unlocking segments and marking segments altered. 
5) Setting and getting the time of day. .. 

The primitives available only to supervisor processes are: 

6) Primitives which alter the attributes of the segments of a process. These primi­ 
tives include creating new segments, returning segments to the system, 
adding and deleting segments from the process address space, and altering the 
access permissions. 

7) Altering scheduler-related parameters by roadblocking, changing the scheduling 
priority, or making the segments of the process nonswap or swappable. 

8) Miscellaneous services such as reading the console switches. 
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S.2. Kernel System Processes 
Closely associated with the kernel are the memory management and scheduler processes. 

These two processes are special in that they reside in the kernel address space, permanently. In 
all other respects they follow the discipline established for kernel processes. 

S.2.1. Memory Manager 
The memory manager is a special system process. It communicates with the rest of the 

system via messages and is capable of handling four types of requests: 

1) Setting the segments of a process into the active state, making space by swapping 
or shifting other segments if necessary. 

2) Loading and locking a segment contiguous with other locked segments to reduce 
memory fragmentation. 

3) Deactivating the segments of a process. 
4) Adding and deleting capabilities from the capability list in a supervisor process 

PCB. 

5.2.2. Scheduler 
The scheduler is the second special system process and is responsible for scheduling all 

supervisor processes. The main responsibility of the scheduler is to select the next process to 
be executed. The actual loading of the process is accomplished by the memory manager. 

5.3. Dispatcher Mechanism 

The system maintains seven process lists, one for each processor priority at which 
software interrupts can be triggered using the programmed interrupt register. All kernel 
processes are linked into one of the six lists for processor priorities two through seven; all 
supervisor processes are linked to the processor priority one list. The occurrence of a software 
interrupt at priorities two through seven causes the process dispatcher to search the correspond­ 
ing process list and dispatch to all processes which have one or more event flags set. The entire 
list is searched for each software interrupt. 

5.4. Scheduling Policy 
All software interrupts at processor priority one, which are not for the currently active 

process, cause the dispatcher to send a wakeup event to the scheduler process. The scheduler 
uses a byte in the system process tables to maintain tl:e scheduling priority of each process. 
This byte is manipulated by the scheduler as follows: 

1) Incremented when a process receives an event. 
2) Increased by ten when awakened by a kernel process. 
3) Decremented when the process yields control due to a roadblock system call. 
4) Lowered according to an exponential function each successive time the process 

uses its entire time slice (becomes compute bound). 

The process list is searched for the highest priority process which is ready to run, and if this 
process has higher priority than the current process, the new process will preempt the current 
process. 

To minimize thrashing and swapping, the scheduler uses a "will receive an event soon" 
flag which is set by the process when it roadblocks. This flag is typically set when a process 
roadblocks awaiting completion of I/O which is expected to finish in a short time relative to the 
length of the time slice. The scheduler will keep the process in memory for the remainder of 
its time slice. When memory becomes full and all processes which require loading are of 
sufficiently low priority, the scheduler stops making load requests until one of the processes 
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being held runs out of its time slice. 

6. Inter-Process Communication 
A structured system requires a well-defined set of communication primitives to permit 

inter-process communication and synchronization. The MERT system makes use of the fol­ 
lowhg communication primitives to achieve this end: 

(1) event flags 
(2) message buffers 
(3) EMT traps 
(4) shared memory 
(5) files 
(6) process ports 

Each of these is discussed in further detail here. 

6.1. Event Flags 
Event flags are an efficient means of communication between processes for the transfer of 

small quant'ties of data. Of the 16 possible event flags per process, eight are predefined by the 
system for the following events: wakeup, timeout, message arrival, hangup, interrupt, quit, 
abort and initialization. The other eight event flags are definable by the processes using the 
event flags as a means of communication. Events are sent by means of the kernel primitive: 

event(procid, event) 

When control is passed to the process at its event entry point the event flags are in its address 
space. 

6.2. Message Buffers 
The use of message buffers for inter-process communication was introduced in the design 

of the RC4000 operating system (2). The SUE project (7) also used a message sending facility 
and the related device called a mailbox to achieve process synchronization. We introduce here 
a set of message buff er primitives which provide an efficient means of inter-process communi­ 
cation and synchronization. 

A kernel pool of message buffers is provided, each of which may be up to a multiple of 
seven times 16 words in size. Each message consists of a six word header and the data being 
sent to the receiving process. The format of the message is specified in Figure 4. The primi­ 
tives available to a process consist of: 

alocmsg (nwords) 
queuem (message) 
queuemn (message) 
dequeuem (process) 
dqtype (process) 
mess ink (message) 
freemsg(message) 

To open a communication channel between two processes Pl and P2, Pl must allocate a mes­ 
sage buffer using alocmsg, fill in the appropriate data in the message header and data areas and 
then send the message to process P2 using queuem. Efficiency is achieved by allowing Pl to 
send multiple messages before waiting for an acknowledgement (answer). The acknowledge­ 
ment to these messages is returned in the same buff er by means of the messink primitive. The 
message buff er address space is freed up automatically if the message is an acknowledgement to 
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an acknowledgement. Buffer space may also be freed explicitly by means of the freemsg primi­ 
tive. When no answer is expected back from a process, the queuemn primitive is used. 

Synchronization is achieved by putting the messages on P2's message input queue using 
the link word in the message header and sending P2 a message event flag. This will immedi­ 
ately invoke the scheduling of process P2 if it runs at a higher priority than Pl. Process Pl is 
responsible for filling in the from process number, the to process number, the type and the 
identifier fields in the message header. The type field specifies which routine P2 must execute to 
process the message. A type of '-1' is reserved for acknowledgement messages to the original 
sender of the message. The status of the processed message is returned in the status field of 
the message header, a non-zero value indicating an error. The status of -1 is reserved for use 
by the system to indicate that process P2 does not exist or was terminated abnormally while 
processing the message. The sequence number field is used solely for debugging purposes. The 
identifier field may be planted by Pl to be used to identify and verify acknowledgement mes­ 
sages. This word is not modified by the system. 

