Haswell metaprogrammlng

Froblem
Some compute-heavy problems or approaches at soluving them regqulre tToo much
code 1n their "i1nner loops" andsor too many processor redlsters - for speec

Exampele: so-called "bitslicing" of cryptographic primitives, where the code
resembles a hardware logic circult, with each data bit regquiring a register
and each logic d9ate requliring an lnstructlon

lhy do this bitslicing weirdness? Also for speed. Our N-bi1t CPU becomes
M 1-bi1t CPUs, which provides the sometimes-needed +lexibility and lets us
optimize away "operations' such as bit shitts, rotates, and permutations.

Another potential example: JIT-compeilled code for matching of many reguests
against manyg rules in a packet filter, fast HTTP server, anti-DDoS proxy

On typical CPUs such as Intel Haswell and beyond, L1 instruction cache is

32 KiB, the uop cache is smaller yet, and there are 16 general-purpose +
16 SIMD registers per thread., Suppose that's not enoudgh.

@solardiz @0penwall BSidesLjubljana March 2817 i &



Haswell metaprogarammlng
solution

Let the code be 1n LZ cache, which 1s 226 K1B
Haswell can fetch and decode 16 bytes of i1nstruction stream per cycle sven
for code coming from LZ cache (wia L1), with no penalty on code throughput,
(The 16 bytes limit also applies to fetch & decode from L1 on uop cache miss.)
Haswell can execute up to 2 AVEZ 1hstructions per cycle, and no more of those
andway., I we keep our 1nstructions to €= o bytes sach, we utilize the AYAZ
execution units fully even with code 1n LZ cache.
Haswell 12 also fast at accessing L1l data cache (same throughput as reglisters)
With properly initialized 1e GP reaisters, we can fit 8-bit immediate offsets
agalnst those into S-byte 1nstructions and thereby address a 16¥256 bytes
"register file". That’s 128 extra AVXZ2-alike 32-byte "registers'".
e oot a3 meta CPU with 296 K1EB I-cache and 144 » 226-bi1t redglsters., And 1t°s
+ast. Magic.

@solardiz @0penwall BSidesLgubljana March 2817 2 /3



Haswell metaprogarammlng
The catch
The workload and 1ts portions must be throughput rather than latency bound

Oonly one of the "registers" 1n an instruction can be virtual (in L1 cache’,
and 1t must be either source-only or destination of a MOV, Other registers
in the same 1nstruction have to be among the 16 regular AVRZ registers.

There are only 2 read and 1 write ports to L1 data cache, so on averadge the

4 lhstructlons processed per cycle must not exceed these ports’ capacity.

(Yet 1ndividual groups of 2 1nstructlions may exceed 11T with no penalty, as
long as the workload 15 only throughput bound as 1t should he.)

In testing, this works great for code sizes of up to roughly one half of
L2 cache size or slightly more (the threshold 1s typically at 138 Ki1BE to
148 KiB, although 1t varies a bit between program invocations). This is
likely because of LZ cache being physically-indexed, with higher code sizes
resulting 1in high probability that we'd have duplicate indices 1n excess of
the cache’'s S-way assoclativity, (Fage coloring o a custom allocator in

the kernel or a kernel module could help run the +ull 258 K1B of code fast.)

@solardiz @0penwall BSidesLjubljana March 2817 3/

3