Process P2 achieves synchronization by waiting for a message. In general a process may 
receive any message type from any process by means of the dequeuem primitive. However P2 
may request a message type by means of dqtype in· order to process messages in a certain 
sequence for internal process management. In each case the kernel primitive will return a 
success/fail condition. In the case of a fail return, P2 has the option of roadblocking to wait for 
a message event or of doing further processing and looking for an input message at a later time. 

6.3. EMT Traps 
The emulator trap (EMT) instruction is used not only to implement the system primi­ 

tives, but also to provide a mechanism by which a supervisor and kernel process can pass infor­ 
mation. The supervisor process passes the process number of the kernel process with which it 
would like to communicate to the kernel. The kernel then dispatches to the kernel process 
through its EMT entry point, passing the process number of the calling supervisor process and 
a pointer to an argument list. The kernel process will typically access data in the supervisor 
process address space by setting part of its virtual address space to overlap that of the supervi­ 
sor. This method of communication is used mainly to pass characters from a time-sharing user 
to the kernel process which controls communications equipment. 

6.4. Shared Memory 
Supervisor processes may share memory by means of named as well as unnamed seg­ 

ments. Segments may be shared on a supervisor as well as a user level. In both cases pure 
code is shared as named segments. In the case of a time-sharing supervisor (described in Sec­ 
tion 8), a segment is shared for 1/0 buffers and file descriptors. A shared segment is also used 
to implement the concept of a pipe (8), which is an inter-process channel used to communicate 
streams of data between related processes. At the user level, related processes may share a seg­ 
ment for the efficient communication of a large quantity of data. For related processes, a 
parent process may set up a shareable segment in its address space and restrict the access per­ 
missions of all child processes to provide a means of protecting shared data. Facilities are also 
provided for sharing segments between unrelated supervisors and between kernel and supervi­ 
sor processes. 

6.5. Files 
The file system has a hierarchical structure equivalent to the UNIX file system (8) and as 

such has certain protection keys (see Section 7). Most files have general read/write permis­ 
sions and the contents are shareable between processes. 

In some cases, the access permissions of the file may themselves serve as a means of 
communication. If a file is created with read/write permissions for the owner only, another 
process may not access this file. This is a means of making that file name unavailable to a 
second process. 
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6.6. Process Ports 
Knowing the identity of another process gives a process the ability to communicate with 

it. The identity of certain key processes must be known to all other processes at system startup 
time to enable communication. These globally known processes include the scheduler, the 
memory manager, the process manager, the file manager and the swap device driver process. 
These comprise a sufficient set of known processes to start up new processes which may then 
communicate with the original set. 

Device driver processes are created dynamically in the system. They are in fact created, 
loaded and locked in memory upon opening a "device" file (see Section 7). The identity of the 
device driver process is returned by the process manager to the file manager which in turn may 
return the identity to the process which requested the opening of the "device" file. These 

. processes are referred to as "external" processes by Brinch Hansen (2). 
The above process communication primitives do not satisfy the requirements of commun­ 

ication between unrelated processes. For this reason the concept of process ports has been 
introduced. A process port is a globally known "device" (name) to which a process may attach 
itself in order to communicate with "unknown" processes. A process may connect itself to a 
port, disconnect itself from a port or obtain the identity of a process connected to a specific 
port. Once a process identifies itself globally by connecting itself to a port, other processes may 
communicate with it by sending messages to it through the port. The port thus serves as a 
two-way communication channel. It is a means of communication for processes which are not 
descendents of each other. 

7. File System 
The multi-environment as well as the real-time aspects of the MERT system require that 

the file system structure be capable of handling many different types of requests. Time-sharing 
applications require that files be both dynamically allocatable and dynamically growable. Real­ 
time applications require that files be large, and possibly contiguous; dynamic allocation and 
growth are usually not required. 

For data base management systems, files may be very large and it is often advantageous 
that files be stored in one contiguous area of secondary storage. Such large files are efficiently 
described by a file-map entry which consists of starting block number and number of consecu­ 
tive blocks (a two-word extent). A further benefit of this allocation scheme is that file 
accesses require only one access to secondary storage. Another commonly used scheme, using 
indexed pointers to blocks of a file in a file-map entry, may require more than one access to 
secondary storage to read or write a block of a file. However, this latter organization is usually 
quite suitable for time-sharing applications. The disadvantage of using two-word extents in the 
file-map entry to describe a dynamic time-sharing file is that this may lead to secondary storage 
fragmentation. In practice the efficient management of the in-core free extents reduces storage 
fragmentation significantly. 

Three kinds of files are discernible to the user: ordinary disk files, directories and special 
files. The directory structure is identical to the UNIX file system directory structure. Direc­ 
tories provide the mapping between the names of files and the files themselves and impose a 
hierarchical naming convention on the files. A directory entry contains only the name of the 
file and a file identifier which is essentially a pointer to the file-map entry (inode) for that file. 
A file may have more than one link to it, thus enabling the sharing of files. 

Special files in the MER1 system are associated with each 1/0 device. The opening of a 
special file causes the file manager to send a message to the process manager to create and load 
the appropriate device driver process and lock it in memory. Subsequent reads and writes to 
the file are translated into read/write messages to the corresponding I/0 driver process by the 
file manager process. 

In the case of ordinary files, the contents of a file are whatever the user puts in it. The 
file system process imposes no structure on the contents of the file. 
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The MERT file system distinguishes between contiguous files and other ordinary files. 
Contiguous files are described by one extent and the file blocks are not freed until the last link 
to the file is removed. Ordinary files may grow dynamically using up to 27 extents to describe 
their secondary storage allocation. To minimize fragmentation of the file system a growing file 
is allocated 40 blocks at a time. Unused blocks are freed when the file is closed. 

The list of free blocks of secondary storage is kept in memory as a list of the 64 largest 
extents of contiguous free blocks. Blocks for files are allocated and freed from this list using an 
algorithm which minimizes file system fragmentation. When freeing blocks, the blocks are 
merged into an existing entry in the free list if possible, otherwise placed in an unused entry in 
the free list, or failing this, replace an entry in the free list which contains a smaller number of 
free blocks. 

The entries which are being freed or allocated are also added to an update list in memory. 
These update entries are used to update a bit map which resides on secondary storage. If the 
in-core free list should become exhausted, the bit map is consulted to re-create the 64 largest 
entries of contiguous free blocks. The nature of the file system and the techniques used to 
reduce file system fragmentation ensure that this is a very rare occurrence. 

Very active file systems consisting of many small time-sharing files may be compacted 
periodically by a utility program to minimize file system fragmentation still further. File system 
storage fragmentation actually only becomes a problem when a file is unable to grow dynami­ 
cally having used up all 27 extents in its file map entry. Normal time-sharing files do not 
approach this condition. 

Communication with the file system process is achieved entirely by means of messages. 
The file manager can handle 25 different types of messages. The file manager is a kernel pro­ 
cess using both I and D space. It is structured as a task manager controlling a number of paral­ 
lel co-operating tasks which operate on a common data base and which are not individually 
preemptible. Each task acts on behalf of one incoming message and has a private data area as 
well as a common data area. The parallel nature of the file manager ensures efficient handling 
of the file system messages. The mode of communication, message buffers, also guarantees 
that other processes need not know the details of the structure of the file system. Changes in 
the file system structure are easily implemented without affecting other process structures. 

8. A Time-Sharing Supervisor 
The first supervisor process developed for the MER T system was a time-sharing supervi­ 

sor logically equivalent to the UNIX time-sharing system (8). The UNIX supervisor process 
was implemented using messages to communicate with the file system manager. This makes 
the UNIX supervisor completely independent of the file system structure. Changes and addi­ 
tions can then be made to the file system process as well as the file system structure on secon­ 
dary storage without affecting the operation of the UNIX supervisor. 

The structure of the system requires that there be an independent UNIX process for each 
user who "logs in". In fact a UNIX process is started up when a "carrier-on" transition is 
detected on a line which is capable of starting up a user. 

For efficiency purposes the code of the UNIX supervisor is shared among all processes 
running in the UNIX system environment. Each supervisor has a private data segment for 
maintaining the process stack and hence the state of the process. For purposes of communica­ 
tion one large data segment is shared among all UNIX processes. This data segment contains a 
set of shared buffers used for system side-buffering and a set of shared file descriptors which 
define the files that are currently open. 

The sharing of this common data segment does introduce the problem of critical regions, 
i.e. regions during which common resources are allocated and freed. The real-time nature of 
the system means that a process could be preempted even while running in a critical region. To 
ensure that this does not occur, it is necessary to inhibit preemption during a critical region and 
then permit preemption again upon exiting from the critical region. This also guarantees that 
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the delivery of an event at a higher hardware priority will not cause a critical region to be re­ 
entered. Note that a semaphore implemented at the supervisor level cannot prevent such re­ 
entry unless events are inhibited during the setting of the semaphore. 

The UNIX supervisor makes use of all of the communication primitives discussed previ­ 
ously. Messages are used to communicate with the file system process. Events and shared 
memory are used to communicate with other UNIX processes. Communication with character 
device driver processes is by means of EMT traps. Files are used to share information among 
processes. Process ports are used in the implementation of an error logger process to collect 
error messages from the various 1/0 device driver processes. 

The entire code for the UNIX supervisor process consists of 8K words. This includes all 
of the standard UNIX system routines as well as the many extra system routines which have 
been added to the UNIX/MERT supervisor. The extra system routines make use of the unique 
features -vailable under MERT. These include the ability to: 

1) create a new environment 
2) send and receive messages 
3) send and receive events 
4) set up shared segments 
;J invoke new file system primitives such as allocate contiguous files 
6) SPt up and communicate with process ports 
7) initiate physical and asynchronous 1/0. 

All memory management and process scheduling functions are performed by the kernel. 

9. Real Time Aspects 
Several features of the MERT architecture make it a sound base on which to build real­ 

time operating systems. The kernel provides the primitives needed to construct a system of 
cooperating, independent processes, each of which is designed to handle one aspect of the 
larger real-time problem. The processes can be arranged in levels of decreasing privilege 
depending on the response requirements. Kernel processes are capable of responding to inter­ 
rupts within 100 microseconds, non-swap supervisor processes can respond within a few mil­ 
liseconds, and swap processes can respond in hundreds of milliseconds. Shared segments can 
be used to pass data between the levels and to insure that the most up-to-date data is always 
available. This is sufficient to solve the data integrity problem discussed by Sorenson (3). 

The system provides a low resolution interval timer which can be used to generate events 
at any multiple of 1160th of a second up to 65535. This is used to stimulate processes which 
update data bases at regular intervals or time 1/0 devices. Since the timer event is an interrupt, 
supervisor processes can use it to subdivide a time slice to do internal scheduling. 

The preemptive priority scheduler and the control over which processes are swappable 
allow the system designer to specify the order in which tasks are processed. Since the file 
manager is an independent process driven by messages, all processes can communicate directly 
with it, providing a limited amount of device independence. The ability to store a file on a con­ 
tiguous area of secondary storage is aimed at minimizing access time. Finally, the availability of 
a sophisticated time-sharing system in the same machine as the real-time operating system pro­ 
vides powerful tools which can be exploited in designing the man-machine interface to the 
real-time processes. 

10. Process Debugging 
One of the most useful features of the system is the ability to carry on system develop­ 

ment while users are logged in. New l/0 drivers have been debugged and experiments with 
new versions of the time-sharing supervisor have been performed without adversely affecting 
the user community. 
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Three aspects of the system make this possible: 

1) Processes can be loaded dynamically. 
2) Snap shot dumps of the process can be made using the time-sharing supervisor. 
3) Processes are gracefully removed from the system and a core dump produced on 

the occurrence of a "break point trap". 

As an example, we recently interfaced a PDP-11/20 to our system using an inter­ 
processor DMA link. During the debugging of the software, the two machines would often get 
out of phase leading to a break-down in the communication channel. When this occurred, a 
dump of the process handling the PDP-11/45 end of the link was produced, a core image of the 
PDP-11/20 was transmitted to the PDP-11/45, and the two images were analyzed using a sym­ 
bolic debugger running under the time-sharing supervisor. When the problem was fixed a new 
version of the kernel-mode link process was created, loaded, and tested. Turn around time in 
this mode of operation is measured in seconds or minutes. 

11. MERT-Based Projects 
A number of PDP-11 based minicomputer systems have taken advantage of the MERT 

system features to meet their system specifications. The features which various projects have 
found useful include: 

contiguous files 
asynchronous input/output 
interprocess communication facilities 
large virtual address space 
public libraries 
real-time processes 
dynamic debugging features 

Most projects have had experience with or were using the UNIX time-sharing system. Thus 
the path of least resistance dictated the use of the MERT /UNIX system calls which were added 
to the original UNIX system calls to take advantage of the MERT system features. The next 
step was to write a special-purpose supervisor process to give the programmer more control in 
an environment oetter suited to the application than the UNIX time-sharing system environ­ 
ment. Almost all projects used the dynamic debugging features of the MER T system to test 
out new supervisor and new kernel processes. 

To take advantage of all of the system calls which were added to the MERT /UNIX super­ 
visor, a modified command interpreter, i.e. an extended shell was written (11). The user of this 
shell is able to make use of all of the MERT system interprocess communication facilities 
without having to know the details of the arguments required. A number of interesting new 
supervisor processes were written to run on the MERT system. One of the user environments 
emulated was the RSX-11 system, a DEC PDP-11 operating system. This required the design 
of an interface to the MERT file manager process. The new supervisor process provided the 
same interface to the user as that seen by the RSX-11 user on a dedicated machine. This 
offered the user access to all language subsystems and utilities provided by RSX-11 itself, most 
notably the Fortran IV compiler. Another supervisor process written was one which provided 
an interface to a user on a remote machine (SEL/86) to the MERT file system. Here the 
supervisor process communicates with the MERT file manager process by means of messages 
much as the MERT/UNIX supervisor does. A special kernel device driver process controls the 
hardware channels between the SEL/86 and the PDP-11/ 45 computers. The UNIX program­ 
ming environment in the MERT system is used both for PDP-11 programming and for prepar­ 
ing files and programs to be used on the SEL/86 machine. 

'--------------------------~~-~ ~-~- 
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12. Protection/Performance Trade-offs 
We summarize here the results of our experience with the MERT system as designers, 

implementers and users. Some of the features added or subtracted from the MERT system 
have been the result of feedback from various users. We pay particular attention to various 
aspects of the system design concerning trade-offs made between efficiency and protection. The 
advantages of the system architecture as well as its disadvantages are discussed. 

Each major design decision is discussed with respect to performance versus protection. By 
protection, we mean protection against inadvertent bugs and the resulting corruption, not pro­ 
tection against security breaches. In general, for the sake of a more efficient system, protection 
is sacrificed when it was believed that this extra protection would degrade system performance 
significantly. In most cases the system is used in dedicated applications where some protection 
could be sacrificed. Maximum protection is provided mainly by separating the various functions 
into layers, putting each function at the highest possible level, according to the access privileges 
required. All processes were written in the high-level language, C. This forced some structure 
in the processes. C controls access to the stack pointer and program counter and automatically 
saves the general-purpose registers in a subroutine call. This provides some protection which is 
helpful in confining the access of a program or process. 

12.1. Hardware 
The hardware of the PDP-11 computers permits a distinction to be made between kernel 

processes and supervisor processes. Kernel processes have direct access to the kernel-mode 
address space and may use all privileged instructions. For efficiency reasons, one base register 
always points to the complete I/0 page. This is 4K words of the address space of the PDP-11 
computer which is devoted to device addresses. It is not possible to limit access to only the 
device registers required for a particular device driver. The virtual address space is limited to 
16-bit addressing. This presents a limitation to some large processes. 

12.2. Kernel 
The number of base registers provided by the PDP-11 segmentation unit is a restriction in 

the kernel. The use of I and D space separation is necessitated to provide a reasonable number 
(16) of segments. Some degree of protection is provided for the sensitive kernel system tables 
by the address space separation since the kernel drivers do not use I/D space separation in gen­ 
eral. Such kernel processes do not have access to sensitive system data in kernel D-space. 

12.3. Kernel Process 
Most kernel-mode processes use only kernel I-space. This prohibits access to system seg­ 

ment tables and to kernel code procedures. However access to message buffers, dispatcher con­ 
trol tables and the I/0 page is permitted. A kernel process is the most privileged of all 
processes which the user can load into a running system. The stack used by a kernel process is 
the same as that used by kernel procedures. 

To provide complete security in the kernel would require that each process use its own 
stack area and that access to all base registers other than those required by the process be 
turned off. The time to set up a kernel process would become prohibitive. Since kernel 
processes are most often dispatched to by means of an interrupt, the interrupt overhead would 
become intolerable, making it more difficult to guarantee real-time response. 

In actual practice, the corruption of the kernel by kernel processes occurs very infre­ 
quently and then only when debugging a new kernel process. Fatal errors were seldom caused 
by the modification of data outside of the process's virtual address range. Most errors were 
timing dependent, errors which would not have been detected even with better protection 
mechanisms. Hence we conclude that the degree of protection provided for kernel processes in 
dedicated systems is sufficient without degrading system performance. The only extra overhead 
for dispatching to a kernel process is that of saving and restoring some base registers and saving 
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the current stack pointer. 

12.4. Supervisor Process 
Supervisor processes do not have direct access to the segments of other processes, kernel 

or supervisor. Therefore it is possible to restrict the impact of these processes on the rest of 
the system by means of careful checking in the kernel procedures. All communication with 
other processes must go through the kernel. Of course one pays a price for this protection 
since all supervisor base registers must have the appropriate access permissions set when a 
supervisor process is scheduled. Message traffic overhead is higher than for kernel processes. 

For protection reasons, capabilities were added to the system. This adds extra overhead 
for each message to the file manager, since each capability must be validated by the file 
manager. An alternate implementation of capabilities which reduces overhead at the cost of 
some protection is discussed in a later section. 

12.5. Message Buffers 
System message buffers are maintained in kernel address space. These buffers are corrup­ 

tible by a kernel process. The only way to protect against corruption completely would be to 
make a kernel EMT call to copy the message from the process's virtual address space to the 
kernel buff er pool. For efficiency reasons this was not done. 

For a supervisor process, the copying of a message from the supervisor's address space to 
the kernel message buffer pool area is necessary. This increases message traffic overhead for 
supervisor to kernel or supervisor to supervisor transfers. The overhead for sending and 
receiving a message between kernel processes amounts to 300 usec. whereas for supervisor 
processes the overhead is of the order of 800 usec. (on a PDP-11/45 computer without cache 
memory). 

12.6. File Manager Process 
The file manager process is implemented as a kernel-mode process with I and D space 

separated to obtain enough virtual address space. In the early implementation stage of the 
MERT system the file manager was a supervisor process but the heavy traffic to the file 
manager process induced many context changes and contributed significantly to system over­ 
head. Implemerration of the file manager process as a kernel-mode process improved system 
throughput by an average of about 25 percent. Again this was a protection/efficiency trade-off. 
Protection is sacrificed since the file manager process has access to all system code and data. In 
practice, it has not proven to be difficult to limit the access of the file manager to its intended 
virtual address space. Making the file manager a separate process has made it easy to imple­ 
ment independent processes which communicate with the file manager. The file manager is the 
only process with knowledge of the detailed structure of the file system. To prevent corruption 
of the file system, all incoming messages must be carefully validated. This includes careful 
checking of each capability specified in the message. This is a source of some system overhead 
which would not exist if the file system was tightly coupled with a supervisor process. How­ 
ever, this separation of function has proven very helpful in implementing new supervisors. 

12. 7. Process Manager 
The process manager is implemented as a swappable supervisor process. Its primary func­ 

tion is to create and start up new processes and handle their termination. An example is the 
loading of the kernel driver process for the magnetic tape drive. This is an infrequent 
occurrence, and thus the time penalty to bring in the process manager is tolerable. Other more 
frequent creations and deletions of processes associated with the UNIX system forking of 
processes is handled by the system scheduler process. In the early stages of implementation of 
the MERT system, the creation and deletion of all processes required the intervention of the 
process manager. This required the loading of the process manager in each case and added 
significantly to the overhead of creating and deleting of processes. 
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12.8. Response Comparisons 
The fact that a "UNIX-like" environment was implemented as one environment under the 

MERT kernel, gives us a unique opportunity to compare the overall response of a system run­ 
ning as a general-purpose development system to that of a system running a dedicated UNIX 
time-sharing system on the same hardware. This gives us a means of determining what system 
overhead is introduced by using messages as a basic means of inter-process communication. 
Application programs which take advantage of the UNIX file system structure give better 
response in a dedicated UNIX time-sharing system, whereas those which take advantage of the 
MERT file system structure give a better response under the MERT system. Compute-bound 
tasks respond in the same time under both systems. It is only where there is substantial system 
interaction, that the structure of the MERT system introduces extra system overhead, which is 
not present in a dedicated UNIX system. Comparisons of the amount of time spent in the ker­ 
nel and supervisor modes using synthetic jobs indicate that the MERT system requires from 
five to fifty percent more system time for the more heavily used system calls. This translates to 
an increase of five to ten percent in elapsed time for the completion of a job stream consisting 
of compilation, assembly, and link-edit. We believe that this overhead is a small price to pay to 
achieve a well-structured operating system with the ability to support customized applications. 
The structure of the system provides a basis for doing further operating system research. 

13. Design Decisions in Retrospect 
A number of design decisions were made in the MER T system which had no major 

impact on efficiency or protection. However, many of these impacted the interface presented to 
the user of the system. The pros and cons of these decisions are discussed here. 

13.1. File System 
The first file system for the MERT system was designed for real-time applications. For 

that, it is well-suited. For those applications which require the collection of data at a high rate, 
the use of contiguous files and asynchronous I/0 proved quite adequate. However, the number 
of applications which required contiguous files was not overwhelming. For those applications 
which used the MERT system as a development system as well, the allocation of files by 
extents is not optimal, although adequate. The number of files which exhausted their 27 
extents was small indeed. Also the need for compaction of file systems due to fragmentation 
was not as great as might have been expected and seems not to have posed any problems. The 
root file system very rarely needs to be compacted due to the nature of file system activity on 
it. 

The file manager process uses multi-tasking to increase its throughput. This has added 
another degree of parallelism to the system, but on the other hand has also been the source of 
many hard-to-find timing problems. 

The use of 16-bit block numbers is a short-coming in the file system with the advent of 
larger and larger disks. However, this has been rectified in a new 32-bit file system which has 
features that make it more suitable for small time-sharing files and yet allows the allocation of 
large contiguous files. Compaction of this file system is not required. 

13.2. Error Logging 
A special port process to collect error messages has proven to be very useful for tracking 

down problems with the peripheral devices. Sending messages rather than printing diagnostics 
out at the control terminal minimizes impact on real-time response. One drawback of this 
means of reporting errors is that the user is not told of the occurrence of an error immediately 
at his terminal unless the error is unrecoverable. He must examine the error logger file for 
actual error indications. 
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13.3. Process Ports 
Process ports were implemented as a means of enabling communication among unrelated 

processes. This has proven to be an easy-to-use mechanism for functions such as the error 
logger. Other uses have been made of it such as a centralized data base manager. The nature 
of the implementation of ports requires that the port numbers be assigned by some convention 
agreed upon by users of ports. Probably a better implementation of ports would have been to 
use named ports, i.e. refer to ports by name rather than by number. The number then is not 
dependent on any user assigned scheme. 

13.4. Shared Memory 
Shared memory allows the access to a common piece of memory by more than one pro­ 

cess. The use of named segments to implement sharing enables two or more processes to pass 
a large amount of data between them without actually copying any of the data. The PDP-11 
memory management unit and the 16-bit virtual address space are limitations imposed on 
shared memory. Only up to 16 segments may be in a process' address space at any one time. 
Sometimes it would be desirable to limit access to less than a total logical segment. The imple­ 
mentation chosen in the MER T system does not allow this. 

13.S. Public Libraries 
Public libraries are used in the MERT system at all levels, kernel, supervisor and user. 

The use of public libraries at the kernel level has allowed device drivers to share a common set 
of routines. At the user level, many programs have made use of public libraries to make a sub­ 
stantial savings in total memory requirements. The initial implementation of public libraries 
required that when a public library was reformed, all programs which referenced it had to be 
link-edited again to make the appropriate connection to subroutine entry points in the public 
library. The current implementation makes use of transfer vectors at the beginning of the pub­ 
lic library through which subroutine transfers are performed. Thus if no new entry points are 
added when a public library is formed again, the link-edit of all programs which use it becomes 
unnecessary. This has proven to be very helpful for maintaining a set of user programs which 
share public libraries. It has proven to be convenient also for making minor changes to the sys­ 
tem library when new subroutines are not added. This makes the re-forming of all device 
drivers unnecessary each time a minor change is made to a system library. 

13.6. Real-Time Capabilities 
The real-time capabilities of the MERT system are determined in part by the mode of the 

process running, i.e. kernel or supervisor. As a kernel-mode process, the process is dispatched 
to by an interrupt or an event. Time-out events may be used effectively to guarantee repetitive 
scheduling of a process. The response of a kernel process is limited by the occurrence of high 
priority interrupts, and therefore can only be guaranteed for the highest priority process. A 
supervisor process' scheduling priority can be made high by making it a non-swap process and 
giving it a high software priority. A response of the order of a few milliseconds can then be 
obtained. The scheduler uses pre-emption to achieve this. One aspect missing from the 
scheduler is dead-line scheduling. Thus it cannot be guaranteed that a task will finish by a cer­ 
tain time. The requirement for pre-emption has added another degree of complexity to the 
scheduler and of necessity adds overhead in dispatching to a process. Pre-emption has also 
complicated the handling of critical regions. It is necessary lo raise the hardware priority 
around a critical region. This is difficult to do in a supervisor since it requires making a kernel 
EMT call, adding to response time. Shifting of segments in memory also adds to the response 
time which can be guaranteed. 
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13. 7. Debugging Features 
Overall, the debugging features provided by the MERT system have proven to be ade­ 

quate. The kernel debugger has proven useful in looking at the history of events in the kernel 
and examining the detailed state of the system both after a crash and while the system is run­ 
ning. In retrospect it would have been helpful to have some more tools in this area to examine 
structures according to named elements rather than by off sets. 

The dynamic loading, dumping and then debugging of processes, both kernel and supervi­ 
sor on a running system have been helpful in achieving fast debugging turn-around. While post 
mortem debugging is useful, interactive debugging would eliminate the need to introduce traces 
and local event logging to supervisor and kernel processes as debugging aids. One danger of 
planting break-point traps at arbitrary points in the UNIX supervisor has been that of planting 
them in a critical region in which a resource is allocated. The resource may not be freed up 
properly and other processes may hang waiting for the resource to be freed up. 

13.8. Memory Manager 
The memory manager is a separate kernel process and handles incoming requests as mes­ 

sages in a fairly sequential manner. One thing it does do in parallel, however, is the loading of 
the next process to be run while the current one is running. In certain cases the memory 
manager can act as a bottleneck in the system throughput. This can also have serious impact 
on real-time response in a heavily-loaded system. 

13.9. Scheduler 
The scheduler in the MER T system is another separate kernel process. One improvement 

which could be made in this area is to separate mechanism from policy. The fact that the 
scheduler and memory manager are separate processes has system-wide impact in that the 
scheduler cannot always tell which process is the best one to run based on which one has the 
most segments in memory. The memory manager does not tend to throw out segments based 
on which process owns it but rather on usage statistics. 

13.10. Messages 
Messages have proven to be an effective means of communication between processes. At 

the lowest level, they have been helpful in separating functions into processes and of making 
these processes modular and independent. It has made things like error logging easy to imple­ 
ment. Communication with the file manager process by means of messages has removed the 
dependency of supervisor processes on file system structures. In fact a number of different file 
managers have been written to run using the identical "UNIX-like" supervisor. The UNIX file 
manager was brought up to run in place of the original MERT file manager without any impact 
on the supervisor processes. Messages at a higher level have not always been easy to deal with. 
It is difficult to prevent a number of user processes from swamping the kernel message buff er 
pool and thereby impacting system response. 

The MERT system implementation of messages solves the problem of many processes 
sending to one process quite effectively. However, the reverse problem of one process sending 
to many processes (i.e. many servers) is not handled efficiently at all. 

13.11. Firewalls 
Having separate processes for separate functions has modularized the design of the sys­ 

tem. It has eased the writing of new processes but required them to obey a new set of rules. 
To ensure that processes obey these rules requires an amount of checking which would not be 
necessary if processes were merged in one address space. This has been especially true of the 
file manager where corruption of data is very crucial as it can very quickly spread as a cancer in 
the system. 
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14. Portability 
Recently a great deal of interest has been expressed in porting complete operating systems 

and associated user programs to hardware configurations other than the DEC 16-bit PDP-11 
computer. We discuss here some of the hardware characteristics on which the MERT system 
depends and the impact of these on the software. 

14.1. Hardware Considerations 
At the time that we designed the MERT operating system (circa 1973), the DEC PDP- 

11/45 processor with a memory management unit allowing the addressing of up to 124K words 
of memory was a new system. Moreover, the memory management unit was rather sophisti­ 
cated for mini-computers at that time since it supported three address modes: kernel, supervi­ 
sor and user. It also supported two address spaces per mode, instruction and data. This 
enables a mode to address up to 64K words in its address space. Two address modes are gen­ 
erally sufficient for operating systems which provide one environment to the user. To support 
multi-environments, three modes are required (or at least are desirable), one of which provides 
the various environments to the user. We decided to make use of this feature. The separation 
of instruction and data address space provides more address space for a process. It also pro­ 
vides a greater number of segments per user and allows some degree of protection. This was 
used in the kernel where a large number of separate pieces of code and data need to be refer­ 
enced concurrently. The protection provided is made use of in kernel processes which need 
very few base registers and do not need access to very much data, in fact the less the better. 
Thus a kernel process is not allowed to run with instruction and data space separated so as to 
protect sensitive system tables. 

The third unique feature of the PDP-11/45 computer is that it has a programmable inter­ 
rupt register (PIR). This enables the system to trigger a software interrupt at one of seven 
hardware priority levels. The interrupt goes off when the processor starts to run at less than the 
specified priority. This is used heavily in the MERT system scheduler process and by kernel 
system routines which trigger various events to occur at specified hardware priorities. It is not 
sufficient to depend on the line clock for a pre-emptive scheduler to guarantee real-time 
response. 

We have identified here three unique features of the PDP-11/45 processor (and the 
PDP-11/70) which have been heavily used in the MERT system. These features are identified 
as unique in that a general class of mini-computers do not have all of these features, although 
some may have one or more. They are also identified as unique in that the UNIX operating 
system has not made critical use of them. Therefore the portability of the UNIX system is not 
impacted by them. For the portability of the MERT system, three or more address modes, a 
large number of segments (at least eight) per address mode and a programmed interrupt regis­ 
ter are highly desirable. 

14.2. Software Considerations 
Currently most of the MERT system is written in C. This includes all device driver 

processes, the scheduler, the file manager, the process manager and the UNIX supervisor. 
Most of the basic kernel, including the memory manager process, is written in PDP-11 assem­ 
bly language. This portion is of course not portable to other machines. Recently, a portable C 
compiler (12) has been written for various machines, both 16-bit and 32-bit machines, the two 
classes of mini-computers which are of general interest for portability purposes. These include 
the PDP-11 and the Interdata 8/32 machines. 

The UNIX system has been ported to the Interdata 8/32 machine, this includes all user 
programs as well as the operating system itself (13). Thus if the portability of the MERT sys­ 
tem to the Interdata 32-bit machine were to be considered, all user programs have already been 
ported. The main pieces of software which have to be written in portable format include all 
device drivers, the scheduler, the process manager, the file manager and the UNIX supervisor. 
Of these only the device drivers have machine dependencies and need substantial rewriting. 
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The file manager, being a kernel process has some machine dependent code. The bulk of the 
software which must r<;> rewritten is in the kernel itself, being substantially written in PDP-11 
assembly language. Also all library interface routines must be rewritten. Many of the calling 
sequences for library routines have to be reworked since arguments are passed specifically as 
16-bit integers. Some sizes, especially of segments, are specified in terms of 16-bit words. For 
portability reasons, all sizes must be treated in terms of 8-bit bytes. 

15. Reflections 
In designing any system, one must make a number of crucial decisions and abide by them 

in order to come up with a complete and workable system. We have made a number of these, 
some of which have been enumerated and discussed in the above sections. Upon reflecting on 
the results and getting feedback from users of the MERT system, we have come up with a 
number of design decisions which could probably have been made differently from what was 
actually ..:one. Users have pushed the system in directions which we never considered, finding 
holes in the design and also some bugs which were never exercised in the original MER T sys­ 
tem. 

15.1. Capabilities 
Capabilities were implemented in the system as a result of the experience of one user in 

writing a new supervisor process which sent messages to the file manager. There were two 
major deficienc.es, The first had to do with protection. Under the old design (without capabili­ 
ties) it was possible to ignore the protection bits. Upon reading/writing a file, no check was 
made of the protection bits. As long as a file was open, any action could be taken on the file, 
reading or writing; this included directories. With the addition of capabilities, when a file is 
opened, the capability is put in the user's PCB. The capability includes the entry number in the 
file manager tables, protection bits and a usage count. The capability is put in a message to the 
file manager by the kernel when a request is made to read/write a file. These three quantities 
are checked by the file manager. A capability must be satisfactorily validated before an access 
can be made to a file. This provides the degree of protection desired. 

The second deficiency of the file manager had to do with the maintenance of an up-to­ 
date set of open file tables. If a process is abnormally terminated, i.e. terminated by the 
scheduler without being given a chance to clean up, the process may not have been able to 
close all its files. This would typically occur when a breakpoint trap was planted in an experi­ 
mental version of the UNIX supervisor. The fact that no table is maintained in a central place 
with a list of all files open by each process caused file tables to get out of synchronization. 
Capabilities provide such a central table to the process manager and the memory manager. 
Thus when an abnormal termination is triggered on a process, the memory manager can access 
the process PCB and take down the capabilities one by one, going through the capability list in 
the PCB, sending close messages to the file manager. This provides a clean technique for main­ 
taining open counts on files in the file manager tables. 

In retrospect, the implementation of capabilities in the MERT system was probably carried 
to an extreme, i.e. not in keeping with the other protection/efficiency trade-offs made. The 
trade-off was made in favor of protection rather than efficiency, in this case. The current 
implementation of capabilities is expensive in that extra messages are generated in opening and 
closing files. For instance, in closing a file, a close message is sent to the file manager; this in 
turn generates a message to the capability manager (i.e the memory manager) to take down the 
capability from the PCB of the process which sent the close message. The asynchronous mes­ 
sage is necessary since the memory manager process must bring the PCB into memory to take 
down the capability if the PCB is not already in memory. 

A more efficient means of achieving the same result would be to maintain this list of 
capabilities in the supervisor address space with general read/write permissions with a pointer to 
the capability list maintained in the PCB. It would then be the supervisor's responsibility to fill 
in the capability when sending a message to the file manager and to take down the capability 
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·+'ov\ when closing the file. This requires no extra message traffic overhead as compared to the origi- , \ , . 

nal implementation w.thout capabilities. Upon abnormal termination, the memory manager "-:I ,d.• 
could still go through the capability list to take down all capabilities by sending closek: file mes- 
sages to the file manager. Protection is still achieved by the encoded capability. Efficiency is main- 
tained by eliminating extra messages to the memory manager. This proposed implementation also has 
the added benefit that it can be implemented for kernel processes in the same manner, i.e. using a 
pointer to 'l capability list in the kernel process header. 

15.2. Global System Buffers 

In the current implementation of the MERT system, each process maintains its own set of 
system buffers. The file manager provides its own set of buffers, used entirely for file mapping 
functions (e.g. superblocks for mounted file systems, inodes and directories). The UNIX 
supervisor provides its own set of buffers for use by all UNIX processes. These buffers are 
used almost exclusively for the contents of files. However, it is possible for a file to be the 
image of a complete file system, in which case a buff er may actually contain the contents of a 
directory or inode. This means there may be more than one copy of a given disk block in 
memory simultaneously. Because of the orthogonal nature of the uses of buffers in the UNIX 
system and the file manager, this duplication hardly ever occurs and does not pose a serious 
problem. Within the UNIX system itself all buffers are shared in a common data segment. 

However, if one wishes to implement other supervisors and these supervisor processes 
share a common file system with the UNIX supervisor, it becomes quite possible that more 
than one copy of some disk blocks exist in memory. This presents a problem for concurrent 
updates. 

An alternate method of implementation of buffers would have been to make use of 
named segments to map buffers into a globally accessible buffer pool. The allocation and de­ 
allocation of buffers would then become a kernel function and this would guarantee that each 
disk block would have a unique copy in memory. If the MERT system had allowed protection 
on sections of a segment, then system buffers could have been .rnplemented as one big buffer 
segment broken up into protectable 512-byte sections. The system overhead in this implemen­ 
tation probably would have been no greater than the current implementation. Each time a 
buffer is allocated and released a kernel EMT call would be necessary. However, even the 
present implementation requires two short-duration EMT calls to prevent process pre-emption 
during a critical region in the UNIX supervisor both during the allocation and releasing of a 
buffer. 

15.3. Diagnostics 
One of the shortcomings of the MERT system has been the lack of system diagnostics 

printed out at the control console reporting system troubles. The UNIX system provides diag­ 
nostic print-outs at the control console upon detection of system inconsistencies or the exhaus­ 
tion of crucial system resources such as file table entries, inode table entries or disk free blocks. 
Device errors are also reported at the control console. In the MERT system, device errors are 
permanently recorded on an error logger file. One reason for not providing diagnostic print-out 
at the control console is that the print-out impacts real-time response. 

The lack of diagnostic messages has been particularly noticeable in the file system 
manager and in the basic kernel when resources are exhausted. Providing diagnostic messages 
in the system requires the use of some address space in each process making use of diagnostic 
messages; this would require duplication of the basic printing routines in the kernel, the file 
manager and any other process which wished to report diagnostics or the inclusion of the print­ 
ing routines in the system library. A possible solution would have been to make use of the 
MERT message facilities to send diagnostic data to a central process connected to a port to print 
out all diagnostics both on the control console and into a file for later analysis. Using this tech­ 
nique, it would also be possible to send diagnostic messages directly to the user's terminal 
which caused the diagnostic condition to occur. The diagnostic logger process would be 
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analogous to the error logger process. 

15.4. Scheduler Process 
The current MERT scheduler is a separate kernel system process which implements both 

the mechanism and the policy of system-wide scheduling. It would be more flexible to imple­ 
ment only the mechanism in the kernel process and let the policy be separated from this 
mechanism in other user-written processes. 
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